Home | History | Annotate | Download | only in ast
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/ast/scopes.h"
      6 
      7 #include <set>
      8 
      9 #include "src/accessors.h"
     10 #include "src/ast/ast.h"
     11 #include "src/base/optional.h"
     12 #include "src/bootstrapper.h"
     13 #include "src/counters.h"
     14 #include "src/messages.h"
     15 #include "src/objects-inl.h"
     16 #include "src/objects/module-inl.h"
     17 #include "src/objects/scope-info.h"
     18 #include "src/parsing/parse-info.h"
     19 #include "src/parsing/preparsed-scope-data.h"
     20 #include "src/zone/zone-list-inl.h"
     21 
     22 namespace v8 {
     23 namespace internal {
     24 
     25 namespace {
     26 void* kDummyPreParserVariable = reinterpret_cast<void*>(0x1);
     27 void* kDummyPreParserLexicalVariable = reinterpret_cast<void*>(0x2);
     28 
     29 bool IsLexical(Variable* variable) {
     30   if (variable == kDummyPreParserLexicalVariable) return true;
     31   if (variable == kDummyPreParserVariable) return false;
     32   return IsLexicalVariableMode(variable->mode());
     33 }
     34 
     35 }  // namespace
     36 
     37 // ----------------------------------------------------------------------------
     38 // Implementation of LocalsMap
     39 //
     40 // Note: We are storing the handle locations as key values in the hash map.
     41 //       When inserting a new variable via Declare(), we rely on the fact that
     42 //       the handle location remains alive for the duration of that variable
     43 //       use. Because a Variable holding a handle with the same location exists
     44 //       this is ensured.
     45 
     46 VariableMap::VariableMap(Zone* zone)
     47     : ZoneHashMap(8, ZoneAllocationPolicy(zone)) {}
     48 
     49 Variable* VariableMap::Declare(Zone* zone, Scope* scope,
     50                                const AstRawString* name, VariableMode mode,
     51                                VariableKind kind,
     52                                InitializationFlag initialization_flag,
     53                                MaybeAssignedFlag maybe_assigned_flag,
     54                                bool* added) {
     55   // AstRawStrings are unambiguous, i.e., the same string is always represented
     56   // by the same AstRawString*.
     57   // FIXME(marja): fix the type of Lookup.
     58   Entry* p =
     59       ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->Hash(),
     60                                   ZoneAllocationPolicy(zone));
     61   if (added) *added = p->value == nullptr;
     62   if (p->value == nullptr) {
     63     // The variable has not been declared yet -> insert it.
     64     DCHECK_EQ(name, p->key);
     65     p->value = new (zone) Variable(scope, name, mode, kind, initialization_flag,
     66                                    maybe_assigned_flag);
     67   }
     68   return reinterpret_cast<Variable*>(p->value);
     69 }
     70 
     71 Variable* VariableMap::DeclareName(Zone* zone, const AstRawString* name,
     72                                    VariableMode mode) {
     73   Entry* p =
     74       ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->Hash(),
     75                                   ZoneAllocationPolicy(zone));
     76   if (p->value == nullptr) {
     77     // The variable has not been declared yet -> insert it.
     78     DCHECK_EQ(name, p->key);
     79     p->value = mode == VariableMode::kVar ? kDummyPreParserVariable
     80                                           : kDummyPreParserLexicalVariable;
     81   }
     82   return reinterpret_cast<Variable*>(p->value);
     83 }
     84 
     85 void VariableMap::Remove(Variable* var) {
     86   const AstRawString* name = var->raw_name();
     87   ZoneHashMap::Remove(const_cast<AstRawString*>(name), name->Hash());
     88 }
     89 
     90 void VariableMap::Add(Zone* zone, Variable* var) {
     91   const AstRawString* name = var->raw_name();
     92   Entry* p =
     93       ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->Hash(),
     94                                   ZoneAllocationPolicy(zone));
     95   DCHECK_NULL(p->value);
     96   DCHECK_EQ(name, p->key);
     97   p->value = var;
     98 }
     99 
    100 Variable* VariableMap::Lookup(const AstRawString* name) {
    101   Entry* p = ZoneHashMap::Lookup(const_cast<AstRawString*>(name), name->Hash());
    102   if (p != nullptr) {
    103     DCHECK(reinterpret_cast<const AstRawString*>(p->key) == name);
    104     DCHECK_NOT_NULL(p->value);
    105     return reinterpret_cast<Variable*>(p->value);
    106   }
    107   return nullptr;
    108 }
    109 
    110 void SloppyBlockFunctionMap::Delegate::set_statement(Statement* statement) {
    111   if (statement_ != nullptr) {
    112     statement_->set_statement(statement);
    113   }
    114 }
    115 
    116 SloppyBlockFunctionMap::SloppyBlockFunctionMap(Zone* zone)
    117     : ZoneHashMap(8, ZoneAllocationPolicy(zone)), count_(0) {}
    118 
    119 void SloppyBlockFunctionMap::Declare(Zone* zone, const AstRawString* name,
    120                                      Scope* scope,
    121                                      SloppyBlockFunctionStatement* statement) {
    122   auto* delegate = new (zone) Delegate(scope, statement, count_++);
    123   // AstRawStrings are unambiguous, i.e., the same string is always represented
    124   // by the same AstRawString*.
    125   Entry* p =
    126       ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->Hash(),
    127                                   ZoneAllocationPolicy(zone));
    128   delegate->set_next(static_cast<SloppyBlockFunctionMap::Delegate*>(p->value));
    129   p->value = delegate;
    130 }
    131 
    132 // ----------------------------------------------------------------------------
    133 // Implementation of Scope
    134 
    135 Scope::Scope(Zone* zone)
    136     : zone_(zone),
    137       outer_scope_(nullptr),
    138       variables_(zone),
    139       scope_type_(SCRIPT_SCOPE) {
    140   SetDefaults();
    141 }
    142 
    143 Scope::Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type)
    144     : zone_(zone),
    145       outer_scope_(outer_scope),
    146       variables_(zone),
    147       scope_type_(scope_type) {
    148   DCHECK_NE(SCRIPT_SCOPE, scope_type);
    149   SetDefaults();
    150   set_language_mode(outer_scope->language_mode());
    151   outer_scope_->AddInnerScope(this);
    152 }
    153 
    154 Scope::Snapshot::Snapshot(Scope* scope)
    155     : outer_scope_(scope),
    156       top_inner_scope_(scope->inner_scope_),
    157       top_unresolved_(scope->unresolved_),
    158       top_local_(scope->GetClosureScope()->locals_.end()),
    159       top_decl_(scope->GetClosureScope()->decls_.end()),
    160       outer_scope_calls_eval_(scope->scope_calls_eval_) {
    161   // Reset in order to record eval calls during this Snapshot's lifetime.
    162   outer_scope_->scope_calls_eval_ = false;
    163 }
    164 
    165 Scope::Snapshot::~Snapshot() {
    166   // Restore previous calls_eval bit if needed.
    167   if (outer_scope_calls_eval_) {
    168     outer_scope_->scope_calls_eval_ = true;
    169   }
    170 }
    171 
    172 DeclarationScope::DeclarationScope(Zone* zone,
    173                                    AstValueFactory* ast_value_factory)
    174     : Scope(zone), function_kind_(kNormalFunction), params_(4, zone) {
    175   DCHECK_EQ(scope_type_, SCRIPT_SCOPE);
    176   SetDefaults();
    177 
    178   // Make sure that if we don't find the global 'this', it won't be declared as
    179   // a regular dynamic global by predeclaring it with the right variable kind.
    180   DeclareDynamicGlobal(ast_value_factory->this_string(), THIS_VARIABLE);
    181 }
    182 
    183 DeclarationScope::DeclarationScope(Zone* zone, Scope* outer_scope,
    184                                    ScopeType scope_type,
    185                                    FunctionKind function_kind)
    186     : Scope(zone, outer_scope, scope_type),
    187       function_kind_(function_kind),
    188       params_(4, zone) {
    189   DCHECK_NE(scope_type, SCRIPT_SCOPE);
    190   SetDefaults();
    191 }
    192 
    193 bool DeclarationScope::IsDeclaredParameter(const AstRawString* name) {
    194   // If IsSimpleParameterList is false, duplicate parameters are not allowed,
    195   // however `arguments` may be allowed if function is not strict code. Thus,
    196   // the assumptions explained above do not hold.
    197   return params_.Contains(variables_.Lookup(name));
    198 }
    199 
    200 ModuleScope::ModuleScope(DeclarationScope* script_scope,
    201                          AstValueFactory* ast_value_factory)
    202     : DeclarationScope(ast_value_factory->zone(), script_scope, MODULE_SCOPE,
    203                        kModule) {
    204   Zone* zone = ast_value_factory->zone();
    205   module_descriptor_ = new (zone) ModuleDescriptor(zone);
    206   set_language_mode(LanguageMode::kStrict);
    207   DeclareThis(ast_value_factory);
    208 }
    209 
    210 ModuleScope::ModuleScope(Isolate* isolate, Handle<ScopeInfo> scope_info,
    211                          AstValueFactory* avfactory)
    212     : DeclarationScope(avfactory->zone(), MODULE_SCOPE, scope_info) {
    213   Zone* zone = avfactory->zone();
    214   Handle<ModuleInfo> module_info(scope_info->ModuleDescriptorInfo(), isolate);
    215 
    216   set_language_mode(LanguageMode::kStrict);
    217   module_descriptor_ = new (zone) ModuleDescriptor(zone);
    218 
    219   // Deserialize special exports.
    220   Handle<FixedArray> special_exports(module_info->special_exports(), isolate);
    221   for (int i = 0, n = special_exports->length(); i < n; ++i) {
    222     Handle<ModuleInfoEntry> serialized_entry(
    223         ModuleInfoEntry::cast(special_exports->get(i)), isolate);
    224     module_descriptor_->AddSpecialExport(
    225         ModuleDescriptor::Entry::Deserialize(isolate, avfactory,
    226                                              serialized_entry),
    227         avfactory->zone());
    228   }
    229 
    230   // Deserialize regular exports.
    231   module_descriptor_->DeserializeRegularExports(isolate, avfactory,
    232                                                 module_info);
    233 
    234   // Deserialize namespace imports.
    235   Handle<FixedArray> namespace_imports(module_info->namespace_imports(),
    236                                        isolate);
    237   for (int i = 0, n = namespace_imports->length(); i < n; ++i) {
    238     Handle<ModuleInfoEntry> serialized_entry(
    239         ModuleInfoEntry::cast(namespace_imports->get(i)), isolate);
    240     module_descriptor_->AddNamespaceImport(
    241         ModuleDescriptor::Entry::Deserialize(isolate, avfactory,
    242                                              serialized_entry),
    243         avfactory->zone());
    244   }
    245 
    246   // Deserialize regular imports.
    247   Handle<FixedArray> regular_imports(module_info->regular_imports(), isolate);
    248   for (int i = 0, n = regular_imports->length(); i < n; ++i) {
    249     Handle<ModuleInfoEntry> serialized_entry(
    250         ModuleInfoEntry::cast(regular_imports->get(i)), isolate);
    251     module_descriptor_->AddRegularImport(ModuleDescriptor::Entry::Deserialize(
    252         isolate, avfactory, serialized_entry));
    253   }
    254 }
    255 
    256 Scope::Scope(Zone* zone, ScopeType scope_type, Handle<ScopeInfo> scope_info)
    257     : zone_(zone),
    258       outer_scope_(nullptr),
    259       variables_(zone),
    260       scope_info_(scope_info),
    261       scope_type_(scope_type) {
    262   DCHECK(!scope_info.is_null());
    263   SetDefaults();
    264 #ifdef DEBUG
    265   already_resolved_ = true;
    266 #endif
    267   if (scope_info->CallsSloppyEval()) scope_calls_eval_ = true;
    268   set_language_mode(scope_info->language_mode());
    269   num_heap_slots_ = scope_info->ContextLength();
    270   DCHECK_LE(Context::MIN_CONTEXT_SLOTS, num_heap_slots_);
    271   // We don't really need to use the preparsed scope data; this is just to
    272   // shorten the recursion in SetMustUsePreParsedScopeData.
    273   must_use_preparsed_scope_data_ = true;
    274 }
    275 
    276 DeclarationScope::DeclarationScope(Zone* zone, ScopeType scope_type,
    277                                    Handle<ScopeInfo> scope_info)
    278     : Scope(zone, scope_type, scope_info),
    279       function_kind_(scope_info->function_kind()),
    280       params_(0, zone) {
    281   DCHECK_NE(scope_type, SCRIPT_SCOPE);
    282   SetDefaults();
    283 }
    284 
    285 Scope::Scope(Zone* zone, const AstRawString* catch_variable_name,
    286              MaybeAssignedFlag maybe_assigned, Handle<ScopeInfo> scope_info)
    287     : zone_(zone),
    288       outer_scope_(nullptr),
    289       variables_(zone),
    290       scope_info_(scope_info),
    291       scope_type_(CATCH_SCOPE) {
    292   SetDefaults();
    293 #ifdef DEBUG
    294   already_resolved_ = true;
    295 #endif
    296   // Cache the catch variable, even though it's also available via the
    297   // scope_info, as the parser expects that a catch scope always has the catch
    298   // variable as first and only variable.
    299   Variable* variable =
    300       Declare(zone, catch_variable_name, VariableMode::kVar, NORMAL_VARIABLE,
    301               kCreatedInitialized, maybe_assigned);
    302   AllocateHeapSlot(variable);
    303 }
    304 
    305 void DeclarationScope::SetDefaults() {
    306   is_declaration_scope_ = true;
    307   has_simple_parameters_ = true;
    308   asm_module_ = false;
    309   force_eager_compilation_ = false;
    310   has_arguments_parameter_ = false;
    311   scope_uses_super_property_ = false;
    312   has_rest_ = false;
    313   sloppy_block_function_map_ = nullptr;
    314   receiver_ = nullptr;
    315   new_target_ = nullptr;
    316   function_ = nullptr;
    317   arguments_ = nullptr;
    318   rare_data_ = nullptr;
    319   should_eager_compile_ = false;
    320   was_lazily_parsed_ = false;
    321   is_skipped_function_ = false;
    322   produced_preparsed_scope_data_ = nullptr;
    323 #ifdef DEBUG
    324   DeclarationScope* outer_declaration_scope =
    325       outer_scope_ ? outer_scope_->GetDeclarationScope() : nullptr;
    326   is_being_lazily_parsed_ =
    327       outer_declaration_scope ? outer_declaration_scope->is_being_lazily_parsed_
    328                               : false;
    329 #endif
    330 }
    331 
    332 void Scope::SetDefaults() {
    333 #ifdef DEBUG
    334   scope_name_ = nullptr;
    335   already_resolved_ = false;
    336   needs_migration_ = false;
    337 #endif
    338   inner_scope_ = nullptr;
    339   sibling_ = nullptr;
    340   unresolved_ = nullptr;
    341 
    342   start_position_ = kNoSourcePosition;
    343   end_position_ = kNoSourcePosition;
    344 
    345   num_stack_slots_ = 0;
    346   num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
    347 
    348   set_language_mode(LanguageMode::kSloppy);
    349 
    350   scope_calls_eval_ = false;
    351   scope_nonlinear_ = false;
    352   is_hidden_ = false;
    353   is_debug_evaluate_scope_ = false;
    354 
    355   inner_scope_calls_eval_ = false;
    356   force_context_allocation_ = false;
    357   force_context_allocation_for_parameters_ = false;
    358 
    359   is_declaration_scope_ = false;
    360 
    361   must_use_preparsed_scope_data_ = false;
    362 }
    363 
    364 bool Scope::HasSimpleParameters() {
    365   DeclarationScope* scope = GetClosureScope();
    366   return !scope->is_function_scope() || scope->has_simple_parameters();
    367 }
    368 
    369 bool DeclarationScope::ShouldEagerCompile() const {
    370   return force_eager_compilation_ || should_eager_compile_;
    371 }
    372 
    373 void DeclarationScope::set_should_eager_compile() {
    374   should_eager_compile_ = !was_lazily_parsed_;
    375 }
    376 
    377 void DeclarationScope::set_asm_module() {
    378   asm_module_ = true;
    379 }
    380 
    381 bool Scope::IsAsmModule() const {
    382   return is_function_scope() && AsDeclarationScope()->asm_module();
    383 }
    384 
    385 bool Scope::ContainsAsmModule() const {
    386   if (IsAsmModule()) return true;
    387 
    388   // Check inner scopes recursively
    389   for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
    390     // Don't check inner functions which won't be eagerly compiled.
    391     if (!scope->is_function_scope() ||
    392         scope->AsDeclarationScope()->ShouldEagerCompile()) {
    393       if (scope->ContainsAsmModule()) return true;
    394     }
    395   }
    396 
    397   return false;
    398 }
    399 
    400 Scope* Scope::DeserializeScopeChain(Isolate* isolate, Zone* zone,
    401                                     ScopeInfo* scope_info,
    402                                     DeclarationScope* script_scope,
    403                                     AstValueFactory* ast_value_factory,
    404                                     DeserializationMode deserialization_mode) {
    405   // Reconstruct the outer scope chain from a closure's context chain.
    406   Scope* current_scope = nullptr;
    407   Scope* innermost_scope = nullptr;
    408   Scope* outer_scope = nullptr;
    409   while (scope_info) {
    410     if (scope_info->scope_type() == WITH_SCOPE) {
    411       // For scope analysis, debug-evaluate is equivalent to a with scope.
    412       outer_scope =
    413           new (zone) Scope(zone, WITH_SCOPE, handle(scope_info, isolate));
    414 
    415       // TODO(yangguo): Remove once debug-evaluate properly keeps track of the
    416       // function scope in which we are evaluating.
    417       if (scope_info->IsDebugEvaluateScope()) {
    418         outer_scope->set_is_debug_evaluate_scope();
    419       }
    420     } else if (scope_info->scope_type() == SCRIPT_SCOPE) {
    421       // If we reach a script scope, it's the outermost scope. Install the
    422       // scope info of this script context onto the existing script scope to
    423       // avoid nesting script scopes.
    424       if (deserialization_mode == DeserializationMode::kIncludingVariables) {
    425         script_scope->SetScriptScopeInfo(handle(scope_info, isolate));
    426       }
    427       DCHECK(!scope_info->HasOuterScopeInfo());
    428       break;
    429     } else if (scope_info->scope_type() == FUNCTION_SCOPE) {
    430       outer_scope = new (zone)
    431           DeclarationScope(zone, FUNCTION_SCOPE, handle(scope_info, isolate));
    432       if (scope_info->IsAsmModule())
    433         outer_scope->AsDeclarationScope()->set_asm_module();
    434     } else if (scope_info->scope_type() == EVAL_SCOPE) {
    435       outer_scope = new (zone)
    436           DeclarationScope(zone, EVAL_SCOPE, handle(scope_info, isolate));
    437     } else if (scope_info->scope_type() == BLOCK_SCOPE) {
    438       if (scope_info->is_declaration_scope()) {
    439         outer_scope = new (zone)
    440             DeclarationScope(zone, BLOCK_SCOPE, handle(scope_info, isolate));
    441       } else {
    442         outer_scope =
    443             new (zone) Scope(zone, BLOCK_SCOPE, handle(scope_info, isolate));
    444       }
    445     } else if (scope_info->scope_type() == MODULE_SCOPE) {
    446       outer_scope = new (zone)
    447           ModuleScope(isolate, handle(scope_info, isolate), ast_value_factory);
    448     } else {
    449       DCHECK_EQ(scope_info->scope_type(), CATCH_SCOPE);
    450       DCHECK_EQ(scope_info->ContextLocalCount(), 1);
    451       DCHECK_EQ(scope_info->ContextLocalMode(0), VariableMode::kVar);
    452       DCHECK_EQ(scope_info->ContextLocalInitFlag(0), kCreatedInitialized);
    453       String* name = scope_info->ContextLocalName(0);
    454       MaybeAssignedFlag maybe_assigned =
    455           scope_info->ContextLocalMaybeAssignedFlag(0);
    456       outer_scope = new (zone)
    457           Scope(zone, ast_value_factory->GetString(handle(name, isolate)),
    458                 maybe_assigned, handle(scope_info, isolate));
    459     }
    460     if (deserialization_mode == DeserializationMode::kScopesOnly) {
    461       outer_scope->scope_info_ = Handle<ScopeInfo>::null();
    462     }
    463     if (current_scope != nullptr) {
    464       outer_scope->AddInnerScope(current_scope);
    465     }
    466     current_scope = outer_scope;
    467     if (innermost_scope == nullptr) innermost_scope = current_scope;
    468     scope_info = scope_info->HasOuterScopeInfo() ? scope_info->OuterScopeInfo()
    469                                                  : nullptr;
    470   }
    471 
    472   if (innermost_scope == nullptr) return script_scope;
    473   script_scope->AddInnerScope(current_scope);
    474   return innermost_scope;
    475 }
    476 
    477 DeclarationScope* Scope::AsDeclarationScope() {
    478   DCHECK(is_declaration_scope());
    479   return static_cast<DeclarationScope*>(this);
    480 }
    481 
    482 const DeclarationScope* Scope::AsDeclarationScope() const {
    483   DCHECK(is_declaration_scope());
    484   return static_cast<const DeclarationScope*>(this);
    485 }
    486 
    487 ModuleScope* Scope::AsModuleScope() {
    488   DCHECK(is_module_scope());
    489   return static_cast<ModuleScope*>(this);
    490 }
    491 
    492 const ModuleScope* Scope::AsModuleScope() const {
    493   DCHECK(is_module_scope());
    494   return static_cast<const ModuleScope*>(this);
    495 }
    496 
    497 int Scope::num_parameters() const {
    498   return is_declaration_scope() ? AsDeclarationScope()->num_parameters() : 0;
    499 }
    500 
    501 void DeclarationScope::DeclareSloppyBlockFunction(
    502     const AstRawString* name, Scope* scope,
    503     SloppyBlockFunctionStatement* statement) {
    504   if (sloppy_block_function_map_ == nullptr) {
    505     sloppy_block_function_map_ =
    506         new (zone()->New(sizeof(SloppyBlockFunctionMap)))
    507             SloppyBlockFunctionMap(zone());
    508   }
    509   sloppy_block_function_map_->Declare(zone(), name, scope, statement);
    510 }
    511 
    512 void DeclarationScope::HoistSloppyBlockFunctions(AstNodeFactory* factory) {
    513   DCHECK(is_sloppy(language_mode()));
    514   DCHECK(is_function_scope() || is_eval_scope() || is_script_scope() ||
    515          (is_block_scope() && outer_scope()->is_function_scope()));
    516   DCHECK(HasSimpleParameters() || is_block_scope() || is_being_lazily_parsed_);
    517   DCHECK_EQ(factory == nullptr, is_being_lazily_parsed_);
    518 
    519   SloppyBlockFunctionMap* map = sloppy_block_function_map();
    520   if (map == nullptr) return;
    521 
    522   const bool has_simple_parameters = HasSimpleParameters();
    523 
    524   // The declarations need to be added in the order they were seen,
    525   // so accumulate declared names sorted by index.
    526   ZoneMap<int, const AstRawString*> names_to_declare(zone());
    527 
    528   // For each variable which is used as a function declaration in a sloppy
    529   // block,
    530   for (ZoneHashMap::Entry* p = map->Start(); p != nullptr; p = map->Next(p)) {
    531     const AstRawString* name = static_cast<AstRawString*>(p->key);
    532 
    533     // If the variable wouldn't conflict with a lexical declaration
    534     // or parameter,
    535 
    536     // Check if there's a conflict with a parameter.
    537     // This depends on the fact that functions always have a scope solely to
    538     // hold complex parameters, and the names local to that scope are
    539     // precisely the names of the parameters. IsDeclaredParameter(name) does
    540     // not hold for names declared by complex parameters, nor are those
    541     // bindings necessarily declared lexically, so we have to check for them
    542     // explicitly. On the other hand, if there are not complex parameters,
    543     // it is sufficient to just check IsDeclaredParameter.
    544     if (!has_simple_parameters) {
    545       if (outer_scope_->LookupLocal(name) != nullptr) {
    546         continue;
    547       }
    548     } else {
    549       if (IsDeclaredParameter(name)) {
    550         continue;
    551       }
    552     }
    553 
    554     bool declaration_queued = false;
    555 
    556     // Write in assignments to var for each block-scoped function declaration
    557     auto delegates = static_cast<SloppyBlockFunctionMap::Delegate*>(p->value);
    558 
    559     DeclarationScope* decl_scope = this;
    560     while (decl_scope->is_eval_scope()) {
    561       decl_scope = decl_scope->outer_scope()->GetDeclarationScope();
    562     }
    563     Scope* outer_scope = decl_scope->outer_scope();
    564 
    565     for (SloppyBlockFunctionMap::Delegate* delegate = delegates;
    566          delegate != nullptr; delegate = delegate->next()) {
    567       // Check if there's a conflict with a lexical declaration
    568       Scope* query_scope = delegate->scope()->outer_scope();
    569       Variable* var = nullptr;
    570       bool should_hoist = true;
    571 
    572       // Note that we perform this loop for each delegate named 'name',
    573       // which may duplicate work if those delegates share scopes.
    574       // It is not sufficient to just do a Lookup on query_scope: for
    575       // example, that does not prevent hoisting of the function in
    576       // `{ let e; try {} catch (e) { function e(){} } }`
    577       do {
    578         var = query_scope->LookupLocal(name);
    579         if (var != nullptr && IsLexical(var)) {
    580           should_hoist = false;
    581           break;
    582         }
    583         query_scope = query_scope->outer_scope();
    584       } while (query_scope != outer_scope);
    585 
    586       if (!should_hoist) continue;
    587 
    588       if (!declaration_queued) {
    589         declaration_queued = true;
    590         names_to_declare.insert({delegate->index(), name});
    591       }
    592 
    593       if (factory) {
    594         DCHECK(!is_being_lazily_parsed_);
    595         Assignment* assignment = factory->NewAssignment(
    596             Token::ASSIGN, NewUnresolved(factory, name),
    597             delegate->scope()->NewUnresolved(factory, name), kNoSourcePosition);
    598         assignment->set_lookup_hoisting_mode(LookupHoistingMode::kLegacySloppy);
    599         Statement* statement =
    600             factory->NewExpressionStatement(assignment, kNoSourcePosition);
    601         delegate->set_statement(statement);
    602       }
    603     }
    604   }
    605 
    606   if (names_to_declare.empty()) return;
    607 
    608   for (const auto& index_and_name : names_to_declare) {
    609     const AstRawString* name = index_and_name.second;
    610     if (factory) {
    611       DCHECK(!is_being_lazily_parsed_);
    612       VariableProxy* proxy = factory->NewVariableProxy(name, NORMAL_VARIABLE);
    613       auto declaration =
    614           factory->NewVariableDeclaration(proxy, kNoSourcePosition);
    615       // Based on the preceding checks, it doesn't matter what we pass as
    616       // sloppy_mode_block_scope_function_redefinition.
    617       bool ok = true;
    618       DeclareVariable(declaration, VariableMode::kVar,
    619                       Variable::DefaultInitializationFlag(VariableMode::kVar),
    620                       nullptr, &ok);
    621       DCHECK(ok);
    622     } else {
    623       DCHECK(is_being_lazily_parsed_);
    624       Variable* var = DeclareVariableName(name, VariableMode::kVar);
    625       if (var != kDummyPreParserVariable &&
    626           var != kDummyPreParserLexicalVariable) {
    627         DCHECK(FLAG_preparser_scope_analysis);
    628         var->set_maybe_assigned();
    629       }
    630     }
    631   }
    632 }
    633 
    634 void DeclarationScope::AttachOuterScopeInfo(ParseInfo* info, Isolate* isolate) {
    635   DCHECK(scope_info_.is_null());
    636   Handle<ScopeInfo> outer_scope_info;
    637   if (info->maybe_outer_scope_info().ToHandle(&outer_scope_info)) {
    638     // If we have a scope info we will potentially need to lookup variable names
    639     // on the scope info as internalized strings, so make sure ast_value_factory
    640     // is internalized.
    641     info->ast_value_factory()->Internalize(isolate);
    642     if (outer_scope()) {
    643       DeclarationScope* script_scope = new (info->zone())
    644           DeclarationScope(info->zone(), info->ast_value_factory());
    645       info->set_script_scope(script_scope);
    646       ReplaceOuterScope(Scope::DeserializeScopeChain(
    647           isolate, info->zone(), *outer_scope_info, script_scope,
    648           info->ast_value_factory(),
    649           Scope::DeserializationMode::kIncludingVariables));
    650     } else {
    651       DCHECK_EQ(outer_scope_info->scope_type(), SCRIPT_SCOPE);
    652       SetScriptScopeInfo(outer_scope_info);
    653     }
    654   }
    655 }
    656 
    657 bool DeclarationScope::Analyze(ParseInfo* info) {
    658   RuntimeCallTimerScope runtimeTimer(
    659       info->runtime_call_stats(),
    660       info->on_background_thread()
    661           ? RuntimeCallCounterId::kCompileBackgroundScopeAnalysis
    662           : RuntimeCallCounterId::kCompileScopeAnalysis);
    663   DCHECK_NOT_NULL(info->literal());
    664   DeclarationScope* scope = info->literal()->scope();
    665 
    666   base::Optional<AllowHandleDereference> allow_deref;
    667   if (!info->maybe_outer_scope_info().is_null()) {
    668     // Allow dereferences to the scope info if there is one.
    669     allow_deref.emplace();
    670   }
    671 
    672   if (scope->is_eval_scope() && is_sloppy(scope->language_mode())) {
    673     AstNodeFactory factory(info->ast_value_factory(), info->zone());
    674     scope->HoistSloppyBlockFunctions(&factory);
    675   }
    676 
    677   // We are compiling one of four cases:
    678   // 1) top-level code,
    679   // 2) a function/eval/module on the top-level
    680   // 3) a function/eval in a scope that was already resolved.
    681   DCHECK(scope->scope_type() == SCRIPT_SCOPE ||
    682          scope->outer_scope()->scope_type() == SCRIPT_SCOPE ||
    683          scope->outer_scope()->already_resolved_);
    684 
    685   // The outer scope is never lazy.
    686   scope->set_should_eager_compile();
    687 
    688   if (scope->must_use_preparsed_scope_data_) {
    689     DCHECK(FLAG_preparser_scope_analysis);
    690     DCHECK_EQ(scope->scope_type_, ScopeType::FUNCTION_SCOPE);
    691     allow_deref.emplace();
    692     info->consumed_preparsed_scope_data()->RestoreScopeAllocationData(scope);
    693   }
    694 
    695   if (!scope->AllocateVariables(info)) return false;
    696 
    697 #ifdef DEBUG
    698   if (info->is_native() ? FLAG_print_builtin_scopes : FLAG_print_scopes) {
    699     PrintF("Global scope:\n");
    700     scope->Print();
    701   }
    702   scope->CheckScopePositions();
    703   scope->CheckZones();
    704 #endif
    705 
    706   return true;
    707 }
    708 
    709 void DeclarationScope::DeclareThis(AstValueFactory* ast_value_factory) {
    710   DCHECK(!already_resolved_);
    711   DCHECK(is_declaration_scope());
    712   DCHECK(has_this_declaration());
    713 
    714   bool derived_constructor = IsDerivedConstructor(function_kind_);
    715   Variable* var =
    716       Declare(zone(), ast_value_factory->this_string(),
    717               derived_constructor ? VariableMode::kConst : VariableMode::kVar,
    718               THIS_VARIABLE,
    719               derived_constructor ? kNeedsInitialization : kCreatedInitialized);
    720   receiver_ = var;
    721 }
    722 
    723 void DeclarationScope::DeclareArguments(AstValueFactory* ast_value_factory) {
    724   DCHECK(is_function_scope());
    725   DCHECK(!is_arrow_scope());
    726 
    727   arguments_ = LookupLocal(ast_value_factory->arguments_string());
    728   if (arguments_ == nullptr) {
    729     // Declare 'arguments' variable which exists in all non arrow functions.
    730     // Note that it might never be accessed, in which case it won't be
    731     // allocated during variable allocation.
    732     arguments_ = Declare(zone(), ast_value_factory->arguments_string(),
    733                          VariableMode::kVar);
    734   } else if (IsLexical(arguments_)) {
    735     // Check if there's lexically declared variable named arguments to avoid
    736     // redeclaration. See ES#sec-functiondeclarationinstantiation, step 20.
    737     arguments_ = nullptr;
    738   }
    739 }
    740 
    741 void DeclarationScope::DeclareDefaultFunctionVariables(
    742     AstValueFactory* ast_value_factory) {
    743   DCHECK(is_function_scope());
    744   DCHECK(!is_arrow_scope());
    745 
    746   DeclareThis(ast_value_factory);
    747   new_target_ = Declare(zone(), ast_value_factory->new_target_string(),
    748                         VariableMode::kConst);
    749 
    750   if (IsConciseMethod(function_kind_) || IsClassConstructor(function_kind_) ||
    751       IsAccessorFunction(function_kind_)) {
    752     EnsureRareData()->this_function =
    753         Declare(zone(), ast_value_factory->this_function_string(),
    754                 VariableMode::kConst);
    755   }
    756 }
    757 
    758 Variable* DeclarationScope::DeclareFunctionVar(const AstRawString* name) {
    759   DCHECK(is_function_scope());
    760   DCHECK_NULL(function_);
    761   DCHECK_NULL(variables_.Lookup(name));
    762   VariableKind kind = is_sloppy(language_mode()) ? SLOPPY_FUNCTION_NAME_VARIABLE
    763                                                  : NORMAL_VARIABLE;
    764   function_ = new (zone())
    765       Variable(this, name, VariableMode::kConst, kind, kCreatedInitialized);
    766   if (calls_sloppy_eval()) {
    767     NonLocal(name, VariableMode::kDynamic);
    768   } else {
    769     variables_.Add(zone(), function_);
    770   }
    771   return function_;
    772 }
    773 
    774 Variable* DeclarationScope::DeclareGeneratorObjectVar(
    775     const AstRawString* name) {
    776   DCHECK(is_function_scope() || is_module_scope());
    777   DCHECK_NULL(generator_object_var());
    778 
    779   Variable* result = EnsureRareData()->generator_object =
    780       NewTemporary(name, kNotAssigned);
    781   result->set_is_used();
    782   return result;
    783 }
    784 
    785 Variable* DeclarationScope::DeclarePromiseVar(const AstRawString* name) {
    786   DCHECK(is_function_scope());
    787   DCHECK_NULL(promise_var());
    788   Variable* result = EnsureRareData()->promise = NewTemporary(name);
    789   result->set_is_used();
    790   return result;
    791 }
    792 
    793 bool Scope::HasBeenRemoved() const {
    794   if (sibling() == this) {
    795     DCHECK_NULL(inner_scope_);
    796     DCHECK(is_block_scope());
    797     return true;
    798   }
    799   return false;
    800 }
    801 
    802 Scope* Scope::GetUnremovedScope() {
    803   Scope* scope = this;
    804   while (scope != nullptr && scope->HasBeenRemoved()) {
    805     scope = scope->outer_scope();
    806   }
    807   DCHECK_NOT_NULL(scope);
    808   return scope;
    809 }
    810 
    811 Scope* Scope::FinalizeBlockScope() {
    812   DCHECK(is_block_scope());
    813   DCHECK(!HasBeenRemoved());
    814 
    815   if (variables_.occupancy() > 0 ||
    816       (is_declaration_scope() && AsDeclarationScope()->calls_sloppy_eval())) {
    817     return this;
    818   }
    819 
    820   // Remove this scope from outer scope.
    821   outer_scope()->RemoveInnerScope(this);
    822 
    823   // Reparent inner scopes.
    824   if (inner_scope_ != nullptr) {
    825     Scope* scope = inner_scope_;
    826     scope->outer_scope_ = outer_scope();
    827     while (scope->sibling_ != nullptr) {
    828       scope = scope->sibling_;
    829       scope->outer_scope_ = outer_scope();
    830     }
    831     scope->sibling_ = outer_scope()->inner_scope_;
    832     outer_scope()->inner_scope_ = inner_scope_;
    833     inner_scope_ = nullptr;
    834   }
    835 
    836   // Move unresolved variables
    837   if (unresolved_ != nullptr) {
    838     if (outer_scope()->unresolved_ != nullptr) {
    839       VariableProxy* unresolved = unresolved_;
    840       while (unresolved->next_unresolved() != nullptr) {
    841         unresolved = unresolved->next_unresolved();
    842       }
    843       unresolved->set_next_unresolved(outer_scope()->unresolved_);
    844     }
    845     outer_scope()->unresolved_ = unresolved_;
    846     unresolved_ = nullptr;
    847   }
    848 
    849   if (inner_scope_calls_eval_) outer_scope()->inner_scope_calls_eval_ = true;
    850 
    851   // No need to propagate scope_calls_eval_, since if it was relevant to
    852   // this scope we would have had to bail out at the top.
    853   DCHECK(!scope_calls_eval_ || !is_declaration_scope() ||
    854          !is_sloppy(language_mode()));
    855 
    856   // This block does not need a context.
    857   num_heap_slots_ = 0;
    858 
    859   // Mark scope as removed by making it its own sibling.
    860   sibling_ = this;
    861   DCHECK(HasBeenRemoved());
    862 
    863   return nullptr;
    864 }
    865 
    866 void DeclarationScope::AddLocal(Variable* var) {
    867   DCHECK(!already_resolved_);
    868   // Temporaries are only placed in ClosureScopes.
    869   DCHECK_EQ(GetClosureScope(), this);
    870   locals_.Add(var);
    871 }
    872 
    873 Variable* Scope::Declare(Zone* zone, const AstRawString* name,
    874                          VariableMode mode, VariableKind kind,
    875                          InitializationFlag initialization_flag,
    876                          MaybeAssignedFlag maybe_assigned_flag) {
    877   bool added;
    878   Variable* var =
    879       variables_.Declare(zone, this, name, mode, kind, initialization_flag,
    880                          maybe_assigned_flag, &added);
    881   if (added) locals_.Add(var);
    882   return var;
    883 }
    884 
    885 void Scope::Snapshot::Reparent(DeclarationScope* new_parent) const {
    886   DCHECK_EQ(new_parent, outer_scope_->inner_scope_);
    887   DCHECK_EQ(new_parent->outer_scope_, outer_scope_);
    888   DCHECK_EQ(new_parent, new_parent->GetClosureScope());
    889   DCHECK_NULL(new_parent->inner_scope_);
    890   DCHECK_NULL(new_parent->unresolved_);
    891   DCHECK(new_parent->locals_.is_empty());
    892   Scope* inner_scope = new_parent->sibling_;
    893   if (inner_scope != top_inner_scope_) {
    894     for (; inner_scope->sibling() != top_inner_scope_;
    895          inner_scope = inner_scope->sibling()) {
    896       inner_scope->outer_scope_ = new_parent;
    897       if (inner_scope->inner_scope_calls_eval_) {
    898         new_parent->inner_scope_calls_eval_ = true;
    899       }
    900       DCHECK_NE(inner_scope, new_parent);
    901     }
    902     inner_scope->outer_scope_ = new_parent;
    903     if (inner_scope->inner_scope_calls_eval_) {
    904       new_parent->inner_scope_calls_eval_ = true;
    905     }
    906     new_parent->inner_scope_ = new_parent->sibling_;
    907     inner_scope->sibling_ = nullptr;
    908     // Reset the sibling rather than the inner_scope_ since we
    909     // want to keep new_parent there.
    910     new_parent->sibling_ = top_inner_scope_;
    911   }
    912 
    913   if (outer_scope_->unresolved_ != top_unresolved_) {
    914     VariableProxy* last = outer_scope_->unresolved_;
    915     while (last->next_unresolved() != top_unresolved_) {
    916       last = last->next_unresolved();
    917     }
    918     last->set_next_unresolved(nullptr);
    919     new_parent->unresolved_ = outer_scope_->unresolved_;
    920     outer_scope_->unresolved_ = top_unresolved_;
    921   }
    922 
    923   // TODO(verwaest): This currently only moves do-expression declared variables
    924   // in default arguments that weren't already previously declared with the same
    925   // name in the closure-scope. See
    926   // test/mjsunit/harmony/default-parameter-do-expression.js.
    927   DeclarationScope* outer_closure = outer_scope_->GetClosureScope();
    928 
    929   new_parent->locals_.MoveTail(outer_closure->locals(), top_local_);
    930   for (Variable* local : new_parent->locals_) {
    931     DCHECK(local->mode() == VariableMode::kTemporary ||
    932            local->mode() == VariableMode::kVar);
    933     DCHECK_EQ(local->scope(), local->scope()->GetClosureScope());
    934     DCHECK_NE(local->scope(), new_parent);
    935     local->set_scope(new_parent);
    936     if (local->mode() == VariableMode::kVar) {
    937       outer_closure->variables_.Remove(local);
    938       new_parent->variables_.Add(new_parent->zone(), local);
    939     }
    940   }
    941   outer_closure->locals_.Rewind(top_local_);
    942   outer_closure->decls_.Rewind(top_decl_);
    943 
    944   // Move eval calls since Snapshot's creation into new_parent.
    945   if (outer_scope_->scope_calls_eval_) {
    946     new_parent->scope_calls_eval_ = true;
    947     new_parent->inner_scope_calls_eval_ = true;
    948   }
    949   // Reset the outer_scope's eval state. It will be restored to its
    950   // original value as necessary in the destructor of this class.
    951   outer_scope_->scope_calls_eval_ = false;
    952 }
    953 
    954 void Scope::ReplaceOuterScope(Scope* outer) {
    955   DCHECK_NOT_NULL(outer);
    956   DCHECK_NOT_NULL(outer_scope_);
    957   DCHECK(!already_resolved_);
    958   outer_scope_->RemoveInnerScope(this);
    959   outer->AddInnerScope(this);
    960   outer_scope_ = outer;
    961 }
    962 
    963 Variable* Scope::LookupInScopeInfo(const AstRawString* name) {
    964   Handle<String> name_handle = name->string();
    965   // The Scope is backed up by ScopeInfo. This means it cannot operate in a
    966   // heap-independent mode, and all strings must be internalized immediately. So
    967   // it's ok to get the Handle<String> here.
    968   bool found = false;
    969 
    970   VariableLocation location;
    971   int index;
    972   VariableMode mode;
    973   InitializationFlag init_flag;
    974   MaybeAssignedFlag maybe_assigned_flag;
    975 
    976   {
    977     location = VariableLocation::CONTEXT;
    978     index = ScopeInfo::ContextSlotIndex(scope_info_, name_handle, &mode,
    979                                         &init_flag, &maybe_assigned_flag);
    980     found = index >= 0;
    981   }
    982 
    983   if (!found && scope_type() == MODULE_SCOPE) {
    984     location = VariableLocation::MODULE;
    985     index = scope_info_->ModuleIndex(name_handle, &mode, &init_flag,
    986                                      &maybe_assigned_flag);
    987     found = index != 0;
    988   }
    989 
    990   if (!found) {
    991     index = scope_info_->FunctionContextSlotIndex(*name_handle);
    992     if (index < 0) return nullptr;  // Nowhere found.
    993     Variable* var = AsDeclarationScope()->DeclareFunctionVar(name);
    994     DCHECK_EQ(VariableMode::kConst, var->mode());
    995     var->AllocateTo(VariableLocation::CONTEXT, index);
    996     return variables_.Lookup(name);
    997   }
    998 
    999   VariableKind kind = NORMAL_VARIABLE;
   1000   if (location == VariableLocation::CONTEXT &&
   1001       index == scope_info_->ReceiverContextSlotIndex()) {
   1002     kind = THIS_VARIABLE;
   1003   }
   1004   // TODO(marja, rossberg): Correctly declare FUNCTION, CLASS, NEW_TARGET, and
   1005   // ARGUMENTS bindings as their corresponding VariableKind.
   1006 
   1007   Variable* var = variables_.Declare(zone(), this, name, mode, kind, init_flag,
   1008                                      maybe_assigned_flag);
   1009   var->AllocateTo(location, index);
   1010   return var;
   1011 }
   1012 
   1013 Variable* Scope::Lookup(const AstRawString* name) {
   1014   for (Scope* scope = this; scope != nullptr; scope = scope->outer_scope()) {
   1015     Variable* var = scope->LookupLocal(name);
   1016     if (var != nullptr) return var;
   1017   }
   1018   return nullptr;
   1019 }
   1020 
   1021 Variable* DeclarationScope::DeclareParameter(
   1022     const AstRawString* name, VariableMode mode, bool is_optional, bool is_rest,
   1023     bool* is_duplicate, AstValueFactory* ast_value_factory, int position) {
   1024   DCHECK(!already_resolved_);
   1025   DCHECK(is_function_scope() || is_module_scope());
   1026   DCHECK(!has_rest_);
   1027   DCHECK(!is_optional || !is_rest);
   1028   DCHECK(!is_being_lazily_parsed_);
   1029   DCHECK(!was_lazily_parsed_);
   1030   Variable* var;
   1031   if (mode == VariableMode::kTemporary) {
   1032     var = NewTemporary(name);
   1033   } else {
   1034     DCHECK_EQ(mode, VariableMode::kVar);
   1035     var = Declare(zone(), name, mode);
   1036     // TODO(wingo): Avoid O(n^2) check.
   1037     if (is_duplicate != nullptr) {
   1038       *is_duplicate = *is_duplicate || IsDeclaredParameter(name);
   1039     }
   1040   }
   1041   has_rest_ = is_rest;
   1042   var->set_initializer_position(position);
   1043   params_.Add(var, zone());
   1044   if (name == ast_value_factory->arguments_string()) {
   1045     has_arguments_parameter_ = true;
   1046   }
   1047   return var;
   1048 }
   1049 
   1050 Variable* DeclarationScope::DeclareParameterName(
   1051     const AstRawString* name, bool is_rest, AstValueFactory* ast_value_factory,
   1052     bool declare_as_local, bool add_parameter) {
   1053   DCHECK(!already_resolved_);
   1054   DCHECK(is_function_scope() || is_module_scope());
   1055   DCHECK(!has_rest_ || is_rest);
   1056   DCHECK(is_being_lazily_parsed_);
   1057   has_rest_ = is_rest;
   1058   if (name == ast_value_factory->arguments_string()) {
   1059     has_arguments_parameter_ = true;
   1060   }
   1061   if (FLAG_preparser_scope_analysis) {
   1062     Variable* var;
   1063     if (declare_as_local) {
   1064       var = Declare(zone(), name, VariableMode::kVar);
   1065     } else {
   1066       var = new (zone()) Variable(this, name, VariableMode::kTemporary,
   1067                                   NORMAL_VARIABLE, kCreatedInitialized);
   1068     }
   1069     if (add_parameter) {
   1070       params_.Add(var, zone());
   1071     }
   1072     return var;
   1073   }
   1074   DeclareVariableName(name, VariableMode::kVar);
   1075   return nullptr;
   1076 }
   1077 
   1078 Variable* Scope::DeclareLocal(const AstRawString* name, VariableMode mode,
   1079                               InitializationFlag init_flag, VariableKind kind,
   1080                               MaybeAssignedFlag maybe_assigned_flag) {
   1081   DCHECK(!already_resolved_);
   1082   // This function handles VariableMode::kVar, VariableMode::kLet, and
   1083   // VariableMode::kConst modes.  VariableMode::kDynamic variables are
   1084   // introduced during variable allocation, and VariableMode::kTemporary
   1085   // variables are allocated via NewTemporary().
   1086   DCHECK(IsDeclaredVariableMode(mode));
   1087   DCHECK_IMPLIES(GetDeclarationScope()->is_being_lazily_parsed(),
   1088                  mode == VariableMode::kVar || mode == VariableMode::kLet ||
   1089                      mode == VariableMode::kConst);
   1090   DCHECK(!GetDeclarationScope()->was_lazily_parsed());
   1091   return Declare(zone(), name, mode, kind, init_flag, maybe_assigned_flag);
   1092 }
   1093 
   1094 Variable* Scope::DeclareVariable(
   1095     Declaration* declaration, VariableMode mode, InitializationFlag init,
   1096     bool* sloppy_mode_block_scope_function_redefinition, bool* ok) {
   1097   DCHECK(IsDeclaredVariableMode(mode));
   1098   DCHECK(!already_resolved_);
   1099   DCHECK(!GetDeclarationScope()->is_being_lazily_parsed());
   1100   DCHECK(!GetDeclarationScope()->was_lazily_parsed());
   1101 
   1102   if (mode == VariableMode::kVar && !is_declaration_scope()) {
   1103     return GetDeclarationScope()->DeclareVariable(
   1104         declaration, mode, init, sloppy_mode_block_scope_function_redefinition,
   1105         ok);
   1106   }
   1107   DCHECK(!is_catch_scope());
   1108   DCHECK(!is_with_scope());
   1109   DCHECK(is_declaration_scope() ||
   1110          (IsLexicalVariableMode(mode) && is_block_scope()));
   1111 
   1112   VariableProxy* proxy = declaration->proxy();
   1113   DCHECK_NOT_NULL(proxy->raw_name());
   1114   const AstRawString* name = proxy->raw_name();
   1115   bool is_function_declaration = declaration->IsFunctionDeclaration();
   1116 
   1117   // Pessimistically assume that top-level variables will be assigned.
   1118   //
   1119   // Top-level variables in a script can be accessed by other scripts or even
   1120   // become global properties. While this does not apply to top-level variables
   1121   // in a module (assuming they are not exported), we must still mark these as
   1122   // assigned because they might be accessed by a lazily parsed top-level
   1123   // function, which, for efficiency, we preparse without variable tracking.
   1124   if (is_script_scope() || is_module_scope()) {
   1125     if (mode != VariableMode::kConst) proxy->set_is_assigned();
   1126   }
   1127 
   1128   Variable* var = nullptr;
   1129   if (is_eval_scope() && is_sloppy(language_mode()) &&
   1130       mode == VariableMode::kVar) {
   1131     // In a var binding in a sloppy direct eval, pollute the enclosing scope
   1132     // with this new binding by doing the following:
   1133     // The proxy is bound to a lookup variable to force a dynamic declaration
   1134     // using the DeclareEvalVar or DeclareEvalFunction runtime functions.
   1135     var = new (zone())
   1136         Variable(this, name, mode, NORMAL_VARIABLE, init, kMaybeAssigned);
   1137     var->AllocateTo(VariableLocation::LOOKUP, -1);
   1138   } else {
   1139     // Declare the variable in the declaration scope.
   1140     var = LookupLocal(name);
   1141     if (var == nullptr) {
   1142       // Declare the name.
   1143       VariableKind kind = NORMAL_VARIABLE;
   1144       if (is_function_declaration) {
   1145         kind = FUNCTION_VARIABLE;
   1146       }
   1147       var = DeclareLocal(name, mode, init, kind, kNotAssigned);
   1148     } else if (IsLexicalVariableMode(mode) ||
   1149                IsLexicalVariableMode(var->mode())) {
   1150       // Allow duplicate function decls for web compat, see bug 4693.
   1151       bool duplicate_allowed = false;
   1152       if (is_sloppy(language_mode()) && is_function_declaration &&
   1153           var->is_function()) {
   1154         DCHECK(IsLexicalVariableMode(mode) &&
   1155                IsLexicalVariableMode(var->mode()));
   1156         // If the duplication is allowed, then the var will show up
   1157         // in the SloppyBlockFunctionMap and the new FunctionKind
   1158         // will be a permitted duplicate.
   1159         FunctionKind function_kind =
   1160             declaration->AsFunctionDeclaration()->fun()->kind();
   1161         SloppyBlockFunctionMap* map =
   1162             GetDeclarationScope()->sloppy_block_function_map();
   1163         duplicate_allowed = map != nullptr &&
   1164                             map->Lookup(const_cast<AstRawString*>(name),
   1165                                         name->Hash()) != nullptr &&
   1166                             !IsAsyncFunction(function_kind) &&
   1167                             !IsGeneratorFunction(function_kind);
   1168       }
   1169       if (duplicate_allowed) {
   1170         *sloppy_mode_block_scope_function_redefinition = true;
   1171       } else {
   1172         // The name was declared in this scope before; check for conflicting
   1173         // re-declarations. We have a conflict if either of the declarations
   1174         // is not a var (in script scope, we also have to ignore legacy const
   1175         // for compatibility). There is similar code in runtime.cc in the
   1176         // Declare functions. The function CheckConflictingVarDeclarations
   1177         // checks for var and let bindings from different scopes whereas this
   1178         // is a check for conflicting declarations within the same scope. This
   1179         // check also covers the special case
   1180         //
   1181         // function () { let x; { var x; } }
   1182         //
   1183         // because the var declaration is hoisted to the function scope where
   1184         // 'x' is already bound.
   1185         DCHECK(IsDeclaredVariableMode(var->mode()));
   1186         // In harmony we treat re-declarations as early errors. See
   1187         // ES5 16 for a definition of early errors.
   1188         *ok = false;
   1189         return nullptr;
   1190       }
   1191     } else if (mode == VariableMode::kVar) {
   1192       var->set_maybe_assigned();
   1193     }
   1194   }
   1195   DCHECK_NOT_NULL(var);
   1196 
   1197   // We add a declaration node for every declaration. The compiler
   1198   // will only generate code if necessary. In particular, declarations
   1199   // for inner local variables that do not represent functions won't
   1200   // result in any generated code.
   1201   //
   1202   // This will lead to multiple declaration nodes for the
   1203   // same variable if it is declared several times. This is not a
   1204   // semantic issue, but it may be a performance issue since it may
   1205   // lead to repeated DeclareEvalVar or DeclareEvalFunction calls.
   1206   decls_.Add(declaration);
   1207   proxy->BindTo(var);
   1208   return var;
   1209 }
   1210 
   1211 Variable* Scope::DeclareVariableName(const AstRawString* name,
   1212                                      VariableMode mode) {
   1213   DCHECK(IsDeclaredVariableMode(mode));
   1214   DCHECK(!already_resolved_);
   1215   DCHECK(GetDeclarationScope()->is_being_lazily_parsed());
   1216 
   1217   if (mode == VariableMode::kVar && !is_declaration_scope()) {
   1218     return GetDeclarationScope()->DeclareVariableName(name, mode);
   1219   }
   1220   DCHECK(!is_with_scope());
   1221   DCHECK(!is_eval_scope());
   1222   DCHECK(is_declaration_scope() || IsLexicalVariableMode(mode));
   1223   DCHECK(scope_info_.is_null());
   1224 
   1225   // Declare the variable in the declaration scope.
   1226   if (FLAG_preparser_scope_analysis) {
   1227     Variable* var = LookupLocal(name);
   1228     DCHECK_NE(var, kDummyPreParserLexicalVariable);
   1229     DCHECK_NE(var, kDummyPreParserVariable);
   1230     if (var == nullptr) {
   1231       var = DeclareLocal(name, mode);
   1232     } else if (IsLexicalVariableMode(mode) ||
   1233                IsLexicalVariableMode(var->mode())) {
   1234       // Duplicate functions are allowed in the sloppy mode, but if this is not
   1235       // a function declaration, it's an error. This is an error PreParser
   1236       // hasn't previously detected. TODO(marja): Investigate whether we can now
   1237       // start returning this error.
   1238     } else if (mode == VariableMode::kVar) {
   1239       var->set_maybe_assigned();
   1240     }
   1241     var->set_is_used();
   1242     return var;
   1243   } else {
   1244     return variables_.DeclareName(zone(), name, mode);
   1245   }
   1246 }
   1247 
   1248 void Scope::DeclareCatchVariableName(const AstRawString* name) {
   1249   DCHECK(!already_resolved_);
   1250   DCHECK(GetDeclarationScope()->is_being_lazily_parsed());
   1251   DCHECK(is_catch_scope());
   1252   DCHECK(scope_info_.is_null());
   1253 
   1254   if (FLAG_preparser_scope_analysis) {
   1255     Declare(zone(), name, VariableMode::kVar);
   1256   } else {
   1257     variables_.DeclareName(zone(), name, VariableMode::kVar);
   1258   }
   1259 }
   1260 
   1261 void Scope::AddUnresolved(VariableProxy* proxy) {
   1262   DCHECK(!already_resolved_);
   1263   DCHECK(!proxy->is_resolved());
   1264   proxy->set_next_unresolved(unresolved_);
   1265   unresolved_ = proxy;
   1266 }
   1267 
   1268 Variable* DeclarationScope::DeclareDynamicGlobal(const AstRawString* name,
   1269                                                  VariableKind kind) {
   1270   DCHECK(is_script_scope());
   1271   return variables_.Declare(zone(), this, name, VariableMode::kDynamicGlobal,
   1272                             kind);
   1273   // TODO(neis): Mark variable as maybe-assigned?
   1274 }
   1275 
   1276 bool Scope::RemoveUnresolved(VariableProxy* var) {
   1277   if (unresolved_ == var) {
   1278     unresolved_ = var->next_unresolved();
   1279     var->set_next_unresolved(nullptr);
   1280     return true;
   1281   }
   1282   VariableProxy* current = unresolved_;
   1283   while (current != nullptr) {
   1284     VariableProxy* next = current->next_unresolved();
   1285     if (var == next) {
   1286       current->set_next_unresolved(next->next_unresolved());
   1287       var->set_next_unresolved(nullptr);
   1288       return true;
   1289     }
   1290     current = next;
   1291   }
   1292   return false;
   1293 }
   1294 
   1295 Variable* Scope::NewTemporary(const AstRawString* name) {
   1296   return NewTemporary(name, kMaybeAssigned);
   1297 }
   1298 
   1299 Variable* Scope::NewTemporary(const AstRawString* name,
   1300                               MaybeAssignedFlag maybe_assigned) {
   1301   DeclarationScope* scope = GetClosureScope();
   1302   Variable* var = new (zone()) Variable(scope, name, VariableMode::kTemporary,
   1303                                         NORMAL_VARIABLE, kCreatedInitialized);
   1304   scope->AddLocal(var);
   1305   if (maybe_assigned == kMaybeAssigned) var->set_maybe_assigned();
   1306   return var;
   1307 }
   1308 
   1309 Declaration* Scope::CheckConflictingVarDeclarations() {
   1310   for (Declaration* decl : decls_) {
   1311     VariableMode mode = decl->proxy()->var()->mode();
   1312 
   1313     // Lexical vs lexical conflicts within the same scope have already been
   1314     // captured in Parser::Declare. The only conflicts we still need to check
   1315     // are lexical vs nested var, or any declarations within a declaration
   1316     // block scope vs lexical declarations in its surrounding (function) scope.
   1317     Scope* current = this;
   1318     if (decl->IsVariableDeclaration() &&
   1319         decl->AsVariableDeclaration()->AsNested() != nullptr) {
   1320       DCHECK_EQ(mode, VariableMode::kVar);
   1321       current = decl->AsVariableDeclaration()->AsNested()->scope();
   1322     } else if (IsLexicalVariableMode(mode)) {
   1323       if (!is_block_scope()) continue;
   1324       DCHECK(is_declaration_scope());
   1325       DCHECK_EQ(outer_scope()->scope_type(), FUNCTION_SCOPE);
   1326       current = outer_scope();
   1327     }
   1328 
   1329     // Iterate through all scopes until and including the declaration scope.
   1330     while (true) {
   1331       // There is a conflict if there exists a non-VAR binding.
   1332       Variable* other_var =
   1333           current->variables_.Lookup(decl->proxy()->raw_name());
   1334       if (other_var != nullptr && IsLexicalVariableMode(other_var->mode())) {
   1335         return decl;
   1336       }
   1337       if (current->is_declaration_scope()) break;
   1338       current = current->outer_scope();
   1339     }
   1340   }
   1341   return nullptr;
   1342 }
   1343 
   1344 Declaration* Scope::CheckLexDeclarationsConflictingWith(
   1345     const ZonePtrList<const AstRawString>& names) {
   1346   DCHECK(is_block_scope());
   1347   for (int i = 0; i < names.length(); ++i) {
   1348     Variable* var = LookupLocal(names.at(i));
   1349     if (var != nullptr) {
   1350       // Conflict; find and return its declaration.
   1351       DCHECK(IsLexicalVariableMode(var->mode()));
   1352       const AstRawString* name = names.at(i);
   1353       for (Declaration* decl : decls_) {
   1354         if (decl->proxy()->raw_name() == name) return decl;
   1355       }
   1356       DCHECK(false);
   1357     }
   1358   }
   1359   return nullptr;
   1360 }
   1361 
   1362 bool DeclarationScope::AllocateVariables(ParseInfo* info) {
   1363   // Module variables must be allocated before variable resolution
   1364   // to ensure that UpdateNeedsHoleCheck() can detect import variables.
   1365   if (is_module_scope()) AsModuleScope()->AllocateModuleVariables();
   1366 
   1367   if (!ResolveVariablesRecursively(info)) {
   1368     DCHECK(info->pending_error_handler()->has_pending_error());
   1369     return false;
   1370   }
   1371   AllocateVariablesRecursively();
   1372 
   1373   return true;
   1374 }
   1375 
   1376 bool Scope::AllowsLazyParsingWithoutUnresolvedVariables(
   1377     const Scope* outer) const {
   1378   // If none of the outer scopes need to decide whether to context allocate
   1379   // specific variables, we can preparse inner functions without unresolved
   1380   // variables. Otherwise we need to find unresolved variables to force context
   1381   // allocation of the matching declarations. We can stop at the outer scope for
   1382   // the parse, since context allocation of those variables is already
   1383   // guaranteed to be correct.
   1384   for (const Scope* s = this; s != outer; s = s->outer_scope_) {
   1385     // Eval forces context allocation on all outer scopes, so we don't need to
   1386     // look at those scopes. Sloppy eval makes top-level non-lexical variables
   1387     // dynamic, whereas strict-mode requires context allocation.
   1388     if (s->is_eval_scope()) return is_sloppy(s->language_mode());
   1389     // Catch scopes force context allocation of all variables.
   1390     if (s->is_catch_scope()) continue;
   1391     // With scopes do not introduce variables that need allocation.
   1392     if (s->is_with_scope()) continue;
   1393     DCHECK(s->is_module_scope() || s->is_block_scope() ||
   1394            s->is_function_scope());
   1395     return false;
   1396   }
   1397   return true;
   1398 }
   1399 
   1400 bool DeclarationScope::AllowsLazyCompilation() const {
   1401   return !force_eager_compilation_;
   1402 }
   1403 
   1404 int Scope::ContextChainLength(Scope* scope) const {
   1405   int n = 0;
   1406   for (const Scope* s = this; s != scope; s = s->outer_scope_) {
   1407     DCHECK_NOT_NULL(s);  // scope must be in the scope chain
   1408     if (s->NeedsContext()) n++;
   1409   }
   1410   return n;
   1411 }
   1412 
   1413 int Scope::ContextChainLengthUntilOutermostSloppyEval() const {
   1414   int result = 0;
   1415   int length = 0;
   1416 
   1417   for (const Scope* s = this; s != nullptr; s = s->outer_scope()) {
   1418     if (!s->NeedsContext()) continue;
   1419     length++;
   1420     if (s->is_declaration_scope() &&
   1421         s->AsDeclarationScope()->calls_sloppy_eval()) {
   1422       result = length;
   1423     }
   1424   }
   1425 
   1426   return result;
   1427 }
   1428 
   1429 DeclarationScope* Scope::GetDeclarationScope() {
   1430   Scope* scope = this;
   1431   while (!scope->is_declaration_scope()) {
   1432     scope = scope->outer_scope();
   1433   }
   1434   return scope->AsDeclarationScope();
   1435 }
   1436 
   1437 const DeclarationScope* Scope::GetClosureScope() const {
   1438   const Scope* scope = this;
   1439   while (!scope->is_declaration_scope() || scope->is_block_scope()) {
   1440     scope = scope->outer_scope();
   1441   }
   1442   return scope->AsDeclarationScope();
   1443 }
   1444 
   1445 DeclarationScope* Scope::GetClosureScope() {
   1446   Scope* scope = this;
   1447   while (!scope->is_declaration_scope() || scope->is_block_scope()) {
   1448     scope = scope->outer_scope();
   1449   }
   1450   return scope->AsDeclarationScope();
   1451 }
   1452 
   1453 bool Scope::NeedsScopeInfo() const {
   1454   DCHECK(!already_resolved_);
   1455   DCHECK(GetClosureScope()->ShouldEagerCompile());
   1456   // The debugger expects all functions to have scope infos.
   1457   // TODO(jochen|yangguo): Remove this requirement.
   1458   if (is_function_scope()) return true;
   1459   return NeedsContext();
   1460 }
   1461 
   1462 bool Scope::ShouldBanArguments() {
   1463   return GetReceiverScope()->should_ban_arguments();
   1464 }
   1465 
   1466 DeclarationScope* Scope::GetReceiverScope() {
   1467   Scope* scope = this;
   1468   while (!scope->is_script_scope() &&
   1469          (!scope->is_function_scope() ||
   1470           scope->AsDeclarationScope()->is_arrow_scope())) {
   1471     scope = scope->outer_scope();
   1472   }
   1473   return scope->AsDeclarationScope();
   1474 }
   1475 
   1476 Scope* Scope::GetOuterScopeWithContext() {
   1477   Scope* scope = outer_scope_;
   1478   while (scope && !scope->NeedsContext()) {
   1479     scope = scope->outer_scope();
   1480   }
   1481   return scope;
   1482 }
   1483 
   1484 Handle<StringSet> DeclarationScope::CollectNonLocals(
   1485     Isolate* isolate, ParseInfo* info, Handle<StringSet> non_locals) {
   1486   VariableProxy* free_variables = FetchFreeVariables(this, info);
   1487   for (VariableProxy* proxy = free_variables; proxy != nullptr;
   1488        proxy = proxy->next_unresolved()) {
   1489     non_locals = StringSet::Add(isolate, non_locals, proxy->name());
   1490   }
   1491   return non_locals;
   1492 }
   1493 
   1494 void DeclarationScope::ResetAfterPreparsing(AstValueFactory* ast_value_factory,
   1495                                             bool aborted) {
   1496   DCHECK(is_function_scope());
   1497 
   1498   // Reset all non-trivial members.
   1499   if (!aborted || !IsArrowFunction(function_kind_)) {
   1500     // Do not remove parameters when lazy parsing an Arrow Function has failed,
   1501     // as the formal parameters are not re-parsed.
   1502     params_.Clear();
   1503   }
   1504   decls_.Clear();
   1505   locals_.Clear();
   1506   inner_scope_ = nullptr;
   1507   unresolved_ = nullptr;
   1508   sloppy_block_function_map_ = nullptr;
   1509   rare_data_ = nullptr;
   1510   has_rest_ = false;
   1511 
   1512   if (aborted) {
   1513     // Prepare scope for use in the outer zone.
   1514     zone_ = ast_value_factory->zone();
   1515     variables_.Reset(ZoneAllocationPolicy(zone_));
   1516     if (!IsArrowFunction(function_kind_)) {
   1517       DeclareDefaultFunctionVariables(ast_value_factory);
   1518     }
   1519   } else {
   1520     // Make sure this scope isn't used for allocation anymore.
   1521     zone_ = nullptr;
   1522     variables_.Invalidate();
   1523   }
   1524 
   1525 #ifdef DEBUG
   1526   needs_migration_ = false;
   1527   is_being_lazily_parsed_ = false;
   1528 #endif
   1529 
   1530   was_lazily_parsed_ = !aborted;
   1531 }
   1532 
   1533 void Scope::SavePreParsedScopeData() {
   1534   DCHECK(FLAG_preparser_scope_analysis);
   1535   if (ProducedPreParsedScopeData::ScopeIsSkippableFunctionScope(this)) {
   1536     AsDeclarationScope()->SavePreParsedScopeDataForDeclarationScope();
   1537   }
   1538 
   1539   for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
   1540     scope->SavePreParsedScopeData();
   1541   }
   1542 }
   1543 
   1544 void DeclarationScope::SavePreParsedScopeDataForDeclarationScope() {
   1545   if (produced_preparsed_scope_data_ != nullptr) {
   1546     DCHECK(FLAG_preparser_scope_analysis);
   1547     produced_preparsed_scope_data_->SaveScopeAllocationData(this);
   1548   }
   1549 }
   1550 
   1551 void DeclarationScope::AnalyzePartially(AstNodeFactory* ast_node_factory) {
   1552   DCHECK(!force_eager_compilation_);
   1553   VariableProxy* unresolved = nullptr;
   1554 
   1555   if (!outer_scope_->is_script_scope() ||
   1556       (FLAG_preparser_scope_analysis &&
   1557        produced_preparsed_scope_data_ != nullptr &&
   1558        produced_preparsed_scope_data_->ContainsInnerFunctions())) {
   1559     // Try to resolve unresolved variables for this Scope and migrate those
   1560     // which cannot be resolved inside. It doesn't make sense to try to resolve
   1561     // them in the outer Scopes here, because they are incomplete.
   1562     for (VariableProxy* proxy = FetchFreeVariables(this); proxy != nullptr;
   1563          proxy = proxy->next_unresolved()) {
   1564       DCHECK(!proxy->is_resolved());
   1565       VariableProxy* copy = ast_node_factory->CopyVariableProxy(proxy);
   1566       copy->set_next_unresolved(unresolved);
   1567       unresolved = copy;
   1568     }
   1569 
   1570     // Migrate function_ to the right Zone.
   1571     if (function_ != nullptr) {
   1572       function_ = ast_node_factory->CopyVariable(function_);
   1573     }
   1574 
   1575     if (FLAG_preparser_scope_analysis) {
   1576       SavePreParsedScopeData();
   1577     }
   1578   }
   1579 
   1580 #ifdef DEBUG
   1581   if (FLAG_print_scopes) {
   1582     PrintF("Inner function scope:\n");
   1583     Print();
   1584   }
   1585 #endif
   1586 
   1587   ResetAfterPreparsing(ast_node_factory->ast_value_factory(), false);
   1588 
   1589   unresolved_ = unresolved;
   1590 }
   1591 
   1592 #ifdef DEBUG
   1593 namespace {
   1594 
   1595 const char* Header(ScopeType scope_type, FunctionKind function_kind,
   1596                    bool is_declaration_scope) {
   1597   switch (scope_type) {
   1598     case EVAL_SCOPE: return "eval";
   1599     // TODO(adamk): Should we print concise method scopes specially?
   1600     case FUNCTION_SCOPE:
   1601       if (IsGeneratorFunction(function_kind)) return "function*";
   1602       if (IsAsyncFunction(function_kind)) return "async function";
   1603       if (IsArrowFunction(function_kind)) return "arrow";
   1604       return "function";
   1605     case MODULE_SCOPE: return "module";
   1606     case SCRIPT_SCOPE: return "global";
   1607     case CATCH_SCOPE: return "catch";
   1608     case BLOCK_SCOPE: return is_declaration_scope ? "varblock" : "block";
   1609     case WITH_SCOPE: return "with";
   1610   }
   1611   UNREACHABLE();
   1612 }
   1613 
   1614 void Indent(int n, const char* str) { PrintF("%*s%s", n, "", str); }
   1615 
   1616 void PrintName(const AstRawString* name) {
   1617   PrintF("%.*s", name->length(), name->raw_data());
   1618 }
   1619 
   1620 void PrintLocation(Variable* var) {
   1621   switch (var->location()) {
   1622     case VariableLocation::UNALLOCATED:
   1623       break;
   1624     case VariableLocation::PARAMETER:
   1625       PrintF("parameter[%d]", var->index());
   1626       break;
   1627     case VariableLocation::LOCAL:
   1628       PrintF("local[%d]", var->index());
   1629       break;
   1630     case VariableLocation::CONTEXT:
   1631       PrintF("context[%d]", var->index());
   1632       break;
   1633     case VariableLocation::LOOKUP:
   1634       PrintF("lookup");
   1635       break;
   1636     case VariableLocation::MODULE:
   1637       PrintF("module");
   1638       break;
   1639   }
   1640 }
   1641 
   1642 void PrintVar(int indent, Variable* var) {
   1643   Indent(indent, VariableMode2String(var->mode()));
   1644   PrintF(" ");
   1645   if (var->raw_name()->IsEmpty())
   1646     PrintF(".%p", reinterpret_cast<void*>(var));
   1647   else
   1648     PrintName(var->raw_name());
   1649   PrintF(";  // (%p) ", reinterpret_cast<void*>(var));
   1650   PrintLocation(var);
   1651   bool comma = !var->IsUnallocated();
   1652   if (var->has_forced_context_allocation()) {
   1653     if (comma) PrintF(", ");
   1654     PrintF("forced context allocation");
   1655     comma = true;
   1656   }
   1657   if (var->maybe_assigned() == kNotAssigned) {
   1658     if (comma) PrintF(", ");
   1659     PrintF("never assigned");
   1660     comma = true;
   1661   }
   1662   if (var->initialization_flag() == kNeedsInitialization &&
   1663       !var->binding_needs_init()) {
   1664     if (comma) PrintF(", ");
   1665     PrintF("hole initialization elided");
   1666   }
   1667   PrintF("\n");
   1668 }
   1669 
   1670 void PrintMap(int indent, const char* label, VariableMap* map, bool locals,
   1671               Variable* function_var) {
   1672   bool printed_label = false;
   1673   for (VariableMap::Entry* p = map->Start(); p != nullptr; p = map->Next(p)) {
   1674     Variable* var = reinterpret_cast<Variable*>(p->value);
   1675     if (var == function_var) continue;
   1676     if (var == kDummyPreParserVariable ||
   1677         var == kDummyPreParserLexicalVariable) {
   1678       continue;
   1679     }
   1680     bool local = !IsDynamicVariableMode(var->mode());
   1681     if ((locals ? local : !local) &&
   1682         (var->is_used() || !var->IsUnallocated())) {
   1683       if (!printed_label) {
   1684         Indent(indent, label);
   1685         printed_label = true;
   1686       }
   1687       PrintVar(indent, var);
   1688     }
   1689   }
   1690 }
   1691 
   1692 }  // anonymous namespace
   1693 
   1694 void DeclarationScope::PrintParameters() {
   1695   PrintF(" (");
   1696   for (int i = 0; i < params_.length(); i++) {
   1697     if (i > 0) PrintF(", ");
   1698     const AstRawString* name = params_[i]->raw_name();
   1699     if (name->IsEmpty())
   1700       PrintF(".%p", reinterpret_cast<void*>(params_[i]));
   1701     else
   1702       PrintName(name);
   1703   }
   1704   PrintF(")");
   1705 }
   1706 
   1707 void Scope::Print(int n) {
   1708   int n0 = (n > 0 ? n : 0);
   1709   int n1 = n0 + 2;  // indentation
   1710 
   1711   // Print header.
   1712   FunctionKind function_kind = is_function_scope()
   1713                                    ? AsDeclarationScope()->function_kind()
   1714                                    : kNormalFunction;
   1715   Indent(n0, Header(scope_type_, function_kind, is_declaration_scope()));
   1716   if (scope_name_ != nullptr && !scope_name_->IsEmpty()) {
   1717     PrintF(" ");
   1718     PrintName(scope_name_);
   1719   }
   1720 
   1721   // Print parameters, if any.
   1722   Variable* function = nullptr;
   1723   if (is_function_scope()) {
   1724     AsDeclarationScope()->PrintParameters();
   1725     function = AsDeclarationScope()->function_var();
   1726   }
   1727 
   1728   PrintF(" { // (%p) (%d, %d)\n", reinterpret_cast<void*>(this),
   1729          start_position(), end_position());
   1730   if (is_hidden()) {
   1731     Indent(n1, "// is hidden\n");
   1732   }
   1733 
   1734   // Function name, if any (named function literals, only).
   1735   if (function != nullptr) {
   1736     Indent(n1, "// (local) function name: ");
   1737     PrintName(function->raw_name());
   1738     PrintF("\n");
   1739   }
   1740 
   1741   // Scope info.
   1742   if (is_strict(language_mode())) {
   1743     Indent(n1, "// strict mode scope\n");
   1744   }
   1745   if (IsAsmModule()) Indent(n1, "// scope is an asm module\n");
   1746   if (is_declaration_scope() && AsDeclarationScope()->calls_sloppy_eval()) {
   1747     Indent(n1, "// scope calls sloppy 'eval'\n");
   1748   }
   1749   if (is_declaration_scope() && AsDeclarationScope()->NeedsHomeObject()) {
   1750     Indent(n1, "// scope needs home object\n");
   1751   }
   1752   if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
   1753   if (is_declaration_scope()) {
   1754     DeclarationScope* scope = AsDeclarationScope();
   1755     if (scope->was_lazily_parsed()) Indent(n1, "// lazily parsed\n");
   1756     if (scope->ShouldEagerCompile()) Indent(n1, "// will be compiled\n");
   1757   }
   1758   if (num_stack_slots_ > 0) {
   1759     Indent(n1, "// ");
   1760     PrintF("%d stack slots\n", num_stack_slots_);
   1761   }
   1762   if (num_heap_slots_ > 0) {
   1763     Indent(n1, "// ");
   1764     PrintF("%d heap slots\n", num_heap_slots_);
   1765   }
   1766 
   1767   // Print locals.
   1768   if (function != nullptr) {
   1769     Indent(n1, "// function var:\n");
   1770     PrintVar(n1, function);
   1771   }
   1772 
   1773   // Print temporaries.
   1774   {
   1775     bool printed_header = false;
   1776     for (Variable* local : locals_) {
   1777       if (local->mode() != VariableMode::kTemporary) continue;
   1778       if (!printed_header) {
   1779         printed_header = true;
   1780         Indent(n1, "// temporary vars:\n");
   1781       }
   1782       PrintVar(n1, local);
   1783     }
   1784   }
   1785 
   1786   if (variables_.occupancy() > 0) {
   1787     PrintMap(n1, "// local vars:\n", &variables_, true, function);
   1788     PrintMap(n1, "// dynamic vars:\n", &variables_, false, function);
   1789   }
   1790 
   1791   // Print inner scopes (disable by providing negative n).
   1792   if (n >= 0) {
   1793     for (Scope* scope = inner_scope_; scope != nullptr;
   1794          scope = scope->sibling_) {
   1795       PrintF("\n");
   1796       scope->Print(n1);
   1797     }
   1798   }
   1799 
   1800   Indent(n0, "}\n");
   1801 }
   1802 
   1803 void Scope::CheckScopePositions() {
   1804   // Visible leaf scopes must have real positions.
   1805   if (!is_hidden() && inner_scope_ == nullptr) {
   1806     DCHECK_NE(kNoSourcePosition, start_position());
   1807     DCHECK_NE(kNoSourcePosition, end_position());
   1808   }
   1809   for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
   1810     scope->CheckScopePositions();
   1811   }
   1812 }
   1813 
   1814 void Scope::CheckZones() {
   1815   DCHECK(!needs_migration_);
   1816   for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
   1817     if (scope->is_declaration_scope() &&
   1818         scope->AsDeclarationScope()->was_lazily_parsed()) {
   1819       DCHECK_NULL(scope->zone());
   1820       DCHECK_NULL(scope->inner_scope_);
   1821       continue;
   1822     }
   1823     scope->CheckZones();
   1824   }
   1825 }
   1826 #endif  // DEBUG
   1827 
   1828 Variable* Scope::NonLocal(const AstRawString* name, VariableMode mode) {
   1829   // Declare a new non-local.
   1830   DCHECK(IsDynamicVariableMode(mode));
   1831   Variable* var = variables_.Declare(zone(), nullptr, name, mode);
   1832   // Allocate it by giving it a dynamic lookup.
   1833   var->AllocateTo(VariableLocation::LOOKUP, -1);
   1834   return var;
   1835 }
   1836 
   1837 Variable* Scope::LookupRecursive(ParseInfo* info, VariableProxy* proxy,
   1838                                  Scope* outer_scope_end) {
   1839   DCHECK_NE(outer_scope_end, this);
   1840   // Short-cut: whenever we find a debug-evaluate scope, just look everything up
   1841   // dynamically. Debug-evaluate doesn't properly create scope info for the
   1842   // lookups it does. It may not have a valid 'this' declaration, and anything
   1843   // accessed through debug-evaluate might invalidly resolve to stack-allocated
   1844   // variables.
   1845   // TODO(yangguo): Remove once debug-evaluate creates proper ScopeInfo for the
   1846   // scopes in which it's evaluating.
   1847   if (is_debug_evaluate_scope_)
   1848     return NonLocal(proxy->raw_name(), VariableMode::kDynamic);
   1849 
   1850   // Try to find the variable in this scope.
   1851   Variable* var = LookupLocal(proxy->raw_name());
   1852 
   1853   // We found a variable and we are done. (Even if there is an 'eval' in this
   1854   // scope which introduces the same variable again, the resulting variable
   1855   // remains the same.)
   1856   if (var != nullptr) return var;
   1857 
   1858   if (outer_scope_ == outer_scope_end) {
   1859     // We may just be trying to find all free variables. In that case, don't
   1860     // declare them in the outer scope.
   1861     if (!is_script_scope()) return nullptr;
   1862 
   1863     if (proxy->is_private_field()) {
   1864       info->pending_error_handler()->ReportMessageAt(
   1865           proxy->position(), proxy->position() + 1,
   1866           MessageTemplate::kInvalidPrivateFieldAccess, proxy->raw_name(),
   1867           kSyntaxError);
   1868       return nullptr;
   1869     }
   1870 
   1871     // No binding has been found. Declare a variable on the global object.
   1872     return AsDeclarationScope()->DeclareDynamicGlobal(proxy->raw_name(),
   1873                                                       NORMAL_VARIABLE);
   1874   }
   1875 
   1876   DCHECK(!is_script_scope());
   1877 
   1878   var = outer_scope_->LookupRecursive(info, proxy, outer_scope_end);
   1879 
   1880   // The variable could not be resolved statically.
   1881   if (var == nullptr) return var;
   1882 
   1883   // TODO(marja): Separate LookupRecursive for preparsed scopes better.
   1884   if (var == kDummyPreParserVariable || var == kDummyPreParserLexicalVariable) {
   1885     DCHECK(GetDeclarationScope()->is_being_lazily_parsed());
   1886     DCHECK(FLAG_lazy_inner_functions);
   1887     return var;
   1888   }
   1889 
   1890   if (is_function_scope() && !var->is_dynamic()) {
   1891     var->ForceContextAllocation();
   1892   }
   1893   // "this" can't be shadowed by "eval"-introduced bindings or by "with"
   1894   // scopes.
   1895   // TODO(wingo): There are other variables in this category; add them.
   1896   if (var->is_this()) return var;
   1897 
   1898   if (is_with_scope()) {
   1899     // The current scope is a with scope, so the variable binding can not be
   1900     // statically resolved. However, note that it was necessary to do a lookup
   1901     // in the outer scope anyway, because if a binding exists in an outer
   1902     // scope, the associated variable has to be marked as potentially being
   1903     // accessed from inside of an inner with scope (the property may not be in
   1904     // the 'with' object).
   1905     if (!var->is_dynamic() && var->IsUnallocated()) {
   1906       DCHECK(!already_resolved_);
   1907       var->set_is_used();
   1908       var->ForceContextAllocation();
   1909       if (proxy->is_assigned()) var->set_maybe_assigned();
   1910     }
   1911     return NonLocal(proxy->raw_name(), VariableMode::kDynamic);
   1912   }
   1913 
   1914   if (is_declaration_scope() && AsDeclarationScope()->calls_sloppy_eval()) {
   1915     // A variable binding may have been found in an outer scope, but the current
   1916     // scope makes a sloppy 'eval' call, so the found variable may not be the
   1917     // correct one (the 'eval' may introduce a binding with the same name). In
   1918     // that case, change the lookup result to reflect this situation. Only
   1919     // scopes that can host var bindings (declaration scopes) need be considered
   1920     // here (this excludes block and catch scopes), and variable lookups at
   1921     // script scope are always dynamic.
   1922     if (var->IsGlobalObjectProperty()) {
   1923       return NonLocal(proxy->raw_name(), VariableMode::kDynamicGlobal);
   1924     }
   1925 
   1926     if (var->is_dynamic()) return var;
   1927 
   1928     Variable* invalidated = var;
   1929     var = NonLocal(proxy->raw_name(), VariableMode::kDynamicLocal);
   1930     var->set_local_if_not_shadowed(invalidated);
   1931   }
   1932 
   1933   return var;
   1934 }
   1935 
   1936 bool Scope::ResolveVariable(ParseInfo* info, VariableProxy* proxy) {
   1937   DCHECK(info->script_scope()->is_script_scope());
   1938   DCHECK(!proxy->is_resolved());
   1939   Variable* var = LookupRecursive(info, proxy, nullptr);
   1940   if (var == nullptr) {
   1941     DCHECK(proxy->is_private_field());
   1942     return false;
   1943   }
   1944   ResolveTo(info, proxy, var);
   1945   return true;
   1946 }
   1947 
   1948 namespace {
   1949 
   1950 void SetNeedsHoleCheck(Variable* var, VariableProxy* proxy) {
   1951   proxy->set_needs_hole_check();
   1952   var->ForceHoleInitialization();
   1953 }
   1954 
   1955 void UpdateNeedsHoleCheck(Variable* var, VariableProxy* proxy, Scope* scope) {
   1956   if (var->mode() == VariableMode::kDynamicLocal) {
   1957     // Dynamically introduced variables never need a hole check (since they're
   1958     // VariableMode::kVar bindings, either from var or function declarations),
   1959     // but the variable they shadow might need a hole check, which we want to do
   1960     // if we decide that no shadowing variable was dynamically introoduced.
   1961     DCHECK_EQ(kCreatedInitialized, var->initialization_flag());
   1962     return UpdateNeedsHoleCheck(var->local_if_not_shadowed(), proxy, scope);
   1963   }
   1964 
   1965   if (var->initialization_flag() == kCreatedInitialized) return;
   1966 
   1967   // It's impossible to eliminate module import hole checks here, because it's
   1968   // unknown at compilation time whether the binding referred to in the
   1969   // exporting module itself requires hole checks.
   1970   if (var->location() == VariableLocation::MODULE && !var->IsExport()) {
   1971     return SetNeedsHoleCheck(var, proxy);
   1972   }
   1973 
   1974   // Check if the binding really needs an initialization check. The check
   1975   // can be skipped in the following situation: we have a VariableMode::kLet or
   1976   // VariableMode::kConst binding, both the Variable and the VariableProxy have
   1977   // the same declaration scope (i.e. they are both in global code, in the same
   1978   // function or in the same eval code), the VariableProxy is in the source
   1979   // physically located after the initializer of the variable, and that the
   1980   // initializer cannot be skipped due to a nonlinear scope.
   1981   //
   1982   // The condition on the closure scopes is a conservative check for
   1983   // nested functions that access a binding and are called before the
   1984   // binding is initialized:
   1985   //   function() { f(); let x = 1; function f() { x = 2; } }
   1986   //
   1987   // The check cannot be skipped on non-linear scopes, namely switch
   1988   // scopes, to ensure tests are done in cases like the following:
   1989   //   switch (1) { case 0: let x = 2; case 1: f(x); }
   1990   // The scope of the variable needs to be checked, in case the use is
   1991   // in a sub-block which may be linear.
   1992   if (var->scope()->GetClosureScope() != scope->GetClosureScope()) {
   1993     return SetNeedsHoleCheck(var, proxy);
   1994   }
   1995 
   1996   if (var->is_this()) {
   1997     DCHECK(IsDerivedConstructor(scope->GetClosureScope()->function_kind()));
   1998     // TODO(littledan): implement 'this' hole check elimination.
   1999     return SetNeedsHoleCheck(var, proxy);
   2000   }
   2001 
   2002   // We should always have valid source positions.
   2003   DCHECK_NE(var->initializer_position(), kNoSourcePosition);
   2004   DCHECK_NE(proxy->position(), kNoSourcePosition);
   2005 
   2006   if (var->scope()->is_nonlinear() ||
   2007       var->initializer_position() >= proxy->position()) {
   2008     return SetNeedsHoleCheck(var, proxy);
   2009   }
   2010 }
   2011 
   2012 }  // anonymous namespace
   2013 
   2014 void Scope::ResolveTo(ParseInfo* info, VariableProxy* proxy, Variable* var) {
   2015 #ifdef DEBUG
   2016   if (info->is_native()) {
   2017     // To avoid polluting the global object in native scripts
   2018     //  - Variables must not be allocated to the global scope.
   2019     DCHECK_NOT_NULL(outer_scope());
   2020     //  - Variables must be bound locally or unallocated.
   2021     if (var->IsGlobalObjectProperty()) {
   2022       // The following variable name may be minified. If so, disable
   2023       // minification in js2c.py for better output.
   2024       Handle<String> name = proxy->raw_name()->string();
   2025       FATAL("Unbound variable: '%s' in native script.",
   2026             name->ToCString().get());
   2027     }
   2028     VariableLocation location = var->location();
   2029     DCHECK(location == VariableLocation::LOCAL ||
   2030            location == VariableLocation::CONTEXT ||
   2031            location == VariableLocation::PARAMETER ||
   2032            location == VariableLocation::UNALLOCATED);
   2033   }
   2034 #endif
   2035 
   2036   DCHECK_NOT_NULL(var);
   2037   UpdateNeedsHoleCheck(var, proxy, this);
   2038   proxy->BindTo(var);
   2039 }
   2040 
   2041 bool Scope::ResolveVariablesRecursively(ParseInfo* info) {
   2042   DCHECK(info->script_scope()->is_script_scope());
   2043   // Lazy parsed declaration scopes are already partially analyzed. If there are
   2044   // unresolved references remaining, they just need to be resolved in outer
   2045   // scopes.
   2046   if (is_declaration_scope() && AsDeclarationScope()->was_lazily_parsed()) {
   2047     DCHECK_EQ(variables_.occupancy(), 0);
   2048     for (VariableProxy* proxy = unresolved_; proxy != nullptr;
   2049          proxy = proxy->next_unresolved()) {
   2050       Variable* var = outer_scope()->LookupRecursive(info, proxy, nullptr);
   2051       if (var == nullptr) {
   2052         DCHECK(proxy->is_private_field());
   2053         return false;
   2054       }
   2055       if (!var->is_dynamic()) {
   2056         var->set_is_used();
   2057         var->ForceContextAllocation();
   2058         if (proxy->is_assigned()) var->set_maybe_assigned();
   2059       }
   2060     }
   2061   } else {
   2062     // Resolve unresolved variables for this scope.
   2063     for (VariableProxy* proxy = unresolved_; proxy != nullptr;
   2064          proxy = proxy->next_unresolved()) {
   2065       if (!ResolveVariable(info, proxy)) return false;
   2066     }
   2067 
   2068     // Resolve unresolved variables for inner scopes.
   2069     for (Scope* scope = inner_scope_; scope != nullptr;
   2070          scope = scope->sibling_) {
   2071       if (!scope->ResolveVariablesRecursively(info)) return false;
   2072     }
   2073   }
   2074   return true;
   2075 }
   2076 
   2077 VariableProxy* Scope::FetchFreeVariables(DeclarationScope* max_outer_scope,
   2078                                          ParseInfo* info,
   2079                                          VariableProxy* stack) {
   2080   // Module variables must be allocated before variable resolution
   2081   // to ensure that UpdateNeedsHoleCheck() can detect import variables.
   2082   if (info != nullptr && is_module_scope()) {
   2083     AsModuleScope()->AllocateModuleVariables();
   2084   }
   2085   // Lazy parsed declaration scopes are already partially analyzed. If there are
   2086   // unresolved references remaining, they just need to be resolved in outer
   2087   // scopes.
   2088   Scope* lookup =
   2089       is_declaration_scope() && AsDeclarationScope()->was_lazily_parsed()
   2090           ? outer_scope()
   2091           : this;
   2092   for (VariableProxy *proxy = unresolved_, *next = nullptr; proxy != nullptr;
   2093        proxy = next) {
   2094     next = proxy->next_unresolved();
   2095     DCHECK(!proxy->is_resolved());
   2096     Variable* var =
   2097         lookup->LookupRecursive(info, proxy, max_outer_scope->outer_scope());
   2098     if (var == nullptr) {
   2099       proxy->set_next_unresolved(stack);
   2100       stack = proxy;
   2101     } else if (var != kDummyPreParserVariable &&
   2102                var != kDummyPreParserLexicalVariable) {
   2103       if (info != nullptr) {
   2104         // In this case we need to leave scopes in a way that they can be
   2105         // allocated. If we resolved variables from lazy parsed scopes, we need
   2106         // to context allocate the var.
   2107         ResolveTo(info, proxy, var);
   2108         if (!var->is_dynamic() && lookup != this) var->ForceContextAllocation();
   2109       } else {
   2110         var->set_is_used();
   2111         if (proxy->is_assigned()) {
   2112           var->set_maybe_assigned();
   2113         }
   2114       }
   2115     }
   2116   }
   2117 
   2118   // Clear unresolved_ as it's in an inconsistent state.
   2119   unresolved_ = nullptr;
   2120 
   2121   for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
   2122     stack = scope->FetchFreeVariables(max_outer_scope, info, stack);
   2123   }
   2124 
   2125   return stack;
   2126 }
   2127 
   2128 bool Scope::MustAllocate(Variable* var) {
   2129   if (var == kDummyPreParserLexicalVariable || var == kDummyPreParserVariable) {
   2130     return true;
   2131   }
   2132   DCHECK(var->location() != VariableLocation::MODULE);
   2133   // Give var a read/write use if there is a chance it might be accessed
   2134   // via an eval() call.  This is only possible if the variable has a
   2135   // visible name.
   2136   if ((var->is_this() || !var->raw_name()->IsEmpty()) &&
   2137       (inner_scope_calls_eval_ || is_catch_scope() || is_script_scope())) {
   2138     var->set_is_used();
   2139     if (inner_scope_calls_eval_) var->set_maybe_assigned();
   2140   }
   2141   DCHECK(!var->has_forced_context_allocation() || var->is_used());
   2142   // Global variables do not need to be allocated.
   2143   return !var->IsGlobalObjectProperty() && var->is_used();
   2144 }
   2145 
   2146 
   2147 bool Scope::MustAllocateInContext(Variable* var) {
   2148   // If var is accessed from an inner scope, or if there is a possibility
   2149   // that it might be accessed from the current or an inner scope (through
   2150   // an eval() call or a runtime with lookup), it must be allocated in the
   2151   // context.
   2152   //
   2153   // Temporary variables are always stack-allocated.  Catch-bound variables are
   2154   // always context-allocated.
   2155   if (var->mode() == VariableMode::kTemporary) return false;
   2156   if (is_catch_scope()) return true;
   2157   if ((is_script_scope() || is_eval_scope()) &&
   2158       IsLexicalVariableMode(var->mode())) {
   2159     return true;
   2160   }
   2161   return var->has_forced_context_allocation() || inner_scope_calls_eval_;
   2162 }
   2163 
   2164 
   2165 void Scope::AllocateStackSlot(Variable* var) {
   2166   if (is_block_scope()) {
   2167     outer_scope()->GetDeclarationScope()->AllocateStackSlot(var);
   2168   } else {
   2169     var->AllocateTo(VariableLocation::LOCAL, num_stack_slots_++);
   2170   }
   2171 }
   2172 
   2173 
   2174 void Scope::AllocateHeapSlot(Variable* var) {
   2175   var->AllocateTo(VariableLocation::CONTEXT, num_heap_slots_++);
   2176 }
   2177 
   2178 void DeclarationScope::AllocateParameterLocals() {
   2179   DCHECK(is_function_scope());
   2180 
   2181   bool has_mapped_arguments = false;
   2182   if (arguments_ != nullptr) {
   2183     DCHECK(!is_arrow_scope());
   2184     if (MustAllocate(arguments_) && !has_arguments_parameter_) {
   2185       // 'arguments' is used and does not refer to a function
   2186       // parameter of the same name. If the arguments object
   2187       // aliases formal parameters, we conservatively allocate
   2188       // them specially in the loop below.
   2189       has_mapped_arguments =
   2190           GetArgumentsType() == CreateArgumentsType::kMappedArguments;
   2191     } else {
   2192       // 'arguments' is unused. Tell the code generator that it does not need to
   2193       // allocate the arguments object by nulling out arguments_.
   2194       arguments_ = nullptr;
   2195     }
   2196   }
   2197 
   2198   // The same parameter may occur multiple times in the parameters_ list.
   2199   // If it does, and if it is not copied into the context object, it must
   2200   // receive the highest parameter index for that parameter; thus iteration
   2201   // order is relevant!
   2202   for (int i = num_parameters() - 1; i >= 0; --i) {
   2203     Variable* var = params_[i];
   2204     DCHECK(!has_rest_ || var != rest_parameter());
   2205     DCHECK_EQ(this, var->scope());
   2206     if (has_mapped_arguments) {
   2207       var->set_is_used();
   2208       var->set_maybe_assigned();
   2209       var->ForceContextAllocation();
   2210     }
   2211     AllocateParameter(var, i);
   2212   }
   2213 }
   2214 
   2215 void DeclarationScope::AllocateParameter(Variable* var, int index) {
   2216   if (MustAllocate(var)) {
   2217     if (has_forced_context_allocation_for_parameters() ||
   2218         MustAllocateInContext(var)) {
   2219       DCHECK(var->IsUnallocated() || var->IsContextSlot());
   2220       if (var->IsUnallocated()) {
   2221         AllocateHeapSlot(var);
   2222       }
   2223     } else {
   2224       DCHECK(var->IsUnallocated() || var->IsParameter());
   2225       if (var->IsUnallocated()) {
   2226         var->AllocateTo(VariableLocation::PARAMETER, index);
   2227       }
   2228     }
   2229   }
   2230 }
   2231 
   2232 void DeclarationScope::AllocateReceiver() {
   2233   if (!has_this_declaration()) return;
   2234   DCHECK_NOT_NULL(receiver());
   2235   DCHECK_EQ(receiver()->scope(), this);
   2236   AllocateParameter(receiver(), -1);
   2237 }
   2238 
   2239 void Scope::AllocateNonParameterLocal(Variable* var) {
   2240   DCHECK(var->scope() == this);
   2241   if (var->IsUnallocated() && MustAllocate(var)) {
   2242     if (MustAllocateInContext(var)) {
   2243       AllocateHeapSlot(var);
   2244       DCHECK_IMPLIES(is_catch_scope(),
   2245                      var->index() == Context::THROWN_OBJECT_INDEX);
   2246     } else {
   2247       AllocateStackSlot(var);
   2248     }
   2249   }
   2250 }
   2251 
   2252 void Scope::AllocateNonParameterLocalsAndDeclaredGlobals() {
   2253   for (Variable* local : locals_) {
   2254     AllocateNonParameterLocal(local);
   2255   }
   2256 
   2257   if (is_declaration_scope()) {
   2258     AsDeclarationScope()->AllocateLocals();
   2259   }
   2260 }
   2261 
   2262 void DeclarationScope::AllocateLocals() {
   2263   // For now, function_ must be allocated at the very end.  If it gets
   2264   // allocated in the context, it must be the last slot in the context,
   2265   // because of the current ScopeInfo implementation (see
   2266   // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
   2267   if (function_ != nullptr && MustAllocate(function_)) {
   2268     AllocateNonParameterLocal(function_);
   2269   } else {
   2270     function_ = nullptr;
   2271   }
   2272 
   2273   DCHECK(!has_rest_ || !MustAllocate(rest_parameter()) ||
   2274          !rest_parameter()->IsUnallocated());
   2275 
   2276   if (new_target_ != nullptr && !MustAllocate(new_target_)) {
   2277     new_target_ = nullptr;
   2278   }
   2279 
   2280   NullifyRareVariableIf(RareVariable::kThisFunction,
   2281                         [=](Variable* var) { return !MustAllocate(var); });
   2282 }
   2283 
   2284 void ModuleScope::AllocateModuleVariables() {
   2285   for (const auto& it : module()->regular_imports()) {
   2286     Variable* var = LookupLocal(it.first);
   2287     var->AllocateTo(VariableLocation::MODULE, it.second->cell_index);
   2288     DCHECK(!var->IsExport());
   2289   }
   2290 
   2291   for (const auto& it : module()->regular_exports()) {
   2292     Variable* var = LookupLocal(it.first);
   2293     var->AllocateTo(VariableLocation::MODULE, it.second->cell_index);
   2294     DCHECK(var->IsExport());
   2295   }
   2296 }
   2297 
   2298 void Scope::AllocateVariablesRecursively() {
   2299   DCHECK(!already_resolved_);
   2300   DCHECK_IMPLIES(!FLAG_preparser_scope_analysis, num_stack_slots_ == 0);
   2301 
   2302   // Don't allocate variables of preparsed scopes.
   2303   if (is_declaration_scope() && AsDeclarationScope()->was_lazily_parsed()) {
   2304     return;
   2305   }
   2306 
   2307   // Allocate variables for inner scopes.
   2308   for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
   2309     scope->AllocateVariablesRecursively();
   2310   }
   2311 
   2312   DCHECK(!already_resolved_);
   2313   DCHECK_EQ(Context::MIN_CONTEXT_SLOTS, num_heap_slots_);
   2314 
   2315   // Allocate variables for this scope.
   2316   // Parameters must be allocated first, if any.
   2317   if (is_declaration_scope()) {
   2318     if (is_function_scope()) {
   2319       AsDeclarationScope()->AllocateParameterLocals();
   2320     }
   2321     AsDeclarationScope()->AllocateReceiver();
   2322   }
   2323   AllocateNonParameterLocalsAndDeclaredGlobals();
   2324 
   2325   // Force allocation of a context for this scope if necessary. For a 'with'
   2326   // scope and for a function scope that makes an 'eval' call we need a context,
   2327   // even if no local variables were statically allocated in the scope.
   2328   // Likewise for modules and function scopes representing asm.js modules.
   2329   bool must_have_context =
   2330       is_with_scope() || is_module_scope() || IsAsmModule() ||
   2331       (is_function_scope() && AsDeclarationScope()->calls_sloppy_eval()) ||
   2332       (is_block_scope() && is_declaration_scope() &&
   2333        AsDeclarationScope()->calls_sloppy_eval());
   2334 
   2335   // If we didn't allocate any locals in the local context, then we only
   2336   // need the minimal number of slots if we must have a context.
   2337   if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && !must_have_context) {
   2338     num_heap_slots_ = 0;
   2339   }
   2340 
   2341   // Allocation done.
   2342   DCHECK(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
   2343 }
   2344 
   2345 void Scope::AllocateScopeInfosRecursively(Isolate* isolate,
   2346                                           MaybeHandle<ScopeInfo> outer_scope) {
   2347   DCHECK(scope_info_.is_null());
   2348   MaybeHandle<ScopeInfo> next_outer_scope = outer_scope;
   2349 
   2350   if (NeedsScopeInfo()) {
   2351     scope_info_ = ScopeInfo::Create(isolate, zone(), this, outer_scope);
   2352     // The ScopeInfo chain should mirror the context chain, so we only link to
   2353     // the next outer scope that needs a context.
   2354     if (NeedsContext()) next_outer_scope = scope_info_;
   2355   }
   2356 
   2357   // Allocate ScopeInfos for inner scopes.
   2358   for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
   2359     if (!scope->is_function_scope() ||
   2360         scope->AsDeclarationScope()->ShouldEagerCompile()) {
   2361       scope->AllocateScopeInfosRecursively(isolate, next_outer_scope);
   2362     }
   2363   }
   2364 }
   2365 
   2366 // static
   2367 void DeclarationScope::AllocateScopeInfos(ParseInfo* info, Isolate* isolate) {
   2368   DeclarationScope* scope = info->literal()->scope();
   2369   if (!scope->scope_info_.is_null()) return;  // Allocated by outer function.
   2370 
   2371   MaybeHandle<ScopeInfo> outer_scope;
   2372   if (scope->outer_scope_ != nullptr) {
   2373     outer_scope = scope->outer_scope_->scope_info_;
   2374   }
   2375 
   2376   scope->AllocateScopeInfosRecursively(isolate, outer_scope);
   2377 
   2378   // The debugger expects all shared function infos to contain a scope info.
   2379   // Since the top-most scope will end up in a shared function info, make sure
   2380   // it has one, even if it doesn't need a scope info.
   2381   // TODO(jochen|yangguo): Remove this requirement.
   2382   if (scope->scope_info_.is_null()) {
   2383     scope->scope_info_ =
   2384         ScopeInfo::Create(isolate, scope->zone(), scope, outer_scope);
   2385   }
   2386 
   2387   // Ensuring that the outer script scope has a scope info avoids having
   2388   // special case for native contexts vs other contexts.
   2389   if (info->script_scope() && info->script_scope()->scope_info_.is_null()) {
   2390     info->script_scope()->scope_info_ =
   2391         handle(ScopeInfo::Empty(isolate), isolate);
   2392   }
   2393 }
   2394 
   2395 int Scope::StackLocalCount() const {
   2396   Variable* function =
   2397       is_function_scope() ? AsDeclarationScope()->function_var() : nullptr;
   2398   return num_stack_slots() -
   2399          (function != nullptr && function->IsStackLocal() ? 1 : 0);
   2400 }
   2401 
   2402 
   2403 int Scope::ContextLocalCount() const {
   2404   if (num_heap_slots() == 0) return 0;
   2405   Variable* function =
   2406       is_function_scope() ? AsDeclarationScope()->function_var() : nullptr;
   2407   bool is_function_var_in_context =
   2408       function != nullptr && function->IsContextSlot();
   2409   return num_heap_slots() - Context::MIN_CONTEXT_SLOTS -
   2410          (is_function_var_in_context ? 1 : 0);
   2411 }
   2412 
   2413 }  // namespace internal
   2414 }  // namespace v8
   2415