Home | History | Annotate | Download | only in base
      1 /*
      2  * Copyright (C) 2015 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_LIBARTBASE_BASE_BIT_UTILS_H_
     18 #define ART_LIBARTBASE_BASE_BIT_UTILS_H_
     19 
     20 #include <limits>
     21 #include <type_traits>
     22 
     23 #include <android-base/logging.h>
     24 
     25 #include "globals.h"
     26 #include "stl_util_identity.h"
     27 
     28 namespace art {
     29 
     30 // Like sizeof, but count how many bits a type takes. Pass type explicitly.
     31 template <typename T>
     32 constexpr size_t BitSizeOf() {
     33   static_assert(std::is_integral<T>::value, "T must be integral");
     34   using unsigned_type = typename std::make_unsigned<T>::type;
     35   static_assert(sizeof(T) == sizeof(unsigned_type), "Unexpected type size mismatch!");
     36   static_assert(std::numeric_limits<unsigned_type>::radix == 2, "Unexpected radix!");
     37   return std::numeric_limits<unsigned_type>::digits;
     38 }
     39 
     40 // Like sizeof, but count how many bits a type takes. Infers type from parameter.
     41 template <typename T>
     42 constexpr size_t BitSizeOf(T /*x*/) {
     43   return BitSizeOf<T>();
     44 }
     45 
     46 template<typename T>
     47 constexpr int CLZ(T x) {
     48   static_assert(std::is_integral<T>::value, "T must be integral");
     49   static_assert(std::is_unsigned<T>::value, "T must be unsigned");
     50   static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!");
     51   static_assert(sizeof(T) == sizeof(uint64_t) || sizeof(T) <= sizeof(uint32_t),
     52                 "Unsupported sizeof(T)");
     53   DCHECK_NE(x, 0u);
     54   constexpr bool is_64_bit = (sizeof(T) == sizeof(uint64_t));
     55   constexpr size_t adjustment =
     56       is_64_bit ? 0u : std::numeric_limits<uint32_t>::digits - std::numeric_limits<T>::digits;
     57   return is_64_bit ? __builtin_clzll(x) : __builtin_clz(x) - adjustment;
     58 }
     59 
     60 // Similar to CLZ except that on zero input it returns bitwidth and supports signed integers.
     61 template<typename T>
     62 constexpr int JAVASTYLE_CLZ(T x) {
     63   static_assert(std::is_integral<T>::value, "T must be integral");
     64   using unsigned_type = typename std::make_unsigned<T>::type;
     65   return (x == 0) ? BitSizeOf<T>() : CLZ(static_cast<unsigned_type>(x));
     66 }
     67 
     68 template<typename T>
     69 constexpr int CTZ(T x) {
     70   static_assert(std::is_integral<T>::value, "T must be integral");
     71   // It is not unreasonable to ask for trailing zeros in a negative number. As such, do not check
     72   // that T is an unsigned type.
     73   static_assert(sizeof(T) == sizeof(uint64_t) || sizeof(T) <= sizeof(uint32_t),
     74                 "Unsupported sizeof(T)");
     75   DCHECK_NE(x, static_cast<T>(0));
     76   return (sizeof(T) == sizeof(uint64_t)) ? __builtin_ctzll(x) : __builtin_ctz(x);
     77 }
     78 
     79 // Similar to CTZ except that on zero input it returns bitwidth and supports signed integers.
     80 template<typename T>
     81 constexpr int JAVASTYLE_CTZ(T x) {
     82   static_assert(std::is_integral<T>::value, "T must be integral");
     83   using unsigned_type = typename std::make_unsigned<T>::type;
     84   return (x == 0) ? BitSizeOf<T>() : CTZ(static_cast<unsigned_type>(x));
     85 }
     86 
     87 // Return the number of 1-bits in `x`.
     88 template<typename T>
     89 constexpr int POPCOUNT(T x) {
     90   return (sizeof(T) == sizeof(uint32_t)) ? __builtin_popcount(x) : __builtin_popcountll(x);
     91 }
     92 
     93 // Swap bytes.
     94 template<typename T>
     95 constexpr T BSWAP(T x) {
     96   if (sizeof(T) == sizeof(uint16_t)) {
     97     return __builtin_bswap16(x);
     98   } else if (sizeof(T) == sizeof(uint32_t)) {
     99     return __builtin_bswap32(x);
    100   } else {
    101     return __builtin_bswap64(x);
    102   }
    103 }
    104 
    105 // Find the bit position of the most significant bit (0-based), or -1 if there were no bits set.
    106 template <typename T>
    107 constexpr ssize_t MostSignificantBit(T value) {
    108   static_assert(std::is_integral<T>::value, "T must be integral");
    109   static_assert(std::is_unsigned<T>::value, "T must be unsigned");
    110   static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!");
    111   return (value == 0) ? -1 : std::numeric_limits<T>::digits - 1 - CLZ(value);
    112 }
    113 
    114 // Find the bit position of the least significant bit (0-based), or -1 if there were no bits set.
    115 template <typename T>
    116 constexpr ssize_t LeastSignificantBit(T value) {
    117   static_assert(std::is_integral<T>::value, "T must be integral");
    118   static_assert(std::is_unsigned<T>::value, "T must be unsigned");
    119   return (value == 0) ? -1 : CTZ(value);
    120 }
    121 
    122 // How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc.
    123 template <typename T>
    124 constexpr size_t MinimumBitsToStore(T value) {
    125   return static_cast<size_t>(MostSignificantBit(value) + 1);
    126 }
    127 
    128 template <typename T>
    129 constexpr T RoundUpToPowerOfTwo(T x) {
    130   static_assert(std::is_integral<T>::value, "T must be integral");
    131   static_assert(std::is_unsigned<T>::value, "T must be unsigned");
    132   // NOTE: Undefined if x > (1 << (std::numeric_limits<T>::digits - 1)).
    133   return (x < 2u) ? x : static_cast<T>(1u) << (std::numeric_limits<T>::digits - CLZ(x - 1u));
    134 }
    135 
    136 // Return highest possible N - a power of two - such that val >= N.
    137 template <typename T>
    138 constexpr T TruncToPowerOfTwo(T val) {
    139   static_assert(std::is_integral<T>::value, "T must be integral");
    140   static_assert(std::is_unsigned<T>::value, "T must be unsigned");
    141   return (val != 0) ? static_cast<T>(1u) << (BitSizeOf<T>() - CLZ(val) - 1u) : 0;
    142 }
    143 
    144 template<typename T>
    145 constexpr bool IsPowerOfTwo(T x) {
    146   static_assert(std::is_integral<T>::value, "T must be integral");
    147   // TODO: assert unsigned. There is currently many uses with signed values.
    148   return (x & (x - 1)) == 0;
    149 }
    150 
    151 template<typename T>
    152 constexpr int WhichPowerOf2(T x) {
    153   static_assert(std::is_integral<T>::value, "T must be integral");
    154   // TODO: assert unsigned. There is currently many uses with signed values.
    155   DCHECK((x != 0) && IsPowerOfTwo(x));
    156   return CTZ(x);
    157 }
    158 
    159 // For rounding integers.
    160 // Note: Omit the `n` from T type deduction, deduce only from the `x` argument.
    161 template<typename T>
    162 constexpr T RoundDown(T x, typename Identity<T>::type n) WARN_UNUSED;
    163 
    164 template<typename T>
    165 constexpr T RoundDown(T x, typename Identity<T>::type n) {
    166   DCHECK(IsPowerOfTwo(n));
    167   return (x & -n);
    168 }
    169 
    170 template<typename T>
    171 constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) WARN_UNUSED;
    172 
    173 template<typename T>
    174 constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) {
    175   return RoundDown(x + n - 1, n);
    176 }
    177 
    178 // For aligning pointers.
    179 template<typename T>
    180 inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED;
    181 
    182 template<typename T>
    183 inline T* AlignDown(T* x, uintptr_t n) {
    184   return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n));
    185 }
    186 
    187 template<typename T>
    188 inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED;
    189 
    190 template<typename T>
    191 inline T* AlignUp(T* x, uintptr_t n) {
    192   return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n));
    193 }
    194 
    195 template<int n, typename T>
    196 constexpr bool IsAligned(T x) {
    197   static_assert((n & (n - 1)) == 0, "n is not a power of two");
    198   return (x & (n - 1)) == 0;
    199 }
    200 
    201 template<int n, typename T>
    202 inline bool IsAligned(T* x) {
    203   return IsAligned<n>(reinterpret_cast<const uintptr_t>(x));
    204 }
    205 
    206 template<typename T>
    207 inline bool IsAlignedParam(T x, int n) {
    208   return (x & (n - 1)) == 0;
    209 }
    210 
    211 template<typename T>
    212 inline bool IsAlignedParam(T* x, int n) {
    213   return IsAlignedParam(reinterpret_cast<const uintptr_t>(x), n);
    214 }
    215 
    216 #define CHECK_ALIGNED(value, alignment) \
    217   CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
    218 
    219 #define DCHECK_ALIGNED(value, alignment) \
    220   DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
    221 
    222 #define CHECK_ALIGNED_PARAM(value, alignment) \
    223   CHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
    224 
    225 #define DCHECK_ALIGNED_PARAM(value, alignment) \
    226   DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
    227 
    228 inline uint16_t Low16Bits(uint32_t value) {
    229   return static_cast<uint16_t>(value);
    230 }
    231 
    232 inline uint16_t High16Bits(uint32_t value) {
    233   return static_cast<uint16_t>(value >> 16);
    234 }
    235 
    236 inline uint32_t Low32Bits(uint64_t value) {
    237   return static_cast<uint32_t>(value);
    238 }
    239 
    240 inline uint32_t High32Bits(uint64_t value) {
    241   return static_cast<uint32_t>(value >> 32);
    242 }
    243 
    244 // Check whether an N-bit two's-complement representation can hold value.
    245 template <typename T>
    246 inline bool IsInt(size_t N, T value) {
    247   if (N == BitSizeOf<T>()) {
    248     return true;
    249   } else {
    250     CHECK_LT(0u, N);
    251     CHECK_LT(N, BitSizeOf<T>());
    252     T limit = static_cast<T>(1) << (N - 1u);
    253     return (-limit <= value) && (value < limit);
    254   }
    255 }
    256 
    257 template <typename T>
    258 constexpr T GetIntLimit(size_t bits) {
    259   DCHECK_NE(bits, 0u);
    260   DCHECK_LT(bits, BitSizeOf<T>());
    261   return static_cast<T>(1) << (bits - 1);
    262 }
    263 
    264 template <size_t kBits, typename T>
    265 constexpr bool IsInt(T value) {
    266   static_assert(kBits > 0, "kBits cannot be zero.");
    267   static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
    268   static_assert(std::is_signed<T>::value, "Needs a signed type.");
    269   // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
    270   // trivially true.
    271   return (kBits == BitSizeOf<T>()) ?
    272       true :
    273       (-GetIntLimit<T>(kBits) <= value) && (value < GetIntLimit<T>(kBits));
    274 }
    275 
    276 template <size_t kBits, typename T>
    277 constexpr bool IsUint(T value) {
    278   static_assert(kBits > 0, "kBits cannot be zero.");
    279   static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
    280   static_assert(std::is_integral<T>::value, "Needs an integral type.");
    281   // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
    282   // trivially true.
    283   // NOTE: To avoid triggering assertion in GetIntLimit(kBits+1) if kBits+1==BitSizeOf<T>(),
    284   // use GetIntLimit(kBits)*2u. The unsigned arithmetic works well for us if it overflows.
    285   using unsigned_type = typename std::make_unsigned<T>::type;
    286   return (0 <= value) &&
    287       (kBits == BitSizeOf<T>() ||
    288           (static_cast<unsigned_type>(value) <= GetIntLimit<unsigned_type>(kBits) * 2u - 1u));
    289 }
    290 
    291 template <size_t kBits, typename T>
    292 constexpr bool IsAbsoluteUint(T value) {
    293   static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
    294   static_assert(std::is_integral<T>::value, "Needs an integral type.");
    295   using unsigned_type = typename std::make_unsigned<T>::type;
    296   return (kBits == BitSizeOf<T>())
    297       ? true
    298       : IsUint<kBits>(value < 0
    299                       ? static_cast<unsigned_type>(-1 - value) + 1u  // Avoid overflow.
    300                       : static_cast<unsigned_type>(value));
    301 }
    302 
    303 // Generate maximum/minimum values for signed/unsigned n-bit integers
    304 template <typename T>
    305 constexpr T MaxInt(size_t bits) {
    306   DCHECK(std::is_unsigned<T>::value || bits > 0u) << "bits cannot be zero for signed.";
    307   DCHECK_LE(bits, BitSizeOf<T>());
    308   using unsigned_type = typename std::make_unsigned<T>::type;
    309   return bits == BitSizeOf<T>()
    310       ? std::numeric_limits<T>::max()
    311       : std::is_signed<T>::value
    312           ? ((bits == 1u) ? 0 : static_cast<T>(MaxInt<unsigned_type>(bits - 1)))
    313           : static_cast<T>(UINT64_C(1) << bits) - static_cast<T>(1);
    314 }
    315 
    316 template <typename T>
    317 constexpr T MinInt(size_t bits) {
    318   DCHECK(std::is_unsigned<T>::value || bits > 0) << "bits cannot be zero for signed.";
    319   DCHECK_LE(bits, BitSizeOf<T>());
    320   return bits == BitSizeOf<T>()
    321       ? std::numeric_limits<T>::min()
    322       : std::is_signed<T>::value
    323           ? ((bits == 1u) ? -1 : static_cast<T>(-1) - MaxInt<T>(bits))
    324           : static_cast<T>(0);
    325 }
    326 
    327 // Returns value with bit set in lowest one-bit position or 0 if 0.  (java.lang.X.lowestOneBit).
    328 template <typename kind>
    329 inline static kind LowestOneBitValue(kind opnd) {
    330   // Hacker's Delight, Section 2-1
    331   return opnd & -opnd;
    332 }
    333 
    334 // Returns value with bit set in hightest one-bit position or 0 if 0.  (java.lang.X.highestOneBit).
    335 template <typename T>
    336 inline static T HighestOneBitValue(T opnd) {
    337   using unsigned_type = typename std::make_unsigned<T>::type;
    338   T res;
    339   if (opnd == 0) {
    340     res = 0;
    341   } else {
    342     int bit_position = BitSizeOf<T>() - (CLZ(static_cast<unsigned_type>(opnd)) + 1);
    343     res = static_cast<T>(UINT64_C(1) << bit_position);
    344   }
    345   return res;
    346 }
    347 
    348 // Rotate bits.
    349 template <typename T, bool left>
    350 inline static T Rot(T opnd, int distance) {
    351   int mask = BitSizeOf<T>() - 1;
    352   int unsigned_right_shift = left ? (-distance & mask) : (distance & mask);
    353   int signed_left_shift = left ? (distance & mask) : (-distance & mask);
    354   using unsigned_type = typename std::make_unsigned<T>::type;
    355   return (static_cast<unsigned_type>(opnd) >> unsigned_right_shift) | (opnd << signed_left_shift);
    356 }
    357 
    358 // TUNING: use rbit for arm/arm64
    359 inline static uint32_t ReverseBits32(uint32_t opnd) {
    360   // Hacker's Delight 7-1
    361   opnd = ((opnd >>  1) & 0x55555555) | ((opnd & 0x55555555) <<  1);
    362   opnd = ((opnd >>  2) & 0x33333333) | ((opnd & 0x33333333) <<  2);
    363   opnd = ((opnd >>  4) & 0x0F0F0F0F) | ((opnd & 0x0F0F0F0F) <<  4);
    364   opnd = ((opnd >>  8) & 0x00FF00FF) | ((opnd & 0x00FF00FF) <<  8);
    365   opnd = ((opnd >> 16)) | ((opnd) << 16);
    366   return opnd;
    367 }
    368 
    369 // TUNING: use rbit for arm/arm64
    370 inline static uint64_t ReverseBits64(uint64_t opnd) {
    371   // Hacker's Delight 7-1
    372   opnd = (opnd & 0x5555555555555555L) << 1 | ((opnd >> 1) & 0x5555555555555555L);
    373   opnd = (opnd & 0x3333333333333333L) << 2 | ((opnd >> 2) & 0x3333333333333333L);
    374   opnd = (opnd & 0x0f0f0f0f0f0f0f0fL) << 4 | ((opnd >> 4) & 0x0f0f0f0f0f0f0f0fL);
    375   opnd = (opnd & 0x00ff00ff00ff00ffL) << 8 | ((opnd >> 8) & 0x00ff00ff00ff00ffL);
    376   opnd = (opnd << 48) | ((opnd & 0xffff0000L) << 16) | ((opnd >> 16) & 0xffff0000L) | (opnd >> 48);
    377   return opnd;
    378 }
    379 
    380 // Create a mask for the least significant "bits"
    381 // The returned value is always unsigned to prevent undefined behavior for bitwise ops.
    382 //
    383 // Given 'bits',
    384 // Returns:
    385 //                   <--- bits --->
    386 // +-----------------+------------+
    387 // | 0 ............0 |   1.....1  |
    388 // +-----------------+------------+
    389 // msb                           lsb
    390 template <typename T = size_t>
    391 inline static constexpr std::make_unsigned_t<T> MaskLeastSignificant(size_t bits) {
    392   DCHECK_GE(BitSizeOf<T>(), bits) << "Bits out of range for type T";
    393   using unsigned_T = std::make_unsigned_t<T>;
    394   if (bits >= BitSizeOf<T>()) {
    395     return std::numeric_limits<unsigned_T>::max();
    396   } else {
    397     auto kOne = static_cast<unsigned_T>(1);  // Do not truncate for T>size_t.
    398     return static_cast<unsigned_T>((kOne << bits) - kOne);
    399   }
    400 }
    401 
    402 // Clears the bitfield starting at the least significant bit "lsb" with a bitwidth of 'width'.
    403 // (Equivalent of ARM BFC instruction).
    404 //
    405 // Given:
    406 //           <-- width  -->
    407 // +--------+------------+--------+
    408 // | ABC... |  bitfield  | XYZ... +
    409 // +--------+------------+--------+
    410 //                       lsb      0
    411 // Returns:
    412 //           <-- width  -->
    413 // +--------+------------+--------+
    414 // | ABC... | 0........0 | XYZ... +
    415 // +--------+------------+--------+
    416 //                       lsb      0
    417 template <typename T>
    418 inline static constexpr T BitFieldClear(T value, size_t lsb, size_t width) {
    419   DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value";
    420   const auto val = static_cast<std::make_unsigned_t<T>>(value);
    421   const auto mask = MaskLeastSignificant<T>(width);
    422 
    423   return static_cast<T>(val & ~(mask << lsb));
    424 }
    425 
    426 // Inserts the contents of 'data' into bitfield of 'value'  starting
    427 // at the least significant bit "lsb" with a bitwidth of 'width'.
    428 // Note: data must be within range of [MinInt(width), MaxInt(width)].
    429 // (Equivalent of ARM BFI instruction).
    430 //
    431 // Given (data):
    432 //           <-- width  -->
    433 // +--------+------------+--------+
    434 // | ABC... |  bitfield  | XYZ... +
    435 // +--------+------------+--------+
    436 //                       lsb      0
    437 // Returns:
    438 //           <-- width  -->
    439 // +--------+------------+--------+
    440 // | ABC... | 0...data   | XYZ... +
    441 // +--------+------------+--------+
    442 //                       lsb      0
    443 
    444 template <typename T, typename T2>
    445 inline static constexpr T BitFieldInsert(T value, T2 data, size_t lsb, size_t width) {
    446   DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value";
    447   if (width != 0u) {
    448     DCHECK_GE(MaxInt<T2>(width), data) << "Data out of range [too large] for bitwidth";
    449     DCHECK_LE(MinInt<T2>(width), data) << "Data out of range [too small] for bitwidth";
    450   } else {
    451     DCHECK_EQ(static_cast<T2>(0), data) << "Data out of range [nonzero] for bitwidth 0";
    452   }
    453   const auto data_mask = MaskLeastSignificant<T2>(width);
    454   const auto value_cleared = BitFieldClear(value, lsb, width);
    455 
    456   return static_cast<T>(value_cleared | ((data & data_mask) << lsb));
    457 }
    458 
    459 // Extracts the bitfield starting at the least significant bit "lsb" with a bitwidth of 'width'.
    460 // Signed types are sign-extended during extraction. (Equivalent of ARM UBFX/SBFX instruction).
    461 //
    462 // Given:
    463 //           <-- width   -->
    464 // +--------+-------------+-------+
    465 // |        |   bitfield  |       +
    466 // +--------+-------------+-------+
    467 //                       lsb      0
    468 // (Unsigned) Returns:
    469 //                  <-- width   -->
    470 // +----------------+-------------+
    471 // | 0...        0  |   bitfield  |
    472 // +----------------+-------------+
    473 //                                0
    474 // (Signed) Returns:
    475 //                  <-- width   -->
    476 // +----------------+-------------+
    477 // | S...        S  |   bitfield  |
    478 // +----------------+-------------+
    479 //                                0
    480 // where S is the highest bit in 'bitfield'.
    481 template <typename T>
    482 inline static constexpr T BitFieldExtract(T value, size_t lsb, size_t width) {
    483   DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value";
    484   const auto val = static_cast<std::make_unsigned_t<T>>(value);
    485 
    486   const T bitfield_unsigned =
    487       static_cast<T>((val >> lsb) & MaskLeastSignificant<T>(width));
    488   if (std::is_signed<T>::value) {
    489     // Perform sign extension
    490     if (width == 0) {  // Avoid underflow.
    491       return static_cast<T>(0);
    492     } else if (bitfield_unsigned & (1 << (width - 1))) {  // Detect if sign bit was set.
    493       // MSB        <width> LSB
    494       // 0b11111...100...000000
    495       const auto ones_negmask = ~MaskLeastSignificant<T>(width);
    496       return static_cast<T>(bitfield_unsigned | ones_negmask);
    497     }
    498   }
    499   // Skip sign extension.
    500   return bitfield_unsigned;
    501 }
    502 
    503 inline static constexpr size_t BitsToBytesRoundUp(size_t num_bits) {
    504   return RoundUp(num_bits, kBitsPerByte) / kBitsPerByte;
    505 }
    506 
    507 }  // namespace art
    508 
    509 #endif  // ART_LIBARTBASE_BASE_BIT_UTILS_H_
    510