Home | History | Annotate | Download | only in cast
      1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.]. */
     56 
     57 #include <openssl/cast.h>
     58 #include <openssl/cipher.h>
     59 #include <openssl/obj.h>
     60 
     61 #if defined(OPENSSL_WINDOWS)
     62 OPENSSL_MSVC_PRAGMA(warning(push, 3))
     63 #include <intrin.h>
     64 OPENSSL_MSVC_PRAGMA(warning(pop))
     65 #endif
     66 
     67 #include "../../crypto/internal.h"
     68 #include "internal.h"
     69 #include "../macros.h"
     70 
     71 
     72 void CAST_ecb_encrypt(const uint8_t *in, uint8_t *out, const CAST_KEY *ks,
     73                       int enc) {
     74   uint32_t d[2];
     75 
     76   n2l(in, d[0]);
     77   n2l(in, d[1]);
     78   if (enc) {
     79     CAST_encrypt(d, ks);
     80   } else {
     81     CAST_decrypt(d, ks);
     82   }
     83   l2n(d[0], out);
     84   l2n(d[1], out);
     85 }
     86 
     87 #if defined(OPENSSL_WINDOWS) && defined(_MSC_VER)
     88 #define ROTL(a, n) (_lrotl(a, n))
     89 #else
     90 #define ROTL(a, n) ((((a) << (n)) | ((a) >> ((-(n))&31))) & 0xffffffffL)
     91 #endif
     92 
     93 #define E_CAST(n, key, L, R, OP1, OP2, OP3)                                   \
     94   {                                                                           \
     95     uint32_t a, b, c, d;                                                      \
     96     t = (key[n * 2] OP1 R) & 0xffffffff;                                      \
     97     t = ROTL(t, (key[n * 2 + 1]));                                            \
     98     a = CAST_S_table0[(t >> 8) & 0xff];                                       \
     99     b = CAST_S_table1[(t)&0xff];                                              \
    100     c = CAST_S_table2[(t >> 24) & 0xff];                                      \
    101     d = CAST_S_table3[(t >> 16) & 0xff];                                      \
    102     L ^= (((((a OP2 b)&0xffffffffL)OP3 c) & 0xffffffffL)OP1 d) & 0xffffffffL; \
    103   }
    104 
    105 void CAST_encrypt(uint32_t *data, const CAST_KEY *key) {
    106   uint32_t l, r, t;
    107   const uint32_t *k;
    108 
    109   k = &key->data[0];
    110   l = data[0];
    111   r = data[1];
    112 
    113   E_CAST(0, k, l, r, +, ^, -);
    114   E_CAST(1, k, r, l, ^, -, +);
    115   E_CAST(2, k, l, r, -, +, ^);
    116   E_CAST(3, k, r, l, +, ^, -);
    117   E_CAST(4, k, l, r, ^, -, +);
    118   E_CAST(5, k, r, l, -, +, ^);
    119   E_CAST(6, k, l, r, +, ^, -);
    120   E_CAST(7, k, r, l, ^, -, +);
    121   E_CAST(8, k, l, r, -, +, ^);
    122   E_CAST(9, k, r, l, +, ^, -);
    123   E_CAST(10, k, l, r, ^, -, +);
    124   E_CAST(11, k, r, l, -, +, ^);
    125 
    126   if (!key->short_key) {
    127     E_CAST(12, k, l, r, +, ^, -);
    128     E_CAST(13, k, r, l, ^, -, +);
    129     E_CAST(14, k, l, r, -, +, ^);
    130     E_CAST(15, k, r, l, +, ^, -);
    131   }
    132 
    133   data[1] = l & 0xffffffffL;
    134   data[0] = r & 0xffffffffL;
    135 }
    136 
    137 void CAST_decrypt(uint32_t *data, const CAST_KEY *key) {
    138   uint32_t l, r, t;
    139   const uint32_t *k;
    140 
    141   k = &key->data[0];
    142   l = data[0];
    143   r = data[1];
    144 
    145   if (!key->short_key) {
    146     E_CAST(15, k, l, r, +, ^, -);
    147     E_CAST(14, k, r, l, -, +, ^);
    148     E_CAST(13, k, l, r, ^, -, +);
    149     E_CAST(12, k, r, l, +, ^, -);
    150   }
    151 
    152   E_CAST(11, k, l, r, -, +, ^);
    153   E_CAST(10, k, r, l, ^, -, +);
    154   E_CAST(9, k, l, r, +, ^, -);
    155   E_CAST(8, k, r, l, -, +, ^);
    156   E_CAST(7, k, l, r, ^, -, +);
    157   E_CAST(6, k, r, l, +, ^, -);
    158   E_CAST(5, k, l, r, -, +, ^);
    159   E_CAST(4, k, r, l, ^, -, +);
    160   E_CAST(3, k, l, r, +, ^, -);
    161   E_CAST(2, k, r, l, -, +, ^);
    162   E_CAST(1, k, l, r, ^, -, +);
    163   E_CAST(0, k, r, l, +, ^, -);
    164 
    165   data[1] = l & 0xffffffffL;
    166   data[0] = r & 0xffffffffL;
    167 }
    168 
    169 void CAST_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
    170                       const CAST_KEY *ks, uint8_t *iv, int enc) {
    171   uint32_t tin0, tin1;
    172   uint32_t tout0, tout1, xor0, xor1;
    173   size_t l = length;
    174   uint32_t tin[2];
    175 
    176   if (enc) {
    177     n2l(iv, tout0);
    178     n2l(iv, tout1);
    179     iv -= 8;
    180     while (l >= 8) {
    181       n2l(in, tin0);
    182       n2l(in, tin1);
    183       tin0 ^= tout0;
    184       tin1 ^= tout1;
    185       tin[0] = tin0;
    186       tin[1] = tin1;
    187       CAST_encrypt(tin, ks);
    188       tout0 = tin[0];
    189       tout1 = tin[1];
    190       l2n(tout0, out);
    191       l2n(tout1, out);
    192       l -= 8;
    193     }
    194     if (l != 0) {
    195       n2ln(in, tin0, tin1, l);
    196       tin0 ^= tout0;
    197       tin1 ^= tout1;
    198       tin[0] = tin0;
    199       tin[1] = tin1;
    200       CAST_encrypt(tin, ks);
    201       tout0 = tin[0];
    202       tout1 = tin[1];
    203       l2n(tout0, out);
    204       l2n(tout1, out);
    205     }
    206     l2n(tout0, iv);
    207     l2n(tout1, iv);
    208   } else {
    209     n2l(iv, xor0);
    210     n2l(iv, xor1);
    211     iv -= 8;
    212     while (l >= 8) {
    213       n2l(in, tin0);
    214       n2l(in, tin1);
    215       tin[0] = tin0;
    216       tin[1] = tin1;
    217       CAST_decrypt(tin, ks);
    218       tout0 = tin[0] ^ xor0;
    219       tout1 = tin[1] ^ xor1;
    220       l2n(tout0, out);
    221       l2n(tout1, out);
    222       xor0 = tin0;
    223       xor1 = tin1;
    224       l -= 8;
    225     }
    226     if (l != 0) {
    227       n2l(in, tin0);
    228       n2l(in, tin1);
    229       tin[0] = tin0;
    230       tin[1] = tin1;
    231       CAST_decrypt(tin, ks);
    232       tout0 = tin[0] ^ xor0;
    233       tout1 = tin[1] ^ xor1;
    234       l2nn(tout0, tout1, out, l);
    235       xor0 = tin0;
    236       xor1 = tin1;
    237     }
    238     l2n(xor0, iv);
    239     l2n(xor1, iv);
    240   }
    241   tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0;
    242   tin[0] = tin[1] = 0;
    243 }
    244 
    245 #define CAST_exp(l, A, a, n)   \
    246   A[n / 4] = l;                \
    247   a[n + 3] = (l)&0xff;         \
    248   a[n + 2] = (l >> 8) & 0xff;  \
    249   a[n + 1] = (l >> 16) & 0xff; \
    250   a[n + 0] = (l >> 24) & 0xff;
    251 #define S4 CAST_S_table4
    252 #define S5 CAST_S_table5
    253 #define S6 CAST_S_table6
    254 #define S7 CAST_S_table7
    255 
    256 void CAST_set_key(CAST_KEY *key, size_t len, const uint8_t *data) {
    257   uint32_t x[16];
    258   uint32_t z[16];
    259   uint32_t k[32];
    260   uint32_t X[4], Z[4];
    261   uint32_t l, *K;
    262   size_t i;
    263 
    264   for (i = 0; i < 16; i++) {
    265     x[i] = 0;
    266   }
    267 
    268   if (len > 16) {
    269     len = 16;
    270   }
    271 
    272   for (i = 0; i < len; i++) {
    273     x[i] = data[i];
    274   }
    275 
    276   if (len <= 10) {
    277     key->short_key = 1;
    278   } else {
    279     key->short_key = 0;
    280   }
    281 
    282   K = &k[0];
    283   X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL;
    284   X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL;
    285   X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL;
    286   X[3] = ((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL;
    287 
    288   for (;;) {
    289     l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
    290     CAST_exp(l, Z, z, 0);
    291     l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
    292     CAST_exp(l, Z, z, 4);
    293     l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
    294     CAST_exp(l, Z, z, 8);
    295     l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
    296     CAST_exp(l, Z, z, 12);
    297 
    298     K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]];
    299     K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]];
    300     K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]];
    301     K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]];
    302 
    303     l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
    304     CAST_exp(l, X, x, 0);
    305     l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
    306     CAST_exp(l, X, x, 4);
    307     l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
    308     CAST_exp(l, X, x, 8);
    309     l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
    310     CAST_exp(l, X, x, 12);
    311 
    312     K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]];
    313     K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]];
    314     K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]];
    315     K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]];
    316 
    317     l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
    318     CAST_exp(l, Z, z, 0);
    319     l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
    320     CAST_exp(l, Z, z, 4);
    321     l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
    322     CAST_exp(l, Z, z, 8);
    323     l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
    324     CAST_exp(l, Z, z, 12);
    325 
    326     K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]];
    327     K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]];
    328     K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]];
    329     K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]];
    330 
    331     l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
    332     CAST_exp(l, X, x, 0);
    333     l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
    334     CAST_exp(l, X, x, 4);
    335     l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
    336     CAST_exp(l, X, x, 8);
    337     l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
    338     CAST_exp(l, X, x, 12);
    339 
    340     K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]];
    341     K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]];
    342     K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]];
    343     K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]];
    344     if (K != k) {
    345       break;
    346     }
    347     K += 16;
    348   }
    349 
    350   for (i = 0; i < 16; i++) {
    351     key->data[i * 2] = k[i];
    352     key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f;
    353   }
    354 }
    355 
    356 // The input and output encrypted as though 64bit cfb mode is being used. The
    357 // extra state information to record how much of the 64bit block we have used
    358 // is contained in *num.
    359 void CAST_cfb64_encrypt(const uint8_t *in, uint8_t *out, size_t length,
    360                         const CAST_KEY *schedule, uint8_t *ivec, int *num,
    361                         int enc) {
    362   uint32_t v0, v1, t;
    363   int n = *num;
    364   size_t l = length;
    365   uint32_t ti[2];
    366   uint8_t *iv, c, cc;
    367 
    368   iv = ivec;
    369   if (enc) {
    370     while (l--) {
    371       if (n == 0) {
    372         n2l(iv, v0);
    373         ti[0] = v0;
    374         n2l(iv, v1);
    375         ti[1] = v1;
    376         CAST_encrypt((uint32_t *)ti, schedule);
    377         iv = ivec;
    378         t = ti[0];
    379         l2n(t, iv);
    380         t = ti[1];
    381         l2n(t, iv);
    382         iv = ivec;
    383       }
    384       c = *(in++) ^ iv[n];
    385       *(out++) = c;
    386       iv[n] = c;
    387       n = (n + 1) & 0x07;
    388     }
    389   } else {
    390     while (l--) {
    391       if (n == 0) {
    392         n2l(iv, v0);
    393         ti[0] = v0;
    394         n2l(iv, v1);
    395         ti[1] = v1;
    396         CAST_encrypt((uint32_t *)ti, schedule);
    397         iv = ivec;
    398         t = ti[0];
    399         l2n(t, iv);
    400         t = ti[1];
    401         l2n(t, iv);
    402         iv = ivec;
    403       }
    404       cc = *(in++);
    405       c = iv[n];
    406       iv[n] = cc;
    407       *(out++) = c ^ cc;
    408       n = (n + 1) & 0x07;
    409     }
    410   }
    411   v0 = v1 = ti[0] = ti[1] = t = c = cc = 0;
    412   *num = n;
    413 }
    414 
    415 static int cast_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
    416                          const uint8_t *iv, int enc) {
    417   CAST_KEY *cast_key = ctx->cipher_data;
    418   CAST_set_key(cast_key, ctx->key_len, key);
    419   return 1;
    420 }
    421 
    422 static int cast_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
    423                            size_t len) {
    424   CAST_KEY *cast_key = ctx->cipher_data;
    425 
    426   while (len >= CAST_BLOCK) {
    427     CAST_ecb_encrypt(in, out, cast_key, ctx->encrypt);
    428     in += CAST_BLOCK;
    429     out += CAST_BLOCK;
    430     len -= CAST_BLOCK;
    431   }
    432   assert(len == 0);
    433 
    434   return 1;
    435 }
    436 
    437 static int cast_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
    438                            size_t len) {
    439   CAST_KEY *cast_key = ctx->cipher_data;
    440   CAST_cbc_encrypt(in, out, len, cast_key, ctx->iv, ctx->encrypt);
    441   return 1;
    442 }
    443 
    444 static const EVP_CIPHER cast5_ecb = {
    445     NID_cast5_ecb,       CAST_BLOCK,
    446     CAST_KEY_LENGTH,     CAST_BLOCK /* iv_len */,
    447     sizeof(CAST_KEY),    EVP_CIPH_ECB_MODE | EVP_CIPH_VARIABLE_LENGTH,
    448     NULL /* app_data */, cast_init_key,
    449     cast_ecb_cipher,     NULL /* cleanup */,
    450     NULL /* ctrl */,
    451 };
    452 
    453 static const EVP_CIPHER cast5_cbc = {
    454     NID_cast5_cbc,       CAST_BLOCK,
    455     CAST_KEY_LENGTH,     CAST_BLOCK /* iv_len */,
    456     sizeof(CAST_KEY),    EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH,
    457     NULL /* app_data */, cast_init_key,
    458     cast_cbc_cipher,     NULL /* cleanup */,
    459     NULL /* ctrl */,
    460 };
    461 
    462 const EVP_CIPHER *EVP_cast5_ecb(void) { return &cast5_ecb; }
    463 
    464 const EVP_CIPHER *EVP_cast5_cbc(void) { return &cast5_cbc; }
    465