Home | History | Annotate | Download | only in SVD
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
      5 // research report written by Ming Gu and Stanley C.Eisenstat
      6 // The code variable names correspond to the names they used in their
      7 // report
      8 //
      9 // Copyright (C) 2013 Gauthier Brun <brun.gauthier (at) gmail.com>
     10 // Copyright (C) 2013 Nicolas Carre <nicolas.carre (at) ensimag.fr>
     11 // Copyright (C) 2013 Jean Ceccato <jean.ceccato (at) ensimag.fr>
     12 // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli (at) ensimag.fr>
     13 // Copyright (C) 2013 Jitse Niesen <jitse (at) maths.leeds.ac.uk>
     14 // Copyright (C) 2014-2016 Gael Guennebaud <gael.guennebaud (at) inria.fr>
     15 //
     16 // Source Code Form is subject to the terms of the Mozilla
     17 // Public License v. 2.0. If a copy of the MPL was not distributed
     18 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     19 
     20 #ifndef EIGEN_BDCSVD_H
     21 #define EIGEN_BDCSVD_H
     22 // #define EIGEN_BDCSVD_DEBUG_VERBOSE
     23 // #define EIGEN_BDCSVD_SANITY_CHECKS
     24 
     25 namespace Eigen {
     26 
     27 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
     28 IOFormat bdcsvdfmt(8, 0, ", ", "\n", "  [", "]");
     29 #endif
     30 
     31 template<typename _MatrixType> class BDCSVD;
     32 
     33 namespace internal {
     34 
     35 template<typename _MatrixType>
     36 struct traits<BDCSVD<_MatrixType> >
     37 {
     38   typedef _MatrixType MatrixType;
     39 };
     40 
     41 } // end namespace internal
     42 
     43 
     44 /** \ingroup SVD_Module
     45  *
     46  *
     47  * \class BDCSVD
     48  *
     49  * \brief class Bidiagonal Divide and Conquer SVD
     50  *
     51  * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition
     52  *
     53  * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization,
     54  * and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD.
     55  * You can control the switching size with the setSwitchSize() method, default is 16.
     56  * For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones, BDCSVD is highly
     57  * recommended and can several order of magnitude faster.
     58  *
     59  * \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations.
     60  * For instance, this concerns Intel's compiler (ICC), which perfroms such optimization by default unless
     61  * you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will
     62  * significantly degrade the accuracy.
     63  *
     64  * \sa class JacobiSVD
     65  */
     66 template<typename _MatrixType>
     67 class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >
     68 {
     69   typedef SVDBase<BDCSVD> Base;
     70 
     71 public:
     72   using Base::rows;
     73   using Base::cols;
     74   using Base::computeU;
     75   using Base::computeV;
     76 
     77   typedef _MatrixType MatrixType;
     78   typedef typename MatrixType::Scalar Scalar;
     79   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
     80   typedef typename NumTraits<RealScalar>::Literal Literal;
     81   enum {
     82     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     83     ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     84     DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
     85     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     86     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
     87     MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime),
     88     MatrixOptions = MatrixType::Options
     89   };
     90 
     91   typedef typename Base::MatrixUType MatrixUType;
     92   typedef typename Base::MatrixVType MatrixVType;
     93   typedef typename Base::SingularValuesType SingularValuesType;
     94 
     95   typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> MatrixX;
     96   typedef Matrix<RealScalar, Dynamic, Dynamic, ColMajor> MatrixXr;
     97   typedef Matrix<RealScalar, Dynamic, 1> VectorType;
     98   typedef Array<RealScalar, Dynamic, 1> ArrayXr;
     99   typedef Array<Index,1,Dynamic> ArrayXi;
    100   typedef Ref<ArrayXr> ArrayRef;
    101   typedef Ref<ArrayXi> IndicesRef;
    102 
    103   /** \brief Default Constructor.
    104    *
    105    * The default constructor is useful in cases in which the user intends to
    106    * perform decompositions via BDCSVD::compute(const MatrixType&).
    107    */
    108   BDCSVD() : m_algoswap(16), m_numIters(0)
    109   {}
    110 
    111 
    112   /** \brief Default Constructor with memory preallocation
    113    *
    114    * Like the default constructor but with preallocation of the internal data
    115    * according to the specified problem size.
    116    * \sa BDCSVD()
    117    */
    118   BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
    119     : m_algoswap(16), m_numIters(0)
    120   {
    121     allocate(rows, cols, computationOptions);
    122   }
    123 
    124   /** \brief Constructor performing the decomposition of given matrix.
    125    *
    126    * \param matrix the matrix to decompose
    127    * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
    128    *                           By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
    129    *                           #ComputeFullV, #ComputeThinV.
    130    *
    131    * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
    132    * available with the (non - default) FullPivHouseholderQR preconditioner.
    133    */
    134   BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
    135     : m_algoswap(16), m_numIters(0)
    136   {
    137     compute(matrix, computationOptions);
    138   }
    139 
    140   ~BDCSVD()
    141   {
    142   }
    143 
    144   /** \brief Method performing the decomposition of given matrix using custom options.
    145    *
    146    * \param matrix the matrix to decompose
    147    * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
    148    *                           By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
    149    *                           #ComputeFullV, #ComputeThinV.
    150    *
    151    * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
    152    * available with the (non - default) FullPivHouseholderQR preconditioner.
    153    */
    154   BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
    155 
    156   /** \brief Method performing the decomposition of given matrix using current options.
    157    *
    158    * \param matrix the matrix to decompose
    159    *
    160    * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
    161    */
    162   BDCSVD& compute(const MatrixType& matrix)
    163   {
    164     return compute(matrix, this->m_computationOptions);
    165   }
    166 
    167   void setSwitchSize(int s)
    168   {
    169     eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3");
    170     m_algoswap = s;
    171   }
    172 
    173 private:
    174   void allocate(Index rows, Index cols, unsigned int computationOptions);
    175   void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
    176   void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V);
    177   void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus);
    178   void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat);
    179   void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V);
    180   void deflation43(Index firstCol, Index shift, Index i, Index size);
    181   void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
    182   void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
    183   template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
    184   void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
    185   void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1);
    186   static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift);
    187 
    188 protected:
    189   MatrixXr m_naiveU, m_naiveV;
    190   MatrixXr m_computed;
    191   Index m_nRec;
    192   ArrayXr m_workspace;
    193   ArrayXi m_workspaceI;
    194   int m_algoswap;
    195   bool m_isTranspose, m_compU, m_compV;
    196 
    197   using Base::m_singularValues;
    198   using Base::m_diagSize;
    199   using Base::m_computeFullU;
    200   using Base::m_computeFullV;
    201   using Base::m_computeThinU;
    202   using Base::m_computeThinV;
    203   using Base::m_matrixU;
    204   using Base::m_matrixV;
    205   using Base::m_isInitialized;
    206   using Base::m_nonzeroSingularValues;
    207 
    208 public:
    209   int m_numIters;
    210 }; //end class BDCSVD
    211 
    212 
    213 // Method to allocate and initialize matrix and attributes
    214 template<typename MatrixType>
    215 void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
    216 {
    217   m_isTranspose = (cols > rows);
    218 
    219   if (Base::allocate(rows, cols, computationOptions))
    220     return;
    221 
    222   m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize );
    223   m_compU = computeV();
    224   m_compV = computeU();
    225   if (m_isTranspose)
    226     std::swap(m_compU, m_compV);
    227 
    228   if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 );
    229   else         m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 );
    230 
    231   if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize);
    232 
    233   m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3);
    234   m_workspaceI.resize(3*m_diagSize);
    235 }// end allocate
    236 
    237 template<typename MatrixType>
    238 BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
    239 {
    240 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
    241   std::cout << "\n\n\n======================================================================================================================\n\n\n";
    242 #endif
    243   allocate(matrix.rows(), matrix.cols(), computationOptions);
    244   using std::abs;
    245 
    246   const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
    247 
    248   //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return
    249   if(matrix.cols() < m_algoswap)
    250   {
    251     // FIXME this line involves temporaries
    252     JacobiSVD<MatrixType> jsvd(matrix,computationOptions);
    253     if(computeU()) m_matrixU = jsvd.matrixU();
    254     if(computeV()) m_matrixV = jsvd.matrixV();
    255     m_singularValues = jsvd.singularValues();
    256     m_nonzeroSingularValues = jsvd.nonzeroSingularValues();
    257     m_isInitialized = true;
    258     return *this;
    259   }
    260 
    261   //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows
    262   RealScalar scale = matrix.cwiseAbs().maxCoeff();
    263   if(scale==Literal(0)) scale = Literal(1);
    264   MatrixX copy;
    265   if (m_isTranspose) copy = matrix.adjoint()/scale;
    266   else               copy = matrix/scale;
    267 
    268   //**** step 1 - Bidiagonalization
    269   // FIXME this line involves temporaries
    270   internal::UpperBidiagonalization<MatrixX> bid(copy);
    271 
    272   //**** step 2 - Divide & Conquer
    273   m_naiveU.setZero();
    274   m_naiveV.setZero();
    275   // FIXME this line involves a temporary matrix
    276   m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
    277   m_computed.template bottomRows<1>().setZero();
    278   divide(0, m_diagSize - 1, 0, 0, 0);
    279 
    280   //**** step 3 - Copy singular values and vectors
    281   for (int i=0; i<m_diagSize; i++)
    282   {
    283     RealScalar a = abs(m_computed.coeff(i, i));
    284     m_singularValues.coeffRef(i) = a * scale;
    285     if (a<considerZero)
    286     {
    287       m_nonzeroSingularValues = i;
    288       m_singularValues.tail(m_diagSize - i - 1).setZero();
    289       break;
    290     }
    291     else if (i == m_diagSize - 1)
    292     {
    293       m_nonzeroSingularValues = i + 1;
    294       break;
    295     }
    296   }
    297 
    298 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
    299 //   std::cout << "m_naiveU\n" << m_naiveU << "\n\n";
    300 //   std::cout << "m_naiveV\n" << m_naiveV << "\n\n";
    301 #endif
    302   if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU);
    303   else              copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV);
    304 
    305   m_isInitialized = true;
    306   return *this;
    307 }// end compute
    308 
    309 
    310 template<typename MatrixType>
    311 template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
    312 void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
    313 {
    314   // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa
    315   if (computeU())
    316   {
    317     Index Ucols = m_computeThinU ? m_diagSize : householderU.cols();
    318     m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
    319     m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
    320     householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer
    321   }
    322   if (computeV())
    323   {
    324     Index Vcols = m_computeThinV ? m_diagSize : householderV.cols();
    325     m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
    326     m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
    327     householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer
    328   }
    329 }
    330 
    331 /** \internal
    332   * Performs A = A * B exploiting the special structure of the matrix A. Splitting A as:
    333   *  A = [A1]
    334   *      [A2]
    335   * such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros.
    336   * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large
    337   * enough.
    338   */
    339 template<typename MatrixType>
    340 void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1)
    341 {
    342   Index n = A.rows();
    343   if(n>100)
    344   {
    345     // If the matrices are large enough, let's exploit the sparse structure of A by
    346     // splitting it in half (wrt n1), and packing the non-zero columns.
    347     Index n2 = n - n1;
    348     Map<MatrixXr> A1(m_workspace.data()      , n1, n);
    349     Map<MatrixXr> A2(m_workspace.data()+ n1*n, n2, n);
    350     Map<MatrixXr> B1(m_workspace.data()+  n*n, n,  n);
    351     Map<MatrixXr> B2(m_workspace.data()+2*n*n, n,  n);
    352     Index k1=0, k2=0;
    353     for(Index j=0; j<n; ++j)
    354     {
    355       if( (A.col(j).head(n1).array()!=Literal(0)).any() )
    356       {
    357         A1.col(k1) = A.col(j).head(n1);
    358         B1.row(k1) = B.row(j);
    359         ++k1;
    360       }
    361       if( (A.col(j).tail(n2).array()!=Literal(0)).any() )
    362       {
    363         A2.col(k2) = A.col(j).tail(n2);
    364         B2.row(k2) = B.row(j);
    365         ++k2;
    366       }
    367     }
    368 
    369     A.topRows(n1).noalias()    = A1.leftCols(k1) * B1.topRows(k1);
    370     A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2);
    371   }
    372   else
    373   {
    374     Map<MatrixXr,Aligned> tmp(m_workspace.data(),n,n);
    375     tmp.noalias() = A*B;
    376     A = tmp;
    377   }
    378 }
    379 
    380 // The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
    381 // place of the submatrix we are currently working on.
    382 
    383 //@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
    384 //@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU;
    385 // lastCol + 1 - firstCol is the size of the submatrix.
    386 //@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
    387 //@param firstRowW : Same as firstRowW with the column.
    388 //@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
    389 // to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
    390 template<typename MatrixType>
    391 void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift)
    392 {
    393   // requires rows = cols + 1;
    394   using std::pow;
    395   using std::sqrt;
    396   using std::abs;
    397   const Index n = lastCol - firstCol + 1;
    398   const Index k = n/2;
    399   const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
    400   RealScalar alphaK;
    401   RealScalar betaK;
    402   RealScalar r0;
    403   RealScalar lambda, phi, c0, s0;
    404   VectorType l, f;
    405   // We use the other algorithm which is more efficient for small
    406   // matrices.
    407   if (n < m_algoswap)
    408   {
    409     // FIXME this line involves temporaries
    410     JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0));
    411     if (m_compU)
    412       m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
    413     else
    414     {
    415       m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0);
    416       m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n);
    417     }
    418     if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV();
    419     m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
    420     m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n);
    421     return;
    422   }
    423   // We use the divide and conquer algorithm
    424   alphaK =  m_computed(firstCol + k, firstCol + k);
    425   betaK = m_computed(firstCol + k + 1, firstCol + k);
    426   // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
    427   // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
    428   // right submatrix before the left one.
    429   divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
    430   divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
    431 
    432   if (m_compU)
    433   {
    434     lambda = m_naiveU(firstCol + k, firstCol + k);
    435     phi = m_naiveU(firstCol + k + 1, lastCol + 1);
    436   }
    437   else
    438   {
    439     lambda = m_naiveU(1, firstCol + k);
    440     phi = m_naiveU(0, lastCol + 1);
    441   }
    442   r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi));
    443   if (m_compU)
    444   {
    445     l = m_naiveU.row(firstCol + k).segment(firstCol, k);
    446     f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
    447   }
    448   else
    449   {
    450     l = m_naiveU.row(1).segment(firstCol, k);
    451     f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
    452   }
    453   if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1);
    454   if (r0<considerZero)
    455   {
    456     c0 = Literal(1);
    457     s0 = Literal(0);
    458   }
    459   else
    460   {
    461     c0 = alphaK * lambda / r0;
    462     s0 = betaK * phi / r0;
    463   }
    464 
    465 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
    466   assert(m_naiveU.allFinite());
    467   assert(m_naiveV.allFinite());
    468   assert(m_computed.allFinite());
    469 #endif
    470 
    471   if (m_compU)
    472   {
    473     MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
    474     // we shiftW Q1 to the right
    475     for (Index i = firstCol + k - 1; i >= firstCol; i--)
    476       m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1);
    477     // we shift q1 at the left with a factor c0
    478     m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0);
    479     // last column = q1 * - s0
    480     m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0));
    481     // first column = q2 * s0
    482     m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0;
    483     // q2 *= c0
    484     m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
    485   }
    486   else
    487   {
    488     RealScalar q1 = m_naiveU(0, firstCol + k);
    489     // we shift Q1 to the right
    490     for (Index i = firstCol + k - 1; i >= firstCol; i--)
    491       m_naiveU(0, i + 1) = m_naiveU(0, i);
    492     // we shift q1 at the left with a factor c0
    493     m_naiveU(0, firstCol) = (q1 * c0);
    494     // last column = q1 * - s0
    495     m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
    496     // first column = q2 * s0
    497     m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
    498     // q2 *= c0
    499     m_naiveU(1, lastCol + 1) *= c0;
    500     m_naiveU.row(1).segment(firstCol + 1, k).setZero();
    501     m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
    502   }
    503 
    504 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
    505   assert(m_naiveU.allFinite());
    506   assert(m_naiveV.allFinite());
    507   assert(m_computed.allFinite());
    508 #endif
    509 
    510   m_computed(firstCol + shift, firstCol + shift) = r0;
    511   m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real();
    512   m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real();
    513 
    514 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
    515   ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
    516 #endif
    517   // Second part: try to deflate singular values in combined matrix
    518   deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
    519 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
    520   ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
    521   std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n";
    522   std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n";
    523   std::cout << "err:      " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n";
    524   static int count = 0;
    525   std::cout << "# " << ++count << "\n\n";
    526   assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm());
    527 //   assert(count<681);
    528 //   assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all());
    529 #endif
    530 
    531   // Third part: compute SVD of combined matrix
    532   MatrixXr UofSVD, VofSVD;
    533   VectorType singVals;
    534   computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD);
    535 
    536 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
    537   assert(UofSVD.allFinite());
    538   assert(VofSVD.allFinite());
    539 #endif
    540 
    541   if (m_compU)
    542     structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2);
    543   else
    544   {
    545     Map<Matrix<RealScalar,2,Dynamic>,Aligned> tmp(m_workspace.data(),2,n+1);
    546     tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD;
    547     m_naiveU.middleCols(firstCol, n + 1) = tmp;
    548   }
    549 
    550   if (m_compV)  structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2);
    551 
    552 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
    553   assert(m_naiveU.allFinite());
    554   assert(m_naiveV.allFinite());
    555   assert(m_computed.allFinite());
    556 #endif
    557 
    558   m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero();
    559   m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals;
    560 }// end divide
    561 
    562 // Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in
    563 // the first column and on the diagonal and has undergone deflation, so diagonal is in increasing
    564 // order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except
    565 // that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order.
    566 //
    567 // TODO Opportunities for optimization: better root finding algo, better stopping criterion, better
    568 // handling of round-off errors, be consistent in ordering
    569 // For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
    570 template <typename MatrixType>
    571 void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V)
    572 {
    573   const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
    574   using std::abs;
    575   ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n);
    576   m_workspace.head(n) =  m_computed.block(firstCol, firstCol, n, n).diagonal();
    577   ArrayRef diag = m_workspace.head(n);
    578   diag(0) = Literal(0);
    579 
    580   // Allocate space for singular values and vectors
    581   singVals.resize(n);
    582   U.resize(n+1, n+1);
    583   if (m_compV) V.resize(n, n);
    584 
    585 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
    586   if (col0.hasNaN() || diag.hasNaN())
    587     std::cout << "\n\nHAS NAN\n\n";
    588 #endif
    589 
    590   // Many singular values might have been deflated, the zero ones have been moved to the end,
    591   // but others are interleaved and we must ignore them at this stage.
    592   // To this end, let's compute a permutation skipping them:
    593   Index actual_n = n;
    594   while(actual_n>1 && diag(actual_n-1)==Literal(0)) --actual_n;
    595   Index m = 0; // size of the deflated problem
    596   for(Index k=0;k<actual_n;++k)
    597     if(abs(col0(k))>considerZero)
    598       m_workspaceI(m++) = k;
    599   Map<ArrayXi> perm(m_workspaceI.data(),m);
    600 
    601   Map<ArrayXr> shifts(m_workspace.data()+1*n, n);
    602   Map<ArrayXr> mus(m_workspace.data()+2*n, n);
    603   Map<ArrayXr> zhat(m_workspace.data()+3*n, n);
    604 
    605 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
    606   std::cout << "computeSVDofM using:\n";
    607   std::cout << "  z: " << col0.transpose() << "\n";
    608   std::cout << "  d: " << diag.transpose() << "\n";
    609 #endif
    610 
    611   // Compute singVals, shifts, and mus
    612   computeSingVals(col0, diag, perm, singVals, shifts, mus);
    613 
    614 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
    615   std::cout << "  j:        " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n";
    616   std::cout << "  sing-val: " << singVals.transpose() << "\n";
    617   std::cout << "  mu:       " << mus.transpose() << "\n";
    618   std::cout << "  shift:    " << shifts.transpose() << "\n";
    619 
    620   {
    621     Index actual_n = n;
    622     while(actual_n>1 && abs(col0(actual_n-1))<considerZero) --actual_n;
    623     std::cout << "\n\n    mus:    " << mus.head(actual_n).transpose() << "\n\n";
    624     std::cout << "    check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n";
    625     std::cout << "    check2 (>0)      : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n";
    626     std::cout << "    check3 (>0)      : " << ((diag.segment(1,actual_n-1)-singVals.head(actual_n-1).array()) / singVals.head(actual_n-1).array()).transpose() << "\n\n\n";
    627     std::cout << "    check4 (>0)      : " << ((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).transpose() << "\n\n\n";
    628   }
    629 #endif
    630 
    631 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
    632   assert(singVals.allFinite());
    633   assert(mus.allFinite());
    634   assert(shifts.allFinite());
    635 #endif
    636 
    637   // Compute zhat
    638   perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat);
    639 #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
    640   std::cout << "  zhat: " << zhat.transpose() << "\n";
    641 #endif
    642 
    643 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
    644   assert(zhat.allFinite());
    645 #endif
    646 
    647   computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V);
    648 
    649 #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
    650   std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n";
    651   std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n";
    652 #endif
    653 
    654 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
    655   assert(U.allFinite());
    656   assert(V.allFinite());
    657   assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 1e-14 * n);
    658   assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 1e-14 * n);
    659   assert(m_naiveU.allFinite());
    660   assert(m_naiveV.allFinite());
    661   assert(m_computed.allFinite());
    662 #endif
    663 
    664   // Because of deflation, the singular values might not be completely sorted.
    665   // Fortunately, reordering them is a O(n) problem
    666   for(Index i=0; i<actual_n-1; ++i)
    667   {
    668     if(singVals(i)>singVals(i+1))
    669     {
    670       using std::swap;
    671       swap(singVals(i),singVals(i+1));
    672       U.col(i).swap(U.col(i+1));
    673       if(m_compV) V.col(i).swap(V.col(i+1));
    674     }
    675   }
    676 
    677   // Reverse order so that singular values in increased order
    678   // Because of deflation, the zeros singular-values are already at the end
    679   singVals.head(actual_n).reverseInPlace();
    680   U.leftCols(actual_n).rowwise().reverseInPlace();
    681   if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace();
    682 
    683 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
    684   JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) );
    685   std::cout << "  * j:        " << jsvd.singularValues().transpose() << "\n\n";
    686   std::cout << "  * sing-val: " << singVals.transpose() << "\n";
    687 //   std::cout << "  * err:      " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n";
    688 #endif
    689 }
    690 
    691 template <typename MatrixType>
    692 typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift)
    693 {
    694   Index m = perm.size();
    695   RealScalar res = Literal(1);
    696   for(Index i=0; i<m; ++i)
    697   {
    698     Index j = perm(i);
    699     res += numext::abs2(col0(j)) / ((diagShifted(j) - mu) * (diag(j) + shift + mu));
    700   }
    701   return res;
    702 
    703 }
    704 
    705 template <typename MatrixType>
    706 void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm,
    707                                          VectorType& singVals, ArrayRef shifts, ArrayRef mus)
    708 {
    709   using std::abs;
    710   using std::swap;
    711 
    712   Index n = col0.size();
    713   Index actual_n = n;
    714   while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n;
    715 
    716   for (Index k = 0; k < n; ++k)
    717   {
    718     if (col0(k) == Literal(0) || actual_n==1)
    719     {
    720       // if col0(k) == 0, then entry is deflated, so singular value is on diagonal
    721       // if actual_n==1, then the deflated problem is already diagonalized
    722       singVals(k) = k==0 ? col0(0) : diag(k);
    723       mus(k) = Literal(0);
    724       shifts(k) = k==0 ? col0(0) : diag(k);
    725       continue;
    726     }
    727 
    728     // otherwise, use secular equation to find singular value
    729     RealScalar left = diag(k);
    730     RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm());
    731     if(k==actual_n-1)
    732       right = (diag(actual_n-1) + col0.matrix().norm());
    733     else
    734     {
    735       // Skip deflated singular values
    736       Index l = k+1;
    737       while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); }
    738       right = diag(l);
    739     }
    740 
    741     // first decide whether it's closer to the left end or the right end
    742     RealScalar mid = left + (right-left) / Literal(2);
    743     RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0));
    744 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
    745     std::cout << right-left << "\n";
    746     std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, diag-left, left) << " " << secularEq(mid-right, col0, diag, perm, diag-right, right)   << "\n";
    747     std::cout << "     = " << secularEq(0.1*(left+right), col0, diag, perm, diag, 0)
    748               << " "       << secularEq(0.2*(left+right), col0, diag, perm, diag, 0)
    749               << " "       << secularEq(0.3*(left+right), col0, diag, perm, diag, 0)
    750               << " "       << secularEq(0.4*(left+right), col0, diag, perm, diag, 0)
    751               << " "       << secularEq(0.49*(left+right), col0, diag, perm, diag, 0)
    752               << " "       << secularEq(0.5*(left+right), col0, diag, perm, diag, 0)
    753               << " "       << secularEq(0.51*(left+right), col0, diag, perm, diag, 0)
    754               << " "       << secularEq(0.6*(left+right), col0, diag, perm, diag, 0)
    755               << " "       << secularEq(0.7*(left+right), col0, diag, perm, diag, 0)
    756               << " "       << secularEq(0.8*(left+right), col0, diag, perm, diag, 0)
    757               << " "       << secularEq(0.9*(left+right), col0, diag, perm, diag, 0) << "\n";
    758 #endif
    759     RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right;
    760 
    761     // measure everything relative to shift
    762     Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n);
    763     diagShifted = diag - shift;
    764 
    765     // initial guess
    766     RealScalar muPrev, muCur;
    767     if (shift == left)
    768     {
    769       muPrev = (right - left) * RealScalar(0.1);
    770       if (k == actual_n-1) muCur = right - left;
    771       else                 muCur = (right - left) * RealScalar(0.5);
    772     }
    773     else
    774     {
    775       muPrev = -(right - left) * RealScalar(0.1);
    776       muCur = -(right - left) * RealScalar(0.5);
    777     }
    778 
    779     RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift);
    780     RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift);
    781     if (abs(fPrev) < abs(fCur))
    782     {
    783       swap(fPrev, fCur);
    784       swap(muPrev, muCur);
    785     }
    786 
    787     // rational interpolation: fit a function of the form a / mu + b through the two previous
    788     // iterates and use its zero to compute the next iterate
    789     bool useBisection = fPrev*fCur>Literal(0);
    790     while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
    791     {
    792       ++m_numIters;
    793 
    794       // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples.
    795       RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev);
    796       RealScalar b = fCur - a / muCur;
    797       // And find mu such that f(mu)==0:
    798       RealScalar muZero = -a/b;
    799       RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift);
    800 
    801       muPrev = muCur;
    802       fPrev = fCur;
    803       muCur = muZero;
    804       fCur = fZero;
    805 
    806 
    807       if (shift == left  && (muCur < Literal(0) || muCur > right - left)) useBisection = true;
    808       if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true;
    809       if (abs(fCur)>abs(fPrev)) useBisection = true;
    810     }
    811 
    812     // fall back on bisection method if rational interpolation did not work
    813     if (useBisection)
    814     {
    815 #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
    816       std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n";
    817 #endif
    818       RealScalar leftShifted, rightShifted;
    819       if (shift == left)
    820       {
    821         leftShifted = (std::numeric_limits<RealScalar>::min)();
    822         // I don't understand why the case k==0 would be special there:
    823         // if (k == 0) rightShifted = right - left; else
    824         rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.6)); // theoretically we can take 0.5, but let's be safe
    825       }
    826       else
    827       {
    828         leftShifted = -(right - left) * RealScalar(0.6);
    829         rightShifted = -(std::numeric_limits<RealScalar>::min)();
    830       }
    831 
    832       RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift);
    833 
    834 #if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_DEBUG_VERBOSE
    835       RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift);
    836 #endif
    837 
    838 #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
    839       if(!(fLeft * fRight<0))
    840       {
    841         std::cout << "fLeft: " << leftShifted << " - " << diagShifted.head(10).transpose()  << "\n ; " << bool(left==shift) << " " << (left-shift) << "\n";
    842         std::cout << k << " : " <<  fLeft << " * " << fRight << " == " << fLeft * fRight << "  ;  " << left << " - " << right << " -> " <<  leftShifted << " " << rightShifted << "   shift=" << shift << "\n";
    843       }
    844 #endif
    845       eigen_internal_assert(fLeft * fRight < Literal(0));
    846 
    847       while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted)))
    848       {
    849         RealScalar midShifted = (leftShifted + rightShifted) / Literal(2);
    850         fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
    851         if (fLeft * fMid < Literal(0))
    852         {
    853           rightShifted = midShifted;
    854         }
    855         else
    856         {
    857           leftShifted = midShifted;
    858           fLeft = fMid;
    859         }
    860       }
    861 
    862       muCur = (leftShifted + rightShifted) / Literal(2);
    863     }
    864 
    865     singVals[k] = shift + muCur;
    866     shifts[k] = shift;
    867     mus[k] = muCur;
    868 
    869     // perturb singular value slightly if it equals diagonal entry to avoid division by zero later
    870     // (deflation is supposed to avoid this from happening)
    871     // - this does no seem to be necessary anymore -
    872 //     if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon();
    873 //     if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon();
    874   }
    875 }
    876 
    877 
    878 // zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1)
    879 template <typename MatrixType>
    880 void BDCSVD<MatrixType>::perturbCol0
    881    (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
    882     const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat)
    883 {
    884   using std::sqrt;
    885   Index n = col0.size();
    886   Index m = perm.size();
    887   if(m==0)
    888   {
    889     zhat.setZero();
    890     return;
    891   }
    892   Index last = perm(m-1);
    893   // The offset permits to skip deflated entries while computing zhat
    894   for (Index k = 0; k < n; ++k)
    895   {
    896     if (col0(k) == Literal(0)) // deflated
    897       zhat(k) = Literal(0);
    898     else
    899     {
    900       // see equation (3.6)
    901       RealScalar dk = diag(k);
    902       RealScalar prod = (singVals(last) + dk) * (mus(last) + (shifts(last) - dk));
    903 
    904       for(Index l = 0; l<m; ++l)
    905       {
    906         Index i = perm(l);
    907         if(i!=k)
    908         {
    909           Index j = i<k ? i : perm(l-1);
    910           prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk)));
    911 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
    912           if(i!=k && std::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 )
    913             std::cout << "     " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk))
    914                        << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n";
    915 #endif
    916         }
    917       }
    918 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
    919       std::cout << "zhat(" << k << ") =  sqrt( " << prod << ")  ;  " << (singVals(last) + dk) << " * " << mus(last) + shifts(last) << " - " << dk << "\n";
    920 #endif
    921       RealScalar tmp = sqrt(prod);
    922       zhat(k) = col0(k) > Literal(0) ? tmp : -tmp;
    923     }
    924   }
    925 }
    926 
    927 // compute singular vectors
    928 template <typename MatrixType>
    929 void BDCSVD<MatrixType>::computeSingVecs
    930    (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
    931     const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V)
    932 {
    933   Index n = zhat.size();
    934   Index m = perm.size();
    935 
    936   for (Index k = 0; k < n; ++k)
    937   {
    938     if (zhat(k) == Literal(0))
    939     {
    940       U.col(k) = VectorType::Unit(n+1, k);
    941       if (m_compV) V.col(k) = VectorType::Unit(n, k);
    942     }
    943     else
    944     {
    945       U.col(k).setZero();
    946       for(Index l=0;l<m;++l)
    947       {
    948         Index i = perm(l);
    949         U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
    950       }
    951       U(n,k) = Literal(0);
    952       U.col(k).normalize();
    953 
    954       if (m_compV)
    955       {
    956         V.col(k).setZero();
    957         for(Index l=1;l<m;++l)
    958         {
    959           Index i = perm(l);
    960           V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
    961         }
    962         V(0,k) = Literal(-1);
    963         V.col(k).normalize();
    964       }
    965     }
    966   }
    967   U.col(n) = VectorType::Unit(n+1, n);
    968 }
    969 
    970 
    971 // page 12_13
    972 // i >= 1, di almost null and zi non null.
    973 // We use a rotation to zero out zi applied to the left of M
    974 template <typename MatrixType>
    975 void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size)
    976 {
    977   using std::abs;
    978   using std::sqrt;
    979   using std::pow;
    980   Index start = firstCol + shift;
    981   RealScalar c = m_computed(start, start);
    982   RealScalar s = m_computed(start+i, start);
    983   RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
    984   if (r == Literal(0))
    985   {
    986     m_computed(start+i, start+i) = Literal(0);
    987     return;
    988   }
    989   m_computed(start,start) = r;
    990   m_computed(start+i, start) = Literal(0);
    991   m_computed(start+i, start+i) = Literal(0);
    992 
    993   JacobiRotation<RealScalar> J(c/r,-s/r);
    994   if (m_compU)  m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J);
    995   else          m_naiveU.applyOnTheRight(firstCol, firstCol+i, J);
    996 }// end deflation 43
    997 
    998 
    999 // page 13
   1000 // i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M)
   1001 // We apply two rotations to have zj = 0;
   1002 // TODO deflation44 is still broken and not properly tested
   1003 template <typename MatrixType>
   1004 void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size)
   1005 {
   1006   using std::abs;
   1007   using std::sqrt;
   1008   using std::conj;
   1009   using std::pow;
   1010   RealScalar c = m_computed(firstColm+i, firstColm);
   1011   RealScalar s = m_computed(firstColm+j, firstColm);
   1012   RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s));
   1013 #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
   1014   std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; "
   1015     << m_computed(firstColm + i-1, firstColm)  << " "
   1016     << m_computed(firstColm + i, firstColm)  << " "
   1017     << m_computed(firstColm + i+1, firstColm) << " "
   1018     << m_computed(firstColm + i+2, firstColm) << "\n";
   1019   std::cout << m_computed(firstColm + i-1, firstColm + i-1)  << " "
   1020     << m_computed(firstColm + i, firstColm+i)  << " "
   1021     << m_computed(firstColm + i+1, firstColm+i+1) << " "
   1022     << m_computed(firstColm + i+2, firstColm+i+2) << "\n";
   1023 #endif
   1024   if (r==Literal(0))
   1025   {
   1026     m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
   1027     return;
   1028   }
   1029   c/=r;
   1030   s/=r;
   1031   m_computed(firstColm + i, firstColm) = r;
   1032   m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i);
   1033   m_computed(firstColm + j, firstColm) = Literal(0);
   1034 
   1035   JacobiRotation<RealScalar> J(c,-s);
   1036   if (m_compU)  m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J);
   1037   else          m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J);
   1038   if (m_compV)  m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J);
   1039 }// end deflation 44
   1040 
   1041 
   1042 // acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
   1043 template <typename MatrixType>
   1044 void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift)
   1045 {
   1046   using std::sqrt;
   1047   using std::abs;
   1048   const Index length = lastCol + 1 - firstCol;
   1049 
   1050   Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1);
   1051   Diagonal<MatrixXr> fulldiag(m_computed);
   1052   VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length);
   1053 
   1054   const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
   1055   RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff();
   1056   RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag);
   1057   RealScalar epsilon_coarse = Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag);
   1058 
   1059 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
   1060   assert(m_naiveU.allFinite());
   1061   assert(m_naiveV.allFinite());
   1062   assert(m_computed.allFinite());
   1063 #endif
   1064 
   1065 #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
   1066   std::cout << "\ndeflate:" << diag.head(k+1).transpose() << "  |  " << diag.segment(k+1,length-k-1).transpose() << "\n";
   1067 #endif
   1068 
   1069   //condition 4.1
   1070   if (diag(0) < epsilon_coarse)
   1071   {
   1072 #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
   1073     std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n";
   1074 #endif
   1075     diag(0) = epsilon_coarse;
   1076   }
   1077 
   1078   //condition 4.2
   1079   for (Index i=1;i<length;++i)
   1080     if (abs(col0(i)) < epsilon_strict)
   1081     {
   1082 #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
   1083       std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << "  (diag(" << i << ")=" << diag(i) << ")\n";
   1084 #endif
   1085       col0(i) = Literal(0);
   1086     }
   1087 
   1088   //condition 4.3
   1089   for (Index i=1;i<length; i++)
   1090     if (diag(i) < epsilon_coarse)
   1091     {
   1092 #ifdef  EIGEN_BDCSVD_DEBUG_VERBOSE
   1093       std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n";
   1094 #endif
   1095       deflation43(firstCol, shift, i, length);
   1096     }
   1097 
   1098 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
   1099   assert(m_naiveU.allFinite());
   1100   assert(m_naiveV.allFinite());
   1101   assert(m_computed.allFinite());
   1102 #endif
   1103 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
   1104   std::cout << "to be sorted: " << diag.transpose() << "\n\n";
   1105 #endif
   1106   {
   1107     // Check for total deflation
   1108     // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting
   1109     bool total_deflation = (col0.tail(length-1).array()<considerZero).all();
   1110 
   1111     // Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge.
   1112     // First, compute the respective permutation.
   1113     Index *permutation = m_workspaceI.data();
   1114     {
   1115       permutation[0] = 0;
   1116       Index p = 1;
   1117 
   1118       // Move deflated diagonal entries at the end.
   1119       for(Index i=1; i<length; ++i)
   1120         if(abs(diag(i))<considerZero)
   1121           permutation[p++] = i;
   1122 
   1123       Index i=1, j=k+1;
   1124       for( ; p < length; ++p)
   1125       {
   1126              if (i > k)             permutation[p] = j++;
   1127         else if (j >= length)       permutation[p] = i++;
   1128         else if (diag(i) < diag(j)) permutation[p] = j++;
   1129         else                        permutation[p] = i++;
   1130       }
   1131     }
   1132 
   1133     // If we have a total deflation, then we have to insert diag(0) at the right place
   1134     if(total_deflation)
   1135     {
   1136       for(Index i=1; i<length; ++i)
   1137       {
   1138         Index pi = permutation[i];
   1139         if(abs(diag(pi))<considerZero || diag(0)<diag(pi))
   1140           permutation[i-1] = permutation[i];
   1141         else
   1142         {
   1143           permutation[i-1] = 0;
   1144           break;
   1145         }
   1146       }
   1147     }
   1148 
   1149     // Current index of each col, and current column of each index
   1150     Index *realInd = m_workspaceI.data()+length;
   1151     Index *realCol = m_workspaceI.data()+2*length;
   1152 
   1153     for(int pos = 0; pos< length; pos++)
   1154     {
   1155       realCol[pos] = pos;
   1156       realInd[pos] = pos;
   1157     }
   1158 
   1159     for(Index i = total_deflation?0:1; i < length; i++)
   1160     {
   1161       const Index pi = permutation[length - (total_deflation ? i+1 : i)];
   1162       const Index J = realCol[pi];
   1163 
   1164       using std::swap;
   1165       // swap diagonal and first column entries:
   1166       swap(diag(i), diag(J));
   1167       if(i!=0 && J!=0) swap(col0(i), col0(J));
   1168 
   1169       // change columns
   1170       if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1));
   1171       else         m_naiveU.col(firstCol+i).segment(0, 2)                .swap(m_naiveU.col(firstCol+J).segment(0, 2));
   1172       if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length));
   1173 
   1174       //update real pos
   1175       const Index realI = realInd[i];
   1176       realCol[realI] = J;
   1177       realCol[pi] = i;
   1178       realInd[J] = realI;
   1179       realInd[i] = pi;
   1180     }
   1181   }
   1182 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
   1183   std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n";
   1184   std::cout << "      : " << col0.transpose() << "\n\n";
   1185 #endif
   1186 
   1187   //condition 4.4
   1188   {
   1189     Index i = length-1;
   1190     while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i;
   1191     for(; i>1;--i)
   1192        if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag )
   1193       {
   1194 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
   1195         std::cout << "deflation 4.4 with i = " << i << " because " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*diag(i) << "\n";
   1196 #endif
   1197         eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted");
   1198         deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length);
   1199       }
   1200   }
   1201 
   1202 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
   1203   for(Index j=2;j<length;++j)
   1204     assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero);
   1205 #endif
   1206 
   1207 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
   1208   assert(m_naiveU.allFinite());
   1209   assert(m_naiveV.allFinite());
   1210   assert(m_computed.allFinite());
   1211 #endif
   1212 }//end deflation
   1213 
   1214 #ifndef __CUDACC__
   1215 /** \svd_module
   1216   *
   1217   * \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm
   1218   *
   1219   * \sa class BDCSVD
   1220   */
   1221 template<typename Derived>
   1222 BDCSVD<typename MatrixBase<Derived>::PlainObject>
   1223 MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
   1224 {
   1225   return BDCSVD<PlainObject>(*this, computationOptions);
   1226 }
   1227 #endif
   1228 
   1229 } // end namespace Eigen
   1230 
   1231 #endif
   1232