1 //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the ARM addressing mode implementation stuff. 11 // 12 //===----------------------------------------------------------------------===// 13 14 /* Capstone Disassembly Engine */ 15 /* By Nguyen Anh Quynh <aquynh (at) gmail.com>, 2013-2014 */ 16 17 #ifndef CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H 18 #define CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H 19 20 #include "../../include/platform.h" 21 #include "../../MathExtras.h" 22 23 /// ARM_AM - ARM Addressing Mode Stuff 24 typedef enum ARM_AM_ShiftOpc { 25 ARM_AM_no_shift = 0, 26 ARM_AM_asr, 27 ARM_AM_lsl, 28 ARM_AM_lsr, 29 ARM_AM_ror, 30 ARM_AM_rrx 31 } ARM_AM_ShiftOpc; 32 33 typedef enum ARM_AM_AddrOpc { 34 ARM_AM_sub = 0, 35 ARM_AM_add 36 } ARM_AM_AddrOpc; 37 38 static inline char *ARM_AM_getAddrOpcStr(ARM_AM_AddrOpc Op) 39 { 40 return Op == ARM_AM_sub ? "-" : ""; 41 } 42 43 static inline char *ARM_AM_getShiftOpcStr(ARM_AM_ShiftOpc Op) 44 { 45 switch (Op) { 46 default: return ""; //llvm_unreachable("Unknown shift opc!"); 47 case ARM_AM_asr: return "asr"; 48 case ARM_AM_lsl: return "lsl"; 49 case ARM_AM_lsr: return "lsr"; 50 case ARM_AM_ror: return "ror"; 51 case ARM_AM_rrx: return "rrx"; 52 } 53 } 54 55 static inline unsigned ARM_AM_getShiftOpcEncoding(ARM_AM_ShiftOpc Op) 56 { 57 switch (Op) { 58 default: return (unsigned int)-1; //llvm_unreachable("Unknown shift opc!"); 59 case ARM_AM_asr: return 2; 60 case ARM_AM_lsl: return 0; 61 case ARM_AM_lsr: return 1; 62 case ARM_AM_ror: return 3; 63 } 64 } 65 66 typedef enum ARM_AM_AMSubMode { 67 ARM_AM_bad_am_submode = 0, 68 ARM_AM_ia, 69 ARM_AM_ib, 70 ARM_AM_da, 71 ARM_AM_db 72 } ARM_AM_AMSubMode; 73 74 static inline const char *ARM_AM_getAMSubModeStr(ARM_AM_AMSubMode Mode) 75 { 76 switch (Mode) { 77 default: return ""; 78 case ARM_AM_ia: return "ia"; 79 case ARM_AM_ib: return "ib"; 80 case ARM_AM_da: return "da"; 81 case ARM_AM_db: return "db"; 82 } 83 } 84 85 /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits. 86 /// 87 static inline unsigned rotr32(unsigned Val, unsigned Amt) 88 { 89 //assert(Amt < 32 && "Invalid rotate amount"); 90 return (Val >> Amt) | (Val << ((32-Amt)&31)); 91 } 92 93 /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits. 94 /// 95 static inline unsigned rotl32(unsigned Val, unsigned Amt) 96 { 97 //assert(Amt < 32 && "Invalid rotate amount"); 98 return (Val << Amt) | (Val >> ((32-Amt)&31)); 99 } 100 101 //===--------------------------------------------------------------------===// 102 // Addressing Mode #1: shift_operand with registers 103 //===--------------------------------------------------------------------===// 104 // 105 // This 'addressing mode' is used for arithmetic instructions. It can 106 // represent things like: 107 // reg 108 // reg [asr|lsl|lsr|ror|rrx] reg 109 // reg [asr|lsl|lsr|ror|rrx] imm 110 // 111 // This is stored three operands [rega, regb, opc]. The first is the base 112 // reg, the second is the shift amount (or reg0 if not present or imm). The 113 // third operand encodes the shift opcode and the imm if a reg isn't present. 114 // 115 static inline unsigned getSORegOpc(ARM_AM_ShiftOpc ShOp, unsigned Imm) 116 { 117 return ShOp | (Imm << 3); 118 } 119 120 static inline unsigned getSORegOffset(unsigned Op) 121 { 122 return Op >> 3; 123 } 124 125 static inline ARM_AM_ShiftOpc ARM_AM_getSORegShOp(unsigned Op) 126 { 127 return (ARM_AM_ShiftOpc)(Op & 7); 128 } 129 130 /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return 131 /// the 8-bit imm value. 132 static inline unsigned getSOImmValImm(unsigned Imm) 133 { 134 return Imm & 0xFF; 135 } 136 137 /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return 138 /// the rotate amount. 139 static inline unsigned getSOImmValRot(unsigned Imm) 140 { 141 return (Imm >> 8) * 2; 142 } 143 144 /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand, 145 /// computing the rotate amount to use. If this immediate value cannot be 146 /// handled with a single shifter-op, determine a good rotate amount that will 147 /// take a maximal chunk of bits out of the immediate. 148 static inline unsigned getSOImmValRotate(unsigned Imm) 149 { 150 unsigned TZ, RotAmt; 151 // 8-bit (or less) immediates are trivially shifter_operands with a rotate 152 // of zero. 153 if ((Imm & ~255U) == 0) return 0; 154 155 // Use CTZ to compute the rotate amount. 156 TZ = CountTrailingZeros_32(Imm); 157 158 // Rotate amount must be even. Something like 0x200 must be rotated 8 bits, 159 // not 9. 160 RotAmt = TZ & ~1; 161 162 // If we can handle this spread, return it. 163 if ((rotr32(Imm, RotAmt) & ~255U) == 0) 164 return (32-RotAmt)&31; // HW rotates right, not left. 165 166 // For values like 0xF000000F, we should ignore the low 6 bits, then 167 // retry the hunt. 168 if (Imm & 63U) { 169 unsigned TZ2 = CountTrailingZeros_32(Imm & ~63U); 170 unsigned RotAmt2 = TZ2 & ~1; 171 if ((rotr32(Imm, RotAmt2) & ~255U) == 0) 172 return (32-RotAmt2)&31; // HW rotates right, not left. 173 } 174 175 // Otherwise, we have no way to cover this span of bits with a single 176 // shifter_op immediate. Return a chunk of bits that will be useful to 177 // handle. 178 return (32-RotAmt)&31; // HW rotates right, not left. 179 } 180 181 /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit 182 /// into an shifter_operand immediate operand, return the 12-bit encoding for 183 /// it. If not, return -1. 184 static inline int getSOImmVal(unsigned Arg) 185 { 186 unsigned RotAmt; 187 // 8-bit (or less) immediates are trivially shifter_operands with a rotate 188 // of zero. 189 if ((Arg & ~255U) == 0) return Arg; 190 191 RotAmt = getSOImmValRotate(Arg); 192 193 // If this cannot be handled with a single shifter_op, bail out. 194 if (rotr32(~255U, RotAmt) & Arg) 195 return -1; 196 197 // Encode this correctly. 198 return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8); 199 } 200 201 /// isSOImmTwoPartVal - Return true if the specified value can be obtained by 202 /// or'ing together two SOImmVal's. 203 static inline bool isSOImmTwoPartVal(unsigned V) 204 { 205 // If this can be handled with a single shifter_op, bail out. 206 V = rotr32(~255U, getSOImmValRotate(V)) & V; 207 if (V == 0) 208 return false; 209 210 // If this can be handled with two shifter_op's, accept. 211 V = rotr32(~255U, getSOImmValRotate(V)) & V; 212 return V == 0; 213 } 214 215 /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal, 216 /// return the first chunk of it. 217 static inline unsigned getSOImmTwoPartFirst(unsigned V) 218 { 219 return rotr32(255U, getSOImmValRotate(V)) & V; 220 } 221 222 /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal, 223 /// return the second chunk of it. 224 static inline unsigned getSOImmTwoPartSecond(unsigned V) 225 { 226 // Mask out the first hunk. 227 V = rotr32(~255U, getSOImmValRotate(V)) & V; 228 229 // Take what's left. 230 //assert(V == (rotr32(255U, getSOImmValRotate(V)) & V)); 231 return V; 232 } 233 234 /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed 235 /// by a left shift. Returns the shift amount to use. 236 static inline unsigned getThumbImmValShift(unsigned Imm) 237 { 238 // 8-bit (or less) immediates are trivially immediate operand with a shift 239 // of zero. 240 if ((Imm & ~255U) == 0) return 0; 241 242 // Use CTZ to compute the shift amount. 243 return CountTrailingZeros_32(Imm); 244 } 245 246 /// isThumbImmShiftedVal - Return true if the specified value can be obtained 247 /// by left shifting a 8-bit immediate. 248 static inline bool isThumbImmShiftedVal(unsigned V) 249 { 250 // If this can be handled with 251 V = (~255U << getThumbImmValShift(V)) & V; 252 return V == 0; 253 } 254 255 /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed 256 /// by a left shift. Returns the shift amount to use. 257 static inline unsigned getThumbImm16ValShift(unsigned Imm) 258 { 259 // 16-bit (or less) immediates are trivially immediate operand with a shift 260 // of zero. 261 if ((Imm & ~65535U) == 0) return 0; 262 263 // Use CTZ to compute the shift amount. 264 return CountTrailingZeros_32(Imm); 265 } 266 267 /// isThumbImm16ShiftedVal - Return true if the specified value can be 268 /// obtained by left shifting a 16-bit immediate. 269 static inline bool isThumbImm16ShiftedVal(unsigned V) 270 { 271 // If this can be handled with 272 V = (~65535U << getThumbImm16ValShift(V)) & V; 273 return V == 0; 274 } 275 276 /// getThumbImmNonShiftedVal - If V is a value that satisfies 277 /// isThumbImmShiftedVal, return the non-shiftd value. 278 static inline unsigned getThumbImmNonShiftedVal(unsigned V) 279 { 280 return V >> getThumbImmValShift(V); 281 } 282 283 284 /// getT2SOImmValSplat - Return the 12-bit encoded representation 285 /// if the specified value can be obtained by splatting the low 8 bits 286 /// into every other byte or every byte of a 32-bit value. i.e., 287 /// 00000000 00000000 00000000 abcdefgh control = 0 288 /// 00000000 abcdefgh 00000000 abcdefgh control = 1 289 /// abcdefgh 00000000 abcdefgh 00000000 control = 2 290 /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3 291 /// Return -1 if none of the above apply. 292 /// See ARM Reference Manual A6.3.2. 293 static inline int getT2SOImmValSplatVal(unsigned V) 294 { 295 unsigned u, Vs, Imm; 296 // control = 0 297 if ((V & 0xffffff00) == 0) 298 return V; 299 300 // If the value is zeroes in the first byte, just shift those off 301 Vs = ((V & 0xff) == 0) ? V >> 8 : V; 302 // Any passing value only has 8 bits of payload, splatted across the word 303 Imm = Vs & 0xff; 304 // Likewise, any passing values have the payload splatted into the 3rd byte 305 u = Imm | (Imm << 16); 306 307 // control = 1 or 2 308 if (Vs == u) 309 return (((Vs == V) ? 1 : 2) << 8) | Imm; 310 311 // control = 3 312 if (Vs == (u | (u << 8))) 313 return (3 << 8) | Imm; 314 315 return -1; 316 } 317 318 /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the 319 /// specified value is a rotated 8-bit value. Return -1 if no rotation 320 /// encoding is possible. 321 /// See ARM Reference Manual A6.3.2. 322 static inline int getT2SOImmValRotateVal(unsigned V) 323 { 324 unsigned RotAmt = CountLeadingZeros_32(V); 325 if (RotAmt >= 24) 326 return -1; 327 328 // If 'Arg' can be handled with a single shifter_op return the value. 329 if ((rotr32(0xff000000U, RotAmt) & V) == V) 330 return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7); 331 332 return -1; 333 } 334 335 /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit 336 /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit 337 /// encoding for it. If not, return -1. 338 /// See ARM Reference Manual A6.3.2. 339 static inline int getT2SOImmVal(unsigned Arg) 340 { 341 int Rot; 342 // If 'Arg' is an 8-bit splat, then get the encoded value. 343 int Splat = getT2SOImmValSplatVal(Arg); 344 if (Splat != -1) 345 return Splat; 346 347 // If 'Arg' can be handled with a single shifter_op return the value. 348 Rot = getT2SOImmValRotateVal(Arg); 349 if (Rot != -1) 350 return Rot; 351 352 return -1; 353 } 354 355 static inline unsigned getT2SOImmValRotate(unsigned V) 356 { 357 unsigned RotAmt; 358 359 if ((V & ~255U) == 0) 360 return 0; 361 362 // Use CTZ to compute the rotate amount. 363 RotAmt = CountTrailingZeros_32(V); 364 return (32 - RotAmt) & 31; 365 } 366 367 static inline bool isT2SOImmTwoPartVal (unsigned Imm) 368 { 369 unsigned V = Imm; 370 // Passing values can be any combination of splat values and shifter 371 // values. If this can be handled with a single shifter or splat, bail 372 // out. Those should be handled directly, not with a two-part val. 373 if (getT2SOImmValSplatVal(V) != -1) 374 return false; 375 V = rotr32 (~255U, getT2SOImmValRotate(V)) & V; 376 if (V == 0) 377 return false; 378 379 // If this can be handled as an immediate, accept. 380 if (getT2SOImmVal(V) != -1) return true; 381 382 // Likewise, try masking out a splat value first. 383 V = Imm; 384 if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1) 385 V &= ~0xff00ff00U; 386 else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1) 387 V &= ~0x00ff00ffU; 388 // If what's left can be handled as an immediate, accept. 389 if (getT2SOImmVal(V) != -1) return true; 390 391 // Otherwise, do not accept. 392 return false; 393 } 394 395 static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) 396 { 397 //assert (isT2SOImmTwoPartVal(Imm) && 398 // "Immedate cannot be encoded as two part immediate!"); 399 // Try a shifter operand as one part 400 unsigned V = rotr32 (~(unsigned int)255, getT2SOImmValRotate(Imm)) & Imm; 401 // If the rest is encodable as an immediate, then return it. 402 if (getT2SOImmVal(V) != -1) return V; 403 404 // Try masking out a splat value first. 405 if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1) 406 return Imm & 0xff00ff00U; 407 408 // The other splat is all that's left as an option. 409 //assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1); 410 return Imm & 0x00ff00ffU; 411 } 412 413 static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) 414 { 415 // Mask out the first hunk 416 Imm ^= getT2SOImmTwoPartFirst(Imm); 417 // Return what's left 418 //assert (getT2SOImmVal(Imm) != -1 && 419 // "Unable to encode second part of T2 two part SO immediate"); 420 return Imm; 421 } 422 423 424 //===--------------------------------------------------------------------===// 425 // Addressing Mode #2 426 //===--------------------------------------------------------------------===// 427 // 428 // This is used for most simple load/store instructions. 429 // 430 // addrmode2 := reg +/- reg shop imm 431 // addrmode2 := reg +/- imm12 432 // 433 // The first operand is always a Reg. The second operand is a reg if in 434 // reg/reg form, otherwise it's reg#0. The third field encodes the operation 435 // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The 436 // fourth operand 16-17 encodes the index mode. 437 // 438 // If this addressing mode is a frame index (before prolog/epilog insertion 439 // and code rewriting), this operand will have the form: FI#, reg0, <offs> 440 // with no shift amount for the frame offset. 441 // 442 static inline unsigned ARM_AM_getAM2Opc(ARM_AM_AddrOpc Opc, unsigned Imm12, ARM_AM_ShiftOpc SO, 443 unsigned IdxMode) 444 { 445 //assert(Imm12 < (1 << 12) && "Imm too large!"); 446 bool isSub = Opc == ARM_AM_sub; 447 return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ; 448 } 449 450 static inline unsigned getAM2Offset(unsigned AM2Opc) 451 { 452 return AM2Opc & ((1 << 12)-1); 453 } 454 455 static inline ARM_AM_AddrOpc getAM2Op(unsigned AM2Opc) 456 { 457 return ((AM2Opc >> 12) & 1) ? ARM_AM_sub : ARM_AM_add; 458 } 459 460 static inline ARM_AM_ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) 461 { 462 return (ARM_AM_ShiftOpc)((AM2Opc >> 13) & 7); 463 } 464 465 static inline unsigned getAM2IdxMode(unsigned AM2Opc) 466 { 467 return (AM2Opc >> 16); 468 } 469 470 //===--------------------------------------------------------------------===// 471 // Addressing Mode #3 472 //===--------------------------------------------------------------------===// 473 // 474 // This is used for sign-extending loads, and load/store-pair instructions. 475 // 476 // addrmode3 := reg +/- reg 477 // addrmode3 := reg +/- imm8 478 // 479 // The first operand is always a Reg. The second operand is a reg if in 480 // reg/reg form, otherwise it's reg#0. The third field encodes the operation 481 // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the 482 // index mode. 483 484 /// getAM3Opc - This function encodes the addrmode3 opc field. 485 static inline unsigned getAM3Opc(ARM_AM_AddrOpc Opc, unsigned char Offset, 486 unsigned IdxMode) 487 { 488 bool isSub = Opc == ARM_AM_sub; 489 return ((int)isSub << 8) | Offset | (IdxMode << 9); 490 } 491 492 static inline unsigned char getAM3Offset(unsigned AM3Opc) 493 { 494 return AM3Opc & 0xFF; 495 } 496 497 static inline ARM_AM_AddrOpc getAM3Op(unsigned AM3Opc) 498 { 499 return ((AM3Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add; 500 } 501 502 static inline unsigned getAM3IdxMode(unsigned AM3Opc) 503 { 504 return (AM3Opc >> 9); 505 } 506 507 //===--------------------------------------------------------------------===// 508 // Addressing Mode #4 509 //===--------------------------------------------------------------------===// 510 // 511 // This is used for load / store multiple instructions. 512 // 513 // addrmode4 := reg, <mode> 514 // 515 // The four modes are: 516 // IA - Increment after 517 // IB - Increment before 518 // DA - Decrement after 519 // DB - Decrement before 520 // For VFP instructions, only the IA and DB modes are valid. 521 522 static inline ARM_AM_AMSubMode getAM4SubMode(unsigned Mode) 523 { 524 return (ARM_AM_AMSubMode)(Mode & 0x7); 525 } 526 527 static inline unsigned getAM4ModeImm(ARM_AM_AMSubMode SubMode) 528 { 529 return (int)SubMode; 530 } 531 532 //===--------------------------------------------------------------------===// 533 // Addressing Mode #5 534 //===--------------------------------------------------------------------===// 535 // 536 // This is used for coprocessor instructions, such as FP load/stores. 537 // 538 // addrmode5 := reg +/- imm8*4 539 // 540 // The first operand is always a Reg. The second operand encodes the 541 // operation in bit 8 and the immediate in bits 0-7. 542 543 /// getAM5Opc - This function encodes the addrmode5 opc field. 544 static inline unsigned ARM_AM_getAM5Opc(ARM_AM_AddrOpc Opc, unsigned char Offset) 545 { 546 bool isSub = Opc == ARM_AM_sub; 547 return ((int)isSub << 8) | Offset; 548 } 549 static inline unsigned char ARM_AM_getAM5Offset(unsigned AM5Opc) 550 { 551 return AM5Opc & 0xFF; 552 } 553 static inline ARM_AM_AddrOpc ARM_AM_getAM5Op(unsigned AM5Opc) 554 { 555 return ((AM5Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add; 556 } 557 558 //===--------------------------------------------------------------------===// 559 // Addressing Mode #6 560 //===--------------------------------------------------------------------===// 561 // 562 // This is used for NEON load / store instructions. 563 // 564 // addrmode6 := reg with optional alignment 565 // 566 // This is stored in two operands [regaddr, align]. The first is the 567 // address register. The second operand is the value of the alignment 568 // specifier in bytes or zero if no explicit alignment. 569 // Valid alignments depend on the specific instruction. 570 571 //===--------------------------------------------------------------------===// 572 // NEON Modified Immediates 573 //===--------------------------------------------------------------------===// 574 // 575 // Several NEON instructions (e.g., VMOV) take a "modified immediate" 576 // vector operand, where a small immediate encoded in the instruction 577 // specifies a full NEON vector value. These modified immediates are 578 // represented here as encoded integers. The low 8 bits hold the immediate 579 // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold 580 // the "Cmode" field of the instruction. The interfaces below treat the 581 // Op and Cmode values as a single 5-bit value. 582 583 static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) 584 { 585 return (OpCmode << 8) | Val; 586 } 587 static inline unsigned getNEONModImmOpCmode(unsigned ModImm) 588 { 589 return (ModImm >> 8) & 0x1f; 590 } 591 static inline unsigned getNEONModImmVal(unsigned ModImm) 592 { 593 return ModImm & 0xff; 594 } 595 596 /// decodeNEONModImm - Decode a NEON modified immediate value into the 597 /// element value and the element size in bits. (If the element size is 598 /// smaller than the vector, it is splatted into all the elements.) 599 static inline uint64_t ARM_AM_decodeNEONModImm(unsigned ModImm, unsigned *EltBits) 600 { 601 unsigned OpCmode = getNEONModImmOpCmode(ModImm); 602 unsigned Imm8 = getNEONModImmVal(ModImm); 603 uint64_t Val = 0; 604 unsigned ByteNum; 605 606 if (OpCmode == 0xe) { 607 // 8-bit vector elements 608 Val = Imm8; 609 *EltBits = 8; 610 } else if ((OpCmode & 0xc) == 0x8) { 611 // 16-bit vector elements 612 ByteNum = (OpCmode & 0x6) >> 1; 613 Val = (uint64_t)Imm8 << (8 * ByteNum); 614 *EltBits = 16; 615 } else if ((OpCmode & 0x8) == 0) { 616 // 32-bit vector elements, zero with one byte set 617 ByteNum = (OpCmode & 0x6) >> 1; 618 Val = (uint64_t)Imm8 << (8 * ByteNum); 619 *EltBits = 32; 620 } else if ((OpCmode & 0xe) == 0xc) { 621 // 32-bit vector elements, one byte with low bits set 622 ByteNum = 1 + (OpCmode & 0x1); 623 Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum))); 624 *EltBits = 32; 625 } else if (OpCmode == 0x1e) { 626 // 64-bit vector elements 627 for (ByteNum = 0; ByteNum < 8; ++ByteNum) { 628 if ((ModImm >> ByteNum) & 1) 629 Val |= (uint64_t)0xff << (8 * ByteNum); 630 } 631 *EltBits = 64; 632 } else { 633 //llvm_unreachable("Unsupported NEON immediate"); 634 } 635 return Val; 636 } 637 638 ARM_AM_AMSubMode getLoadStoreMultipleSubMode(int Opcode); 639 640 //===--------------------------------------------------------------------===// 641 // Floating-point Immediates 642 // 643 static inline float getFPImmFloat(unsigned Imm) 644 { 645 // We expect an 8-bit binary encoding of a floating-point number here. 646 union { 647 uint32_t I; 648 float F; 649 } FPUnion; 650 651 uint8_t Sign = (Imm >> 7) & 0x1; 652 uint8_t Exp = (Imm >> 4) & 0x7; 653 uint8_t Mantissa = Imm & 0xf; 654 655 // 8-bit FP iEEEE Float Encoding 656 // abcd efgh aBbbbbbc defgh000 00000000 00000000 657 // 658 // where B = NOT(b); 659 660 FPUnion.I = 0; 661 FPUnion.I |= Sign << 31; 662 FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; 663 FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; 664 FPUnion.I |= (Exp & 0x3) << 23; 665 FPUnion.I |= Mantissa << 19; 666 return FPUnion.F; 667 } 668 669 #endif 670 671