Home | History | Annotate | Download | only in src
      1 /* -----------------------------------------------------------------------------
      2 Software License for The Fraunhofer FDK AAC Codec Library for Android
      3 
      4  Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Frderung der angewandten
      5 Forschung e.V. All rights reserved.
      6 
      7  1.    INTRODUCTION
      8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
      9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
     10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
     11 a wide variety of Android devices.
     12 
     13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
     14 general perceptual audio codecs. AAC-ELD is considered the best-performing
     15 full-bandwidth communications codec by independent studies and is widely
     16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
     17 specifications.
     18 
     19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
     20 those of Fraunhofer) may be obtained through Via Licensing
     21 (www.vialicensing.com) or through the respective patent owners individually for
     22 the purpose of encoding or decoding bit streams in products that are compliant
     23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
     24 Android devices already license these patent claims through Via Licensing or
     25 directly from the patent owners, and therefore FDK AAC Codec software may
     26 already be covered under those patent licenses when it is used for those
     27 licensed purposes only.
     28 
     29 Commercially-licensed AAC software libraries, including floating-point versions
     30 with enhanced sound quality, are also available from Fraunhofer. Users are
     31 encouraged to check the Fraunhofer website for additional applications
     32 information and documentation.
     33 
     34 2.    COPYRIGHT LICENSE
     35 
     36 Redistribution and use in source and binary forms, with or without modification,
     37 are permitted without payment of copyright license fees provided that you
     38 satisfy the following conditions:
     39 
     40 You must retain the complete text of this software license in redistributions of
     41 the FDK AAC Codec or your modifications thereto in source code form.
     42 
     43 You must retain the complete text of this software license in the documentation
     44 and/or other materials provided with redistributions of the FDK AAC Codec or
     45 your modifications thereto in binary form. You must make available free of
     46 charge copies of the complete source code of the FDK AAC Codec and your
     47 modifications thereto to recipients of copies in binary form.
     48 
     49 The name of Fraunhofer may not be used to endorse or promote products derived
     50 from this library without prior written permission.
     51 
     52 You may not charge copyright license fees for anyone to use, copy or distribute
     53 the FDK AAC Codec software or your modifications thereto.
     54 
     55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
     56 that you changed the software and the date of any change. For modified versions
     57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
     58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
     59 AAC Codec Library for Android."
     60 
     61 3.    NO PATENT LICENSE
     62 
     63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
     64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
     65 Fraunhofer provides no warranty of patent non-infringement with respect to this
     66 software.
     67 
     68 You may use this FDK AAC Codec software or modifications thereto only for
     69 purposes that are authorized by appropriate patent licenses.
     70 
     71 4.    DISCLAIMER
     72 
     73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
     74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
     75 including but not limited to the implied warranties of merchantability and
     76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
     77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
     78 or consequential damages, including but not limited to procurement of substitute
     79 goods or services; loss of use, data, or profits, or business interruption,
     80 however caused and on any theory of liability, whether in contract, strict
     81 liability, or tort (including negligence), arising in any way out of the use of
     82 this software, even if advised of the possibility of such damage.
     83 
     84 5.    CONTACT INFORMATION
     85 
     86 Fraunhofer Institute for Integrated Circuits IIS
     87 Attention: Audio and Multimedia Departments - FDK AAC LL
     88 Am Wolfsmantel 33
     89 91058 Erlangen, Germany
     90 
     91 www.iis.fraunhofer.de/amm
     92 amm-info (at) iis.fraunhofer.de
     93 ----------------------------------------------------------------------------- */
     94 
     95 /**************************** AAC decoder library ******************************
     96 
     97    Author(s):   Josef Hoepfl
     98 
     99    Description: perceptual noise substitution tool
    100 
    101 *******************************************************************************/
    102 
    103 #include "aacdec_pns.h"
    104 
    105 #include "aac_ram.h"
    106 #include "aac_rom.h"
    107 #include "channelinfo.h"
    108 #include "block.h"
    109 #include "FDK_bitstream.h"
    110 
    111 #include "genericStds.h"
    112 
    113 #define NOISE_OFFSET 90 /* cf. ISO 14496-3 p. 175 */
    114 
    115 /*!
    116   \brief Reset InterChannel and PNS data
    117 
    118   The function resets the InterChannel and PNS data
    119 */
    120 void CPns_ResetData(CPnsData *pPnsData,
    121                     CPnsInterChannelData *pPnsInterChannelData) {
    122   FDK_ASSERT(pPnsData != NULL);
    123   FDK_ASSERT(pPnsInterChannelData != NULL);
    124   /* Assign pointer always, since pPnsData is not persistent data */
    125   pPnsData->pPnsInterChannelData = pPnsInterChannelData;
    126   pPnsData->PnsActive = 0;
    127   pPnsData->CurrentEnergy = 0;
    128 
    129   FDKmemclear(pPnsData->pnsUsed, (8 * 16) * sizeof(UCHAR));
    130   FDKmemclear(pPnsInterChannelData->correlated, (8 * 16) * sizeof(UCHAR));
    131 }
    132 
    133 /*!
    134   \brief Update PNS noise generator state.
    135 
    136   The function sets the seed for PNS noise generation.
    137   It can be used to link two or more channels in terms of PNS.
    138 */
    139 void CPns_UpdateNoiseState(CPnsData *pPnsData, INT *currentSeed,
    140                            INT *randomSeed) {
    141   /* use pointer because seed has to be
    142      same, left and right channel ! */
    143   pPnsData->currentSeed = currentSeed;
    144   pPnsData->randomSeed = randomSeed;
    145 }
    146 
    147 /*!
    148   \brief Indicates if PNS is used
    149 
    150   The function returns a value indicating whether PNS is used or not
    151   acordding to the noise energy
    152 
    153   \return  PNS used
    154 */
    155 int CPns_IsPnsUsed(const CPnsData *pPnsData, const int group, const int band) {
    156   unsigned pns_band = group * 16 + band;
    157 
    158   return pPnsData->pnsUsed[pns_band] & (UCHAR)1;
    159 }
    160 
    161 /*!
    162   \brief Set correlation
    163 
    164   The function activates the noise correlation between the channel pair
    165 */
    166 void CPns_SetCorrelation(CPnsData *pPnsData, const int group, const int band,
    167                          const int outofphase) {
    168   CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
    169   unsigned pns_band = group * 16 + band;
    170 
    171   pInterChannelData->correlated[pns_band] = (outofphase) ? 3 : 1;
    172 }
    173 
    174 /*!
    175   \brief Indicates if correlation is used
    176 
    177   The function indicates if the noise correlation between the channel pair
    178   is activated
    179 
    180   \return  PNS is correlated
    181 */
    182 static int CPns_IsCorrelated(const CPnsData *pPnsData, const int group,
    183                              const int band) {
    184   CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
    185   unsigned pns_band = group * 16 + band;
    186 
    187   return (pInterChannelData->correlated[pns_band] & 0x01) ? 1 : 0;
    188 }
    189 
    190 /*!
    191   \brief Indicates if correlated out of phase mode is used.
    192 
    193   The function indicates if the noise correlation between the channel pair
    194   is activated in out-of-phase mode.
    195 
    196   \return  PNS is out-of-phase
    197 */
    198 static int CPns_IsOutOfPhase(const CPnsData *pPnsData, const int group,
    199                              const int band) {
    200   CPnsInterChannelData *pInterChannelData = pPnsData->pPnsInterChannelData;
    201   unsigned pns_band = group * 16 + band;
    202 
    203   return (pInterChannelData->correlated[pns_band] & 0x02) ? 1 : 0;
    204 }
    205 
    206 /*!
    207   \brief Read PNS information
    208 
    209   The function reads the PNS information from the bitstream
    210 */
    211 void CPns_Read(CPnsData *pPnsData, HANDLE_FDK_BITSTREAM bs,
    212                const CodeBookDescription *hcb, SHORT *pScaleFactor,
    213                UCHAR global_gain, int band, int group /* = 0 */) {
    214   int delta;
    215   UINT pns_band = group * 16 + band;
    216 
    217   if (pPnsData->PnsActive) {
    218     /* Next PNS band case */
    219     delta = CBlock_DecodeHuffmanWord(bs, hcb) - 60;
    220   } else {
    221     /* First PNS band case */
    222     int noiseStartValue = FDKreadBits(bs, 9);
    223 
    224     delta = noiseStartValue - 256;
    225     pPnsData->PnsActive = 1;
    226     pPnsData->CurrentEnergy = global_gain - NOISE_OFFSET;
    227   }
    228 
    229   pPnsData->CurrentEnergy += delta;
    230   pScaleFactor[pns_band] = pPnsData->CurrentEnergy;
    231 
    232   pPnsData->pnsUsed[pns_band] = 1;
    233 }
    234 
    235 /**
    236  * \brief Generate a vector of noise of given length. The noise values are
    237  *        scaled in order to yield a noise energy of 1.0
    238  * \param spec pointer to were the noise values will be written to.
    239  * \param size amount of noise values to be generated.
    240  * \param pRandomState pointer to the state of the random generator being used.
    241  * \return exponent of generated noise vector.
    242  */
    243 static int GenerateRandomVector(FIXP_DBL *RESTRICT spec, int size,
    244                                 int *pRandomState) {
    245   int i, invNrg_e = 0, nrg_e = 0;
    246   FIXP_DBL invNrg_m, nrg_m = FL2FXCONST_DBL(0.0f);
    247   FIXP_DBL *RESTRICT ptr = spec;
    248   int randomState = *pRandomState;
    249 
    250 #define GEN_NOISE_NRG_SCALE 7
    251 
    252   /* Generate noise and calculate energy. */
    253   for (i = 0; i < size; i++) {
    254     randomState =
    255         (((INT64)1664525 * randomState) + (INT64)1013904223) & 0xFFFFFFFF;
    256     nrg_m = fPow2AddDiv2(nrg_m, (FIXP_DBL)randomState >> GEN_NOISE_NRG_SCALE);
    257     *ptr++ = (FIXP_DBL)randomState;
    258   }
    259   nrg_e = GEN_NOISE_NRG_SCALE * 2 + 1;
    260 
    261   /* weight noise with = 1 / sqrt_nrg; */
    262   invNrg_m = invSqrtNorm2(nrg_m << 1, &invNrg_e);
    263   invNrg_e += -((nrg_e - 1) >> 1);
    264 
    265   for (i = size; i--;) {
    266     spec[i] = fMult(spec[i], invNrg_m);
    267   }
    268 
    269   /* Store random state */
    270   *pRandomState = randomState;
    271 
    272   return invNrg_e;
    273 }
    274 
    275 static void ScaleBand(FIXP_DBL *RESTRICT spec, int size, int scaleFactor,
    276                       int specScale, int noise_e, int out_of_phase) {
    277   int i, shift, sfExponent;
    278   FIXP_DBL sfMatissa;
    279 
    280   /* Get gain from scale factor value = 2^(scaleFactor * 0.25) */
    281   sfMatissa = MantissaTable[scaleFactor & 0x03][0];
    282   /* sfExponent = (scaleFactor >> 2) + ExponentTable[scaleFactor & 0x03][0]; */
    283   /* Note:  ExponentTable[scaleFactor & 0x03][0] is always 1. */
    284   sfExponent = (scaleFactor >> 2) + 1;
    285 
    286   if (out_of_phase != 0) {
    287     sfMatissa = -sfMatissa;
    288   }
    289 
    290   /* +1 because of fMultDiv2 below. */
    291   shift = sfExponent - specScale + 1 + noise_e;
    292 
    293   /* Apply gain to noise values */
    294   if (shift >= 0) {
    295     shift = fixMin(shift, DFRACT_BITS - 1);
    296     for (i = size; i-- != 0;) {
    297       spec[i] = fMultDiv2(spec[i], sfMatissa) << shift;
    298     }
    299   } else {
    300     shift = fixMin(-shift, DFRACT_BITS - 1);
    301     for (i = size; i-- != 0;) {
    302       spec[i] = fMultDiv2(spec[i], sfMatissa) >> shift;
    303     }
    304   }
    305 }
    306 
    307 /*!
    308   \brief Apply PNS
    309 
    310   The function applies PNS (i.e. it generates noise) on the bands
    311   flagged as noisy bands
    312 
    313 */
    314 void CPns_Apply(const CPnsData *pPnsData, const CIcsInfo *pIcsInfo,
    315                 SPECTRAL_PTR pSpectrum, const SHORT *pSpecScale,
    316                 const SHORT *pScaleFactor,
    317                 const SamplingRateInfo *pSamplingRateInfo,
    318                 const INT granuleLength, const int channel) {
    319   if (pPnsData->PnsActive) {
    320     const short *BandOffsets =
    321         GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo);
    322 
    323     int ScaleFactorBandsTransmitted = GetScaleFactorBandsTransmitted(pIcsInfo);
    324 
    325     for (int window = 0, group = 0; group < GetWindowGroups(pIcsInfo);
    326          group++) {
    327       for (int groupwin = 0; groupwin < GetWindowGroupLength(pIcsInfo, group);
    328            groupwin++, window++) {
    329         FIXP_DBL *spectrum = SPEC(pSpectrum, window, granuleLength);
    330 
    331         for (int band = 0; band < ScaleFactorBandsTransmitted; band++) {
    332           if (CPns_IsPnsUsed(pPnsData, group, band)) {
    333             UINT pns_band = window * 16 + band;
    334 
    335             int bandWidth = BandOffsets[band + 1] - BandOffsets[band];
    336             int noise_e;
    337 
    338             FDK_ASSERT(bandWidth >= 0);
    339 
    340             if (channel > 0 && CPns_IsCorrelated(pPnsData, group, band)) {
    341               noise_e =
    342                   GenerateRandomVector(spectrum + BandOffsets[band], bandWidth,
    343                                        &pPnsData->randomSeed[pns_band]);
    344             } else {
    345               pPnsData->randomSeed[pns_band] = *pPnsData->currentSeed;
    346 
    347               noise_e = GenerateRandomVector(spectrum + BandOffsets[band],
    348                                              bandWidth, pPnsData->currentSeed);
    349             }
    350 
    351             int outOfPhase = CPns_IsOutOfPhase(pPnsData, group, band);
    352 
    353             ScaleBand(spectrum + BandOffsets[band], bandWidth,
    354                       pScaleFactor[group * 16 + band], pSpecScale[window],
    355                       noise_e, outOfPhase);
    356           }
    357         }
    358       }
    359     }
    360   }
    361 }
    362