Home | History | Annotate | Download | only in compiler
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
      6 #define V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/compiler/common-operator.h"
     10 #include "src/compiler/graph.h"
     11 #include "src/compiler/linkage.h"
     12 #include "src/compiler/machine-operator.h"
     13 #include "src/compiler/node.h"
     14 #include "src/compiler/operator.h"
     15 #include "src/globals.h"
     16 #include "src/heap/factory.h"
     17 
     18 namespace v8 {
     19 namespace internal {
     20 namespace compiler {
     21 
     22 class BasicBlock;
     23 class RawMachineLabel;
     24 class Schedule;
     25 
     26 
     27 // The RawMachineAssembler produces a low-level IR graph. All nodes are wired
     28 // into a graph and also placed into a schedule immediately, hence subsequent
     29 // code generation can happen without the need for scheduling.
     30 //
     31 // In order to create a schedule on-the-fly, the assembler keeps track of basic
     32 // blocks by having one current basic block being populated and by referencing
     33 // other basic blocks through the use of labels.
     34 //
     35 // Also note that the generated graph is only valid together with the generated
     36 // schedule, using one without the other is invalid as the graph is inherently
     37 // non-schedulable due to missing control and effect dependencies.
     38 class V8_EXPORT_PRIVATE RawMachineAssembler {
     39  public:
     40   RawMachineAssembler(
     41       Isolate* isolate, Graph* graph, CallDescriptor* call_descriptor,
     42       MachineRepresentation word = MachineType::PointerRepresentation(),
     43       MachineOperatorBuilder::Flags flags =
     44           MachineOperatorBuilder::Flag::kNoFlags,
     45       MachineOperatorBuilder::AlignmentRequirements alignment_requirements =
     46           MachineOperatorBuilder::AlignmentRequirements::
     47               FullUnalignedAccessSupport(),
     48       PoisoningMitigationLevel poisoning_level =
     49           PoisoningMitigationLevel::kPoisonCriticalOnly);
     50   ~RawMachineAssembler() {}
     51 
     52   Isolate* isolate() const { return isolate_; }
     53   Graph* graph() const { return graph_; }
     54   Zone* zone() const { return graph()->zone(); }
     55   MachineOperatorBuilder* machine() { return &machine_; }
     56   CommonOperatorBuilder* common() { return &common_; }
     57   CallDescriptor* call_descriptor() const { return call_descriptor_; }
     58   PoisoningMitigationLevel poisoning_level() const { return poisoning_level_; }
     59 
     60   // Finalizes the schedule and exports it to be used for code generation. Note
     61   // that this RawMachineAssembler becomes invalid after export.
     62   Schedule* Export();
     63 
     64   // ===========================================================================
     65   // The following utility methods create new nodes with specific operators and
     66   // place them into the current basic block. They don't perform control flow,
     67   // hence will not switch the current basic block.
     68 
     69   Node* NullConstant();
     70   Node* UndefinedConstant();
     71 
     72   // Constants.
     73   Node* PointerConstant(void* value) {
     74     return IntPtrConstant(reinterpret_cast<intptr_t>(value));
     75   }
     76   Node* IntPtrConstant(intptr_t value) {
     77     // TODO(dcarney): mark generated code as unserializable if value != 0.
     78     return kPointerSize == 8 ? Int64Constant(value)
     79                              : Int32Constant(static_cast<int>(value));
     80   }
     81   Node* RelocatableIntPtrConstant(intptr_t value, RelocInfo::Mode rmode);
     82   Node* Int32Constant(int32_t value) {
     83     return AddNode(common()->Int32Constant(value));
     84   }
     85   Node* StackSlot(MachineRepresentation rep, int alignment = 0) {
     86     return AddNode(machine()->StackSlot(rep, alignment));
     87   }
     88   Node* Int64Constant(int64_t value) {
     89     return AddNode(common()->Int64Constant(value));
     90   }
     91   Node* NumberConstant(double value) {
     92     return AddNode(common()->NumberConstant(value));
     93   }
     94   Node* Float32Constant(float value) {
     95     return AddNode(common()->Float32Constant(value));
     96   }
     97   Node* Float64Constant(double value) {
     98     return AddNode(common()->Float64Constant(value));
     99   }
    100   Node* HeapConstant(Handle<HeapObject> object) {
    101     return AddNode(common()->HeapConstant(object));
    102   }
    103   Node* BooleanConstant(bool value) {
    104     Handle<Object> object = isolate()->factory()->ToBoolean(value);
    105     return HeapConstant(Handle<HeapObject>::cast(object));
    106   }
    107   Node* ExternalConstant(ExternalReference address) {
    108     return AddNode(common()->ExternalConstant(address));
    109   }
    110   Node* RelocatableInt32Constant(int32_t value, RelocInfo::Mode rmode) {
    111     return AddNode(common()->RelocatableInt32Constant(value, rmode));
    112   }
    113   Node* RelocatableInt64Constant(int64_t value, RelocInfo::Mode rmode) {
    114     return AddNode(common()->RelocatableInt64Constant(value, rmode));
    115   }
    116 
    117   Node* Projection(int index, Node* a) {
    118     return AddNode(common()->Projection(index), a);
    119   }
    120 
    121   // Memory Operations.
    122   Node* Load(MachineType rep, Node* base,
    123              LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
    124     return Load(rep, base, IntPtrConstant(0), needs_poisoning);
    125   }
    126   Node* Load(MachineType rep, Node* base, Node* index,
    127              LoadSensitivity needs_poisoning = LoadSensitivity::kSafe) {
    128     const Operator* op = machine()->Load(rep);
    129     CHECK_NE(PoisoningMitigationLevel::kPoisonAll, poisoning_level_);
    130     if (needs_poisoning == LoadSensitivity::kCritical &&
    131         poisoning_level_ == PoisoningMitigationLevel::kPoisonCriticalOnly) {
    132       op = machine()->PoisonedLoad(rep);
    133     }
    134     return AddNode(op, base, index);
    135   }
    136   Node* Store(MachineRepresentation rep, Node* base, Node* value,
    137               WriteBarrierKind write_barrier) {
    138     return Store(rep, base, IntPtrConstant(0), value, write_barrier);
    139   }
    140   Node* Store(MachineRepresentation rep, Node* base, Node* index, Node* value,
    141               WriteBarrierKind write_barrier) {
    142     return AddNode(machine()->Store(StoreRepresentation(rep, write_barrier)),
    143                    base, index, value);
    144   }
    145   Node* Retain(Node* value) { return AddNode(common()->Retain(), value); }
    146 
    147   // Unaligned memory operations
    148   Node* UnalignedLoad(MachineType type, Node* base) {
    149     return UnalignedLoad(type, base, IntPtrConstant(0));
    150   }
    151   Node* UnalignedLoad(MachineType type, Node* base, Node* index) {
    152     if (machine()->UnalignedLoadSupported(type.representation())) {
    153       return AddNode(machine()->Load(type), base, index);
    154     } else {
    155       return AddNode(machine()->UnalignedLoad(type), base, index);
    156     }
    157   }
    158   Node* UnalignedStore(MachineRepresentation rep, Node* base, Node* value) {
    159     return UnalignedStore(rep, base, IntPtrConstant(0), value);
    160   }
    161   Node* UnalignedStore(MachineRepresentation rep, Node* base, Node* index,
    162                        Node* value) {
    163     if (machine()->UnalignedStoreSupported(rep)) {
    164       return AddNode(machine()->Store(StoreRepresentation(
    165                          rep, WriteBarrierKind::kNoWriteBarrier)),
    166                      base, index, value);
    167     } else {
    168       return AddNode(
    169           machine()->UnalignedStore(UnalignedStoreRepresentation(rep)), base,
    170           index, value);
    171     }
    172   }
    173 
    174   // Atomic memory operations.
    175   Node* AtomicLoad(MachineType type, Node* base, Node* index) {
    176     return AddNode(machine()->Word32AtomicLoad(type), base, index);
    177   }
    178   Node* AtomicStore(MachineRepresentation rep, Node* base, Node* index,
    179                     Node* value) {
    180     return AddNode(machine()->Word32AtomicStore(rep), base, index, value);
    181   }
    182 #define ATOMIC_FUNCTION(name)                                                 \
    183   Node* Atomic##name(MachineType rep, Node* base, Node* index, Node* value) { \
    184     return AddNode(machine()->Word32Atomic##name(rep), base, index, value);   \
    185   }
    186   ATOMIC_FUNCTION(Exchange);
    187   ATOMIC_FUNCTION(Add);
    188   ATOMIC_FUNCTION(Sub);
    189   ATOMIC_FUNCTION(And);
    190   ATOMIC_FUNCTION(Or);
    191   ATOMIC_FUNCTION(Xor);
    192 #undef ATOMIC_FUNCTION
    193 
    194   Node* AtomicCompareExchange(MachineType rep, Node* base, Node* index,
    195                               Node* old_value, Node* new_value) {
    196     return AddNode(machine()->Word32AtomicCompareExchange(rep), base, index,
    197                    old_value, new_value);
    198   }
    199 
    200   Node* SpeculationFence() {
    201     return AddNode(machine()->SpeculationFence().op());
    202   }
    203 
    204   // Arithmetic Operations.
    205   Node* WordAnd(Node* a, Node* b) {
    206     return AddNode(machine()->WordAnd(), a, b);
    207   }
    208   Node* WordOr(Node* a, Node* b) { return AddNode(machine()->WordOr(), a, b); }
    209   Node* WordXor(Node* a, Node* b) {
    210     return AddNode(machine()->WordXor(), a, b);
    211   }
    212   Node* WordShl(Node* a, Node* b) {
    213     return AddNode(machine()->WordShl(), a, b);
    214   }
    215   Node* WordShr(Node* a, Node* b) {
    216     return AddNode(machine()->WordShr(), a, b);
    217   }
    218   Node* WordSar(Node* a, Node* b) {
    219     return AddNode(machine()->WordSar(), a, b);
    220   }
    221   Node* WordRor(Node* a, Node* b) {
    222     return AddNode(machine()->WordRor(), a, b);
    223   }
    224   Node* WordEqual(Node* a, Node* b) {
    225     return AddNode(machine()->WordEqual(), a, b);
    226   }
    227   Node* WordNotEqual(Node* a, Node* b) {
    228     return Word32BinaryNot(WordEqual(a, b));
    229   }
    230   Node* WordNot(Node* a) {
    231     if (machine()->Is32()) {
    232       return Word32BitwiseNot(a);
    233     } else {
    234       return Word64Not(a);
    235     }
    236   }
    237 
    238   Node* Word32And(Node* a, Node* b) {
    239     return AddNode(machine()->Word32And(), a, b);
    240   }
    241   Node* Word32Or(Node* a, Node* b) {
    242     return AddNode(machine()->Word32Or(), a, b);
    243   }
    244   Node* Word32Xor(Node* a, Node* b) {
    245     return AddNode(machine()->Word32Xor(), a, b);
    246   }
    247   Node* Word32Shl(Node* a, Node* b) {
    248     return AddNode(machine()->Word32Shl(), a, b);
    249   }
    250   Node* Word32Shr(Node* a, Node* b) {
    251     return AddNode(machine()->Word32Shr(), a, b);
    252   }
    253   Node* Word32Sar(Node* a, Node* b) {
    254     return AddNode(machine()->Word32Sar(), a, b);
    255   }
    256   Node* Word32Ror(Node* a, Node* b) {
    257     return AddNode(machine()->Word32Ror(), a, b);
    258   }
    259   Node* Word32Clz(Node* a) { return AddNode(machine()->Word32Clz(), a); }
    260   Node* Word32Equal(Node* a, Node* b) {
    261     return AddNode(machine()->Word32Equal(), a, b);
    262   }
    263   Node* Word32NotEqual(Node* a, Node* b) {
    264     return Word32BinaryNot(Word32Equal(a, b));
    265   }
    266   Node* Word32BitwiseNot(Node* a) { return Word32Xor(a, Int32Constant(-1)); }
    267   Node* Word32BinaryNot(Node* a) { return Word32Equal(a, Int32Constant(0)); }
    268 
    269   Node* Word64And(Node* a, Node* b) {
    270     return AddNode(machine()->Word64And(), a, b);
    271   }
    272   Node* Word64Or(Node* a, Node* b) {
    273     return AddNode(machine()->Word64Or(), a, b);
    274   }
    275   Node* Word64Xor(Node* a, Node* b) {
    276     return AddNode(machine()->Word64Xor(), a, b);
    277   }
    278   Node* Word64Shl(Node* a, Node* b) {
    279     return AddNode(machine()->Word64Shl(), a, b);
    280   }
    281   Node* Word64Shr(Node* a, Node* b) {
    282     return AddNode(machine()->Word64Shr(), a, b);
    283   }
    284   Node* Word64Sar(Node* a, Node* b) {
    285     return AddNode(machine()->Word64Sar(), a, b);
    286   }
    287   Node* Word64Ror(Node* a, Node* b) {
    288     return AddNode(machine()->Word64Ror(), a, b);
    289   }
    290   Node* Word64Clz(Node* a) { return AddNode(machine()->Word64Clz(), a); }
    291   Node* Word64Equal(Node* a, Node* b) {
    292     return AddNode(machine()->Word64Equal(), a, b);
    293   }
    294   Node* Word64NotEqual(Node* a, Node* b) {
    295     return Word32BinaryNot(Word64Equal(a, b));
    296   }
    297   Node* Word64Not(Node* a) { return Word64Xor(a, Int64Constant(-1)); }
    298 
    299   Node* Int32Add(Node* a, Node* b) {
    300     return AddNode(machine()->Int32Add(), a, b);
    301   }
    302   Node* Int32AddWithOverflow(Node* a, Node* b) {
    303     return AddNode(machine()->Int32AddWithOverflow(), a, b);
    304   }
    305   Node* Int32Sub(Node* a, Node* b) {
    306     return AddNode(machine()->Int32Sub(), a, b);
    307   }
    308   Node* Int32SubWithOverflow(Node* a, Node* b) {
    309     return AddNode(machine()->Int32SubWithOverflow(), a, b);
    310   }
    311   Node* Int32Mul(Node* a, Node* b) {
    312     return AddNode(machine()->Int32Mul(), a, b);
    313   }
    314   Node* Int32MulHigh(Node* a, Node* b) {
    315     return AddNode(machine()->Int32MulHigh(), a, b);
    316   }
    317   Node* Int32MulWithOverflow(Node* a, Node* b) {
    318     return AddNode(machine()->Int32MulWithOverflow(), a, b);
    319   }
    320   Node* Int32Div(Node* a, Node* b) {
    321     return AddNode(machine()->Int32Div(), a, b);
    322   }
    323   Node* Int32Mod(Node* a, Node* b) {
    324     return AddNode(machine()->Int32Mod(), a, b);
    325   }
    326   Node* Int32LessThan(Node* a, Node* b) {
    327     return AddNode(machine()->Int32LessThan(), a, b);
    328   }
    329   Node* Int32LessThanOrEqual(Node* a, Node* b) {
    330     return AddNode(machine()->Int32LessThanOrEqual(), a, b);
    331   }
    332   Node* Uint32Div(Node* a, Node* b) {
    333     return AddNode(machine()->Uint32Div(), a, b);
    334   }
    335   Node* Uint32LessThan(Node* a, Node* b) {
    336     return AddNode(machine()->Uint32LessThan(), a, b);
    337   }
    338   Node* Uint32LessThanOrEqual(Node* a, Node* b) {
    339     return AddNode(machine()->Uint32LessThanOrEqual(), a, b);
    340   }
    341   Node* Uint32Mod(Node* a, Node* b) {
    342     return AddNode(machine()->Uint32Mod(), a, b);
    343   }
    344   Node* Uint32MulHigh(Node* a, Node* b) {
    345     return AddNode(machine()->Uint32MulHigh(), a, b);
    346   }
    347   Node* Int32GreaterThan(Node* a, Node* b) { return Int32LessThan(b, a); }
    348   Node* Int32GreaterThanOrEqual(Node* a, Node* b) {
    349     return Int32LessThanOrEqual(b, a);
    350   }
    351   Node* Uint32GreaterThan(Node* a, Node* b) { return Uint32LessThan(b, a); }
    352   Node* Uint32GreaterThanOrEqual(Node* a, Node* b) {
    353     return Uint32LessThanOrEqual(b, a);
    354   }
    355   Node* Int32Neg(Node* a) { return Int32Sub(Int32Constant(0), a); }
    356 
    357   Node* Int64Add(Node* a, Node* b) {
    358     return AddNode(machine()->Int64Add(), a, b);
    359   }
    360   Node* Int64AddWithOverflow(Node* a, Node* b) {
    361     return AddNode(machine()->Int64AddWithOverflow(), a, b);
    362   }
    363   Node* Int64Sub(Node* a, Node* b) {
    364     return AddNode(machine()->Int64Sub(), a, b);
    365   }
    366   Node* Int64SubWithOverflow(Node* a, Node* b) {
    367     return AddNode(machine()->Int64SubWithOverflow(), a, b);
    368   }
    369   Node* Int64Mul(Node* a, Node* b) {
    370     return AddNode(machine()->Int64Mul(), a, b);
    371   }
    372   Node* Int64Div(Node* a, Node* b) {
    373     return AddNode(machine()->Int64Div(), a, b);
    374   }
    375   Node* Int64Mod(Node* a, Node* b) {
    376     return AddNode(machine()->Int64Mod(), a, b);
    377   }
    378   Node* Int64Neg(Node* a) { return Int64Sub(Int64Constant(0), a); }
    379   Node* Int64LessThan(Node* a, Node* b) {
    380     return AddNode(machine()->Int64LessThan(), a, b);
    381   }
    382   Node* Int64LessThanOrEqual(Node* a, Node* b) {
    383     return AddNode(machine()->Int64LessThanOrEqual(), a, b);
    384   }
    385   Node* Uint64LessThan(Node* a, Node* b) {
    386     return AddNode(machine()->Uint64LessThan(), a, b);
    387   }
    388   Node* Uint64LessThanOrEqual(Node* a, Node* b) {
    389     return AddNode(machine()->Uint64LessThanOrEqual(), a, b);
    390   }
    391   Node* Int64GreaterThan(Node* a, Node* b) { return Int64LessThan(b, a); }
    392   Node* Int64GreaterThanOrEqual(Node* a, Node* b) {
    393     return Int64LessThanOrEqual(b, a);
    394   }
    395   Node* Uint64GreaterThan(Node* a, Node* b) { return Uint64LessThan(b, a); }
    396   Node* Uint64GreaterThanOrEqual(Node* a, Node* b) {
    397     return Uint64LessThanOrEqual(b, a);
    398   }
    399   Node* Uint64Div(Node* a, Node* b) {
    400     return AddNode(machine()->Uint64Div(), a, b);
    401   }
    402   Node* Uint64Mod(Node* a, Node* b) {
    403     return AddNode(machine()->Uint64Mod(), a, b);
    404   }
    405   Node* Int32PairAdd(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
    406     return AddNode(machine()->Int32PairAdd(), a_low, a_high, b_low, b_high);
    407   }
    408   Node* Int32PairSub(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
    409     return AddNode(machine()->Int32PairSub(), a_low, a_high, b_low, b_high);
    410   }
    411   Node* Int32PairMul(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
    412     return AddNode(machine()->Int32PairMul(), a_low, a_high, b_low, b_high);
    413   }
    414   Node* Word32PairShl(Node* low_word, Node* high_word, Node* shift) {
    415     return AddNode(machine()->Word32PairShl(), low_word, high_word, shift);
    416   }
    417   Node* Word32PairShr(Node* low_word, Node* high_word, Node* shift) {
    418     return AddNode(machine()->Word32PairShr(), low_word, high_word, shift);
    419   }
    420   Node* Word32PairSar(Node* low_word, Node* high_word, Node* shift) {
    421     return AddNode(machine()->Word32PairSar(), low_word, high_word, shift);
    422   }
    423 
    424 #define INTPTR_BINOP(prefix, name)                     \
    425   Node* IntPtr##name(Node* a, Node* b) {               \
    426     return kPointerSize == 8 ? prefix##64##name(a, b)  \
    427                              : prefix##32##name(a, b); \
    428   }
    429 
    430   INTPTR_BINOP(Int, Add);
    431   INTPTR_BINOP(Int, AddWithOverflow);
    432   INTPTR_BINOP(Int, Sub);
    433   INTPTR_BINOP(Int, SubWithOverflow);
    434   INTPTR_BINOP(Int, Mul);
    435   INTPTR_BINOP(Int, Div);
    436   INTPTR_BINOP(Int, LessThan);
    437   INTPTR_BINOP(Int, LessThanOrEqual);
    438   INTPTR_BINOP(Word, Equal);
    439   INTPTR_BINOP(Word, NotEqual);
    440   INTPTR_BINOP(Int, GreaterThanOrEqual);
    441   INTPTR_BINOP(Int, GreaterThan);
    442 
    443 #undef INTPTR_BINOP
    444 
    445 #define UINTPTR_BINOP(prefix, name)                    \
    446   Node* UintPtr##name(Node* a, Node* b) {              \
    447     return kPointerSize == 8 ? prefix##64##name(a, b)  \
    448                              : prefix##32##name(a, b); \
    449   }
    450 
    451   UINTPTR_BINOP(Uint, LessThan);
    452   UINTPTR_BINOP(Uint, LessThanOrEqual);
    453   UINTPTR_BINOP(Uint, GreaterThanOrEqual);
    454   UINTPTR_BINOP(Uint, GreaterThan);
    455 
    456 #undef UINTPTR_BINOP
    457 
    458   Node* Int32AbsWithOverflow(Node* a) {
    459     return AddNode(machine()->Int32AbsWithOverflow().op(), a);
    460   }
    461 
    462   Node* Int64AbsWithOverflow(Node* a) {
    463     return AddNode(machine()->Int64AbsWithOverflow().op(), a);
    464   }
    465 
    466   Node* IntPtrAbsWithOverflow(Node* a) {
    467     return kPointerSize == 8 ? Int64AbsWithOverflow(a)
    468                              : Int32AbsWithOverflow(a);
    469   }
    470 
    471   Node* Float32Add(Node* a, Node* b) {
    472     return AddNode(machine()->Float32Add(), a, b);
    473   }
    474   Node* Float32Sub(Node* a, Node* b) {
    475     return AddNode(machine()->Float32Sub(), a, b);
    476   }
    477   Node* Float32Mul(Node* a, Node* b) {
    478     return AddNode(machine()->Float32Mul(), a, b);
    479   }
    480   Node* Float32Div(Node* a, Node* b) {
    481     return AddNode(machine()->Float32Div(), a, b);
    482   }
    483   Node* Float32Abs(Node* a) { return AddNode(machine()->Float32Abs(), a); }
    484   Node* Float32Neg(Node* a) { return AddNode(machine()->Float32Neg(), a); }
    485   Node* Float32Sqrt(Node* a) { return AddNode(machine()->Float32Sqrt(), a); }
    486   Node* Float32Equal(Node* a, Node* b) {
    487     return AddNode(machine()->Float32Equal(), a, b);
    488   }
    489   Node* Float32NotEqual(Node* a, Node* b) {
    490     return Word32BinaryNot(Float32Equal(a, b));
    491   }
    492   Node* Float32LessThan(Node* a, Node* b) {
    493     return AddNode(machine()->Float32LessThan(), a, b);
    494   }
    495   Node* Float32LessThanOrEqual(Node* a, Node* b) {
    496     return AddNode(machine()->Float32LessThanOrEqual(), a, b);
    497   }
    498   Node* Float32GreaterThan(Node* a, Node* b) { return Float32LessThan(b, a); }
    499   Node* Float32GreaterThanOrEqual(Node* a, Node* b) {
    500     return Float32LessThanOrEqual(b, a);
    501   }
    502   Node* Float32Max(Node* a, Node* b) {
    503     return AddNode(machine()->Float32Max(), a, b);
    504   }
    505   Node* Float32Min(Node* a, Node* b) {
    506     return AddNode(machine()->Float32Min(), a, b);
    507   }
    508   Node* Float64Add(Node* a, Node* b) {
    509     return AddNode(machine()->Float64Add(), a, b);
    510   }
    511   Node* Float64Sub(Node* a, Node* b) {
    512     return AddNode(machine()->Float64Sub(), a, b);
    513   }
    514   Node* Float64Mul(Node* a, Node* b) {
    515     return AddNode(machine()->Float64Mul(), a, b);
    516   }
    517   Node* Float64Div(Node* a, Node* b) {
    518     return AddNode(machine()->Float64Div(), a, b);
    519   }
    520   Node* Float64Mod(Node* a, Node* b) {
    521     return AddNode(machine()->Float64Mod(), a, b);
    522   }
    523   Node* Float64Max(Node* a, Node* b) {
    524     return AddNode(machine()->Float64Max(), a, b);
    525   }
    526   Node* Float64Min(Node* a, Node* b) {
    527     return AddNode(machine()->Float64Min(), a, b);
    528   }
    529   Node* Float64Abs(Node* a) { return AddNode(machine()->Float64Abs(), a); }
    530   Node* Float64Neg(Node* a) { return AddNode(machine()->Float64Neg(), a); }
    531   Node* Float64Acos(Node* a) { return AddNode(machine()->Float64Acos(), a); }
    532   Node* Float64Acosh(Node* a) { return AddNode(machine()->Float64Acosh(), a); }
    533   Node* Float64Asin(Node* a) { return AddNode(machine()->Float64Asin(), a); }
    534   Node* Float64Asinh(Node* a) { return AddNode(machine()->Float64Asinh(), a); }
    535   Node* Float64Atan(Node* a) { return AddNode(machine()->Float64Atan(), a); }
    536   Node* Float64Atanh(Node* a) { return AddNode(machine()->Float64Atanh(), a); }
    537   Node* Float64Atan2(Node* a, Node* b) {
    538     return AddNode(machine()->Float64Atan2(), a, b);
    539   }
    540   Node* Float64Cbrt(Node* a) { return AddNode(machine()->Float64Cbrt(), a); }
    541   Node* Float64Cos(Node* a) { return AddNode(machine()->Float64Cos(), a); }
    542   Node* Float64Cosh(Node* a) { return AddNode(machine()->Float64Cosh(), a); }
    543   Node* Float64Exp(Node* a) { return AddNode(machine()->Float64Exp(), a); }
    544   Node* Float64Expm1(Node* a) { return AddNode(machine()->Float64Expm1(), a); }
    545   Node* Float64Log(Node* a) { return AddNode(machine()->Float64Log(), a); }
    546   Node* Float64Log1p(Node* a) { return AddNode(machine()->Float64Log1p(), a); }
    547   Node* Float64Log10(Node* a) { return AddNode(machine()->Float64Log10(), a); }
    548   Node* Float64Log2(Node* a) { return AddNode(machine()->Float64Log2(), a); }
    549   Node* Float64Pow(Node* a, Node* b) {
    550     return AddNode(machine()->Float64Pow(), a, b);
    551   }
    552   Node* Float64Sin(Node* a) { return AddNode(machine()->Float64Sin(), a); }
    553   Node* Float64Sinh(Node* a) { return AddNode(machine()->Float64Sinh(), a); }
    554   Node* Float64Sqrt(Node* a) { return AddNode(machine()->Float64Sqrt(), a); }
    555   Node* Float64Tan(Node* a) { return AddNode(machine()->Float64Tan(), a); }
    556   Node* Float64Tanh(Node* a) { return AddNode(machine()->Float64Tanh(), a); }
    557   Node* Float64Equal(Node* a, Node* b) {
    558     return AddNode(machine()->Float64Equal(), a, b);
    559   }
    560   Node* Float64NotEqual(Node* a, Node* b) {
    561     return Word32BinaryNot(Float64Equal(a, b));
    562   }
    563   Node* Float64LessThan(Node* a, Node* b) {
    564     return AddNode(machine()->Float64LessThan(), a, b);
    565   }
    566   Node* Float64LessThanOrEqual(Node* a, Node* b) {
    567     return AddNode(machine()->Float64LessThanOrEqual(), a, b);
    568   }
    569   Node* Float64GreaterThan(Node* a, Node* b) { return Float64LessThan(b, a); }
    570   Node* Float64GreaterThanOrEqual(Node* a, Node* b) {
    571     return Float64LessThanOrEqual(b, a);
    572   }
    573 
    574   // Conversions.
    575   Node* BitcastTaggedToWord(Node* a) {
    576 #ifdef ENABLE_VERIFY_CSA
    577     return AddNode(machine()->BitcastTaggedToWord(), a);
    578 #else
    579     return a;
    580 #endif
    581   }
    582   Node* BitcastMaybeObjectToWord(Node* a) {
    583 #ifdef ENABLE_VERIFY_CSA
    584     return AddNode(machine()->BitcastMaybeObjectToWord(), a);
    585 #else
    586     return a;
    587 #endif
    588   }
    589   Node* BitcastWordToTagged(Node* a) {
    590     return AddNode(machine()->BitcastWordToTagged(), a);
    591   }
    592   Node* BitcastWordToTaggedSigned(Node* a) {
    593 #ifdef ENABLE_VERIFY_CSA
    594     return AddNode(machine()->BitcastWordToTaggedSigned(), a);
    595 #else
    596     return a;
    597 #endif
    598   }
    599   Node* TruncateFloat64ToWord32(Node* a) {
    600     return AddNode(machine()->TruncateFloat64ToWord32(), a);
    601   }
    602   Node* ChangeFloat32ToFloat64(Node* a) {
    603     return AddNode(machine()->ChangeFloat32ToFloat64(), a);
    604   }
    605   Node* ChangeInt32ToFloat64(Node* a) {
    606     return AddNode(machine()->ChangeInt32ToFloat64(), a);
    607   }
    608   Node* ChangeUint32ToFloat64(Node* a) {
    609     return AddNode(machine()->ChangeUint32ToFloat64(), a);
    610   }
    611   Node* ChangeFloat64ToInt32(Node* a) {
    612     return AddNode(machine()->ChangeFloat64ToInt32(), a);
    613   }
    614   Node* ChangeFloat64ToUint32(Node* a) {
    615     return AddNode(machine()->ChangeFloat64ToUint32(), a);
    616   }
    617   Node* ChangeFloat64ToUint64(Node* a) {
    618     return AddNode(machine()->ChangeFloat64ToUint64(), a);
    619   }
    620   Node* TruncateFloat64ToUint32(Node* a) {
    621     return AddNode(machine()->TruncateFloat64ToUint32(), a);
    622   }
    623   Node* TruncateFloat32ToInt32(Node* a) {
    624     return AddNode(machine()->TruncateFloat32ToInt32(), a);
    625   }
    626   Node* TruncateFloat32ToUint32(Node* a) {
    627     return AddNode(machine()->TruncateFloat32ToUint32(), a);
    628   }
    629   Node* TryTruncateFloat32ToInt64(Node* a) {
    630     return AddNode(machine()->TryTruncateFloat32ToInt64(), a);
    631   }
    632   Node* TryTruncateFloat64ToInt64(Node* a) {
    633     return AddNode(machine()->TryTruncateFloat64ToInt64(), a);
    634   }
    635   Node* TryTruncateFloat32ToUint64(Node* a) {
    636     return AddNode(machine()->TryTruncateFloat32ToUint64(), a);
    637   }
    638   Node* TryTruncateFloat64ToUint64(Node* a) {
    639     return AddNode(machine()->TryTruncateFloat64ToUint64(), a);
    640   }
    641   Node* ChangeInt32ToInt64(Node* a) {
    642     return AddNode(machine()->ChangeInt32ToInt64(), a);
    643   }
    644   Node* ChangeUint32ToUint64(Node* a) {
    645     return AddNode(machine()->ChangeUint32ToUint64(), a);
    646   }
    647   Node* TruncateFloat64ToFloat32(Node* a) {
    648     return AddNode(machine()->TruncateFloat64ToFloat32(), a);
    649   }
    650   Node* TruncateInt64ToInt32(Node* a) {
    651     return AddNode(machine()->TruncateInt64ToInt32(), a);
    652   }
    653   Node* RoundFloat64ToInt32(Node* a) {
    654     return AddNode(machine()->RoundFloat64ToInt32(), a);
    655   }
    656   Node* RoundInt32ToFloat32(Node* a) {
    657     return AddNode(machine()->RoundInt32ToFloat32(), a);
    658   }
    659   Node* RoundInt64ToFloat32(Node* a) {
    660     return AddNode(machine()->RoundInt64ToFloat32(), a);
    661   }
    662   Node* RoundInt64ToFloat64(Node* a) {
    663     return AddNode(machine()->RoundInt64ToFloat64(), a);
    664   }
    665   Node* RoundUint32ToFloat32(Node* a) {
    666     return AddNode(machine()->RoundUint32ToFloat32(), a);
    667   }
    668   Node* RoundUint64ToFloat32(Node* a) {
    669     return AddNode(machine()->RoundUint64ToFloat32(), a);
    670   }
    671   Node* RoundUint64ToFloat64(Node* a) {
    672     return AddNode(machine()->RoundUint64ToFloat64(), a);
    673   }
    674   Node* BitcastFloat32ToInt32(Node* a) {
    675     return AddNode(machine()->BitcastFloat32ToInt32(), a);
    676   }
    677   Node* BitcastFloat64ToInt64(Node* a) {
    678     return AddNode(machine()->BitcastFloat64ToInt64(), a);
    679   }
    680   Node* BitcastInt32ToFloat32(Node* a) {
    681     return AddNode(machine()->BitcastInt32ToFloat32(), a);
    682   }
    683   Node* BitcastInt64ToFloat64(Node* a) {
    684     return AddNode(machine()->BitcastInt64ToFloat64(), a);
    685   }
    686   Node* Float32RoundDown(Node* a) {
    687     return AddNode(machine()->Float32RoundDown().op(), a);
    688   }
    689   Node* Float64RoundDown(Node* a) {
    690     return AddNode(machine()->Float64RoundDown().op(), a);
    691   }
    692   Node* Float32RoundUp(Node* a) {
    693     return AddNode(machine()->Float32RoundUp().op(), a);
    694   }
    695   Node* Float64RoundUp(Node* a) {
    696     return AddNode(machine()->Float64RoundUp().op(), a);
    697   }
    698   Node* Float32RoundTruncate(Node* a) {
    699     return AddNode(machine()->Float32RoundTruncate().op(), a);
    700   }
    701   Node* Float64RoundTruncate(Node* a) {
    702     return AddNode(machine()->Float64RoundTruncate().op(), a);
    703   }
    704   Node* Float64RoundTiesAway(Node* a) {
    705     return AddNode(machine()->Float64RoundTiesAway().op(), a);
    706   }
    707   Node* Float32RoundTiesEven(Node* a) {
    708     return AddNode(machine()->Float32RoundTiesEven().op(), a);
    709   }
    710   Node* Float64RoundTiesEven(Node* a) {
    711     return AddNode(machine()->Float64RoundTiesEven().op(), a);
    712   }
    713   Node* Word32ReverseBytes(Node* a) {
    714     return AddNode(machine()->Word32ReverseBytes(), a);
    715   }
    716   Node* Word64ReverseBytes(Node* a) {
    717     return AddNode(machine()->Word64ReverseBytes(), a);
    718   }
    719 
    720   // Float64 bit operations.
    721   Node* Float64ExtractLowWord32(Node* a) {
    722     return AddNode(machine()->Float64ExtractLowWord32(), a);
    723   }
    724   Node* Float64ExtractHighWord32(Node* a) {
    725     return AddNode(machine()->Float64ExtractHighWord32(), a);
    726   }
    727   Node* Float64InsertLowWord32(Node* a, Node* b) {
    728     return AddNode(machine()->Float64InsertLowWord32(), a, b);
    729   }
    730   Node* Float64InsertHighWord32(Node* a, Node* b) {
    731     return AddNode(machine()->Float64InsertHighWord32(), a, b);
    732   }
    733   Node* Float64SilenceNaN(Node* a) {
    734     return AddNode(machine()->Float64SilenceNaN(), a);
    735   }
    736 
    737   // Stack operations.
    738   Node* LoadStackPointer() { return AddNode(machine()->LoadStackPointer()); }
    739   Node* LoadFramePointer() { return AddNode(machine()->LoadFramePointer()); }
    740   Node* LoadParentFramePointer() {
    741     return AddNode(machine()->LoadParentFramePointer());
    742   }
    743 
    744   // Parameters.
    745   Node* TargetParameter();
    746   Node* Parameter(size_t index);
    747 
    748   // Pointer utilities.
    749   Node* LoadFromPointer(void* address, MachineType rep, int32_t offset = 0) {
    750     return Load(rep, PointerConstant(address), Int32Constant(offset));
    751   }
    752   Node* StoreToPointer(void* address, MachineRepresentation rep, Node* node) {
    753     return Store(rep, PointerConstant(address), node, kNoWriteBarrier);
    754   }
    755   Node* UnalignedLoadFromPointer(void* address, MachineType rep,
    756                                  int32_t offset = 0) {
    757     return UnalignedLoad(rep, PointerConstant(address), Int32Constant(offset));
    758   }
    759   Node* UnalignedStoreToPointer(void* address, MachineRepresentation rep,
    760                                 Node* node) {
    761     return UnalignedStore(rep, PointerConstant(address), node);
    762   }
    763   Node* StringConstant(const char* string) {
    764     return HeapConstant(isolate()->factory()->InternalizeUtf8String(string));
    765   }
    766 
    767   Node* TaggedPoisonOnSpeculation(Node* value) {
    768     if (poisoning_level_ != PoisoningMitigationLevel::kDontPoison) {
    769       return AddNode(machine()->TaggedPoisonOnSpeculation(), value);
    770     }
    771     return value;
    772   }
    773 
    774   Node* WordPoisonOnSpeculation(Node* value) {
    775     if (poisoning_level_ != PoisoningMitigationLevel::kDontPoison) {
    776       return AddNode(machine()->WordPoisonOnSpeculation(), value);
    777     }
    778     return value;
    779   }
    780 
    781   // Call a given call descriptor and the given arguments.
    782   // The call target is passed as part of the {inputs} array.
    783   Node* CallN(CallDescriptor* call_descriptor, int input_count,
    784               Node* const* inputs);
    785 
    786   // Call a given call descriptor and the given arguments and frame-state.
    787   // The call target and frame state are passed as part of the {inputs} array.
    788   Node* CallNWithFrameState(CallDescriptor* call_descriptor, int input_count,
    789                             Node* const* inputs);
    790 
    791   // Tail call a given call descriptor and the given arguments.
    792   // The call target is passed as part of the {inputs} array.
    793   Node* TailCallN(CallDescriptor* call_descriptor, int input_count,
    794                   Node* const* inputs);
    795 
    796   // Call to a C function with zero arguments.
    797   Node* CallCFunction0(MachineType return_type, Node* function);
    798   // Call to a C function with one parameter.
    799   Node* CallCFunction1(MachineType return_type, MachineType arg0_type,
    800                        Node* function, Node* arg0);
    801   // Call to a C function with one argument, while saving/restoring caller
    802   // registers.
    803   Node* CallCFunction1WithCallerSavedRegisters(
    804       MachineType return_type, MachineType arg0_type, Node* function,
    805       Node* arg0, SaveFPRegsMode mode = kSaveFPRegs);
    806   // Call to a C function with two arguments.
    807   Node* CallCFunction2(MachineType return_type, MachineType arg0_type,
    808                        MachineType arg1_type, Node* function, Node* arg0,
    809                        Node* arg1);
    810   // Call to a C function with three arguments.
    811   Node* CallCFunction3(MachineType return_type, MachineType arg0_type,
    812                        MachineType arg1_type, MachineType arg2_type,
    813                        Node* function, Node* arg0, Node* arg1, Node* arg2);
    814   // Call to a C function with three arguments, while saving/restoring caller
    815   // registers.
    816   Node* CallCFunction3WithCallerSavedRegisters(
    817       MachineType return_type, MachineType arg0_type, MachineType arg1_type,
    818       MachineType arg2_type, Node* function, Node* arg0, Node* arg1, Node* arg2,
    819       SaveFPRegsMode mode = kSaveFPRegs);
    820   // Call to a C function with four arguments.
    821   Node* CallCFunction4(MachineType return_type, MachineType arg0_type,
    822                        MachineType arg1_type, MachineType arg2_type,
    823                        MachineType arg3_type, Node* function, Node* arg0,
    824                        Node* arg1, Node* arg2, Node* arg3);
    825   // Call to a C function with five arguments.
    826   Node* CallCFunction5(MachineType return_type, MachineType arg0_type,
    827                        MachineType arg1_type, MachineType arg2_type,
    828                        MachineType arg3_type, MachineType arg4_type,
    829                        Node* function, Node* arg0, Node* arg1, Node* arg2,
    830                        Node* arg3, Node* arg4);
    831   // Call to a C function with six arguments.
    832   Node* CallCFunction6(MachineType return_type, MachineType arg0_type,
    833                        MachineType arg1_type, MachineType arg2_type,
    834                        MachineType arg3_type, MachineType arg4_type,
    835                        MachineType arg5_type, Node* function, Node* arg0,
    836                        Node* arg1, Node* arg2, Node* arg3, Node* arg4,
    837                        Node* arg5);
    838   // Call to a C function with eight arguments.
    839   Node* CallCFunction8(MachineType return_type, MachineType arg0_type,
    840                        MachineType arg1_type, MachineType arg2_type,
    841                        MachineType arg3_type, MachineType arg4_type,
    842                        MachineType arg5_type, MachineType arg6_type,
    843                        MachineType arg7_type, Node* function, Node* arg0,
    844                        Node* arg1, Node* arg2, Node* arg3, Node* arg4,
    845                        Node* arg5, Node* arg6, Node* arg7);
    846   // Call to a C function with nine arguments.
    847   Node* CallCFunction9(MachineType return_type, MachineType arg0_type,
    848                        MachineType arg1_type, MachineType arg2_type,
    849                        MachineType arg3_type, MachineType arg4_type,
    850                        MachineType arg5_type, MachineType arg6_type,
    851                        MachineType arg7_type, MachineType arg8_type,
    852                        Node* function, Node* arg0, Node* arg1, Node* arg2,
    853                        Node* arg3, Node* arg4, Node* arg5, Node* arg6,
    854                        Node* arg7, Node* arg8);
    855 
    856   // ===========================================================================
    857   // The following utility methods deal with control flow, hence might switch
    858   // the current basic block or create new basic blocks for labels.
    859 
    860   // Control flow.
    861   void Goto(RawMachineLabel* label);
    862   void Branch(Node* condition, RawMachineLabel* true_val,
    863               RawMachineLabel* false_val);
    864   void Switch(Node* index, RawMachineLabel* default_label,
    865               const int32_t* case_values, RawMachineLabel** case_labels,
    866               size_t case_count);
    867   void Return(Node* value);
    868   void Return(Node* v1, Node* v2);
    869   void Return(Node* v1, Node* v2, Node* v3);
    870   void Return(Node* v1, Node* v2, Node* v3, Node* v4);
    871   void Return(int count, Node* v[]);
    872   void PopAndReturn(Node* pop, Node* value);
    873   void PopAndReturn(Node* pop, Node* v1, Node* v2);
    874   void PopAndReturn(Node* pop, Node* v1, Node* v2, Node* v3);
    875   void PopAndReturn(Node* pop, Node* v1, Node* v2, Node* v3, Node* v4);
    876   void Bind(RawMachineLabel* label);
    877   void Deoptimize(Node* state);
    878   void DebugAbort(Node* message);
    879   void DebugBreak();
    880   void Unreachable();
    881   void Comment(const char* msg);
    882 
    883 #if DEBUG
    884   void Bind(RawMachineLabel* label, AssemblerDebugInfo info);
    885   void SetInitialDebugInformation(AssemblerDebugInfo info);
    886   void PrintCurrentBlock(std::ostream& os);
    887   bool InsideBlock();
    888 #endif  // DEBUG
    889 
    890   // Add success / exception successor blocks and ends the current block ending
    891   // in a potentially throwing call node.
    892   void Continuations(Node* call, RawMachineLabel* if_success,
    893                      RawMachineLabel* if_exception);
    894 
    895   // Variables.
    896   Node* Phi(MachineRepresentation rep, Node* n1, Node* n2) {
    897     return AddNode(common()->Phi(rep, 2), n1, n2, graph()->start());
    898   }
    899   Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3) {
    900     return AddNode(common()->Phi(rep, 3), n1, n2, n3, graph()->start());
    901   }
    902   Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3, Node* n4) {
    903     return AddNode(common()->Phi(rep, 4), n1, n2, n3, n4, graph()->start());
    904   }
    905   Node* Phi(MachineRepresentation rep, int input_count, Node* const* inputs);
    906   void AppendPhiInput(Node* phi, Node* new_input);
    907 
    908   // ===========================================================================
    909   // The following generic node creation methods can be used for operators that
    910   // are not covered by the above utility methods. There should rarely be a need
    911   // to do that outside of testing though.
    912 
    913   Node* AddNode(const Operator* op, int input_count, Node* const* inputs);
    914 
    915   Node* AddNode(const Operator* op) {
    916     return AddNode(op, 0, static_cast<Node* const*>(nullptr));
    917   }
    918 
    919   template <class... TArgs>
    920   Node* AddNode(const Operator* op, Node* n1, TArgs... args) {
    921     Node* buffer[] = {n1, args...};
    922     return AddNode(op, sizeof...(args) + 1, buffer);
    923   }
    924 
    925  private:
    926   Node* MakeNode(const Operator* op, int input_count, Node* const* inputs);
    927   BasicBlock* Use(RawMachineLabel* label);
    928   BasicBlock* EnsureBlock(RawMachineLabel* label);
    929   BasicBlock* CurrentBlock();
    930 
    931   Schedule* schedule() { return schedule_; }
    932   size_t parameter_count() const { return call_descriptor_->ParameterCount(); }
    933 
    934   Isolate* isolate_;
    935   Graph* graph_;
    936   Schedule* schedule_;
    937   MachineOperatorBuilder machine_;
    938   CommonOperatorBuilder common_;
    939   CallDescriptor* call_descriptor_;
    940   Node* target_parameter_;
    941   NodeVector parameters_;
    942   BasicBlock* current_block_;
    943   PoisoningMitigationLevel poisoning_level_;
    944 
    945   DISALLOW_COPY_AND_ASSIGN(RawMachineAssembler);
    946 };
    947 
    948 class V8_EXPORT_PRIVATE RawMachineLabel final {
    949  public:
    950   enum Type { kDeferred, kNonDeferred };
    951 
    952   explicit RawMachineLabel(Type type = kNonDeferred)
    953       : deferred_(type == kDeferred) {}
    954   ~RawMachineLabel();
    955 
    956   BasicBlock* block() const { return block_; }
    957 
    958  private:
    959   BasicBlock* block_ = nullptr;
    960   bool used_ = false;
    961   bool bound_ = false;
    962   bool deferred_;
    963   friend class RawMachineAssembler;
    964   DISALLOW_COPY_AND_ASSIGN(RawMachineLabel);
    965 };
    966 
    967 }  // namespace compiler
    968 }  // namespace internal
    969 }  // namespace v8
    970 
    971 #endif  // V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
    972