1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_COMPILER_OPTIMIZING_NODES_H_ 18 #define ART_COMPILER_OPTIMIZING_NODES_H_ 19 20 #include <algorithm> 21 #include <array> 22 #include <type_traits> 23 24 #include "base/arena_bit_vector.h" 25 #include "base/arena_containers.h" 26 #include "base/arena_object.h" 27 #include "base/array_ref.h" 28 #include "base/iteration_range.h" 29 #include "base/mutex.h" 30 #include "base/quasi_atomic.h" 31 #include "base/stl_util.h" 32 #include "base/transform_array_ref.h" 33 #include "art_method.h" 34 #include "data_type.h" 35 #include "deoptimization_kind.h" 36 #include "dex/dex_file.h" 37 #include "dex/dex_file_types.h" 38 #include "dex/invoke_type.h" 39 #include "dex/method_reference.h" 40 #include "entrypoints/quick/quick_entrypoints_enum.h" 41 #include "handle.h" 42 #include "handle_scope.h" 43 #include "intrinsics_enum.h" 44 #include "locations.h" 45 #include "mirror/class.h" 46 #include "mirror/method_type.h" 47 #include "offsets.h" 48 #include "utils/intrusive_forward_list.h" 49 50 namespace art { 51 52 class ArenaStack; 53 class GraphChecker; 54 class HBasicBlock; 55 class HConstructorFence; 56 class HCurrentMethod; 57 class HDoubleConstant; 58 class HEnvironment; 59 class HFloatConstant; 60 class HGraphBuilder; 61 class HGraphVisitor; 62 class HInstruction; 63 class HIntConstant; 64 class HInvoke; 65 class HLongConstant; 66 class HNullConstant; 67 class HParameterValue; 68 class HPhi; 69 class HSuspendCheck; 70 class HTryBoundary; 71 class LiveInterval; 72 class LocationSummary; 73 class SlowPathCode; 74 class SsaBuilder; 75 76 namespace mirror { 77 class DexCache; 78 } // namespace mirror 79 80 static const int kDefaultNumberOfBlocks = 8; 81 static const int kDefaultNumberOfSuccessors = 2; 82 static const int kDefaultNumberOfPredecessors = 2; 83 static const int kDefaultNumberOfExceptionalPredecessors = 0; 84 static const int kDefaultNumberOfDominatedBlocks = 1; 85 static const int kDefaultNumberOfBackEdges = 1; 86 87 // The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation. 88 static constexpr int32_t kMaxIntShiftDistance = 0x1f; 89 // The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation. 90 static constexpr int32_t kMaxLongShiftDistance = 0x3f; 91 92 static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1); 93 static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1); 94 95 static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1); 96 97 static constexpr uint32_t kNoDexPc = -1; 98 99 inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) { 100 // For the purposes of the compiler, the dex files must actually be the same object 101 // if we want to safely treat them as the same. This is especially important for JIT 102 // as custom class loaders can open the same underlying file (or memory) multiple 103 // times and provide different class resolution but no two class loaders should ever 104 // use the same DexFile object - doing so is an unsupported hack that can lead to 105 // all sorts of weird failures. 106 return &lhs == &rhs; 107 } 108 109 enum IfCondition { 110 // All types. 111 kCondEQ, // == 112 kCondNE, // != 113 // Signed integers and floating-point numbers. 114 kCondLT, // < 115 kCondLE, // <= 116 kCondGT, // > 117 kCondGE, // >= 118 // Unsigned integers. 119 kCondB, // < 120 kCondBE, // <= 121 kCondA, // > 122 kCondAE, // >= 123 // First and last aliases. 124 kCondFirst = kCondEQ, 125 kCondLast = kCondAE, 126 }; 127 128 enum GraphAnalysisResult { 129 kAnalysisSkipped, 130 kAnalysisInvalidBytecode, 131 kAnalysisFailThrowCatchLoop, 132 kAnalysisFailAmbiguousArrayOp, 133 kAnalysisFailIrreducibleLoopAndStringInit, 134 kAnalysisSuccess, 135 }; 136 137 template <typename T> 138 static inline typename std::make_unsigned<T>::type MakeUnsigned(T x) { 139 return static_cast<typename std::make_unsigned<T>::type>(x); 140 } 141 142 class HInstructionList : public ValueObject { 143 public: 144 HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {} 145 146 void AddInstruction(HInstruction* instruction); 147 void RemoveInstruction(HInstruction* instruction); 148 149 // Insert `instruction` before/after an existing instruction `cursor`. 150 void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); 151 void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); 152 153 // Return true if this list contains `instruction`. 154 bool Contains(HInstruction* instruction) const; 155 156 // Return true if `instruction1` is found before `instruction2` in 157 // this instruction list and false otherwise. Abort if none 158 // of these instructions is found. 159 bool FoundBefore(const HInstruction* instruction1, 160 const HInstruction* instruction2) const; 161 162 bool IsEmpty() const { return first_instruction_ == nullptr; } 163 void Clear() { first_instruction_ = last_instruction_ = nullptr; } 164 165 // Update the block of all instructions to be `block`. 166 void SetBlockOfInstructions(HBasicBlock* block) const; 167 168 void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list); 169 void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list); 170 void Add(const HInstructionList& instruction_list); 171 172 // Return the number of instructions in the list. This is an expensive operation. 173 size_t CountSize() const; 174 175 private: 176 HInstruction* first_instruction_; 177 HInstruction* last_instruction_; 178 179 friend class HBasicBlock; 180 friend class HGraph; 181 friend class HInstruction; 182 friend class HInstructionIterator; 183 friend class HInstructionIteratorHandleChanges; 184 friend class HBackwardInstructionIterator; 185 186 DISALLOW_COPY_AND_ASSIGN(HInstructionList); 187 }; 188 189 class ReferenceTypeInfo : ValueObject { 190 public: 191 typedef Handle<mirror::Class> TypeHandle; 192 193 static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact); 194 195 static ReferenceTypeInfo Create(TypeHandle type_handle) REQUIRES_SHARED(Locks::mutator_lock_) { 196 return Create(type_handle, type_handle->CannotBeAssignedFromOtherTypes()); 197 } 198 199 static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) { 200 return ReferenceTypeInfo(type_handle, is_exact); 201 } 202 203 static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); } 204 205 static bool IsValidHandle(TypeHandle handle) { 206 return handle.GetReference() != nullptr; 207 } 208 209 bool IsValid() const { 210 return IsValidHandle(type_handle_); 211 } 212 213 bool IsExact() const { return is_exact_; } 214 215 bool IsObjectClass() const REQUIRES_SHARED(Locks::mutator_lock_) { 216 DCHECK(IsValid()); 217 return GetTypeHandle()->IsObjectClass(); 218 } 219 220 bool IsStringClass() const REQUIRES_SHARED(Locks::mutator_lock_) { 221 DCHECK(IsValid()); 222 return GetTypeHandle()->IsStringClass(); 223 } 224 225 bool IsObjectArray() const REQUIRES_SHARED(Locks::mutator_lock_) { 226 DCHECK(IsValid()); 227 return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass(); 228 } 229 230 bool IsInterface() const REQUIRES_SHARED(Locks::mutator_lock_) { 231 DCHECK(IsValid()); 232 return GetTypeHandle()->IsInterface(); 233 } 234 235 bool IsArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) { 236 DCHECK(IsValid()); 237 return GetTypeHandle()->IsArrayClass(); 238 } 239 240 bool IsPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) { 241 DCHECK(IsValid()); 242 return GetTypeHandle()->IsPrimitiveArray(); 243 } 244 245 bool IsNonPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) { 246 DCHECK(IsValid()); 247 return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray(); 248 } 249 250 bool CanArrayHold(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { 251 DCHECK(IsValid()); 252 if (!IsExact()) return false; 253 if (!IsArrayClass()) return false; 254 return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get()); 255 } 256 257 bool CanArrayHoldValuesOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { 258 DCHECK(IsValid()); 259 if (!IsExact()) return false; 260 if (!IsArrayClass()) return false; 261 if (!rti.IsArrayClass()) return false; 262 return GetTypeHandle()->GetComponentType()->IsAssignableFrom( 263 rti.GetTypeHandle()->GetComponentType()); 264 } 265 266 Handle<mirror::Class> GetTypeHandle() const { return type_handle_; } 267 268 bool IsSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { 269 DCHECK(IsValid()); 270 DCHECK(rti.IsValid()); 271 return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get()); 272 } 273 274 bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { 275 DCHECK(IsValid()); 276 DCHECK(rti.IsValid()); 277 return GetTypeHandle().Get() != rti.GetTypeHandle().Get() && 278 GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get()); 279 } 280 281 // Returns true if the type information provide the same amount of details. 282 // Note that it does not mean that the instructions have the same actual type 283 // (because the type can be the result of a merge). 284 bool IsEqual(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { 285 if (!IsValid() && !rti.IsValid()) { 286 // Invalid types are equal. 287 return true; 288 } 289 if (!IsValid() || !rti.IsValid()) { 290 // One is valid, the other not. 291 return false; 292 } 293 return IsExact() == rti.IsExact() 294 && GetTypeHandle().Get() == rti.GetTypeHandle().Get(); 295 } 296 297 private: 298 ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {} 299 ReferenceTypeInfo(TypeHandle type_handle, bool is_exact) 300 : type_handle_(type_handle), is_exact_(is_exact) { } 301 302 // The class of the object. 303 TypeHandle type_handle_; 304 // Whether or not the type is exact or a superclass of the actual type. 305 // Whether or not we have any information about this type. 306 bool is_exact_; 307 }; 308 309 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs); 310 311 // Control-flow graph of a method. Contains a list of basic blocks. 312 class HGraph : public ArenaObject<kArenaAllocGraph> { 313 public: 314 HGraph(ArenaAllocator* allocator, 315 ArenaStack* arena_stack, 316 const DexFile& dex_file, 317 uint32_t method_idx, 318 InstructionSet instruction_set, 319 InvokeType invoke_type = kInvalidInvokeType, 320 bool dead_reference_safe = false, 321 bool debuggable = false, 322 bool osr = false, 323 int start_instruction_id = 0) 324 : allocator_(allocator), 325 arena_stack_(arena_stack), 326 blocks_(allocator->Adapter(kArenaAllocBlockList)), 327 reverse_post_order_(allocator->Adapter(kArenaAllocReversePostOrder)), 328 linear_order_(allocator->Adapter(kArenaAllocLinearOrder)), 329 entry_block_(nullptr), 330 exit_block_(nullptr), 331 maximum_number_of_out_vregs_(0), 332 number_of_vregs_(0), 333 number_of_in_vregs_(0), 334 temporaries_vreg_slots_(0), 335 has_bounds_checks_(false), 336 has_try_catch_(false), 337 has_simd_(false), 338 has_loops_(false), 339 has_irreducible_loops_(false), 340 dead_reference_safe_(dead_reference_safe), 341 debuggable_(debuggable), 342 current_instruction_id_(start_instruction_id), 343 dex_file_(dex_file), 344 method_idx_(method_idx), 345 invoke_type_(invoke_type), 346 in_ssa_form_(false), 347 number_of_cha_guards_(0), 348 instruction_set_(instruction_set), 349 cached_null_constant_(nullptr), 350 cached_int_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)), 351 cached_float_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)), 352 cached_long_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)), 353 cached_double_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)), 354 cached_current_method_(nullptr), 355 art_method_(nullptr), 356 inexact_object_rti_(ReferenceTypeInfo::CreateInvalid()), 357 osr_(osr), 358 cha_single_implementation_list_(allocator->Adapter(kArenaAllocCHA)) { 359 blocks_.reserve(kDefaultNumberOfBlocks); 360 } 361 362 // Acquires and stores RTI of inexact Object to be used when creating HNullConstant. 363 void InitializeInexactObjectRTI(VariableSizedHandleScope* handles); 364 365 ArenaAllocator* GetAllocator() const { return allocator_; } 366 ArenaStack* GetArenaStack() const { return arena_stack_; } 367 const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; } 368 369 bool IsInSsaForm() const { return in_ssa_form_; } 370 void SetInSsaForm() { in_ssa_form_ = true; } 371 372 HBasicBlock* GetEntryBlock() const { return entry_block_; } 373 HBasicBlock* GetExitBlock() const { return exit_block_; } 374 bool HasExitBlock() const { return exit_block_ != nullptr; } 375 376 void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; } 377 void SetExitBlock(HBasicBlock* block) { exit_block_ = block; } 378 379 void AddBlock(HBasicBlock* block); 380 381 void ComputeDominanceInformation(); 382 void ClearDominanceInformation(); 383 void ClearLoopInformation(); 384 void FindBackEdges(ArenaBitVector* visited); 385 GraphAnalysisResult BuildDominatorTree(); 386 void SimplifyCFG(); 387 void SimplifyCatchBlocks(); 388 389 // Analyze all natural loops in this graph. Returns a code specifying that it 390 // was successful or the reason for failure. The method will fail if a loop 391 // is a throw-catch loop, i.e. the header is a catch block. 392 GraphAnalysisResult AnalyzeLoops() const; 393 394 // Iterate over blocks to compute try block membership. Needs reverse post 395 // order and loop information. 396 void ComputeTryBlockInformation(); 397 398 // Inline this graph in `outer_graph`, replacing the given `invoke` instruction. 399 // Returns the instruction to replace the invoke expression or null if the 400 // invoke is for a void method. Note that the caller is responsible for replacing 401 // and removing the invoke instruction. 402 HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke); 403 404 // Update the loop and try membership of `block`, which was spawned from `reference`. 405 // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block` 406 // should be the new back edge. 407 void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block, 408 HBasicBlock* reference, 409 bool replace_if_back_edge); 410 411 // Need to add a couple of blocks to test if the loop body is entered and 412 // put deoptimization instructions, etc. 413 void TransformLoopHeaderForBCE(HBasicBlock* header); 414 415 // Adds a new loop directly after the loop with the given header and exit. 416 // Returns the new preheader. 417 HBasicBlock* TransformLoopForVectorization(HBasicBlock* header, 418 HBasicBlock* body, 419 HBasicBlock* exit); 420 421 // Removes `block` from the graph. Assumes `block` has been disconnected from 422 // other blocks and has no instructions or phis. 423 void DeleteDeadEmptyBlock(HBasicBlock* block); 424 425 // Splits the edge between `block` and `successor` while preserving the 426 // indices in the predecessor/successor lists. If there are multiple edges 427 // between the blocks, the lowest indices are used. 428 // Returns the new block which is empty and has the same dex pc as `successor`. 429 HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor); 430 431 void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor); 432 void OrderLoopHeaderPredecessors(HBasicBlock* header); 433 434 // Transform a loop into a format with a single preheader. 435 // 436 // Each phi in the header should be split: original one in the header should only hold 437 // inputs reachable from the back edges and a single input from the preheader. The newly created 438 // phi in the preheader should collate the inputs from the original multiple incoming blocks. 439 // 440 // Loops in the graph typically have a single preheader, so this method is used to "repair" loops 441 // that no longer have this property. 442 void TransformLoopToSinglePreheaderFormat(HBasicBlock* header); 443 444 void SimplifyLoop(HBasicBlock* header); 445 446 int32_t GetNextInstructionId() { 447 CHECK_NE(current_instruction_id_, INT32_MAX); 448 return current_instruction_id_++; 449 } 450 451 int32_t GetCurrentInstructionId() const { 452 return current_instruction_id_; 453 } 454 455 void SetCurrentInstructionId(int32_t id) { 456 CHECK_GE(id, current_instruction_id_); 457 current_instruction_id_ = id; 458 } 459 460 uint16_t GetMaximumNumberOfOutVRegs() const { 461 return maximum_number_of_out_vregs_; 462 } 463 464 void SetMaximumNumberOfOutVRegs(uint16_t new_value) { 465 maximum_number_of_out_vregs_ = new_value; 466 } 467 468 void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) { 469 maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value); 470 } 471 472 void UpdateTemporariesVRegSlots(size_t slots) { 473 temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_); 474 } 475 476 size_t GetTemporariesVRegSlots() const { 477 DCHECK(!in_ssa_form_); 478 return temporaries_vreg_slots_; 479 } 480 481 void SetNumberOfVRegs(uint16_t number_of_vregs) { 482 number_of_vregs_ = number_of_vregs; 483 } 484 485 uint16_t GetNumberOfVRegs() const { 486 return number_of_vregs_; 487 } 488 489 void SetNumberOfInVRegs(uint16_t value) { 490 number_of_in_vregs_ = value; 491 } 492 493 uint16_t GetNumberOfInVRegs() const { 494 return number_of_in_vregs_; 495 } 496 497 uint16_t GetNumberOfLocalVRegs() const { 498 DCHECK(!in_ssa_form_); 499 return number_of_vregs_ - number_of_in_vregs_; 500 } 501 502 const ArenaVector<HBasicBlock*>& GetReversePostOrder() const { 503 return reverse_post_order_; 504 } 505 506 ArrayRef<HBasicBlock* const> GetReversePostOrderSkipEntryBlock() { 507 DCHECK(GetReversePostOrder()[0] == entry_block_); 508 return ArrayRef<HBasicBlock* const>(GetReversePostOrder()).SubArray(1); 509 } 510 511 IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetPostOrder() const { 512 return ReverseRange(GetReversePostOrder()); 513 } 514 515 const ArenaVector<HBasicBlock*>& GetLinearOrder() const { 516 return linear_order_; 517 } 518 519 IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetLinearPostOrder() const { 520 return ReverseRange(GetLinearOrder()); 521 } 522 523 bool HasBoundsChecks() const { 524 return has_bounds_checks_; 525 } 526 527 void SetHasBoundsChecks(bool value) { 528 has_bounds_checks_ = value; 529 } 530 531 // Is the code known to be robust against eliminating dead references 532 // and the effects of early finalization? 533 bool IsDeadReferenceSafe() const { return dead_reference_safe_; } 534 535 void MarkDeadReferenceUnsafe() { dead_reference_safe_ = false; } 536 537 bool IsDebuggable() const { return debuggable_; } 538 539 // Returns a constant of the given type and value. If it does not exist 540 // already, it is created and inserted into the graph. This method is only for 541 // integral types. 542 HConstant* GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc = kNoDexPc); 543 544 // TODO: This is problematic for the consistency of reference type propagation 545 // because it can be created anytime after the pass and thus it will be left 546 // with an invalid type. 547 HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc); 548 549 HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) { 550 return CreateConstant(value, &cached_int_constants_, dex_pc); 551 } 552 HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) { 553 return CreateConstant(value, &cached_long_constants_, dex_pc); 554 } 555 HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) { 556 return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc); 557 } 558 HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) { 559 return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc); 560 } 561 562 HCurrentMethod* GetCurrentMethod(); 563 564 const DexFile& GetDexFile() const { 565 return dex_file_; 566 } 567 568 uint32_t GetMethodIdx() const { 569 return method_idx_; 570 } 571 572 // Get the method name (without the signature), e.g. "<init>" 573 const char* GetMethodName() const; 574 575 // Get the pretty method name (class + name + optionally signature). 576 std::string PrettyMethod(bool with_signature = true) const; 577 578 InvokeType GetInvokeType() const { 579 return invoke_type_; 580 } 581 582 InstructionSet GetInstructionSet() const { 583 return instruction_set_; 584 } 585 586 bool IsCompilingOsr() const { return osr_; } 587 588 ArenaSet<ArtMethod*>& GetCHASingleImplementationList() { 589 return cha_single_implementation_list_; 590 } 591 592 void AddCHASingleImplementationDependency(ArtMethod* method) { 593 cha_single_implementation_list_.insert(method); 594 } 595 596 bool HasShouldDeoptimizeFlag() const { 597 return number_of_cha_guards_ != 0; 598 } 599 600 bool HasTryCatch() const { return has_try_catch_; } 601 void SetHasTryCatch(bool value) { has_try_catch_ = value; } 602 603 bool HasSIMD() const { return has_simd_; } 604 void SetHasSIMD(bool value) { has_simd_ = value; } 605 606 bool HasLoops() const { return has_loops_; } 607 void SetHasLoops(bool value) { has_loops_ = value; } 608 609 bool HasIrreducibleLoops() const { return has_irreducible_loops_; } 610 void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; } 611 612 ArtMethod* GetArtMethod() const { return art_method_; } 613 void SetArtMethod(ArtMethod* method) { art_method_ = method; } 614 615 // Returns an instruction with the opposite Boolean value from 'cond'. 616 // The instruction has been inserted into the graph, either as a constant, or 617 // before cursor. 618 HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor); 619 620 ReferenceTypeInfo GetInexactObjectRti() const { return inexact_object_rti_; } 621 622 uint32_t GetNumberOfCHAGuards() { return number_of_cha_guards_; } 623 void SetNumberOfCHAGuards(uint32_t num) { number_of_cha_guards_ = num; } 624 void IncrementNumberOfCHAGuards() { number_of_cha_guards_++; } 625 626 private: 627 void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const; 628 void RemoveDeadBlocks(const ArenaBitVector& visited); 629 630 template <class InstructionType, typename ValueType> 631 InstructionType* CreateConstant(ValueType value, 632 ArenaSafeMap<ValueType, InstructionType*>* cache, 633 uint32_t dex_pc = kNoDexPc) { 634 // Try to find an existing constant of the given value. 635 InstructionType* constant = nullptr; 636 auto cached_constant = cache->find(value); 637 if (cached_constant != cache->end()) { 638 constant = cached_constant->second; 639 } 640 641 // If not found or previously deleted, create and cache a new instruction. 642 // Don't bother reviving a previously deleted instruction, for simplicity. 643 if (constant == nullptr || constant->GetBlock() == nullptr) { 644 constant = new (allocator_) InstructionType(value, dex_pc); 645 cache->Overwrite(value, constant); 646 InsertConstant(constant); 647 } 648 return constant; 649 } 650 651 void InsertConstant(HConstant* instruction); 652 653 // Cache a float constant into the graph. This method should only be 654 // called by the SsaBuilder when creating "equivalent" instructions. 655 void CacheFloatConstant(HFloatConstant* constant); 656 657 // See CacheFloatConstant comment. 658 void CacheDoubleConstant(HDoubleConstant* constant); 659 660 ArenaAllocator* const allocator_; 661 ArenaStack* const arena_stack_; 662 663 // List of blocks in insertion order. 664 ArenaVector<HBasicBlock*> blocks_; 665 666 // List of blocks to perform a reverse post order tree traversal. 667 ArenaVector<HBasicBlock*> reverse_post_order_; 668 669 // List of blocks to perform a linear order tree traversal. Unlike the reverse 670 // post order, this order is not incrementally kept up-to-date. 671 ArenaVector<HBasicBlock*> linear_order_; 672 673 HBasicBlock* entry_block_; 674 HBasicBlock* exit_block_; 675 676 // The maximum number of virtual registers arguments passed to a HInvoke in this graph. 677 uint16_t maximum_number_of_out_vregs_; 678 679 // The number of virtual registers in this method. Contains the parameters. 680 uint16_t number_of_vregs_; 681 682 // The number of virtual registers used by parameters of this method. 683 uint16_t number_of_in_vregs_; 684 685 // Number of vreg size slots that the temporaries use (used in baseline compiler). 686 size_t temporaries_vreg_slots_; 687 688 // Flag whether there are bounds checks in the graph. We can skip 689 // BCE if it's false. It's only best effort to keep it up to date in 690 // the presence of code elimination so there might be false positives. 691 bool has_bounds_checks_; 692 693 // Flag whether there are try/catch blocks in the graph. We will skip 694 // try/catch-related passes if it's false. It's only best effort to keep 695 // it up to date in the presence of code elimination so there might be 696 // false positives. 697 bool has_try_catch_; 698 699 // Flag whether SIMD instructions appear in the graph. If true, the 700 // code generators may have to be more careful spilling the wider 701 // contents of SIMD registers. 702 bool has_simd_; 703 704 // Flag whether there are any loops in the graph. We can skip loop 705 // optimization if it's false. It's only best effort to keep it up 706 // to date in the presence of code elimination so there might be false 707 // positives. 708 bool has_loops_; 709 710 // Flag whether there are any irreducible loops in the graph. It's only 711 // best effort to keep it up to date in the presence of code elimination 712 // so there might be false positives. 713 bool has_irreducible_loops_; 714 715 // Is the code known to be robust against eliminating dead references 716 // and the effects of early finalization? If false, dead reference variables 717 // are kept if they might be visible to the garbage collector. 718 // Currently this means that the class was declared to be dead-reference-safe, 719 // the method accesses no reachability-sensitive fields or data, and the same 720 // is true for any methods that were inlined into the current one. 721 bool dead_reference_safe_; 722 723 // Indicates whether the graph should be compiled in a way that 724 // ensures full debuggability. If false, we can apply more 725 // aggressive optimizations that may limit the level of debugging. 726 const bool debuggable_; 727 728 // The current id to assign to a newly added instruction. See HInstruction.id_. 729 int32_t current_instruction_id_; 730 731 // The dex file from which the method is from. 732 const DexFile& dex_file_; 733 734 // The method index in the dex file. 735 const uint32_t method_idx_; 736 737 // If inlined, this encodes how the callee is being invoked. 738 const InvokeType invoke_type_; 739 740 // Whether the graph has been transformed to SSA form. Only used 741 // in debug mode to ensure we are not using properties only valid 742 // for non-SSA form (like the number of temporaries). 743 bool in_ssa_form_; 744 745 // Number of CHA guards in the graph. Used to short-circuit the 746 // CHA guard optimization pass when there is no CHA guard left. 747 uint32_t number_of_cha_guards_; 748 749 const InstructionSet instruction_set_; 750 751 // Cached constants. 752 HNullConstant* cached_null_constant_; 753 ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_; 754 ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_; 755 ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_; 756 ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_; 757 758 HCurrentMethod* cached_current_method_; 759 760 // The ArtMethod this graph is for. Note that for AOT, it may be null, 761 // for example for methods whose declaring class could not be resolved 762 // (such as when the superclass could not be found). 763 ArtMethod* art_method_; 764 765 // Keep the RTI of inexact Object to avoid having to pass stack handle 766 // collection pointer to passes which may create NullConstant. 767 ReferenceTypeInfo inexact_object_rti_; 768 769 // Whether we are compiling this graph for on stack replacement: this will 770 // make all loops seen as irreducible and emit special stack maps to mark 771 // compiled code entries which the interpreter can directly jump to. 772 const bool osr_; 773 774 // List of methods that are assumed to have single implementation. 775 ArenaSet<ArtMethod*> cha_single_implementation_list_; 776 777 friend class SsaBuilder; // For caching constants. 778 friend class SsaLivenessAnalysis; // For the linear order. 779 friend class HInliner; // For the reverse post order. 780 ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1); 781 DISALLOW_COPY_AND_ASSIGN(HGraph); 782 }; 783 784 class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> { 785 public: 786 HLoopInformation(HBasicBlock* header, HGraph* graph) 787 : header_(header), 788 suspend_check_(nullptr), 789 irreducible_(false), 790 contains_irreducible_loop_(false), 791 back_edges_(graph->GetAllocator()->Adapter(kArenaAllocLoopInfoBackEdges)), 792 // Make bit vector growable, as the number of blocks may change. 793 blocks_(graph->GetAllocator(), 794 graph->GetBlocks().size(), 795 true, 796 kArenaAllocLoopInfoBackEdges) { 797 back_edges_.reserve(kDefaultNumberOfBackEdges); 798 } 799 800 bool IsIrreducible() const { return irreducible_; } 801 bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; } 802 803 void Dump(std::ostream& os); 804 805 HBasicBlock* GetHeader() const { 806 return header_; 807 } 808 809 void SetHeader(HBasicBlock* block) { 810 header_ = block; 811 } 812 813 HSuspendCheck* GetSuspendCheck() const { return suspend_check_; } 814 void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; } 815 bool HasSuspendCheck() const { return suspend_check_ != nullptr; } 816 817 void AddBackEdge(HBasicBlock* back_edge) { 818 back_edges_.push_back(back_edge); 819 } 820 821 void RemoveBackEdge(HBasicBlock* back_edge) { 822 RemoveElement(back_edges_, back_edge); 823 } 824 825 bool IsBackEdge(const HBasicBlock& block) const { 826 return ContainsElement(back_edges_, &block); 827 } 828 829 size_t NumberOfBackEdges() const { 830 return back_edges_.size(); 831 } 832 833 HBasicBlock* GetPreHeader() const; 834 835 const ArenaVector<HBasicBlock*>& GetBackEdges() const { 836 return back_edges_; 837 } 838 839 // Returns the lifetime position of the back edge that has the 840 // greatest lifetime position. 841 size_t GetLifetimeEnd() const; 842 843 void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) { 844 ReplaceElement(back_edges_, existing, new_back_edge); 845 } 846 847 // Finds blocks that are part of this loop. 848 void Populate(); 849 850 // Updates blocks population of the loop and all of its outer' ones recursively after the 851 // population of the inner loop is updated. 852 void PopulateInnerLoopUpwards(HLoopInformation* inner_loop); 853 854 // Returns whether this loop information contains `block`. 855 // Note that this loop information *must* be populated before entering this function. 856 bool Contains(const HBasicBlock& block) const; 857 858 // Returns whether this loop information is an inner loop of `other`. 859 // Note that `other` *must* be populated before entering this function. 860 bool IsIn(const HLoopInformation& other) const; 861 862 // Returns true if instruction is not defined within this loop. 863 bool IsDefinedOutOfTheLoop(HInstruction* instruction) const; 864 865 const ArenaBitVector& GetBlocks() const { return blocks_; } 866 867 void Add(HBasicBlock* block); 868 void Remove(HBasicBlock* block); 869 870 void ClearAllBlocks() { 871 blocks_.ClearAllBits(); 872 } 873 874 bool HasBackEdgeNotDominatedByHeader() const; 875 876 bool IsPopulated() const { 877 return blocks_.GetHighestBitSet() != -1; 878 } 879 880 bool DominatesAllBackEdges(HBasicBlock* block); 881 882 bool HasExitEdge() const; 883 884 // Resets back edge and blocks-in-loop data. 885 void ResetBasicBlockData() { 886 back_edges_.clear(); 887 ClearAllBlocks(); 888 } 889 890 private: 891 // Internal recursive implementation of `Populate`. 892 void PopulateRecursive(HBasicBlock* block); 893 void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized); 894 895 HBasicBlock* header_; 896 HSuspendCheck* suspend_check_; 897 bool irreducible_; 898 bool contains_irreducible_loop_; 899 ArenaVector<HBasicBlock*> back_edges_; 900 ArenaBitVector blocks_; 901 902 DISALLOW_COPY_AND_ASSIGN(HLoopInformation); 903 }; 904 905 // Stores try/catch information for basic blocks. 906 // Note that HGraph is constructed so that catch blocks cannot simultaneously 907 // be try blocks. 908 class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> { 909 public: 910 // Try block information constructor. 911 explicit TryCatchInformation(const HTryBoundary& try_entry) 912 : try_entry_(&try_entry), 913 catch_dex_file_(nullptr), 914 catch_type_index_(dex::TypeIndex::Invalid()) { 915 DCHECK(try_entry_ != nullptr); 916 } 917 918 // Catch block information constructor. 919 TryCatchInformation(dex::TypeIndex catch_type_index, const DexFile& dex_file) 920 : try_entry_(nullptr), 921 catch_dex_file_(&dex_file), 922 catch_type_index_(catch_type_index) {} 923 924 bool IsTryBlock() const { return try_entry_ != nullptr; } 925 926 const HTryBoundary& GetTryEntry() const { 927 DCHECK(IsTryBlock()); 928 return *try_entry_; 929 } 930 931 bool IsCatchBlock() const { return catch_dex_file_ != nullptr; } 932 933 bool IsValidTypeIndex() const { 934 DCHECK(IsCatchBlock()); 935 return catch_type_index_.IsValid(); 936 } 937 938 dex::TypeIndex GetCatchTypeIndex() const { 939 DCHECK(IsCatchBlock()); 940 return catch_type_index_; 941 } 942 943 const DexFile& GetCatchDexFile() const { 944 DCHECK(IsCatchBlock()); 945 return *catch_dex_file_; 946 } 947 948 void SetInvalidTypeIndex() { 949 catch_type_index_ = dex::TypeIndex::Invalid(); 950 } 951 952 private: 953 // One of possibly several TryBoundary instructions entering the block's try. 954 // Only set for try blocks. 955 const HTryBoundary* try_entry_; 956 957 // Exception type information. Only set for catch blocks. 958 const DexFile* catch_dex_file_; 959 dex::TypeIndex catch_type_index_; 960 }; 961 962 static constexpr size_t kNoLifetime = -1; 963 static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1); 964 965 // A block in a method. Contains the list of instructions represented 966 // as a double linked list. Each block knows its predecessors and 967 // successors. 968 969 class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> { 970 public: 971 explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc) 972 : graph_(graph), 973 predecessors_(graph->GetAllocator()->Adapter(kArenaAllocPredecessors)), 974 successors_(graph->GetAllocator()->Adapter(kArenaAllocSuccessors)), 975 loop_information_(nullptr), 976 dominator_(nullptr), 977 dominated_blocks_(graph->GetAllocator()->Adapter(kArenaAllocDominated)), 978 block_id_(kInvalidBlockId), 979 dex_pc_(dex_pc), 980 lifetime_start_(kNoLifetime), 981 lifetime_end_(kNoLifetime), 982 try_catch_information_(nullptr) { 983 predecessors_.reserve(kDefaultNumberOfPredecessors); 984 successors_.reserve(kDefaultNumberOfSuccessors); 985 dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks); 986 } 987 988 const ArenaVector<HBasicBlock*>& GetPredecessors() const { 989 return predecessors_; 990 } 991 992 const ArenaVector<HBasicBlock*>& GetSuccessors() const { 993 return successors_; 994 } 995 996 ArrayRef<HBasicBlock* const> GetNormalSuccessors() const; 997 ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const; 998 999 bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) { 1000 return ContainsElement(successors_, block, start_from); 1001 } 1002 1003 const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const { 1004 return dominated_blocks_; 1005 } 1006 1007 bool IsEntryBlock() const { 1008 return graph_->GetEntryBlock() == this; 1009 } 1010 1011 bool IsExitBlock() const { 1012 return graph_->GetExitBlock() == this; 1013 } 1014 1015 bool IsSingleGoto() const; 1016 bool IsSingleReturn() const; 1017 bool IsSingleReturnOrReturnVoidAllowingPhis() const; 1018 bool IsSingleTryBoundary() const; 1019 1020 // Returns true if this block emits nothing but a jump. 1021 bool IsSingleJump() const { 1022 HLoopInformation* loop_info = GetLoopInformation(); 1023 return (IsSingleGoto() || IsSingleTryBoundary()) 1024 // Back edges generate a suspend check. 1025 && (loop_info == nullptr || !loop_info->IsBackEdge(*this)); 1026 } 1027 1028 void AddBackEdge(HBasicBlock* back_edge) { 1029 if (loop_information_ == nullptr) { 1030 loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_); 1031 } 1032 DCHECK_EQ(loop_information_->GetHeader(), this); 1033 loop_information_->AddBackEdge(back_edge); 1034 } 1035 1036 // Registers a back edge; if the block was not a loop header before the call associates a newly 1037 // created loop info with it. 1038 // 1039 // Used in SuperblockCloner to preserve LoopInformation object instead of reseting loop 1040 // info for all blocks during back edges recalculation. 1041 void AddBackEdgeWhileUpdating(HBasicBlock* back_edge) { 1042 if (loop_information_ == nullptr || loop_information_->GetHeader() != this) { 1043 loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_); 1044 } 1045 loop_information_->AddBackEdge(back_edge); 1046 } 1047 1048 HGraph* GetGraph() const { return graph_; } 1049 void SetGraph(HGraph* graph) { graph_ = graph; } 1050 1051 uint32_t GetBlockId() const { return block_id_; } 1052 void SetBlockId(int id) { block_id_ = id; } 1053 uint32_t GetDexPc() const { return dex_pc_; } 1054 1055 HBasicBlock* GetDominator() const { return dominator_; } 1056 void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; } 1057 void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); } 1058 1059 void RemoveDominatedBlock(HBasicBlock* block) { 1060 RemoveElement(dominated_blocks_, block); 1061 } 1062 1063 void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) { 1064 ReplaceElement(dominated_blocks_, existing, new_block); 1065 } 1066 1067 void ClearDominanceInformation(); 1068 1069 int NumberOfBackEdges() const { 1070 return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0; 1071 } 1072 1073 HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; } 1074 HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; } 1075 const HInstructionList& GetInstructions() const { return instructions_; } 1076 HInstruction* GetFirstPhi() const { return phis_.first_instruction_; } 1077 HInstruction* GetLastPhi() const { return phis_.last_instruction_; } 1078 const HInstructionList& GetPhis() const { return phis_; } 1079 1080 HInstruction* GetFirstInstructionDisregardMoves() const; 1081 1082 void AddSuccessor(HBasicBlock* block) { 1083 successors_.push_back(block); 1084 block->predecessors_.push_back(this); 1085 } 1086 1087 void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) { 1088 size_t successor_index = GetSuccessorIndexOf(existing); 1089 existing->RemovePredecessor(this); 1090 new_block->predecessors_.push_back(this); 1091 successors_[successor_index] = new_block; 1092 } 1093 1094 void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) { 1095 size_t predecessor_index = GetPredecessorIndexOf(existing); 1096 existing->RemoveSuccessor(this); 1097 new_block->successors_.push_back(this); 1098 predecessors_[predecessor_index] = new_block; 1099 } 1100 1101 // Insert `this` between `predecessor` and `successor. This method 1102 // preserves the indicies, and will update the first edge found between 1103 // `predecessor` and `successor`. 1104 void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) { 1105 size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor); 1106 size_t successor_index = predecessor->GetSuccessorIndexOf(successor); 1107 successor->predecessors_[predecessor_index] = this; 1108 predecessor->successors_[successor_index] = this; 1109 successors_.push_back(successor); 1110 predecessors_.push_back(predecessor); 1111 } 1112 1113 void RemovePredecessor(HBasicBlock* block) { 1114 predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block)); 1115 } 1116 1117 void RemoveSuccessor(HBasicBlock* block) { 1118 successors_.erase(successors_.begin() + GetSuccessorIndexOf(block)); 1119 } 1120 1121 void ClearAllPredecessors() { 1122 predecessors_.clear(); 1123 } 1124 1125 void AddPredecessor(HBasicBlock* block) { 1126 predecessors_.push_back(block); 1127 block->successors_.push_back(this); 1128 } 1129 1130 void SwapPredecessors() { 1131 DCHECK_EQ(predecessors_.size(), 2u); 1132 std::swap(predecessors_[0], predecessors_[1]); 1133 } 1134 1135 void SwapSuccessors() { 1136 DCHECK_EQ(successors_.size(), 2u); 1137 std::swap(successors_[0], successors_[1]); 1138 } 1139 1140 size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const { 1141 return IndexOfElement(predecessors_, predecessor); 1142 } 1143 1144 size_t GetSuccessorIndexOf(HBasicBlock* successor) const { 1145 return IndexOfElement(successors_, successor); 1146 } 1147 1148 HBasicBlock* GetSinglePredecessor() const { 1149 DCHECK_EQ(GetPredecessors().size(), 1u); 1150 return GetPredecessors()[0]; 1151 } 1152 1153 HBasicBlock* GetSingleSuccessor() const { 1154 DCHECK_EQ(GetSuccessors().size(), 1u); 1155 return GetSuccessors()[0]; 1156 } 1157 1158 // Returns whether the first occurrence of `predecessor` in the list of 1159 // predecessors is at index `idx`. 1160 bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const { 1161 DCHECK_EQ(GetPredecessors()[idx], predecessor); 1162 return GetPredecessorIndexOf(predecessor) == idx; 1163 } 1164 1165 // Create a new block between this block and its predecessors. The new block 1166 // is added to the graph, all predecessor edges are relinked to it and an edge 1167 // is created to `this`. Returns the new empty block. Reverse post order or 1168 // loop and try/catch information are not updated. 1169 HBasicBlock* CreateImmediateDominator(); 1170 1171 // Split the block into two blocks just before `cursor`. Returns the newly 1172 // created, latter block. Note that this method will add the block to the 1173 // graph, create a Goto at the end of the former block and will create an edge 1174 // between the blocks. It will not, however, update the reverse post order or 1175 // loop and try/catch information. 1176 HBasicBlock* SplitBefore(HInstruction* cursor); 1177 1178 // Split the block into two blocks just before `cursor`. Returns the newly 1179 // created block. Note that this method just updates raw block information, 1180 // like predecessors, successors, dominators, and instruction list. It does not 1181 // update the graph, reverse post order, loop information, nor make sure the 1182 // blocks are consistent (for example ending with a control flow instruction). 1183 HBasicBlock* SplitBeforeForInlining(HInstruction* cursor); 1184 1185 // Similar to `SplitBeforeForInlining` but does it after `cursor`. 1186 HBasicBlock* SplitAfterForInlining(HInstruction* cursor); 1187 1188 // Merge `other` at the end of `this`. Successors and dominated blocks of 1189 // `other` are changed to be successors and dominated blocks of `this`. Note 1190 // that this method does not update the graph, reverse post order, loop 1191 // information, nor make sure the blocks are consistent (for example ending 1192 // with a control flow instruction). 1193 void MergeWithInlined(HBasicBlock* other); 1194 1195 // Replace `this` with `other`. Predecessors, successors, and dominated blocks 1196 // of `this` are moved to `other`. 1197 // Note that this method does not update the graph, reverse post order, loop 1198 // information, nor make sure the blocks are consistent (for example ending 1199 // with a control flow instruction). 1200 void ReplaceWith(HBasicBlock* other); 1201 1202 // Merges the instructions of `other` at the end of `this`. 1203 void MergeInstructionsWith(HBasicBlock* other); 1204 1205 // Merge `other` at the end of `this`. This method updates loops, reverse post 1206 // order, links to predecessors, successors, dominators and deletes the block 1207 // from the graph. The two blocks must be successive, i.e. `this` the only 1208 // predecessor of `other` and vice versa. 1209 void MergeWith(HBasicBlock* other); 1210 1211 // Disconnects `this` from all its predecessors, successors and dominator, 1212 // removes it from all loops it is included in and eventually from the graph. 1213 // The block must not dominate any other block. Predecessors and successors 1214 // are safely updated. 1215 void DisconnectAndDelete(); 1216 1217 void AddInstruction(HInstruction* instruction); 1218 // Insert `instruction` before/after an existing instruction `cursor`. 1219 void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); 1220 void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); 1221 // Replace phi `initial` with `replacement` within this block. 1222 void ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement); 1223 // Replace instruction `initial` with `replacement` within this block. 1224 void ReplaceAndRemoveInstructionWith(HInstruction* initial, 1225 HInstruction* replacement); 1226 void AddPhi(HPhi* phi); 1227 void InsertPhiAfter(HPhi* instruction, HPhi* cursor); 1228 // RemoveInstruction and RemovePhi delete a given instruction from the respective 1229 // instruction list. With 'ensure_safety' set to true, it verifies that the 1230 // instruction is not in use and removes it from the use lists of its inputs. 1231 void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true); 1232 void RemovePhi(HPhi* phi, bool ensure_safety = true); 1233 void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true); 1234 1235 bool IsLoopHeader() const { 1236 return IsInLoop() && (loop_information_->GetHeader() == this); 1237 } 1238 1239 bool IsLoopPreHeaderFirstPredecessor() const { 1240 DCHECK(IsLoopHeader()); 1241 return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader(); 1242 } 1243 1244 bool IsFirstPredecessorBackEdge() const { 1245 DCHECK(IsLoopHeader()); 1246 return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]); 1247 } 1248 1249 HLoopInformation* GetLoopInformation() const { 1250 return loop_information_; 1251 } 1252 1253 // Set the loop_information_ on this block. Overrides the current 1254 // loop_information if it is an outer loop of the passed loop information. 1255 // Note that this method is called while creating the loop information. 1256 void SetInLoop(HLoopInformation* info) { 1257 if (IsLoopHeader()) { 1258 // Nothing to do. This just means `info` is an outer loop. 1259 } else if (!IsInLoop()) { 1260 loop_information_ = info; 1261 } else if (loop_information_->Contains(*info->GetHeader())) { 1262 // Block is currently part of an outer loop. Make it part of this inner loop. 1263 // Note that a non loop header having a loop information means this loop information 1264 // has already been populated 1265 loop_information_ = info; 1266 } else { 1267 // Block is part of an inner loop. Do not update the loop information. 1268 // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()` 1269 // at this point, because this method is being called while populating `info`. 1270 } 1271 } 1272 1273 // Raw update of the loop information. 1274 void SetLoopInformation(HLoopInformation* info) { 1275 loop_information_ = info; 1276 } 1277 1278 bool IsInLoop() const { return loop_information_ != nullptr; } 1279 1280 TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; } 1281 1282 void SetTryCatchInformation(TryCatchInformation* try_catch_information) { 1283 try_catch_information_ = try_catch_information; 1284 } 1285 1286 bool IsTryBlock() const { 1287 return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock(); 1288 } 1289 1290 bool IsCatchBlock() const { 1291 return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock(); 1292 } 1293 1294 // Returns the try entry that this block's successors should have. They will 1295 // be in the same try, unless the block ends in a try boundary. In that case, 1296 // the appropriate try entry will be returned. 1297 const HTryBoundary* ComputeTryEntryOfSuccessors() const; 1298 1299 bool HasThrowingInstructions() const; 1300 1301 // Returns whether this block dominates the blocked passed as parameter. 1302 bool Dominates(HBasicBlock* block) const; 1303 1304 size_t GetLifetimeStart() const { return lifetime_start_; } 1305 size_t GetLifetimeEnd() const { return lifetime_end_; } 1306 1307 void SetLifetimeStart(size_t start) { lifetime_start_ = start; } 1308 void SetLifetimeEnd(size_t end) { lifetime_end_ = end; } 1309 1310 bool EndsWithControlFlowInstruction() const; 1311 bool EndsWithReturn() const; 1312 bool EndsWithIf() const; 1313 bool EndsWithTryBoundary() const; 1314 bool HasSinglePhi() const; 1315 1316 private: 1317 HGraph* graph_; 1318 ArenaVector<HBasicBlock*> predecessors_; 1319 ArenaVector<HBasicBlock*> successors_; 1320 HInstructionList instructions_; 1321 HInstructionList phis_; 1322 HLoopInformation* loop_information_; 1323 HBasicBlock* dominator_; 1324 ArenaVector<HBasicBlock*> dominated_blocks_; 1325 uint32_t block_id_; 1326 // The dex program counter of the first instruction of this block. 1327 const uint32_t dex_pc_; 1328 size_t lifetime_start_; 1329 size_t lifetime_end_; 1330 TryCatchInformation* try_catch_information_; 1331 1332 friend class HGraph; 1333 friend class HInstruction; 1334 1335 DISALLOW_COPY_AND_ASSIGN(HBasicBlock); 1336 }; 1337 1338 // Iterates over the LoopInformation of all loops which contain 'block' 1339 // from the innermost to the outermost. 1340 class HLoopInformationOutwardIterator : public ValueObject { 1341 public: 1342 explicit HLoopInformationOutwardIterator(const HBasicBlock& block) 1343 : current_(block.GetLoopInformation()) {} 1344 1345 bool Done() const { return current_ == nullptr; } 1346 1347 void Advance() { 1348 DCHECK(!Done()); 1349 current_ = current_->GetPreHeader()->GetLoopInformation(); 1350 } 1351 1352 HLoopInformation* Current() const { 1353 DCHECK(!Done()); 1354 return current_; 1355 } 1356 1357 private: 1358 HLoopInformation* current_; 1359 1360 DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator); 1361 }; 1362 1363 #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \ 1364 M(Above, Condition) \ 1365 M(AboveOrEqual, Condition) \ 1366 M(Abs, UnaryOperation) \ 1367 M(Add, BinaryOperation) \ 1368 M(And, BinaryOperation) \ 1369 M(ArrayGet, Instruction) \ 1370 M(ArrayLength, Instruction) \ 1371 M(ArraySet, Instruction) \ 1372 M(Below, Condition) \ 1373 M(BelowOrEqual, Condition) \ 1374 M(BooleanNot, UnaryOperation) \ 1375 M(BoundsCheck, Instruction) \ 1376 M(BoundType, Instruction) \ 1377 M(CheckCast, Instruction) \ 1378 M(ClassTableGet, Instruction) \ 1379 M(ClearException, Instruction) \ 1380 M(ClinitCheck, Instruction) \ 1381 M(Compare, BinaryOperation) \ 1382 M(ConstructorFence, Instruction) \ 1383 M(CurrentMethod, Instruction) \ 1384 M(ShouldDeoptimizeFlag, Instruction) \ 1385 M(Deoptimize, Instruction) \ 1386 M(Div, BinaryOperation) \ 1387 M(DivZeroCheck, Instruction) \ 1388 M(DoubleConstant, Constant) \ 1389 M(Equal, Condition) \ 1390 M(Exit, Instruction) \ 1391 M(FloatConstant, Constant) \ 1392 M(Goto, Instruction) \ 1393 M(GreaterThan, Condition) \ 1394 M(GreaterThanOrEqual, Condition) \ 1395 M(If, Instruction) \ 1396 M(InstanceFieldGet, Instruction) \ 1397 M(InstanceFieldSet, Instruction) \ 1398 M(InstanceOf, Instruction) \ 1399 M(IntConstant, Constant) \ 1400 M(IntermediateAddress, Instruction) \ 1401 M(InvokeUnresolved, Invoke) \ 1402 M(InvokeInterface, Invoke) \ 1403 M(InvokeStaticOrDirect, Invoke) \ 1404 M(InvokeVirtual, Invoke) \ 1405 M(InvokePolymorphic, Invoke) \ 1406 M(InvokeCustom, Invoke) \ 1407 M(LessThan, Condition) \ 1408 M(LessThanOrEqual, Condition) \ 1409 M(LoadClass, Instruction) \ 1410 M(LoadException, Instruction) \ 1411 M(LoadMethodHandle, Instruction) \ 1412 M(LoadMethodType, Instruction) \ 1413 M(LoadString, Instruction) \ 1414 M(LongConstant, Constant) \ 1415 M(Max, Instruction) \ 1416 M(MemoryBarrier, Instruction) \ 1417 M(Min, BinaryOperation) \ 1418 M(MonitorOperation, Instruction) \ 1419 M(Mul, BinaryOperation) \ 1420 M(NativeDebugInfo, Instruction) \ 1421 M(Neg, UnaryOperation) \ 1422 M(NewArray, Instruction) \ 1423 M(NewInstance, Instruction) \ 1424 M(Not, UnaryOperation) \ 1425 M(NotEqual, Condition) \ 1426 M(NullConstant, Instruction) \ 1427 M(NullCheck, Instruction) \ 1428 M(Or, BinaryOperation) \ 1429 M(PackedSwitch, Instruction) \ 1430 M(ParallelMove, Instruction) \ 1431 M(ParameterValue, Instruction) \ 1432 M(Phi, Instruction) \ 1433 M(Rem, BinaryOperation) \ 1434 M(Return, Instruction) \ 1435 M(ReturnVoid, Instruction) \ 1436 M(Ror, BinaryOperation) \ 1437 M(Shl, BinaryOperation) \ 1438 M(Shr, BinaryOperation) \ 1439 M(StaticFieldGet, Instruction) \ 1440 M(StaticFieldSet, Instruction) \ 1441 M(UnresolvedInstanceFieldGet, Instruction) \ 1442 M(UnresolvedInstanceFieldSet, Instruction) \ 1443 M(UnresolvedStaticFieldGet, Instruction) \ 1444 M(UnresolvedStaticFieldSet, Instruction) \ 1445 M(Select, Instruction) \ 1446 M(Sub, BinaryOperation) \ 1447 M(SuspendCheck, Instruction) \ 1448 M(Throw, Instruction) \ 1449 M(TryBoundary, Instruction) \ 1450 M(TypeConversion, Instruction) \ 1451 M(UShr, BinaryOperation) \ 1452 M(Xor, BinaryOperation) \ 1453 M(VecReplicateScalar, VecUnaryOperation) \ 1454 M(VecExtractScalar, VecUnaryOperation) \ 1455 M(VecReduce, VecUnaryOperation) \ 1456 M(VecCnv, VecUnaryOperation) \ 1457 M(VecNeg, VecUnaryOperation) \ 1458 M(VecAbs, VecUnaryOperation) \ 1459 M(VecNot, VecUnaryOperation) \ 1460 M(VecAdd, VecBinaryOperation) \ 1461 M(VecHalvingAdd, VecBinaryOperation) \ 1462 M(VecSub, VecBinaryOperation) \ 1463 M(VecMul, VecBinaryOperation) \ 1464 M(VecDiv, VecBinaryOperation) \ 1465 M(VecMin, VecBinaryOperation) \ 1466 M(VecMax, VecBinaryOperation) \ 1467 M(VecAnd, VecBinaryOperation) \ 1468 M(VecAndNot, VecBinaryOperation) \ 1469 M(VecOr, VecBinaryOperation) \ 1470 M(VecXor, VecBinaryOperation) \ 1471 M(VecSaturationAdd, VecBinaryOperation) \ 1472 M(VecSaturationSub, VecBinaryOperation) \ 1473 M(VecShl, VecBinaryOperation) \ 1474 M(VecShr, VecBinaryOperation) \ 1475 M(VecUShr, VecBinaryOperation) \ 1476 M(VecSetScalars, VecOperation) \ 1477 M(VecMultiplyAccumulate, VecOperation) \ 1478 M(VecSADAccumulate, VecOperation) \ 1479 M(VecDotProd, VecOperation) \ 1480 M(VecLoad, VecMemoryOperation) \ 1481 M(VecStore, VecMemoryOperation) \ 1482 1483 /* 1484 * Instructions, shared across several (not all) architectures. 1485 */ 1486 #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64) 1487 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) 1488 #else 1489 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \ 1490 M(BitwiseNegatedRight, Instruction) \ 1491 M(DataProcWithShifterOp, Instruction) \ 1492 M(MultiplyAccumulate, Instruction) \ 1493 M(IntermediateAddressIndex, Instruction) 1494 #endif 1495 1496 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) 1497 1498 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) 1499 1500 #ifndef ART_ENABLE_CODEGEN_mips 1501 #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) 1502 #else 1503 #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) \ 1504 M(MipsComputeBaseMethodAddress, Instruction) \ 1505 M(MipsPackedSwitch, Instruction) \ 1506 M(IntermediateArrayAddressIndex, Instruction) 1507 #endif 1508 1509 #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M) 1510 1511 #ifndef ART_ENABLE_CODEGEN_x86 1512 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) 1513 #else 1514 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \ 1515 M(X86ComputeBaseMethodAddress, Instruction) \ 1516 M(X86LoadFromConstantTable, Instruction) \ 1517 M(X86FPNeg, Instruction) \ 1518 M(X86PackedSwitch, Instruction) 1519 #endif 1520 1521 #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64) 1522 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M) \ 1523 M(X86AndNot, Instruction) \ 1524 M(X86MaskOrResetLeastSetBit, Instruction) 1525 #else 1526 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M) 1527 #endif 1528 1529 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) 1530 1531 #define FOR_EACH_CONCRETE_INSTRUCTION(M) \ 1532 FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \ 1533 FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \ 1534 FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) \ 1535 FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) \ 1536 FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) \ 1537 FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M) \ 1538 FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \ 1539 FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) \ 1540 FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M) 1541 1542 #define FOR_EACH_ABSTRACT_INSTRUCTION(M) \ 1543 M(Condition, BinaryOperation) \ 1544 M(Constant, Instruction) \ 1545 M(UnaryOperation, Instruction) \ 1546 M(BinaryOperation, Instruction) \ 1547 M(Invoke, Instruction) \ 1548 M(VecOperation, Instruction) \ 1549 M(VecUnaryOperation, VecOperation) \ 1550 M(VecBinaryOperation, VecOperation) \ 1551 M(VecMemoryOperation, VecOperation) 1552 1553 #define FOR_EACH_INSTRUCTION(M) \ 1554 FOR_EACH_CONCRETE_INSTRUCTION(M) \ 1555 FOR_EACH_ABSTRACT_INSTRUCTION(M) 1556 1557 #define FORWARD_DECLARATION(type, super) class H##type; 1558 FOR_EACH_INSTRUCTION(FORWARD_DECLARATION) 1559 #undef FORWARD_DECLARATION 1560 1561 #define DECLARE_INSTRUCTION(type) \ 1562 private: \ 1563 H##type& operator=(const H##type&) = delete; \ 1564 public: \ 1565 const char* DebugName() const override { return #type; } \ 1566 HInstruction* Clone(ArenaAllocator* arena) const override { \ 1567 DCHECK(IsClonable()); \ 1568 return new (arena) H##type(*this->As##type()); \ 1569 } \ 1570 void Accept(HGraphVisitor* visitor) override 1571 1572 #define DECLARE_ABSTRACT_INSTRUCTION(type) \ 1573 private: \ 1574 H##type& operator=(const H##type&) = delete; \ 1575 public: 1576 1577 #define DEFAULT_COPY_CONSTRUCTOR(type) \ 1578 explicit H##type(const H##type& other) = default; 1579 1580 template <typename T> 1581 class HUseListNode : public ArenaObject<kArenaAllocUseListNode>, 1582 public IntrusiveForwardListNode<HUseListNode<T>> { 1583 public: 1584 // Get the instruction which has this use as one of the inputs. 1585 T GetUser() const { return user_; } 1586 // Get the position of the input record that this use corresponds to. 1587 size_t GetIndex() const { return index_; } 1588 // Set the position of the input record that this use corresponds to. 1589 void SetIndex(size_t index) { index_ = index; } 1590 1591 private: 1592 HUseListNode(T user, size_t index) 1593 : user_(user), index_(index) {} 1594 1595 T const user_; 1596 size_t index_; 1597 1598 friend class HInstruction; 1599 1600 DISALLOW_COPY_AND_ASSIGN(HUseListNode); 1601 }; 1602 1603 template <typename T> 1604 using HUseList = IntrusiveForwardList<HUseListNode<T>>; 1605 1606 // This class is used by HEnvironment and HInstruction classes to record the 1607 // instructions they use and pointers to the corresponding HUseListNodes kept 1608 // by the used instructions. 1609 template <typename T> 1610 class HUserRecord : public ValueObject { 1611 public: 1612 HUserRecord() : instruction_(nullptr), before_use_node_() {} 1613 explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {} 1614 1615 HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node) 1616 : HUserRecord(old_record.instruction_, before_use_node) {} 1617 HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node) 1618 : instruction_(instruction), before_use_node_(before_use_node) { 1619 DCHECK(instruction_ != nullptr); 1620 } 1621 1622 HInstruction* GetInstruction() const { return instruction_; } 1623 typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; } 1624 typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); } 1625 1626 private: 1627 // Instruction used by the user. 1628 HInstruction* instruction_; 1629 1630 // Iterator before the corresponding entry in the use list kept by 'instruction_'. 1631 typename HUseList<T>::iterator before_use_node_; 1632 }; 1633 1634 // Helper class that extracts the input instruction from HUserRecord<HInstruction*>. 1635 // This is used for HInstruction::GetInputs() to return a container wrapper providing 1636 // HInstruction* values even though the underlying container has HUserRecord<>s. 1637 struct HInputExtractor { 1638 HInstruction* operator()(HUserRecord<HInstruction*>& record) const { 1639 return record.GetInstruction(); 1640 } 1641 const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const { 1642 return record.GetInstruction(); 1643 } 1644 }; 1645 1646 using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>; 1647 using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>; 1648 1649 /** 1650 * Side-effects representation. 1651 * 1652 * For write/read dependences on fields/arrays, the dependence analysis uses 1653 * type disambiguation (e.g. a float field write cannot modify the value of an 1654 * integer field read) and the access type (e.g. a reference array write cannot 1655 * modify the value of a reference field read [although it may modify the 1656 * reference fetch prior to reading the field, which is represented by its own 1657 * write/read dependence]). The analysis makes conservative points-to 1658 * assumptions on reference types (e.g. two same typed arrays are assumed to be 1659 * the same, and any reference read depends on any reference read without 1660 * further regard of its type). 1661 * 1662 * kDependsOnGCBit is defined in the following way: instructions with kDependsOnGCBit must not be 1663 * alive across the point where garbage collection might happen. 1664 * 1665 * Note: Instructions with kCanTriggerGCBit do not depend on each other. 1666 * 1667 * kCanTriggerGCBit must be used for instructions for which GC might happen on the path across 1668 * those instructions from the compiler perspective (between this instruction and the next one 1669 * in the IR). 1670 * 1671 * Note: Instructions which can cause GC only on a fatal slow path do not need 1672 * kCanTriggerGCBit as the execution never returns to the instruction next to the exceptional 1673 * one. However the execution may return to compiled code if there is a catch block in the 1674 * current method; for this purpose the TryBoundary exit instruction has kCanTriggerGCBit 1675 * set. 1676 * 1677 * The internal representation uses 38-bit and is described in the table below. 1678 * The first line indicates the side effect, and for field/array accesses the 1679 * second line indicates the type of the access (in the order of the 1680 * DataType::Type enum). 1681 * The two numbered lines below indicate the bit position in the bitfield (read 1682 * vertically). 1683 * 1684 * |Depends on GC|ARRAY-R |FIELD-R |Can trigger GC|ARRAY-W |FIELD-W | 1685 * +-------------+---------+---------+--------------+---------+---------+ 1686 * | |DFJISCBZL|DFJISCBZL| |DFJISCBZL|DFJISCBZL| 1687 * | 3 |333333322|222222221| 1 |111111110|000000000| 1688 * | 7 |654321098|765432109| 8 |765432109|876543210| 1689 * 1690 * Note that, to ease the implementation, 'changes' bits are least significant 1691 * bits, while 'dependency' bits are most significant bits. 1692 */ 1693 class SideEffects : public ValueObject { 1694 public: 1695 SideEffects() : flags_(0) {} 1696 1697 static SideEffects None() { 1698 return SideEffects(0); 1699 } 1700 1701 static SideEffects All() { 1702 return SideEffects(kAllChangeBits | kAllDependOnBits); 1703 } 1704 1705 static SideEffects AllChanges() { 1706 return SideEffects(kAllChangeBits); 1707 } 1708 1709 static SideEffects AllDependencies() { 1710 return SideEffects(kAllDependOnBits); 1711 } 1712 1713 static SideEffects AllExceptGCDependency() { 1714 return AllWritesAndReads().Union(SideEffects::CanTriggerGC()); 1715 } 1716 1717 static SideEffects AllWritesAndReads() { 1718 return SideEffects(kAllWrites | kAllReads); 1719 } 1720 1721 static SideEffects AllWrites() { 1722 return SideEffects(kAllWrites); 1723 } 1724 1725 static SideEffects AllReads() { 1726 return SideEffects(kAllReads); 1727 } 1728 1729 static SideEffects FieldWriteOfType(DataType::Type type, bool is_volatile) { 1730 return is_volatile 1731 ? AllWritesAndReads() 1732 : SideEffects(TypeFlag(type, kFieldWriteOffset)); 1733 } 1734 1735 static SideEffects ArrayWriteOfType(DataType::Type type) { 1736 return SideEffects(TypeFlag(type, kArrayWriteOffset)); 1737 } 1738 1739 static SideEffects FieldReadOfType(DataType::Type type, bool is_volatile) { 1740 return is_volatile 1741 ? AllWritesAndReads() 1742 : SideEffects(TypeFlag(type, kFieldReadOffset)); 1743 } 1744 1745 static SideEffects ArrayReadOfType(DataType::Type type) { 1746 return SideEffects(TypeFlag(type, kArrayReadOffset)); 1747 } 1748 1749 // Returns whether GC might happen across this instruction from the compiler perspective so 1750 // the next instruction in the IR would see that. 1751 // 1752 // See the SideEffect class comments. 1753 static SideEffects CanTriggerGC() { 1754 return SideEffects(1ULL << kCanTriggerGCBit); 1755 } 1756 1757 // Returns whether the instruction must not be alive across a GC point. 1758 // 1759 // See the SideEffect class comments. 1760 static SideEffects DependsOnGC() { 1761 return SideEffects(1ULL << kDependsOnGCBit); 1762 } 1763 1764 // Combines the side-effects of this and the other. 1765 SideEffects Union(SideEffects other) const { 1766 return SideEffects(flags_ | other.flags_); 1767 } 1768 1769 SideEffects Exclusion(SideEffects other) const { 1770 return SideEffects(flags_ & ~other.flags_); 1771 } 1772 1773 void Add(SideEffects other) { 1774 flags_ |= other.flags_; 1775 } 1776 1777 bool Includes(SideEffects other) const { 1778 return (other.flags_ & flags_) == other.flags_; 1779 } 1780 1781 bool HasSideEffects() const { 1782 return (flags_ & kAllChangeBits); 1783 } 1784 1785 bool HasDependencies() const { 1786 return (flags_ & kAllDependOnBits); 1787 } 1788 1789 // Returns true if there are no side effects or dependencies. 1790 bool DoesNothing() const { 1791 return flags_ == 0; 1792 } 1793 1794 // Returns true if something is written. 1795 bool DoesAnyWrite() const { 1796 return (flags_ & kAllWrites); 1797 } 1798 1799 // Returns true if something is read. 1800 bool DoesAnyRead() const { 1801 return (flags_ & kAllReads); 1802 } 1803 1804 // Returns true if potentially everything is written and read 1805 // (every type and every kind of access). 1806 bool DoesAllReadWrite() const { 1807 return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads); 1808 } 1809 1810 bool DoesAll() const { 1811 return flags_ == (kAllChangeBits | kAllDependOnBits); 1812 } 1813 1814 // Returns true if `this` may read something written by `other`. 1815 bool MayDependOn(SideEffects other) const { 1816 const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits; 1817 return (other.flags_ & depends_on_flags); 1818 } 1819 1820 // Returns string representation of flags (for debugging only). 1821 // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL| 1822 std::string ToString() const { 1823 std::string flags = "|"; 1824 for (int s = kLastBit; s >= 0; s--) { 1825 bool current_bit_is_set = ((flags_ >> s) & 1) != 0; 1826 if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) { 1827 // This is a bit for the GC side effect. 1828 if (current_bit_is_set) { 1829 flags += "GC"; 1830 } 1831 flags += "|"; 1832 } else { 1833 // This is a bit for the array/field analysis. 1834 // The underscore character stands for the 'can trigger GC' bit. 1835 static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD"; 1836 if (current_bit_is_set) { 1837 flags += kDebug[s]; 1838 } 1839 if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) || 1840 (s == kFieldReadOffset) || (s == kArrayReadOffset)) { 1841 flags += "|"; 1842 } 1843 } 1844 } 1845 return flags; 1846 } 1847 1848 bool Equals(const SideEffects& other) const { return flags_ == other.flags_; } 1849 1850 private: 1851 static constexpr int kFieldArrayAnalysisBits = 9; 1852 1853 static constexpr int kFieldWriteOffset = 0; 1854 static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits; 1855 static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1; 1856 static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1; 1857 1858 static constexpr int kChangeBits = kCanTriggerGCBit + 1; 1859 1860 static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1; 1861 static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits; 1862 static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1; 1863 static constexpr int kDependsOnGCBit = kLastBitForReads + 1; 1864 1865 static constexpr int kLastBit = kDependsOnGCBit; 1866 static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits; 1867 1868 // Aliases. 1869 1870 static_assert(kChangeBits == kDependOnBits, 1871 "the 'change' bits should match the 'depend on' bits."); 1872 1873 static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1); 1874 static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits; 1875 static constexpr uint64_t kAllWrites = 1876 ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset; 1877 static constexpr uint64_t kAllReads = 1878 ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset; 1879 1880 // Translates type to bit flag. The type must correspond to a Java type. 1881 static uint64_t TypeFlag(DataType::Type type, int offset) { 1882 int shift; 1883 switch (type) { 1884 case DataType::Type::kReference: shift = 0; break; 1885 case DataType::Type::kBool: shift = 1; break; 1886 case DataType::Type::kInt8: shift = 2; break; 1887 case DataType::Type::kUint16: shift = 3; break; 1888 case DataType::Type::kInt16: shift = 4; break; 1889 case DataType::Type::kInt32: shift = 5; break; 1890 case DataType::Type::kInt64: shift = 6; break; 1891 case DataType::Type::kFloat32: shift = 7; break; 1892 case DataType::Type::kFloat64: shift = 8; break; 1893 default: 1894 LOG(FATAL) << "Unexpected data type " << type; 1895 UNREACHABLE(); 1896 } 1897 DCHECK_LE(kFieldWriteOffset, shift); 1898 DCHECK_LT(shift, kArrayWriteOffset); 1899 return UINT64_C(1) << (shift + offset); 1900 } 1901 1902 // Private constructor on direct flags value. 1903 explicit SideEffects(uint64_t flags) : flags_(flags) {} 1904 1905 uint64_t flags_; 1906 }; 1907 1908 // A HEnvironment object contains the values of virtual registers at a given location. 1909 class HEnvironment : public ArenaObject<kArenaAllocEnvironment> { 1910 public: 1911 ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator, 1912 size_t number_of_vregs, 1913 ArtMethod* method, 1914 uint32_t dex_pc, 1915 HInstruction* holder) 1916 : vregs_(number_of_vregs, allocator->Adapter(kArenaAllocEnvironmentVRegs)), 1917 locations_(allocator->Adapter(kArenaAllocEnvironmentLocations)), 1918 parent_(nullptr), 1919 method_(method), 1920 dex_pc_(dex_pc), 1921 holder_(holder) { 1922 } 1923 1924 ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator, 1925 const HEnvironment& to_copy, 1926 HInstruction* holder) 1927 : HEnvironment(allocator, 1928 to_copy.Size(), 1929 to_copy.GetMethod(), 1930 to_copy.GetDexPc(), 1931 holder) {} 1932 1933 void AllocateLocations() { 1934 DCHECK(locations_.empty()); 1935 locations_.resize(vregs_.size()); 1936 } 1937 1938 void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) { 1939 if (parent_ != nullptr) { 1940 parent_->SetAndCopyParentChain(allocator, parent); 1941 } else { 1942 parent_ = new (allocator) HEnvironment(allocator, *parent, holder_); 1943 parent_->CopyFrom(parent); 1944 if (parent->GetParent() != nullptr) { 1945 parent_->SetAndCopyParentChain(allocator, parent->GetParent()); 1946 } 1947 } 1948 } 1949 1950 void CopyFrom(ArrayRef<HInstruction* const> locals); 1951 void CopyFrom(HEnvironment* environment); 1952 1953 // Copy from `env`. If it's a loop phi for `loop_header`, copy the first 1954 // input to the loop phi instead. This is for inserting instructions that 1955 // require an environment (like HDeoptimization) in the loop pre-header. 1956 void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header); 1957 1958 void SetRawEnvAt(size_t index, HInstruction* instruction) { 1959 vregs_[index] = HUserRecord<HEnvironment*>(instruction); 1960 } 1961 1962 HInstruction* GetInstructionAt(size_t index) const { 1963 return vregs_[index].GetInstruction(); 1964 } 1965 1966 void RemoveAsUserOfInput(size_t index) const; 1967 1968 // Replaces the input at the position 'index' with the replacement; the replacement and old 1969 // input instructions' env_uses_ lists are adjusted. The function works similar to 1970 // HInstruction::ReplaceInput. 1971 void ReplaceInput(HInstruction* replacement, size_t index); 1972 1973 size_t Size() const { return vregs_.size(); } 1974 1975 HEnvironment* GetParent() const { return parent_; } 1976 1977 void SetLocationAt(size_t index, Location location) { 1978 locations_[index] = location; 1979 } 1980 1981 Location GetLocationAt(size_t index) const { 1982 return locations_[index]; 1983 } 1984 1985 uint32_t GetDexPc() const { 1986 return dex_pc_; 1987 } 1988 1989 ArtMethod* GetMethod() const { 1990 return method_; 1991 } 1992 1993 HInstruction* GetHolder() const { 1994 return holder_; 1995 } 1996 1997 1998 bool IsFromInlinedInvoke() const { 1999 return GetParent() != nullptr; 2000 } 2001 2002 private: 2003 ArenaVector<HUserRecord<HEnvironment*>> vregs_; 2004 ArenaVector<Location> locations_; 2005 HEnvironment* parent_; 2006 ArtMethod* method_; 2007 const uint32_t dex_pc_; 2008 2009 // The instruction that holds this environment. 2010 HInstruction* const holder_; 2011 2012 friend class HInstruction; 2013 2014 DISALLOW_COPY_AND_ASSIGN(HEnvironment); 2015 }; 2016 2017 class HInstruction : public ArenaObject<kArenaAllocInstruction> { 2018 public: 2019 #define DECLARE_KIND(type, super) k##type, 2020 enum InstructionKind { 2021 FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_KIND) 2022 kLastInstructionKind 2023 }; 2024 #undef DECLARE_KIND 2025 2026 HInstruction(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc) 2027 : HInstruction(kind, DataType::Type::kVoid, side_effects, dex_pc) {} 2028 2029 HInstruction(InstructionKind kind, DataType::Type type, SideEffects side_effects, uint32_t dex_pc) 2030 : previous_(nullptr), 2031 next_(nullptr), 2032 block_(nullptr), 2033 dex_pc_(dex_pc), 2034 id_(-1), 2035 ssa_index_(-1), 2036 packed_fields_(0u), 2037 environment_(nullptr), 2038 locations_(nullptr), 2039 live_interval_(nullptr), 2040 lifetime_position_(kNoLifetime), 2041 side_effects_(side_effects), 2042 reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) { 2043 SetPackedField<InstructionKindField>(kind); 2044 SetPackedField<TypeField>(type); 2045 SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact()); 2046 } 2047 2048 virtual ~HInstruction() {} 2049 2050 2051 HInstruction* GetNext() const { return next_; } 2052 HInstruction* GetPrevious() const { return previous_; } 2053 2054 HInstruction* GetNextDisregardingMoves() const; 2055 HInstruction* GetPreviousDisregardingMoves() const; 2056 2057 HBasicBlock* GetBlock() const { return block_; } 2058 ArenaAllocator* GetAllocator() const { return block_->GetGraph()->GetAllocator(); } 2059 void SetBlock(HBasicBlock* block) { block_ = block; } 2060 bool IsInBlock() const { return block_ != nullptr; } 2061 bool IsInLoop() const { return block_->IsInLoop(); } 2062 bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); } 2063 bool IsIrreducibleLoopHeaderPhi() const { 2064 return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible(); 2065 } 2066 2067 virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0; 2068 2069 ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const { 2070 // One virtual method is enough, just const_cast<> and then re-add the const. 2071 return ArrayRef<const HUserRecord<HInstruction*>>( 2072 const_cast<HInstruction*>(this)->GetInputRecords()); 2073 } 2074 2075 HInputsRef GetInputs() { 2076 return MakeTransformArrayRef(GetInputRecords(), HInputExtractor()); 2077 } 2078 2079 HConstInputsRef GetInputs() const { 2080 return MakeTransformArrayRef(GetInputRecords(), HInputExtractor()); 2081 } 2082 2083 size_t InputCount() const { return GetInputRecords().size(); } 2084 HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); } 2085 2086 bool HasInput(HInstruction* input) const { 2087 for (const HInstruction* i : GetInputs()) { 2088 if (i == input) { 2089 return true; 2090 } 2091 } 2092 return false; 2093 } 2094 2095 void SetRawInputAt(size_t index, HInstruction* input) { 2096 SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input)); 2097 } 2098 2099 virtual void Accept(HGraphVisitor* visitor) = 0; 2100 virtual const char* DebugName() const = 0; 2101 2102 DataType::Type GetType() const { 2103 return TypeField::Decode(GetPackedFields()); 2104 } 2105 2106 virtual bool NeedsEnvironment() const { return false; } 2107 2108 uint32_t GetDexPc() const { return dex_pc_; } 2109 2110 virtual bool IsControlFlow() const { return false; } 2111 2112 // Can the instruction throw? 2113 // TODO: We should rename to CanVisiblyThrow, as some instructions (like HNewInstance), 2114 // could throw OOME, but it is still OK to remove them if they are unused. 2115 virtual bool CanThrow() const { return false; } 2116 2117 // Does the instruction always throw an exception unconditionally? 2118 virtual bool AlwaysThrows() const { return false; } 2119 2120 bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); } 2121 2122 bool HasSideEffects() const { return side_effects_.HasSideEffects(); } 2123 bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); } 2124 2125 // Does not apply for all instructions, but having this at top level greatly 2126 // simplifies the null check elimination. 2127 // TODO: Consider merging can_be_null into ReferenceTypeInfo. 2128 virtual bool CanBeNull() const { 2129 DCHECK_EQ(GetType(), DataType::Type::kReference) << "CanBeNull only applies to reference types"; 2130 return true; 2131 } 2132 2133 virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const { 2134 return false; 2135 } 2136 2137 // If this instruction will do an implicit null check, return the `HNullCheck` associated 2138 // with it. Otherwise return null. 2139 HNullCheck* GetImplicitNullCheck() const { 2140 // Find the first previous instruction which is not a move. 2141 HInstruction* first_prev_not_move = GetPreviousDisregardingMoves(); 2142 if (first_prev_not_move != nullptr && 2143 first_prev_not_move->IsNullCheck() && 2144 first_prev_not_move->IsEmittedAtUseSite()) { 2145 return first_prev_not_move->AsNullCheck(); 2146 } 2147 return nullptr; 2148 } 2149 2150 virtual bool IsActualObject() const { 2151 return GetType() == DataType::Type::kReference; 2152 } 2153 2154 void SetReferenceTypeInfo(ReferenceTypeInfo rti); 2155 2156 ReferenceTypeInfo GetReferenceTypeInfo() const { 2157 DCHECK_EQ(GetType(), DataType::Type::kReference); 2158 return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_, 2159 GetPackedFlag<kFlagReferenceTypeIsExact>()); 2160 } 2161 2162 void AddUseAt(HInstruction* user, size_t index) { 2163 DCHECK(user != nullptr); 2164 // Note: fixup_end remains valid across push_front(). 2165 auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin(); 2166 HUseListNode<HInstruction*>* new_node = 2167 new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HInstruction*>(user, index); 2168 uses_.push_front(*new_node); 2169 FixUpUserRecordsAfterUseInsertion(fixup_end); 2170 } 2171 2172 void AddEnvUseAt(HEnvironment* user, size_t index) { 2173 DCHECK(user != nullptr); 2174 // Note: env_fixup_end remains valid across push_front(). 2175 auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin(); 2176 HUseListNode<HEnvironment*>* new_node = 2177 new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HEnvironment*>(user, index); 2178 env_uses_.push_front(*new_node); 2179 FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end); 2180 } 2181 2182 void RemoveAsUserOfInput(size_t input) { 2183 HUserRecord<HInstruction*> input_use = InputRecordAt(input); 2184 HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode(); 2185 input_use.GetInstruction()->uses_.erase_after(before_use_node); 2186 input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node); 2187 } 2188 2189 void RemoveAsUserOfAllInputs() { 2190 for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) { 2191 HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode(); 2192 input_use.GetInstruction()->uses_.erase_after(before_use_node); 2193 input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node); 2194 } 2195 } 2196 2197 const HUseList<HInstruction*>& GetUses() const { return uses_; } 2198 const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; } 2199 2200 bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); } 2201 bool HasEnvironmentUses() const { return !env_uses_.empty(); } 2202 bool HasNonEnvironmentUses() const { return !uses_.empty(); } 2203 bool HasOnlyOneNonEnvironmentUse() const { 2204 return !HasEnvironmentUses() && GetUses().HasExactlyOneElement(); 2205 } 2206 2207 bool IsRemovable() const { 2208 return 2209 !DoesAnyWrite() && 2210 !CanThrow() && 2211 !IsSuspendCheck() && 2212 !IsControlFlow() && 2213 !IsNativeDebugInfo() && 2214 !IsParameterValue() && 2215 // If we added an explicit barrier then we should keep it. 2216 !IsMemoryBarrier() && 2217 !IsConstructorFence(); 2218 } 2219 2220 bool IsDeadAndRemovable() const { 2221 return IsRemovable() && !HasUses(); 2222 } 2223 2224 // Does this instruction strictly dominate `other_instruction`? 2225 // Returns false if this instruction and `other_instruction` are the same. 2226 // Aborts if this instruction and `other_instruction` are both phis. 2227 bool StrictlyDominates(HInstruction* other_instruction) const; 2228 2229 int GetId() const { return id_; } 2230 void SetId(int id) { id_ = id; } 2231 2232 int GetSsaIndex() const { return ssa_index_; } 2233 void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; } 2234 bool HasSsaIndex() const { return ssa_index_ != -1; } 2235 2236 bool HasEnvironment() const { return environment_ != nullptr; } 2237 HEnvironment* GetEnvironment() const { return environment_; } 2238 // Set the `environment_` field. Raw because this method does not 2239 // update the uses lists. 2240 void SetRawEnvironment(HEnvironment* environment) { 2241 DCHECK(environment_ == nullptr); 2242 DCHECK_EQ(environment->GetHolder(), this); 2243 environment_ = environment; 2244 } 2245 2246 void InsertRawEnvironment(HEnvironment* environment) { 2247 DCHECK(environment_ != nullptr); 2248 DCHECK_EQ(environment->GetHolder(), this); 2249 DCHECK(environment->GetParent() == nullptr); 2250 environment->parent_ = environment_; 2251 environment_ = environment; 2252 } 2253 2254 void RemoveEnvironment(); 2255 2256 // Set the environment of this instruction, copying it from `environment`. While 2257 // copying, the uses lists are being updated. 2258 void CopyEnvironmentFrom(HEnvironment* environment) { 2259 DCHECK(environment_ == nullptr); 2260 ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator(); 2261 environment_ = new (allocator) HEnvironment(allocator, *environment, this); 2262 environment_->CopyFrom(environment); 2263 if (environment->GetParent() != nullptr) { 2264 environment_->SetAndCopyParentChain(allocator, environment->GetParent()); 2265 } 2266 } 2267 2268 void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment, 2269 HBasicBlock* block) { 2270 DCHECK(environment_ == nullptr); 2271 ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator(); 2272 environment_ = new (allocator) HEnvironment(allocator, *environment, this); 2273 environment_->CopyFromWithLoopPhiAdjustment(environment, block); 2274 if (environment->GetParent() != nullptr) { 2275 environment_->SetAndCopyParentChain(allocator, environment->GetParent()); 2276 } 2277 } 2278 2279 // Returns the number of entries in the environment. Typically, that is the 2280 // number of dex registers in a method. It could be more in case of inlining. 2281 size_t EnvironmentSize() const; 2282 2283 LocationSummary* GetLocations() const { return locations_; } 2284 void SetLocations(LocationSummary* locations) { locations_ = locations; } 2285 2286 void ReplaceWith(HInstruction* instruction); 2287 void ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement); 2288 void ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement); 2289 void ReplaceInput(HInstruction* replacement, size_t index); 2290 2291 // This is almost the same as doing `ReplaceWith()`. But in this helper, the 2292 // uses of this instruction by `other` are *not* updated. 2293 void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) { 2294 ReplaceWith(other); 2295 other->ReplaceInput(this, use_index); 2296 } 2297 2298 // Move `this` instruction before `cursor` 2299 void MoveBefore(HInstruction* cursor, bool do_checks = true); 2300 2301 // Move `this` before its first user and out of any loops. If there is no 2302 // out-of-loop user that dominates all other users, move the instruction 2303 // to the end of the out-of-loop common dominator of the user's blocks. 2304 // 2305 // This can be used only on non-throwing instructions with no side effects that 2306 // have at least one use but no environment uses. 2307 void MoveBeforeFirstUserAndOutOfLoops(); 2308 2309 #define INSTRUCTION_TYPE_CHECK(type, super) \ 2310 bool Is##type() const; 2311 2312 FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK) 2313 #undef INSTRUCTION_TYPE_CHECK 2314 2315 #define INSTRUCTION_TYPE_CAST(type, super) \ 2316 const H##type* As##type() const; \ 2317 H##type* As##type(); 2318 2319 FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST) 2320 #undef INSTRUCTION_TYPE_CAST 2321 2322 // Return a clone of the instruction if it is clonable (shallow copy by default, custom copy 2323 // if a custom copy-constructor is provided for a particular type). If IsClonable() is false for 2324 // the instruction then the behaviour of this function is undefined. 2325 // 2326 // Note: It is semantically valid to create a clone of the instruction only until 2327 // prepare_for_register_allocator phase as lifetime, intervals and codegen info are not 2328 // copied. 2329 // 2330 // Note: HEnvironment and some other fields are not copied and are set to default values, see 2331 // 'explicit HInstruction(const HInstruction& other)' for details. 2332 virtual HInstruction* Clone(ArenaAllocator* arena ATTRIBUTE_UNUSED) const { 2333 LOG(FATAL) << "Cloning is not implemented for the instruction " << 2334 DebugName() << " " << GetId(); 2335 UNREACHABLE(); 2336 } 2337 2338 // Return whether instruction can be cloned (copied). 2339 virtual bool IsClonable() const { return false; } 2340 2341 // Returns whether the instruction can be moved within the graph. 2342 // TODO: this method is used by LICM and GVN with possibly different 2343 // meanings? split and rename? 2344 virtual bool CanBeMoved() const { return false; } 2345 2346 // Returns whether any data encoded in the two instructions is equal. 2347 // This method does not look at the inputs. Both instructions must be 2348 // of the same type, otherwise the method has undefined behavior. 2349 virtual bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const { 2350 return false; 2351 } 2352 2353 // Returns whether two instructions are equal, that is: 2354 // 1) They have the same type and contain the same data (InstructionDataEquals). 2355 // 2) Their inputs are identical. 2356 bool Equals(const HInstruction* other) const; 2357 2358 InstructionKind GetKind() const { return GetPackedField<InstructionKindField>(); } 2359 2360 virtual size_t ComputeHashCode() const { 2361 size_t result = GetKind(); 2362 for (const HInstruction* input : GetInputs()) { 2363 result = (result * 31) + input->GetId(); 2364 } 2365 return result; 2366 } 2367 2368 SideEffects GetSideEffects() const { return side_effects_; } 2369 void SetSideEffects(SideEffects other) { side_effects_ = other; } 2370 void AddSideEffects(SideEffects other) { side_effects_.Add(other); } 2371 2372 size_t GetLifetimePosition() const { return lifetime_position_; } 2373 void SetLifetimePosition(size_t position) { lifetime_position_ = position; } 2374 LiveInterval* GetLiveInterval() const { return live_interval_; } 2375 void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; } 2376 bool HasLiveInterval() const { return live_interval_ != nullptr; } 2377 2378 bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); } 2379 2380 // Returns whether the code generation of the instruction will require to have access 2381 // to the current method. Such instructions are: 2382 // (1): Instructions that require an environment, as calling the runtime requires 2383 // to walk the stack and have the current method stored at a specific stack address. 2384 // (2): HCurrentMethod, potentially used by HInvokeStaticOrDirect, HLoadString, or HLoadClass 2385 // to access the dex cache. 2386 bool NeedsCurrentMethod() const { 2387 return NeedsEnvironment() || IsCurrentMethod(); 2388 } 2389 2390 // Returns whether the code generation of the instruction will require to have access 2391 // to the dex cache of the current method's declaring class via the current method. 2392 virtual bool NeedsDexCacheOfDeclaringClass() const { return false; } 2393 2394 // Does this instruction have any use in an environment before 2395 // control flow hits 'other'? 2396 bool HasAnyEnvironmentUseBefore(HInstruction* other); 2397 2398 // Remove all references to environment uses of this instruction. 2399 // The caller must ensure that this is safe to do. 2400 void RemoveEnvironmentUsers(); 2401 2402 bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); } 2403 void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); } 2404 2405 protected: 2406 // If set, the machine code for this instruction is assumed to be generated by 2407 // its users. Used by liveness analysis to compute use positions accordingly. 2408 static constexpr size_t kFlagEmittedAtUseSite = 0u; 2409 static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1; 2410 static constexpr size_t kFieldInstructionKind = kFlagReferenceTypeIsExact + 1; 2411 static constexpr size_t kFieldInstructionKindSize = 2412 MinimumBitsToStore(static_cast<size_t>(InstructionKind::kLastInstructionKind - 1)); 2413 static constexpr size_t kFieldType = 2414 kFieldInstructionKind + kFieldInstructionKindSize; 2415 static constexpr size_t kFieldTypeSize = 2416 MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); 2417 static constexpr size_t kNumberOfGenericPackedBits = kFieldType + kFieldTypeSize; 2418 static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte; 2419 2420 static_assert(kNumberOfGenericPackedBits <= kMaxNumberOfPackedBits, 2421 "Too many generic packed fields"); 2422 2423 using TypeField = BitField<DataType::Type, kFieldType, kFieldTypeSize>; 2424 2425 const HUserRecord<HInstruction*> InputRecordAt(size_t i) const { 2426 return GetInputRecords()[i]; 2427 } 2428 2429 void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) { 2430 ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords(); 2431 input_records[index] = input; 2432 } 2433 2434 uint32_t GetPackedFields() const { 2435 return packed_fields_; 2436 } 2437 2438 template <size_t flag> 2439 bool GetPackedFlag() const { 2440 return (packed_fields_ & (1u << flag)) != 0u; 2441 } 2442 2443 template <size_t flag> 2444 void SetPackedFlag(bool value = true) { 2445 packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag); 2446 } 2447 2448 template <typename BitFieldType> 2449 typename BitFieldType::value_type GetPackedField() const { 2450 return BitFieldType::Decode(packed_fields_); 2451 } 2452 2453 template <typename BitFieldType> 2454 void SetPackedField(typename BitFieldType::value_type value) { 2455 DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value))); 2456 packed_fields_ = BitFieldType::Update(value, packed_fields_); 2457 } 2458 2459 // Copy construction for the instruction (used for Clone function). 2460 // 2461 // Fields (e.g. lifetime, intervals and codegen info) associated with phases starting from 2462 // prepare_for_register_allocator are not copied (set to default values). 2463 // 2464 // Copy constructors must be provided for every HInstruction type; default copy constructor is 2465 // fine for most of them. However for some of the instructions a custom copy constructor must be 2466 // specified (when instruction has non-trivially copyable fields and must have a special behaviour 2467 // for copying them). 2468 explicit HInstruction(const HInstruction& other) 2469 : previous_(nullptr), 2470 next_(nullptr), 2471 block_(nullptr), 2472 dex_pc_(other.dex_pc_), 2473 id_(-1), 2474 ssa_index_(-1), 2475 packed_fields_(other.packed_fields_), 2476 environment_(nullptr), 2477 locations_(nullptr), 2478 live_interval_(nullptr), 2479 lifetime_position_(kNoLifetime), 2480 side_effects_(other.side_effects_), 2481 reference_type_handle_(other.reference_type_handle_) { 2482 } 2483 2484 private: 2485 using InstructionKindField = 2486 BitField<InstructionKind, kFieldInstructionKind, kFieldInstructionKindSize>; 2487 2488 void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) { 2489 auto before_use_node = uses_.before_begin(); 2490 for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) { 2491 HInstruction* user = use_node->GetUser(); 2492 size_t input_index = use_node->GetIndex(); 2493 user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node)); 2494 before_use_node = use_node; 2495 } 2496 } 2497 2498 void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) { 2499 auto next = ++HUseList<HInstruction*>::iterator(before_use_node); 2500 if (next != uses_.end()) { 2501 HInstruction* next_user = next->GetUser(); 2502 size_t next_index = next->GetIndex(); 2503 DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this); 2504 next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node)); 2505 } 2506 } 2507 2508 void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) { 2509 auto before_env_use_node = env_uses_.before_begin(); 2510 for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) { 2511 HEnvironment* user = env_use_node->GetUser(); 2512 size_t input_index = env_use_node->GetIndex(); 2513 user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node); 2514 before_env_use_node = env_use_node; 2515 } 2516 } 2517 2518 void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) { 2519 auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node); 2520 if (next != env_uses_.end()) { 2521 HEnvironment* next_user = next->GetUser(); 2522 size_t next_index = next->GetIndex(); 2523 DCHECK(next_user->vregs_[next_index].GetInstruction() == this); 2524 next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node); 2525 } 2526 } 2527 2528 HInstruction* previous_; 2529 HInstruction* next_; 2530 HBasicBlock* block_; 2531 const uint32_t dex_pc_; 2532 2533 // An instruction gets an id when it is added to the graph. 2534 // It reflects creation order. A negative id means the instruction 2535 // has not been added to the graph. 2536 int id_; 2537 2538 // When doing liveness analysis, instructions that have uses get an SSA index. 2539 int ssa_index_; 2540 2541 // Packed fields. 2542 uint32_t packed_fields_; 2543 2544 // List of instructions that have this instruction as input. 2545 HUseList<HInstruction*> uses_; 2546 2547 // List of environments that contain this instruction. 2548 HUseList<HEnvironment*> env_uses_; 2549 2550 // The environment associated with this instruction. Not null if the instruction 2551 // might jump out of the method. 2552 HEnvironment* environment_; 2553 2554 // Set by the code generator. 2555 LocationSummary* locations_; 2556 2557 // Set by the liveness analysis. 2558 LiveInterval* live_interval_; 2559 2560 // Set by the liveness analysis, this is the position in a linear 2561 // order of blocks where this instruction's live interval start. 2562 size_t lifetime_position_; 2563 2564 SideEffects side_effects_; 2565 2566 // The reference handle part of the reference type info. 2567 // The IsExact() flag is stored in packed fields. 2568 // TODO: for primitive types this should be marked as invalid. 2569 ReferenceTypeInfo::TypeHandle reference_type_handle_; 2570 2571 friend class GraphChecker; 2572 friend class HBasicBlock; 2573 friend class HEnvironment; 2574 friend class HGraph; 2575 friend class HInstructionList; 2576 }; 2577 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs); 2578 2579 // Iterates over the instructions, while preserving the next instruction 2580 // in case the current instruction gets removed from the list by the user 2581 // of this iterator. 2582 class HInstructionIterator : public ValueObject { 2583 public: 2584 explicit HInstructionIterator(const HInstructionList& instructions) 2585 : instruction_(instructions.first_instruction_) { 2586 next_ = Done() ? nullptr : instruction_->GetNext(); 2587 } 2588 2589 bool Done() const { return instruction_ == nullptr; } 2590 HInstruction* Current() const { return instruction_; } 2591 void Advance() { 2592 instruction_ = next_; 2593 next_ = Done() ? nullptr : instruction_->GetNext(); 2594 } 2595 2596 private: 2597 HInstruction* instruction_; 2598 HInstruction* next_; 2599 2600 DISALLOW_COPY_AND_ASSIGN(HInstructionIterator); 2601 }; 2602 2603 // Iterates over the instructions without saving the next instruction, 2604 // therefore handling changes in the graph potentially made by the user 2605 // of this iterator. 2606 class HInstructionIteratorHandleChanges : public ValueObject { 2607 public: 2608 explicit HInstructionIteratorHandleChanges(const HInstructionList& instructions) 2609 : instruction_(instructions.first_instruction_) { 2610 } 2611 2612 bool Done() const { return instruction_ == nullptr; } 2613 HInstruction* Current() const { return instruction_; } 2614 void Advance() { 2615 instruction_ = instruction_->GetNext(); 2616 } 2617 2618 private: 2619 HInstruction* instruction_; 2620 2621 DISALLOW_COPY_AND_ASSIGN(HInstructionIteratorHandleChanges); 2622 }; 2623 2624 2625 class HBackwardInstructionIterator : public ValueObject { 2626 public: 2627 explicit HBackwardInstructionIterator(const HInstructionList& instructions) 2628 : instruction_(instructions.last_instruction_) { 2629 next_ = Done() ? nullptr : instruction_->GetPrevious(); 2630 } 2631 2632 bool Done() const { return instruction_ == nullptr; } 2633 HInstruction* Current() const { return instruction_; } 2634 void Advance() { 2635 instruction_ = next_; 2636 next_ = Done() ? nullptr : instruction_->GetPrevious(); 2637 } 2638 2639 private: 2640 HInstruction* instruction_; 2641 HInstruction* next_; 2642 2643 DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator); 2644 }; 2645 2646 class HVariableInputSizeInstruction : public HInstruction { 2647 public: 2648 using HInstruction::GetInputRecords; // Keep the const version visible. 2649 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override { 2650 return ArrayRef<HUserRecord<HInstruction*>>(inputs_); 2651 } 2652 2653 void AddInput(HInstruction* input); 2654 void InsertInputAt(size_t index, HInstruction* input); 2655 void RemoveInputAt(size_t index); 2656 2657 // Removes all the inputs. 2658 // Also removes this instructions from each input's use list 2659 // (for non-environment uses only). 2660 void RemoveAllInputs(); 2661 2662 protected: 2663 HVariableInputSizeInstruction(InstructionKind inst_kind, 2664 SideEffects side_effects, 2665 uint32_t dex_pc, 2666 ArenaAllocator* allocator, 2667 size_t number_of_inputs, 2668 ArenaAllocKind kind) 2669 : HInstruction(inst_kind, side_effects, dex_pc), 2670 inputs_(number_of_inputs, allocator->Adapter(kind)) {} 2671 HVariableInputSizeInstruction(InstructionKind inst_kind, 2672 DataType::Type type, 2673 SideEffects side_effects, 2674 uint32_t dex_pc, 2675 ArenaAllocator* allocator, 2676 size_t number_of_inputs, 2677 ArenaAllocKind kind) 2678 : HInstruction(inst_kind, type, side_effects, dex_pc), 2679 inputs_(number_of_inputs, allocator->Adapter(kind)) {} 2680 2681 DEFAULT_COPY_CONSTRUCTOR(VariableInputSizeInstruction); 2682 2683 ArenaVector<HUserRecord<HInstruction*>> inputs_; 2684 }; 2685 2686 template<size_t N> 2687 class HExpression : public HInstruction { 2688 public: 2689 HExpression<N>(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc) 2690 : HInstruction(kind, side_effects, dex_pc), inputs_() {} 2691 HExpression<N>(InstructionKind kind, 2692 DataType::Type type, 2693 SideEffects side_effects, 2694 uint32_t dex_pc) 2695 : HInstruction(kind, type, side_effects, dex_pc), inputs_() {} 2696 virtual ~HExpression() {} 2697 2698 using HInstruction::GetInputRecords; // Keep the const version visible. 2699 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { 2700 return ArrayRef<HUserRecord<HInstruction*>>(inputs_); 2701 } 2702 2703 protected: 2704 DEFAULT_COPY_CONSTRUCTOR(Expression<N>); 2705 2706 private: 2707 std::array<HUserRecord<HInstruction*>, N> inputs_; 2708 2709 friend class SsaBuilder; 2710 }; 2711 2712 // HExpression specialization for N=0. 2713 template<> 2714 class HExpression<0> : public HInstruction { 2715 public: 2716 using HInstruction::HInstruction; 2717 2718 virtual ~HExpression() {} 2719 2720 using HInstruction::GetInputRecords; // Keep the const version visible. 2721 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { 2722 return ArrayRef<HUserRecord<HInstruction*>>(); 2723 } 2724 2725 protected: 2726 DEFAULT_COPY_CONSTRUCTOR(Expression<0>); 2727 2728 private: 2729 friend class SsaBuilder; 2730 }; 2731 2732 // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow 2733 // instruction that branches to the exit block. 2734 class HReturnVoid final : public HExpression<0> { 2735 public: 2736 explicit HReturnVoid(uint32_t dex_pc = kNoDexPc) 2737 : HExpression(kReturnVoid, SideEffects::None(), dex_pc) { 2738 } 2739 2740 bool IsControlFlow() const override { return true; } 2741 2742 DECLARE_INSTRUCTION(ReturnVoid); 2743 2744 protected: 2745 DEFAULT_COPY_CONSTRUCTOR(ReturnVoid); 2746 }; 2747 2748 // Represents dex's RETURN opcodes. A HReturn is a control flow 2749 // instruction that branches to the exit block. 2750 class HReturn final : public HExpression<1> { 2751 public: 2752 explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc) 2753 : HExpression(kReturn, SideEffects::None(), dex_pc) { 2754 SetRawInputAt(0, value); 2755 } 2756 2757 bool IsControlFlow() const override { return true; } 2758 2759 DECLARE_INSTRUCTION(Return); 2760 2761 protected: 2762 DEFAULT_COPY_CONSTRUCTOR(Return); 2763 }; 2764 2765 class HPhi final : public HVariableInputSizeInstruction { 2766 public: 2767 HPhi(ArenaAllocator* allocator, 2768 uint32_t reg_number, 2769 size_t number_of_inputs, 2770 DataType::Type type, 2771 uint32_t dex_pc = kNoDexPc) 2772 : HVariableInputSizeInstruction( 2773 kPhi, 2774 ToPhiType(type), 2775 SideEffects::None(), 2776 dex_pc, 2777 allocator, 2778 number_of_inputs, 2779 kArenaAllocPhiInputs), 2780 reg_number_(reg_number) { 2781 DCHECK_NE(GetType(), DataType::Type::kVoid); 2782 // Phis are constructed live and marked dead if conflicting or unused. 2783 // Individual steps of SsaBuilder should assume that if a phi has been 2784 // marked dead, it can be ignored and will be removed by SsaPhiElimination. 2785 SetPackedFlag<kFlagIsLive>(true); 2786 SetPackedFlag<kFlagCanBeNull>(true); 2787 } 2788 2789 bool IsClonable() const override { return true; } 2790 2791 // Returns a type equivalent to the given `type`, but that a `HPhi` can hold. 2792 static DataType::Type ToPhiType(DataType::Type type) { 2793 return DataType::Kind(type); 2794 } 2795 2796 bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); } 2797 2798 void SetType(DataType::Type new_type) { 2799 // Make sure that only valid type changes occur. The following are allowed: 2800 // (1) int -> float/ref (primitive type propagation), 2801 // (2) long -> double (primitive type propagation). 2802 DCHECK(GetType() == new_type || 2803 (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kFloat32) || 2804 (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kReference) || 2805 (GetType() == DataType::Type::kInt64 && new_type == DataType::Type::kFloat64)); 2806 SetPackedField<TypeField>(new_type); 2807 } 2808 2809 bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); } 2810 void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); } 2811 2812 uint32_t GetRegNumber() const { return reg_number_; } 2813 2814 void SetDead() { SetPackedFlag<kFlagIsLive>(false); } 2815 void SetLive() { SetPackedFlag<kFlagIsLive>(true); } 2816 bool IsDead() const { return !IsLive(); } 2817 bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); } 2818 2819 bool IsVRegEquivalentOf(const HInstruction* other) const { 2820 return other != nullptr 2821 && other->IsPhi() 2822 && other->AsPhi()->GetBlock() == GetBlock() 2823 && other->AsPhi()->GetRegNumber() == GetRegNumber(); 2824 } 2825 2826 bool HasEquivalentPhi() const { 2827 if (GetPrevious() != nullptr && GetPrevious()->AsPhi()->GetRegNumber() == GetRegNumber()) { 2828 return true; 2829 } 2830 if (GetNext() != nullptr && GetNext()->AsPhi()->GetRegNumber() == GetRegNumber()) { 2831 return true; 2832 } 2833 return false; 2834 } 2835 2836 // Returns the next equivalent phi (starting from the current one) or null if there is none. 2837 // An equivalent phi is a phi having the same dex register and type. 2838 // It assumes that phis with the same dex register are adjacent. 2839 HPhi* GetNextEquivalentPhiWithSameType() { 2840 HInstruction* next = GetNext(); 2841 while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) { 2842 if (next->GetType() == GetType()) { 2843 return next->AsPhi(); 2844 } 2845 next = next->GetNext(); 2846 } 2847 return nullptr; 2848 } 2849 2850 DECLARE_INSTRUCTION(Phi); 2851 2852 protected: 2853 DEFAULT_COPY_CONSTRUCTOR(Phi); 2854 2855 private: 2856 static constexpr size_t kFlagIsLive = HInstruction::kNumberOfGenericPackedBits; 2857 static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1; 2858 static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1; 2859 static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 2860 2861 const uint32_t reg_number_; 2862 }; 2863 2864 // The exit instruction is the only instruction of the exit block. 2865 // Instructions aborting the method (HThrow and HReturn) must branch to the 2866 // exit block. 2867 class HExit final : public HExpression<0> { 2868 public: 2869 explicit HExit(uint32_t dex_pc = kNoDexPc) 2870 : HExpression(kExit, SideEffects::None(), dex_pc) { 2871 } 2872 2873 bool IsControlFlow() const override { return true; } 2874 2875 DECLARE_INSTRUCTION(Exit); 2876 2877 protected: 2878 DEFAULT_COPY_CONSTRUCTOR(Exit); 2879 }; 2880 2881 // Jumps from one block to another. 2882 class HGoto final : public HExpression<0> { 2883 public: 2884 explicit HGoto(uint32_t dex_pc = kNoDexPc) 2885 : HExpression(kGoto, SideEffects::None(), dex_pc) { 2886 } 2887 2888 bool IsClonable() const override { return true; } 2889 bool IsControlFlow() const override { return true; } 2890 2891 HBasicBlock* GetSuccessor() const { 2892 return GetBlock()->GetSingleSuccessor(); 2893 } 2894 2895 DECLARE_INSTRUCTION(Goto); 2896 2897 protected: 2898 DEFAULT_COPY_CONSTRUCTOR(Goto); 2899 }; 2900 2901 class HConstant : public HExpression<0> { 2902 public: 2903 explicit HConstant(InstructionKind kind, DataType::Type type, uint32_t dex_pc = kNoDexPc) 2904 : HExpression(kind, type, SideEffects::None(), dex_pc) { 2905 } 2906 2907 bool CanBeMoved() const override { return true; } 2908 2909 // Is this constant -1 in the arithmetic sense? 2910 virtual bool IsMinusOne() const { return false; } 2911 // Is this constant 0 in the arithmetic sense? 2912 virtual bool IsArithmeticZero() const { return false; } 2913 // Is this constant a 0-bit pattern? 2914 virtual bool IsZeroBitPattern() const { return false; } 2915 // Is this constant 1 in the arithmetic sense? 2916 virtual bool IsOne() const { return false; } 2917 2918 virtual uint64_t GetValueAsUint64() const = 0; 2919 2920 DECLARE_ABSTRACT_INSTRUCTION(Constant); 2921 2922 protected: 2923 DEFAULT_COPY_CONSTRUCTOR(Constant); 2924 }; 2925 2926 class HNullConstant final : public HConstant { 2927 public: 2928 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 2929 return true; 2930 } 2931 2932 uint64_t GetValueAsUint64() const override { return 0; } 2933 2934 size_t ComputeHashCode() const override { return 0; } 2935 2936 // The null constant representation is a 0-bit pattern. 2937 bool IsZeroBitPattern() const override { return true; } 2938 2939 DECLARE_INSTRUCTION(NullConstant); 2940 2941 protected: 2942 DEFAULT_COPY_CONSTRUCTOR(NullConstant); 2943 2944 private: 2945 explicit HNullConstant(uint32_t dex_pc = kNoDexPc) 2946 : HConstant(kNullConstant, DataType::Type::kReference, dex_pc) { 2947 } 2948 2949 friend class HGraph; 2950 }; 2951 2952 // Constants of the type int. Those can be from Dex instructions, or 2953 // synthesized (for example with the if-eqz instruction). 2954 class HIntConstant final : public HConstant { 2955 public: 2956 int32_t GetValue() const { return value_; } 2957 2958 uint64_t GetValueAsUint64() const override { 2959 return static_cast<uint64_t>(static_cast<uint32_t>(value_)); 2960 } 2961 2962 bool InstructionDataEquals(const HInstruction* other) const override { 2963 DCHECK(other->IsIntConstant()) << other->DebugName(); 2964 return other->AsIntConstant()->value_ == value_; 2965 } 2966 2967 size_t ComputeHashCode() const override { return GetValue(); } 2968 2969 bool IsMinusOne() const override { return GetValue() == -1; } 2970 bool IsArithmeticZero() const override { return GetValue() == 0; } 2971 bool IsZeroBitPattern() const override { return GetValue() == 0; } 2972 bool IsOne() const override { return GetValue() == 1; } 2973 2974 // Integer constants are used to encode Boolean values as well, 2975 // where 1 means true and 0 means false. 2976 bool IsTrue() const { return GetValue() == 1; } 2977 bool IsFalse() const { return GetValue() == 0; } 2978 2979 DECLARE_INSTRUCTION(IntConstant); 2980 2981 protected: 2982 DEFAULT_COPY_CONSTRUCTOR(IntConstant); 2983 2984 private: 2985 explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) 2986 : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc), value_(value) { 2987 } 2988 explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc) 2989 : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc), 2990 value_(value ? 1 : 0) { 2991 } 2992 2993 const int32_t value_; 2994 2995 friend class HGraph; 2996 ART_FRIEND_TEST(GraphTest, InsertInstructionBefore); 2997 ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast); 2998 }; 2999 3000 class HLongConstant final : public HConstant { 3001 public: 3002 int64_t GetValue() const { return value_; } 3003 3004 uint64_t GetValueAsUint64() const override { return value_; } 3005 3006 bool InstructionDataEquals(const HInstruction* other) const override { 3007 DCHECK(other->IsLongConstant()) << other->DebugName(); 3008 return other->AsLongConstant()->value_ == value_; 3009 } 3010 3011 size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); } 3012 3013 bool IsMinusOne() const override { return GetValue() == -1; } 3014 bool IsArithmeticZero() const override { return GetValue() == 0; } 3015 bool IsZeroBitPattern() const override { return GetValue() == 0; } 3016 bool IsOne() const override { return GetValue() == 1; } 3017 3018 DECLARE_INSTRUCTION(LongConstant); 3019 3020 protected: 3021 DEFAULT_COPY_CONSTRUCTOR(LongConstant); 3022 3023 private: 3024 explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) 3025 : HConstant(kLongConstant, DataType::Type::kInt64, dex_pc), 3026 value_(value) { 3027 } 3028 3029 const int64_t value_; 3030 3031 friend class HGraph; 3032 }; 3033 3034 class HFloatConstant final : public HConstant { 3035 public: 3036 float GetValue() const { return value_; } 3037 3038 uint64_t GetValueAsUint64() const override { 3039 return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_)); 3040 } 3041 3042 bool InstructionDataEquals(const HInstruction* other) const override { 3043 DCHECK(other->IsFloatConstant()) << other->DebugName(); 3044 return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64(); 3045 } 3046 3047 size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); } 3048 3049 bool IsMinusOne() const override { 3050 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f)); 3051 } 3052 bool IsArithmeticZero() const override { 3053 return std::fpclassify(value_) == FP_ZERO; 3054 } 3055 bool IsArithmeticPositiveZero() const { 3056 return IsArithmeticZero() && !std::signbit(value_); 3057 } 3058 bool IsArithmeticNegativeZero() const { 3059 return IsArithmeticZero() && std::signbit(value_); 3060 } 3061 bool IsZeroBitPattern() const override { 3062 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f); 3063 } 3064 bool IsOne() const override { 3065 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f); 3066 } 3067 bool IsNaN() const { 3068 return std::isnan(value_); 3069 } 3070 3071 DECLARE_INSTRUCTION(FloatConstant); 3072 3073 protected: 3074 DEFAULT_COPY_CONSTRUCTOR(FloatConstant); 3075 3076 private: 3077 explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc) 3078 : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc), 3079 value_(value) { 3080 } 3081 explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc) 3082 : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc), 3083 value_(bit_cast<float, int32_t>(value)) { 3084 } 3085 3086 const float value_; 3087 3088 // Only the SsaBuilder and HGraph can create floating-point constants. 3089 friend class SsaBuilder; 3090 friend class HGraph; 3091 }; 3092 3093 class HDoubleConstant final : public HConstant { 3094 public: 3095 double GetValue() const { return value_; } 3096 3097 uint64_t GetValueAsUint64() const override { return bit_cast<uint64_t, double>(value_); } 3098 3099 bool InstructionDataEquals(const HInstruction* other) const override { 3100 DCHECK(other->IsDoubleConstant()) << other->DebugName(); 3101 return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64(); 3102 } 3103 3104 size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); } 3105 3106 bool IsMinusOne() const override { 3107 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0)); 3108 } 3109 bool IsArithmeticZero() const override { 3110 return std::fpclassify(value_) == FP_ZERO; 3111 } 3112 bool IsArithmeticPositiveZero() const { 3113 return IsArithmeticZero() && !std::signbit(value_); 3114 } 3115 bool IsArithmeticNegativeZero() const { 3116 return IsArithmeticZero() && std::signbit(value_); 3117 } 3118 bool IsZeroBitPattern() const override { 3119 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0)); 3120 } 3121 bool IsOne() const override { 3122 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0); 3123 } 3124 bool IsNaN() const { 3125 return std::isnan(value_); 3126 } 3127 3128 DECLARE_INSTRUCTION(DoubleConstant); 3129 3130 protected: 3131 DEFAULT_COPY_CONSTRUCTOR(DoubleConstant); 3132 3133 private: 3134 explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) 3135 : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc), 3136 value_(value) { 3137 } 3138 explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc) 3139 : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc), 3140 value_(bit_cast<double, int64_t>(value)) { 3141 } 3142 3143 const double value_; 3144 3145 // Only the SsaBuilder and HGraph can create floating-point constants. 3146 friend class SsaBuilder; 3147 friend class HGraph; 3148 }; 3149 3150 // Conditional branch. A block ending with an HIf instruction must have 3151 // two successors. 3152 class HIf final : public HExpression<1> { 3153 public: 3154 explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc) 3155 : HExpression(kIf, SideEffects::None(), dex_pc) { 3156 SetRawInputAt(0, input); 3157 } 3158 3159 bool IsClonable() const override { return true; } 3160 bool IsControlFlow() const override { return true; } 3161 3162 HBasicBlock* IfTrueSuccessor() const { 3163 return GetBlock()->GetSuccessors()[0]; 3164 } 3165 3166 HBasicBlock* IfFalseSuccessor() const { 3167 return GetBlock()->GetSuccessors()[1]; 3168 } 3169 3170 DECLARE_INSTRUCTION(If); 3171 3172 protected: 3173 DEFAULT_COPY_CONSTRUCTOR(If); 3174 }; 3175 3176 3177 // Abstract instruction which marks the beginning and/or end of a try block and 3178 // links it to the respective exception handlers. Behaves the same as a Goto in 3179 // non-exceptional control flow. 3180 // Normal-flow successor is stored at index zero, exception handlers under 3181 // higher indices in no particular order. 3182 class HTryBoundary final : public HExpression<0> { 3183 public: 3184 enum class BoundaryKind { 3185 kEntry, 3186 kExit, 3187 kLast = kExit 3188 }; 3189 3190 // SideEffects::CanTriggerGC prevents instructions with SideEffects::DependOnGC to be alive 3191 // across the catch block entering edges as GC might happen during throwing an exception. 3192 // TryBoundary with BoundaryKind::kExit is conservatively used for that as there is no 3193 // HInstruction which a catch block must start from. 3194 explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc) 3195 : HExpression(kTryBoundary, 3196 (kind == BoundaryKind::kExit) ? SideEffects::CanTriggerGC() 3197 : SideEffects::None(), 3198 dex_pc) { 3199 SetPackedField<BoundaryKindField>(kind); 3200 } 3201 3202 bool IsControlFlow() const override { return true; } 3203 3204 // Returns the block's non-exceptional successor (index zero). 3205 HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; } 3206 3207 ArrayRef<HBasicBlock* const> GetExceptionHandlers() const { 3208 return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u); 3209 } 3210 3211 // Returns whether `handler` is among its exception handlers (non-zero index 3212 // successors). 3213 bool HasExceptionHandler(const HBasicBlock& handler) const { 3214 DCHECK(handler.IsCatchBlock()); 3215 return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */); 3216 } 3217 3218 // If not present already, adds `handler` to its block's list of exception 3219 // handlers. 3220 void AddExceptionHandler(HBasicBlock* handler) { 3221 if (!HasExceptionHandler(*handler)) { 3222 GetBlock()->AddSuccessor(handler); 3223 } 3224 } 3225 3226 BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); } 3227 bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; } 3228 3229 bool HasSameExceptionHandlersAs(const HTryBoundary& other) const; 3230 3231 DECLARE_INSTRUCTION(TryBoundary); 3232 3233 protected: 3234 DEFAULT_COPY_CONSTRUCTOR(TryBoundary); 3235 3236 private: 3237 static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits; 3238 static constexpr size_t kFieldBoundaryKindSize = 3239 MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast)); 3240 static constexpr size_t kNumberOfTryBoundaryPackedBits = 3241 kFieldBoundaryKind + kFieldBoundaryKindSize; 3242 static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits, 3243 "Too many packed fields."); 3244 using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>; 3245 }; 3246 3247 // Deoptimize to interpreter, upon checking a condition. 3248 class HDeoptimize final : public HVariableInputSizeInstruction { 3249 public: 3250 // Use this constructor when the `HDeoptimize` acts as a barrier, where no code can move 3251 // across. 3252 HDeoptimize(ArenaAllocator* allocator, 3253 HInstruction* cond, 3254 DeoptimizationKind kind, 3255 uint32_t dex_pc) 3256 : HVariableInputSizeInstruction( 3257 kDeoptimize, 3258 SideEffects::All(), 3259 dex_pc, 3260 allocator, 3261 /* number_of_inputs= */ 1, 3262 kArenaAllocMisc) { 3263 SetPackedFlag<kFieldCanBeMoved>(false); 3264 SetPackedField<DeoptimizeKindField>(kind); 3265 SetRawInputAt(0, cond); 3266 } 3267 3268 bool IsClonable() const override { return true; } 3269 3270 // Use this constructor when the `HDeoptimize` guards an instruction, and any user 3271 // that relies on the deoptimization to pass should have its input be the `HDeoptimize` 3272 // instead of `guard`. 3273 // We set CanTriggerGC to prevent any intermediate address to be live 3274 // at the point of the `HDeoptimize`. 3275 HDeoptimize(ArenaAllocator* allocator, 3276 HInstruction* cond, 3277 HInstruction* guard, 3278 DeoptimizationKind kind, 3279 uint32_t dex_pc) 3280 : HVariableInputSizeInstruction( 3281 kDeoptimize, 3282 guard->GetType(), 3283 SideEffects::CanTriggerGC(), 3284 dex_pc, 3285 allocator, 3286 /* number_of_inputs= */ 2, 3287 kArenaAllocMisc) { 3288 SetPackedFlag<kFieldCanBeMoved>(true); 3289 SetPackedField<DeoptimizeKindField>(kind); 3290 SetRawInputAt(0, cond); 3291 SetRawInputAt(1, guard); 3292 } 3293 3294 bool CanBeMoved() const override { return GetPackedFlag<kFieldCanBeMoved>(); } 3295 3296 bool InstructionDataEquals(const HInstruction* other) const override { 3297 return (other->CanBeMoved() == CanBeMoved()) && (other->AsDeoptimize()->GetKind() == GetKind()); 3298 } 3299 3300 bool NeedsEnvironment() const override { return true; } 3301 3302 bool CanThrow() const override { return true; } 3303 3304 DeoptimizationKind GetDeoptimizationKind() const { return GetPackedField<DeoptimizeKindField>(); } 3305 3306 bool GuardsAnInput() const { 3307 return InputCount() == 2; 3308 } 3309 3310 HInstruction* GuardedInput() const { 3311 DCHECK(GuardsAnInput()); 3312 return InputAt(1); 3313 } 3314 3315 void RemoveGuard() { 3316 RemoveInputAt(1); 3317 } 3318 3319 DECLARE_INSTRUCTION(Deoptimize); 3320 3321 protected: 3322 DEFAULT_COPY_CONSTRUCTOR(Deoptimize); 3323 3324 private: 3325 static constexpr size_t kFieldCanBeMoved = kNumberOfGenericPackedBits; 3326 static constexpr size_t kFieldDeoptimizeKind = kNumberOfGenericPackedBits + 1; 3327 static constexpr size_t kFieldDeoptimizeKindSize = 3328 MinimumBitsToStore(static_cast<size_t>(DeoptimizationKind::kLast)); 3329 static constexpr size_t kNumberOfDeoptimizePackedBits = 3330 kFieldDeoptimizeKind + kFieldDeoptimizeKindSize; 3331 static_assert(kNumberOfDeoptimizePackedBits <= kMaxNumberOfPackedBits, 3332 "Too many packed fields."); 3333 using DeoptimizeKindField = 3334 BitField<DeoptimizationKind, kFieldDeoptimizeKind, kFieldDeoptimizeKindSize>; 3335 }; 3336 3337 // Represents a should_deoptimize flag. Currently used for CHA-based devirtualization. 3338 // The compiled code checks this flag value in a guard before devirtualized call and 3339 // if it's true, starts to do deoptimization. 3340 // It has a 4-byte slot on stack. 3341 // TODO: allocate a register for this flag. 3342 class HShouldDeoptimizeFlag final : public HVariableInputSizeInstruction { 3343 public: 3344 // CHA guards are only optimized in a separate pass and it has no side effects 3345 // with regard to other passes. 3346 HShouldDeoptimizeFlag(ArenaAllocator* allocator, uint32_t dex_pc) 3347 : HVariableInputSizeInstruction(kShouldDeoptimizeFlag, 3348 DataType::Type::kInt32, 3349 SideEffects::None(), 3350 dex_pc, 3351 allocator, 3352 0, 3353 kArenaAllocCHA) { 3354 } 3355 3356 // We do all CHA guard elimination/motion in a single pass, after which there is no 3357 // further guard elimination/motion since a guard might have been used for justification 3358 // of the elimination of another guard. Therefore, we pretend this guard cannot be moved 3359 // to avoid other optimizations trying to move it. 3360 bool CanBeMoved() const override { return false; } 3361 3362 DECLARE_INSTRUCTION(ShouldDeoptimizeFlag); 3363 3364 protected: 3365 DEFAULT_COPY_CONSTRUCTOR(ShouldDeoptimizeFlag); 3366 }; 3367 3368 // Represents the ArtMethod that was passed as a first argument to 3369 // the method. It is used by instructions that depend on it, like 3370 // instructions that work with the dex cache. 3371 class HCurrentMethod final : public HExpression<0> { 3372 public: 3373 explicit HCurrentMethod(DataType::Type type, uint32_t dex_pc = kNoDexPc) 3374 : HExpression(kCurrentMethod, type, SideEffects::None(), dex_pc) { 3375 } 3376 3377 DECLARE_INSTRUCTION(CurrentMethod); 3378 3379 protected: 3380 DEFAULT_COPY_CONSTRUCTOR(CurrentMethod); 3381 }; 3382 3383 // Fetches an ArtMethod from the virtual table or the interface method table 3384 // of a class. 3385 class HClassTableGet final : public HExpression<1> { 3386 public: 3387 enum class TableKind { 3388 kVTable, 3389 kIMTable, 3390 kLast = kIMTable 3391 }; 3392 HClassTableGet(HInstruction* cls, 3393 DataType::Type type, 3394 TableKind kind, 3395 size_t index, 3396 uint32_t dex_pc) 3397 : HExpression(kClassTableGet, type, SideEffects::None(), dex_pc), 3398 index_(index) { 3399 SetPackedField<TableKindField>(kind); 3400 SetRawInputAt(0, cls); 3401 } 3402 3403 bool IsClonable() const override { return true; } 3404 bool CanBeMoved() const override { return true; } 3405 bool InstructionDataEquals(const HInstruction* other) const override { 3406 return other->AsClassTableGet()->GetIndex() == index_ && 3407 other->AsClassTableGet()->GetPackedFields() == GetPackedFields(); 3408 } 3409 3410 TableKind GetTableKind() const { return GetPackedField<TableKindField>(); } 3411 size_t GetIndex() const { return index_; } 3412 3413 DECLARE_INSTRUCTION(ClassTableGet); 3414 3415 protected: 3416 DEFAULT_COPY_CONSTRUCTOR(ClassTableGet); 3417 3418 private: 3419 static constexpr size_t kFieldTableKind = kNumberOfGenericPackedBits; 3420 static constexpr size_t kFieldTableKindSize = 3421 MinimumBitsToStore(static_cast<size_t>(TableKind::kLast)); 3422 static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize; 3423 static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits, 3424 "Too many packed fields."); 3425 using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>; 3426 3427 // The index of the ArtMethod in the table. 3428 const size_t index_; 3429 }; 3430 3431 // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will 3432 // have one successor for each entry in the switch table, and the final successor 3433 // will be the block containing the next Dex opcode. 3434 class HPackedSwitch final : public HExpression<1> { 3435 public: 3436 HPackedSwitch(int32_t start_value, 3437 uint32_t num_entries, 3438 HInstruction* input, 3439 uint32_t dex_pc = kNoDexPc) 3440 : HExpression(kPackedSwitch, SideEffects::None(), dex_pc), 3441 start_value_(start_value), 3442 num_entries_(num_entries) { 3443 SetRawInputAt(0, input); 3444 } 3445 3446 bool IsClonable() const override { return true; } 3447 3448 bool IsControlFlow() const override { return true; } 3449 3450 int32_t GetStartValue() const { return start_value_; } 3451 3452 uint32_t GetNumEntries() const { return num_entries_; } 3453 3454 HBasicBlock* GetDefaultBlock() const { 3455 // Last entry is the default block. 3456 return GetBlock()->GetSuccessors()[num_entries_]; 3457 } 3458 DECLARE_INSTRUCTION(PackedSwitch); 3459 3460 protected: 3461 DEFAULT_COPY_CONSTRUCTOR(PackedSwitch); 3462 3463 private: 3464 const int32_t start_value_; 3465 const uint32_t num_entries_; 3466 }; 3467 3468 class HUnaryOperation : public HExpression<1> { 3469 public: 3470 HUnaryOperation(InstructionKind kind, 3471 DataType::Type result_type, 3472 HInstruction* input, 3473 uint32_t dex_pc = kNoDexPc) 3474 : HExpression(kind, result_type, SideEffects::None(), dex_pc) { 3475 SetRawInputAt(0, input); 3476 } 3477 3478 // All of the UnaryOperation instructions are clonable. 3479 bool IsClonable() const override { return true; } 3480 3481 HInstruction* GetInput() const { return InputAt(0); } 3482 DataType::Type GetResultType() const { return GetType(); } 3483 3484 bool CanBeMoved() const override { return true; } 3485 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 3486 return true; 3487 } 3488 3489 // Try to statically evaluate `this` and return a HConstant 3490 // containing the result of this evaluation. If `this` cannot 3491 // be evaluated as a constant, return null. 3492 HConstant* TryStaticEvaluation() const; 3493 3494 // Apply this operation to `x`. 3495 virtual HConstant* Evaluate(HIntConstant* x) const = 0; 3496 virtual HConstant* Evaluate(HLongConstant* x) const = 0; 3497 virtual HConstant* Evaluate(HFloatConstant* x) const = 0; 3498 virtual HConstant* Evaluate(HDoubleConstant* x) const = 0; 3499 3500 DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation); 3501 3502 protected: 3503 DEFAULT_COPY_CONSTRUCTOR(UnaryOperation); 3504 }; 3505 3506 class HBinaryOperation : public HExpression<2> { 3507 public: 3508 HBinaryOperation(InstructionKind kind, 3509 DataType::Type result_type, 3510 HInstruction* left, 3511 HInstruction* right, 3512 SideEffects side_effects = SideEffects::None(), 3513 uint32_t dex_pc = kNoDexPc) 3514 : HExpression(kind, result_type, side_effects, dex_pc) { 3515 SetRawInputAt(0, left); 3516 SetRawInputAt(1, right); 3517 } 3518 3519 // All of the BinaryOperation instructions are clonable. 3520 bool IsClonable() const override { return true; } 3521 3522 HInstruction* GetLeft() const { return InputAt(0); } 3523 HInstruction* GetRight() const { return InputAt(1); } 3524 DataType::Type GetResultType() const { return GetType(); } 3525 3526 virtual bool IsCommutative() const { return false; } 3527 3528 // Put constant on the right. 3529 // Returns whether order is changed. 3530 bool OrderInputsWithConstantOnTheRight() { 3531 HInstruction* left = InputAt(0); 3532 HInstruction* right = InputAt(1); 3533 if (left->IsConstant() && !right->IsConstant()) { 3534 ReplaceInput(right, 0); 3535 ReplaceInput(left, 1); 3536 return true; 3537 } 3538 return false; 3539 } 3540 3541 // Order inputs by instruction id, but favor constant on the right side. 3542 // This helps GVN for commutative ops. 3543 void OrderInputs() { 3544 DCHECK(IsCommutative()); 3545 HInstruction* left = InputAt(0); 3546 HInstruction* right = InputAt(1); 3547 if (left == right || (!left->IsConstant() && right->IsConstant())) { 3548 return; 3549 } 3550 if (OrderInputsWithConstantOnTheRight()) { 3551 return; 3552 } 3553 // Order according to instruction id. 3554 if (left->GetId() > right->GetId()) { 3555 ReplaceInput(right, 0); 3556 ReplaceInput(left, 1); 3557 } 3558 } 3559 3560 bool CanBeMoved() const override { return true; } 3561 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 3562 return true; 3563 } 3564 3565 // Try to statically evaluate `this` and return a HConstant 3566 // containing the result of this evaluation. If `this` cannot 3567 // be evaluated as a constant, return null. 3568 HConstant* TryStaticEvaluation() const; 3569 3570 // Apply this operation to `x` and `y`. 3571 virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, 3572 HNullConstant* y ATTRIBUTE_UNUSED) const { 3573 LOG(FATAL) << DebugName() << " is not defined for the (null, null) case."; 3574 UNREACHABLE(); 3575 } 3576 virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0; 3577 virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0; 3578 virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED, 3579 HIntConstant* y ATTRIBUTE_UNUSED) const { 3580 LOG(FATAL) << DebugName() << " is not defined for the (long, int) case."; 3581 UNREACHABLE(); 3582 } 3583 virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0; 3584 virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0; 3585 3586 // Returns an input that can legally be used as the right input and is 3587 // constant, or null. 3588 HConstant* GetConstantRight() const; 3589 3590 // If `GetConstantRight()` returns one of the input, this returns the other 3591 // one. Otherwise it returns null. 3592 HInstruction* GetLeastConstantLeft() const; 3593 3594 DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation); 3595 3596 protected: 3597 DEFAULT_COPY_CONSTRUCTOR(BinaryOperation); 3598 }; 3599 3600 // The comparison bias applies for floating point operations and indicates how NaN 3601 // comparisons are treated: 3602 enum class ComparisonBias { 3603 kNoBias, // bias is not applicable (i.e. for long operation) 3604 kGtBias, // return 1 for NaN comparisons 3605 kLtBias, // return -1 for NaN comparisons 3606 kLast = kLtBias 3607 }; 3608 3609 std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs); 3610 3611 class HCondition : public HBinaryOperation { 3612 public: 3613 HCondition(InstructionKind kind, 3614 HInstruction* first, 3615 HInstruction* second, 3616 uint32_t dex_pc = kNoDexPc) 3617 : HBinaryOperation(kind, 3618 DataType::Type::kBool, 3619 first, 3620 second, 3621 SideEffects::None(), 3622 dex_pc) { 3623 SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias); 3624 } 3625 3626 // For code generation purposes, returns whether this instruction is just before 3627 // `instruction`, and disregard moves in between. 3628 bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const; 3629 3630 DECLARE_ABSTRACT_INSTRUCTION(Condition); 3631 3632 virtual IfCondition GetCondition() const = 0; 3633 3634 virtual IfCondition GetOppositeCondition() const = 0; 3635 3636 bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; } 3637 bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; } 3638 3639 ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); } 3640 void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); } 3641 3642 bool InstructionDataEquals(const HInstruction* other) const override { 3643 return GetPackedFields() == other->AsCondition()->GetPackedFields(); 3644 } 3645 3646 bool IsFPConditionTrueIfNaN() const { 3647 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); 3648 IfCondition if_cond = GetCondition(); 3649 if (if_cond == kCondNE) { 3650 return true; 3651 } else if (if_cond == kCondEQ) { 3652 return false; 3653 } 3654 return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias(); 3655 } 3656 3657 bool IsFPConditionFalseIfNaN() const { 3658 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); 3659 IfCondition if_cond = GetCondition(); 3660 if (if_cond == kCondEQ) { 3661 return true; 3662 } else if (if_cond == kCondNE) { 3663 return false; 3664 } 3665 return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias(); 3666 } 3667 3668 protected: 3669 // Needed if we merge a HCompare into a HCondition. 3670 static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits; 3671 static constexpr size_t kFieldComparisonBiasSize = 3672 MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast)); 3673 static constexpr size_t kNumberOfConditionPackedBits = 3674 kFieldComparisonBias + kFieldComparisonBiasSize; 3675 static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 3676 using ComparisonBiasField = 3677 BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>; 3678 3679 template <typename T> 3680 int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); } 3681 3682 template <typename T> 3683 int32_t CompareFP(T x, T y) const { 3684 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); 3685 DCHECK_NE(GetBias(), ComparisonBias::kNoBias); 3686 // Handle the bias. 3687 return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y); 3688 } 3689 3690 // Return an integer constant containing the result of a condition evaluated at compile time. 3691 HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const { 3692 return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc); 3693 } 3694 3695 DEFAULT_COPY_CONSTRUCTOR(Condition); 3696 }; 3697 3698 // Instruction to check if two inputs are equal to each other. 3699 class HEqual final : public HCondition { 3700 public: 3701 HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) 3702 : HCondition(kEqual, first, second, dex_pc) { 3703 } 3704 3705 bool IsCommutative() const override { return true; } 3706 3707 HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, 3708 HNullConstant* y ATTRIBUTE_UNUSED) const override { 3709 return MakeConstantCondition(true, GetDexPc()); 3710 } 3711 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 3712 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3713 } 3714 // In the following Evaluate methods, a HCompare instruction has 3715 // been merged into this HEqual instruction; evaluate it as 3716 // `Compare(x, y) == 0`. 3717 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 3718 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), 3719 GetDexPc()); 3720 } 3721 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 3722 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3723 } 3724 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 3725 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3726 } 3727 3728 DECLARE_INSTRUCTION(Equal); 3729 3730 IfCondition GetCondition() const override { 3731 return kCondEQ; 3732 } 3733 3734 IfCondition GetOppositeCondition() const override { 3735 return kCondNE; 3736 } 3737 3738 protected: 3739 DEFAULT_COPY_CONSTRUCTOR(Equal); 3740 3741 private: 3742 template <typename T> static bool Compute(T x, T y) { return x == y; } 3743 }; 3744 3745 class HNotEqual final : public HCondition { 3746 public: 3747 HNotEqual(HInstruction* first, HInstruction* second, 3748 uint32_t dex_pc = kNoDexPc) 3749 : HCondition(kNotEqual, first, second, dex_pc) { 3750 } 3751 3752 bool IsCommutative() const override { return true; } 3753 3754 HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, 3755 HNullConstant* y ATTRIBUTE_UNUSED) const override { 3756 return MakeConstantCondition(false, GetDexPc()); 3757 } 3758 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 3759 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3760 } 3761 // In the following Evaluate methods, a HCompare instruction has 3762 // been merged into this HNotEqual instruction; evaluate it as 3763 // `Compare(x, y) != 0`. 3764 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 3765 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3766 } 3767 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 3768 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3769 } 3770 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 3771 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3772 } 3773 3774 DECLARE_INSTRUCTION(NotEqual); 3775 3776 IfCondition GetCondition() const override { 3777 return kCondNE; 3778 } 3779 3780 IfCondition GetOppositeCondition() const override { 3781 return kCondEQ; 3782 } 3783 3784 protected: 3785 DEFAULT_COPY_CONSTRUCTOR(NotEqual); 3786 3787 private: 3788 template <typename T> static bool Compute(T x, T y) { return x != y; } 3789 }; 3790 3791 class HLessThan final : public HCondition { 3792 public: 3793 HLessThan(HInstruction* first, HInstruction* second, 3794 uint32_t dex_pc = kNoDexPc) 3795 : HCondition(kLessThan, first, second, dex_pc) { 3796 } 3797 3798 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 3799 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3800 } 3801 // In the following Evaluate methods, a HCompare instruction has 3802 // been merged into this HLessThan instruction; evaluate it as 3803 // `Compare(x, y) < 0`. 3804 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 3805 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3806 } 3807 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 3808 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3809 } 3810 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 3811 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3812 } 3813 3814 DECLARE_INSTRUCTION(LessThan); 3815 3816 IfCondition GetCondition() const override { 3817 return kCondLT; 3818 } 3819 3820 IfCondition GetOppositeCondition() const override { 3821 return kCondGE; 3822 } 3823 3824 protected: 3825 DEFAULT_COPY_CONSTRUCTOR(LessThan); 3826 3827 private: 3828 template <typename T> static bool Compute(T x, T y) { return x < y; } 3829 }; 3830 3831 class HLessThanOrEqual final : public HCondition { 3832 public: 3833 HLessThanOrEqual(HInstruction* first, HInstruction* second, 3834 uint32_t dex_pc = kNoDexPc) 3835 : HCondition(kLessThanOrEqual, first, second, dex_pc) { 3836 } 3837 3838 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 3839 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3840 } 3841 // In the following Evaluate methods, a HCompare instruction has 3842 // been merged into this HLessThanOrEqual instruction; evaluate it as 3843 // `Compare(x, y) <= 0`. 3844 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 3845 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3846 } 3847 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 3848 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3849 } 3850 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 3851 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3852 } 3853 3854 DECLARE_INSTRUCTION(LessThanOrEqual); 3855 3856 IfCondition GetCondition() const override { 3857 return kCondLE; 3858 } 3859 3860 IfCondition GetOppositeCondition() const override { 3861 return kCondGT; 3862 } 3863 3864 protected: 3865 DEFAULT_COPY_CONSTRUCTOR(LessThanOrEqual); 3866 3867 private: 3868 template <typename T> static bool Compute(T x, T y) { return x <= y; } 3869 }; 3870 3871 class HGreaterThan final : public HCondition { 3872 public: 3873 HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) 3874 : HCondition(kGreaterThan, first, second, dex_pc) { 3875 } 3876 3877 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 3878 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3879 } 3880 // In the following Evaluate methods, a HCompare instruction has 3881 // been merged into this HGreaterThan instruction; evaluate it as 3882 // `Compare(x, y) > 0`. 3883 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 3884 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3885 } 3886 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 3887 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3888 } 3889 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 3890 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3891 } 3892 3893 DECLARE_INSTRUCTION(GreaterThan); 3894 3895 IfCondition GetCondition() const override { 3896 return kCondGT; 3897 } 3898 3899 IfCondition GetOppositeCondition() const override { 3900 return kCondLE; 3901 } 3902 3903 protected: 3904 DEFAULT_COPY_CONSTRUCTOR(GreaterThan); 3905 3906 private: 3907 template <typename T> static bool Compute(T x, T y) { return x > y; } 3908 }; 3909 3910 class HGreaterThanOrEqual final : public HCondition { 3911 public: 3912 HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) 3913 : HCondition(kGreaterThanOrEqual, first, second, dex_pc) { 3914 } 3915 3916 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 3917 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3918 } 3919 // In the following Evaluate methods, a HCompare instruction has 3920 // been merged into this HGreaterThanOrEqual instruction; evaluate it as 3921 // `Compare(x, y) >= 0`. 3922 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 3923 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3924 } 3925 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 3926 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3927 } 3928 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 3929 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); 3930 } 3931 3932 DECLARE_INSTRUCTION(GreaterThanOrEqual); 3933 3934 IfCondition GetCondition() const override { 3935 return kCondGE; 3936 } 3937 3938 IfCondition GetOppositeCondition() const override { 3939 return kCondLT; 3940 } 3941 3942 protected: 3943 DEFAULT_COPY_CONSTRUCTOR(GreaterThanOrEqual); 3944 3945 private: 3946 template <typename T> static bool Compute(T x, T y) { return x >= y; } 3947 }; 3948 3949 class HBelow final : public HCondition { 3950 public: 3951 HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) 3952 : HCondition(kBelow, first, second, dex_pc) { 3953 } 3954 3955 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 3956 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3957 } 3958 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 3959 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3960 } 3961 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 3962 HFloatConstant* y ATTRIBUTE_UNUSED) const override { 3963 LOG(FATAL) << DebugName() << " is not defined for float values"; 3964 UNREACHABLE(); 3965 } 3966 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 3967 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { 3968 LOG(FATAL) << DebugName() << " is not defined for double values"; 3969 UNREACHABLE(); 3970 } 3971 3972 DECLARE_INSTRUCTION(Below); 3973 3974 IfCondition GetCondition() const override { 3975 return kCondB; 3976 } 3977 3978 IfCondition GetOppositeCondition() const override { 3979 return kCondAE; 3980 } 3981 3982 protected: 3983 DEFAULT_COPY_CONSTRUCTOR(Below); 3984 3985 private: 3986 template <typename T> static bool Compute(T x, T y) { 3987 return MakeUnsigned(x) < MakeUnsigned(y); 3988 } 3989 }; 3990 3991 class HBelowOrEqual final : public HCondition { 3992 public: 3993 HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) 3994 : HCondition(kBelowOrEqual, first, second, dex_pc) { 3995 } 3996 3997 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 3998 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 3999 } 4000 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 4001 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4002 } 4003 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 4004 HFloatConstant* y ATTRIBUTE_UNUSED) const override { 4005 LOG(FATAL) << DebugName() << " is not defined for float values"; 4006 UNREACHABLE(); 4007 } 4008 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 4009 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { 4010 LOG(FATAL) << DebugName() << " is not defined for double values"; 4011 UNREACHABLE(); 4012 } 4013 4014 DECLARE_INSTRUCTION(BelowOrEqual); 4015 4016 IfCondition GetCondition() const override { 4017 return kCondBE; 4018 } 4019 4020 IfCondition GetOppositeCondition() const override { 4021 return kCondA; 4022 } 4023 4024 protected: 4025 DEFAULT_COPY_CONSTRUCTOR(BelowOrEqual); 4026 4027 private: 4028 template <typename T> static bool Compute(T x, T y) { 4029 return MakeUnsigned(x) <= MakeUnsigned(y); 4030 } 4031 }; 4032 4033 class HAbove final : public HCondition { 4034 public: 4035 HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) 4036 : HCondition(kAbove, first, second, dex_pc) { 4037 } 4038 4039 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 4040 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4041 } 4042 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 4043 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4044 } 4045 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 4046 HFloatConstant* y ATTRIBUTE_UNUSED) const override { 4047 LOG(FATAL) << DebugName() << " is not defined for float values"; 4048 UNREACHABLE(); 4049 } 4050 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 4051 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { 4052 LOG(FATAL) << DebugName() << " is not defined for double values"; 4053 UNREACHABLE(); 4054 } 4055 4056 DECLARE_INSTRUCTION(Above); 4057 4058 IfCondition GetCondition() const override { 4059 return kCondA; 4060 } 4061 4062 IfCondition GetOppositeCondition() const override { 4063 return kCondBE; 4064 } 4065 4066 protected: 4067 DEFAULT_COPY_CONSTRUCTOR(Above); 4068 4069 private: 4070 template <typename T> static bool Compute(T x, T y) { 4071 return MakeUnsigned(x) > MakeUnsigned(y); 4072 } 4073 }; 4074 4075 class HAboveOrEqual final : public HCondition { 4076 public: 4077 HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) 4078 : HCondition(kAboveOrEqual, first, second, dex_pc) { 4079 } 4080 4081 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 4082 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4083 } 4084 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 4085 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4086 } 4087 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 4088 HFloatConstant* y ATTRIBUTE_UNUSED) const override { 4089 LOG(FATAL) << DebugName() << " is not defined for float values"; 4090 UNREACHABLE(); 4091 } 4092 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 4093 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { 4094 LOG(FATAL) << DebugName() << " is not defined for double values"; 4095 UNREACHABLE(); 4096 } 4097 4098 DECLARE_INSTRUCTION(AboveOrEqual); 4099 4100 IfCondition GetCondition() const override { 4101 return kCondAE; 4102 } 4103 4104 IfCondition GetOppositeCondition() const override { 4105 return kCondB; 4106 } 4107 4108 protected: 4109 DEFAULT_COPY_CONSTRUCTOR(AboveOrEqual); 4110 4111 private: 4112 template <typename T> static bool Compute(T x, T y) { 4113 return MakeUnsigned(x) >= MakeUnsigned(y); 4114 } 4115 }; 4116 4117 // Instruction to check how two inputs compare to each other. 4118 // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1. 4119 class HCompare final : public HBinaryOperation { 4120 public: 4121 // Note that `comparison_type` is the type of comparison performed 4122 // between the comparison's inputs, not the type of the instantiated 4123 // HCompare instruction (which is always DataType::Type::kInt). 4124 HCompare(DataType::Type comparison_type, 4125 HInstruction* first, 4126 HInstruction* second, 4127 ComparisonBias bias, 4128 uint32_t dex_pc) 4129 : HBinaryOperation(kCompare, 4130 DataType::Type::kInt32, 4131 first, 4132 second, 4133 SideEffectsForArchRuntimeCalls(comparison_type), 4134 dex_pc) { 4135 SetPackedField<ComparisonBiasField>(bias); 4136 DCHECK_EQ(comparison_type, DataType::Kind(first->GetType())); 4137 DCHECK_EQ(comparison_type, DataType::Kind(second->GetType())); 4138 } 4139 4140 template <typename T> 4141 int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); } 4142 4143 template <typename T> 4144 int32_t ComputeFP(T x, T y) const { 4145 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); 4146 DCHECK_NE(GetBias(), ComparisonBias::kNoBias); 4147 // Handle the bias. 4148 return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y); 4149 } 4150 4151 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 4152 // Note that there is no "cmp-int" Dex instruction so we shouldn't 4153 // reach this code path when processing a freshly built HIR 4154 // graph. However HCompare integer instructions can be synthesized 4155 // by the instruction simplifier to implement IntegerCompare and 4156 // IntegerSignum intrinsics, so we have to handle this case. 4157 return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4158 } 4159 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 4160 return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4161 } 4162 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 4163 return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); 4164 } 4165 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 4166 return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); 4167 } 4168 4169 bool InstructionDataEquals(const HInstruction* other) const override { 4170 return GetPackedFields() == other->AsCompare()->GetPackedFields(); 4171 } 4172 4173 ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); } 4174 4175 // Does this compare instruction have a "gt bias" (vs an "lt bias")? 4176 // Only meaningful for floating-point comparisons. 4177 bool IsGtBias() const { 4178 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); 4179 return GetBias() == ComparisonBias::kGtBias; 4180 } 4181 4182 static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type type ATTRIBUTE_UNUSED) { 4183 // Comparisons do not require a runtime call in any back end. 4184 return SideEffects::None(); 4185 } 4186 4187 DECLARE_INSTRUCTION(Compare); 4188 4189 protected: 4190 static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits; 4191 static constexpr size_t kFieldComparisonBiasSize = 4192 MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast)); 4193 static constexpr size_t kNumberOfComparePackedBits = 4194 kFieldComparisonBias + kFieldComparisonBiasSize; 4195 static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 4196 using ComparisonBiasField = 4197 BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>; 4198 4199 // Return an integer constant containing the result of a comparison evaluated at compile time. 4200 HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const { 4201 DCHECK(value == -1 || value == 0 || value == 1) << value; 4202 return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc); 4203 } 4204 4205 DEFAULT_COPY_CONSTRUCTOR(Compare); 4206 }; 4207 4208 class HNewInstance final : public HExpression<1> { 4209 public: 4210 HNewInstance(HInstruction* cls, 4211 uint32_t dex_pc, 4212 dex::TypeIndex type_index, 4213 const DexFile& dex_file, 4214 bool finalizable, 4215 QuickEntrypointEnum entrypoint) 4216 : HExpression(kNewInstance, 4217 DataType::Type::kReference, 4218 SideEffects::CanTriggerGC(), 4219 dex_pc), 4220 type_index_(type_index), 4221 dex_file_(dex_file), 4222 entrypoint_(entrypoint) { 4223 SetPackedFlag<kFlagFinalizable>(finalizable); 4224 SetRawInputAt(0, cls); 4225 } 4226 4227 bool IsClonable() const override { return true; } 4228 4229 dex::TypeIndex GetTypeIndex() const { return type_index_; } 4230 const DexFile& GetDexFile() const { return dex_file_; } 4231 4232 // Calls runtime so needs an environment. 4233 bool NeedsEnvironment() const override { return true; } 4234 4235 // Can throw errors when out-of-memory or if it's not instantiable/accessible. 4236 bool CanThrow() const override { return true; } 4237 4238 bool NeedsChecks() const { 4239 return entrypoint_ == kQuickAllocObjectWithChecks; 4240 } 4241 4242 bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); } 4243 4244 bool CanBeNull() const override { return false; } 4245 4246 QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; } 4247 4248 void SetEntrypoint(QuickEntrypointEnum entrypoint) { 4249 entrypoint_ = entrypoint; 4250 } 4251 4252 HLoadClass* GetLoadClass() const { 4253 HInstruction* input = InputAt(0); 4254 if (input->IsClinitCheck()) { 4255 input = input->InputAt(0); 4256 } 4257 DCHECK(input->IsLoadClass()); 4258 return input->AsLoadClass(); 4259 } 4260 4261 bool IsStringAlloc() const; 4262 4263 DECLARE_INSTRUCTION(NewInstance); 4264 4265 protected: 4266 DEFAULT_COPY_CONSTRUCTOR(NewInstance); 4267 4268 private: 4269 static constexpr size_t kFlagFinalizable = kNumberOfGenericPackedBits; 4270 static constexpr size_t kNumberOfNewInstancePackedBits = kFlagFinalizable + 1; 4271 static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits, 4272 "Too many packed fields."); 4273 4274 const dex::TypeIndex type_index_; 4275 const DexFile& dex_file_; 4276 QuickEntrypointEnum entrypoint_; 4277 }; 4278 4279 enum IntrinsicNeedsEnvironmentOrCache { 4280 kNoEnvironmentOrCache, // Intrinsic does not require an environment or dex cache. 4281 kNeedsEnvironmentOrCache // Intrinsic requires an environment or requires a dex cache. 4282 }; 4283 4284 enum IntrinsicSideEffects { 4285 kNoSideEffects, // Intrinsic does not have any heap memory side effects. 4286 kReadSideEffects, // Intrinsic may read heap memory. 4287 kWriteSideEffects, // Intrinsic may write heap memory. 4288 kAllSideEffects // Intrinsic may read or write heap memory, or trigger GC. 4289 }; 4290 4291 enum IntrinsicExceptions { 4292 kNoThrow, // Intrinsic does not throw any exceptions. 4293 kCanThrow // Intrinsic may throw exceptions. 4294 }; 4295 4296 class HInvoke : public HVariableInputSizeInstruction { 4297 public: 4298 bool NeedsEnvironment() const override; 4299 4300 void SetArgumentAt(size_t index, HInstruction* argument) { 4301 SetRawInputAt(index, argument); 4302 } 4303 4304 // Return the number of arguments. This number can be lower than 4305 // the number of inputs returned by InputCount(), as some invoke 4306 // instructions (e.g. HInvokeStaticOrDirect) can have non-argument 4307 // inputs at the end of their list of inputs. 4308 uint32_t GetNumberOfArguments() const { return number_of_arguments_; } 4309 4310 uint32_t GetDexMethodIndex() const { return dex_method_index_; } 4311 4312 InvokeType GetInvokeType() const { 4313 return GetPackedField<InvokeTypeField>(); 4314 } 4315 4316 Intrinsics GetIntrinsic() const { 4317 return intrinsic_; 4318 } 4319 4320 void SetIntrinsic(Intrinsics intrinsic, 4321 IntrinsicNeedsEnvironmentOrCache needs_env_or_cache, 4322 IntrinsicSideEffects side_effects, 4323 IntrinsicExceptions exceptions); 4324 4325 bool IsFromInlinedInvoke() const { 4326 return GetEnvironment()->IsFromInlinedInvoke(); 4327 } 4328 4329 void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); } 4330 4331 bool CanThrow() const override { return GetPackedFlag<kFlagCanThrow>(); } 4332 4333 void SetAlwaysThrows(bool always_throws) { SetPackedFlag<kFlagAlwaysThrows>(always_throws); } 4334 4335 bool AlwaysThrows() const override { return GetPackedFlag<kFlagAlwaysThrows>(); } 4336 4337 bool CanBeMoved() const override { return IsIntrinsic() && !DoesAnyWrite(); } 4338 4339 bool InstructionDataEquals(const HInstruction* other) const override { 4340 return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_; 4341 } 4342 4343 uint32_t* GetIntrinsicOptimizations() { 4344 return &intrinsic_optimizations_; 4345 } 4346 4347 const uint32_t* GetIntrinsicOptimizations() const { 4348 return &intrinsic_optimizations_; 4349 } 4350 4351 bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; } 4352 4353 ArtMethod* GetResolvedMethod() const { return resolved_method_; } 4354 void SetResolvedMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_); 4355 4356 DECLARE_ABSTRACT_INSTRUCTION(Invoke); 4357 4358 protected: 4359 static constexpr size_t kFieldInvokeType = kNumberOfGenericPackedBits; 4360 static constexpr size_t kFieldInvokeTypeSize = 4361 MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType)); 4362 static constexpr size_t kFlagCanThrow = kFieldInvokeType + kFieldInvokeTypeSize; 4363 static constexpr size_t kFlagAlwaysThrows = kFlagCanThrow + 1; 4364 static constexpr size_t kNumberOfInvokePackedBits = kFlagAlwaysThrows + 1; 4365 static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 4366 using InvokeTypeField = BitField<InvokeType, kFieldInvokeType, kFieldInvokeTypeSize>; 4367 4368 HInvoke(InstructionKind kind, 4369 ArenaAllocator* allocator, 4370 uint32_t number_of_arguments, 4371 uint32_t number_of_other_inputs, 4372 DataType::Type return_type, 4373 uint32_t dex_pc, 4374 uint32_t dex_method_index, 4375 ArtMethod* resolved_method, 4376 InvokeType invoke_type) 4377 : HVariableInputSizeInstruction( 4378 kind, 4379 return_type, 4380 SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays. 4381 dex_pc, 4382 allocator, 4383 number_of_arguments + number_of_other_inputs, 4384 kArenaAllocInvokeInputs), 4385 number_of_arguments_(number_of_arguments), 4386 dex_method_index_(dex_method_index), 4387 intrinsic_(Intrinsics::kNone), 4388 intrinsic_optimizations_(0) { 4389 SetPackedField<InvokeTypeField>(invoke_type); 4390 SetPackedFlag<kFlagCanThrow>(true); 4391 // Check mutator lock, constructors lack annotalysis support. 4392 Locks::mutator_lock_->AssertNotExclusiveHeld(Thread::Current()); 4393 SetResolvedMethod(resolved_method); 4394 } 4395 4396 DEFAULT_COPY_CONSTRUCTOR(Invoke); 4397 4398 uint32_t number_of_arguments_; 4399 ArtMethod* resolved_method_; 4400 const uint32_t dex_method_index_; 4401 Intrinsics intrinsic_; 4402 4403 // A magic word holding optimizations for intrinsics. See intrinsics.h. 4404 uint32_t intrinsic_optimizations_; 4405 }; 4406 4407 class HInvokeUnresolved final : public HInvoke { 4408 public: 4409 HInvokeUnresolved(ArenaAllocator* allocator, 4410 uint32_t number_of_arguments, 4411 DataType::Type return_type, 4412 uint32_t dex_pc, 4413 uint32_t dex_method_index, 4414 InvokeType invoke_type) 4415 : HInvoke(kInvokeUnresolved, 4416 allocator, 4417 number_of_arguments, 4418 /* number_of_other_inputs= */ 0u, 4419 return_type, 4420 dex_pc, 4421 dex_method_index, 4422 nullptr, 4423 invoke_type) { 4424 } 4425 4426 bool IsClonable() const override { return true; } 4427 4428 DECLARE_INSTRUCTION(InvokeUnresolved); 4429 4430 protected: 4431 DEFAULT_COPY_CONSTRUCTOR(InvokeUnresolved); 4432 }; 4433 4434 class HInvokePolymorphic final : public HInvoke { 4435 public: 4436 HInvokePolymorphic(ArenaAllocator* allocator, 4437 uint32_t number_of_arguments, 4438 DataType::Type return_type, 4439 uint32_t dex_pc, 4440 uint32_t dex_method_index) 4441 : HInvoke(kInvokePolymorphic, 4442 allocator, 4443 number_of_arguments, 4444 /* number_of_other_inputs= */ 0u, 4445 return_type, 4446 dex_pc, 4447 dex_method_index, 4448 nullptr, 4449 kVirtual) { 4450 } 4451 4452 bool IsClonable() const override { return true; } 4453 4454 DECLARE_INSTRUCTION(InvokePolymorphic); 4455 4456 protected: 4457 DEFAULT_COPY_CONSTRUCTOR(InvokePolymorphic); 4458 }; 4459 4460 class HInvokeCustom final : public HInvoke { 4461 public: 4462 HInvokeCustom(ArenaAllocator* allocator, 4463 uint32_t number_of_arguments, 4464 uint32_t call_site_index, 4465 DataType::Type return_type, 4466 uint32_t dex_pc) 4467 : HInvoke(kInvokeCustom, 4468 allocator, 4469 number_of_arguments, 4470 /* number_of_other_inputs= */ 0u, 4471 return_type, 4472 dex_pc, 4473 /* dex_method_index= */ dex::kDexNoIndex, 4474 /* resolved_method= */ nullptr, 4475 kStatic), 4476 call_site_index_(call_site_index) { 4477 } 4478 4479 uint32_t GetCallSiteIndex() const { return call_site_index_; } 4480 4481 bool IsClonable() const override { return true; } 4482 4483 DECLARE_INSTRUCTION(InvokeCustom); 4484 4485 protected: 4486 DEFAULT_COPY_CONSTRUCTOR(InvokeCustom); 4487 4488 private: 4489 uint32_t call_site_index_; 4490 }; 4491 4492 class HInvokeStaticOrDirect final : public HInvoke { 4493 public: 4494 // Requirements of this method call regarding the class 4495 // initialization (clinit) check of its declaring class. 4496 enum class ClinitCheckRequirement { 4497 kNone, // Class already initialized. 4498 kExplicit, // Static call having explicit clinit check as last input. 4499 kImplicit, // Static call implicitly requiring a clinit check. 4500 kLast = kImplicit 4501 }; 4502 4503 // Determines how to load the target ArtMethod*. 4504 enum class MethodLoadKind { 4505 // Use a String init ArtMethod* loaded from Thread entrypoints. 4506 kStringInit, 4507 4508 // Use the method's own ArtMethod* loaded by the register allocator. 4509 kRecursive, 4510 4511 // Use PC-relative boot image ArtMethod* address that will be known at link time. 4512 // Used for boot image methods referenced by boot image code. 4513 kBootImageLinkTimePcRelative, 4514 4515 // Load from an entry in the .data.bimg.rel.ro using a PC-relative load. 4516 // Used for app->boot calls with relocatable image. 4517 kBootImageRelRo, 4518 4519 // Load from an entry in the .bss section using a PC-relative load. 4520 // Used for methods outside boot image referenced by AOT-compiled app and boot image code. 4521 kBssEntry, 4522 4523 // Use ArtMethod* at a known address, embed the direct address in the code. 4524 // Used for for JIT-compiled calls. 4525 kJitDirectAddress, 4526 4527 // Make a runtime call to resolve and call the method. This is the last-resort-kind 4528 // used when other kinds are unimplemented on a particular architecture. 4529 kRuntimeCall, 4530 }; 4531 4532 // Determines the location of the code pointer. 4533 enum class CodePtrLocation { 4534 // Recursive call, use local PC-relative call instruction. 4535 kCallSelf, 4536 4537 // Use code pointer from the ArtMethod*. 4538 // Used when we don't know the target code. This is also the last-resort-kind used when 4539 // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture. 4540 kCallArtMethod, 4541 }; 4542 4543 struct DispatchInfo { 4544 MethodLoadKind method_load_kind; 4545 CodePtrLocation code_ptr_location; 4546 // The method load data holds 4547 // - thread entrypoint offset for kStringInit method if this is a string init invoke. 4548 // Note that there are multiple string init methods, each having its own offset. 4549 // - the method address for kDirectAddress 4550 uint64_t method_load_data; 4551 }; 4552 4553 HInvokeStaticOrDirect(ArenaAllocator* allocator, 4554 uint32_t number_of_arguments, 4555 DataType::Type return_type, 4556 uint32_t dex_pc, 4557 uint32_t method_index, 4558 ArtMethod* resolved_method, 4559 DispatchInfo dispatch_info, 4560 InvokeType invoke_type, 4561 MethodReference target_method, 4562 ClinitCheckRequirement clinit_check_requirement) 4563 : HInvoke(kInvokeStaticOrDirect, 4564 allocator, 4565 number_of_arguments, 4566 // There is potentially one extra argument for the HCurrentMethod node, and 4567 // potentially one other if the clinit check is explicit. 4568 (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) + 4569 (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u), 4570 return_type, 4571 dex_pc, 4572 method_index, 4573 resolved_method, 4574 invoke_type), 4575 target_method_(target_method), 4576 dispatch_info_(dispatch_info) { 4577 SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement); 4578 } 4579 4580 bool IsClonable() const override { return true; } 4581 4582 void SetDispatchInfo(const DispatchInfo& dispatch_info) { 4583 bool had_current_method_input = HasCurrentMethodInput(); 4584 bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind); 4585 4586 // Using the current method is the default and once we find a better 4587 // method load kind, we should not go back to using the current method. 4588 DCHECK(had_current_method_input || !needs_current_method_input); 4589 4590 if (had_current_method_input && !needs_current_method_input) { 4591 DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod()); 4592 RemoveInputAt(GetSpecialInputIndex()); 4593 } 4594 dispatch_info_ = dispatch_info; 4595 } 4596 4597 DispatchInfo GetDispatchInfo() const { 4598 return dispatch_info_; 4599 } 4600 4601 void AddSpecialInput(HInstruction* input) { 4602 // We allow only one special input. 4603 DCHECK(!IsStringInit() && !HasCurrentMethodInput()); 4604 DCHECK(InputCount() == GetSpecialInputIndex() || 4605 (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck())); 4606 InsertInputAt(GetSpecialInputIndex(), input); 4607 } 4608 4609 using HInstruction::GetInputRecords; // Keep the const version visible. 4610 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override { 4611 ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords(); 4612 if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) { 4613 DCHECK(!input_records.empty()); 4614 DCHECK_GT(input_records.size(), GetNumberOfArguments()); 4615 HInstruction* last_input = input_records.back().GetInstruction(); 4616 // Note: `last_input` may be null during arguments setup. 4617 if (last_input != nullptr) { 4618 // `last_input` is the last input of a static invoke marked as having 4619 // an explicit clinit check. It must either be: 4620 // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or 4621 // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation. 4622 DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName(); 4623 } 4624 } 4625 return input_records; 4626 } 4627 4628 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override { 4629 // We access the method via the dex cache so we can't do an implicit null check. 4630 // TODO: for intrinsics we can generate implicit null checks. 4631 return false; 4632 } 4633 4634 bool CanBeNull() const override { 4635 return GetType() == DataType::Type::kReference && !IsStringInit(); 4636 } 4637 4638 // Get the index of the special input, if any. 4639 // 4640 // If the invoke HasCurrentMethodInput(), the "special input" is the current 4641 // method pointer; otherwise there may be one platform-specific special input, 4642 // such as PC-relative addressing base. 4643 uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); } 4644 bool HasSpecialInput() const { return GetNumberOfArguments() != InputCount(); } 4645 4646 MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; } 4647 CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; } 4648 bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; } 4649 bool NeedsDexCacheOfDeclaringClass() const override; 4650 bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; } 4651 bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kJitDirectAddress; } 4652 bool HasPcRelativeMethodLoadKind() const { 4653 return GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative || 4654 GetMethodLoadKind() == MethodLoadKind::kBootImageRelRo || 4655 GetMethodLoadKind() == MethodLoadKind::kBssEntry; 4656 } 4657 bool HasCurrentMethodInput() const { 4658 // This function can be called only after the invoke has been fully initialized by the builder. 4659 if (NeedsCurrentMethodInput(GetMethodLoadKind())) { 4660 DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod()); 4661 return true; 4662 } else { 4663 DCHECK(InputCount() == GetSpecialInputIndex() || 4664 !InputAt(GetSpecialInputIndex())->IsCurrentMethod()); 4665 return false; 4666 } 4667 } 4668 4669 QuickEntrypointEnum GetStringInitEntryPoint() const { 4670 DCHECK(IsStringInit()); 4671 return static_cast<QuickEntrypointEnum>(dispatch_info_.method_load_data); 4672 } 4673 4674 uint64_t GetMethodAddress() const { 4675 DCHECK(HasMethodAddress()); 4676 return dispatch_info_.method_load_data; 4677 } 4678 4679 const DexFile& GetDexFileForPcRelativeDexCache() const; 4680 4681 ClinitCheckRequirement GetClinitCheckRequirement() const { 4682 return GetPackedField<ClinitCheckRequirementField>(); 4683 } 4684 4685 // Is this instruction a call to a static method? 4686 bool IsStatic() const { 4687 return GetInvokeType() == kStatic; 4688 } 4689 4690 MethodReference GetTargetMethod() const { 4691 return target_method_; 4692 } 4693 4694 // Remove the HClinitCheck or the replacement HLoadClass (set as last input by 4695 // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck) 4696 // instruction; only relevant for static calls with explicit clinit check. 4697 void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) { 4698 DCHECK(IsStaticWithExplicitClinitCheck()); 4699 size_t last_input_index = inputs_.size() - 1u; 4700 HInstruction* last_input = inputs_.back().GetInstruction(); 4701 DCHECK(last_input != nullptr); 4702 DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName(); 4703 RemoveAsUserOfInput(last_input_index); 4704 inputs_.pop_back(); 4705 SetPackedField<ClinitCheckRequirementField>(new_requirement); 4706 DCHECK(!IsStaticWithExplicitClinitCheck()); 4707 } 4708 4709 // Is this a call to a static method whose declaring class has an 4710 // explicit initialization check in the graph? 4711 bool IsStaticWithExplicitClinitCheck() const { 4712 return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit); 4713 } 4714 4715 // Is this a call to a static method whose declaring class has an 4716 // implicit intialization check requirement? 4717 bool IsStaticWithImplicitClinitCheck() const { 4718 return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit); 4719 } 4720 4721 // Does this method load kind need the current method as an input? 4722 static bool NeedsCurrentMethodInput(MethodLoadKind kind) { 4723 return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kRuntimeCall; 4724 } 4725 4726 DECLARE_INSTRUCTION(InvokeStaticOrDirect); 4727 4728 protected: 4729 DEFAULT_COPY_CONSTRUCTOR(InvokeStaticOrDirect); 4730 4731 private: 4732 static constexpr size_t kFieldClinitCheckRequirement = kNumberOfInvokePackedBits; 4733 static constexpr size_t kFieldClinitCheckRequirementSize = 4734 MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast)); 4735 static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits = 4736 kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize; 4737 static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits, 4738 "Too many packed fields."); 4739 using ClinitCheckRequirementField = BitField<ClinitCheckRequirement, 4740 kFieldClinitCheckRequirement, 4741 kFieldClinitCheckRequirementSize>; 4742 4743 // Cached values of the resolved method, to avoid needing the mutator lock. 4744 const MethodReference target_method_; 4745 DispatchInfo dispatch_info_; 4746 }; 4747 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs); 4748 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs); 4749 4750 class HInvokeVirtual final : public HInvoke { 4751 public: 4752 HInvokeVirtual(ArenaAllocator* allocator, 4753 uint32_t number_of_arguments, 4754 DataType::Type return_type, 4755 uint32_t dex_pc, 4756 uint32_t dex_method_index, 4757 ArtMethod* resolved_method, 4758 uint32_t vtable_index) 4759 : HInvoke(kInvokeVirtual, 4760 allocator, 4761 number_of_arguments, 4762 0u, 4763 return_type, 4764 dex_pc, 4765 dex_method_index, 4766 resolved_method, 4767 kVirtual), 4768 vtable_index_(vtable_index) { 4769 } 4770 4771 bool IsClonable() const override { return true; } 4772 4773 bool CanBeNull() const override { 4774 switch (GetIntrinsic()) { 4775 case Intrinsics::kThreadCurrentThread: 4776 case Intrinsics::kStringBufferAppend: 4777 case Intrinsics::kStringBufferToString: 4778 case Intrinsics::kStringBuilderAppend: 4779 case Intrinsics::kStringBuilderToString: 4780 return false; 4781 default: 4782 return HInvoke::CanBeNull(); 4783 } 4784 } 4785 4786 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override { 4787 // TODO: Add implicit null checks in intrinsics. 4788 return (obj == InputAt(0)) && !IsIntrinsic(); 4789 } 4790 4791 uint32_t GetVTableIndex() const { return vtable_index_; } 4792 4793 DECLARE_INSTRUCTION(InvokeVirtual); 4794 4795 protected: 4796 DEFAULT_COPY_CONSTRUCTOR(InvokeVirtual); 4797 4798 private: 4799 // Cached value of the resolved method, to avoid needing the mutator lock. 4800 const uint32_t vtable_index_; 4801 }; 4802 4803 class HInvokeInterface final : public HInvoke { 4804 public: 4805 HInvokeInterface(ArenaAllocator* allocator, 4806 uint32_t number_of_arguments, 4807 DataType::Type return_type, 4808 uint32_t dex_pc, 4809 uint32_t dex_method_index, 4810 ArtMethod* resolved_method, 4811 uint32_t imt_index) 4812 : HInvoke(kInvokeInterface, 4813 allocator, 4814 number_of_arguments, 4815 0u, 4816 return_type, 4817 dex_pc, 4818 dex_method_index, 4819 resolved_method, 4820 kInterface), 4821 imt_index_(imt_index) { 4822 } 4823 4824 bool IsClonable() const override { return true; } 4825 4826 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override { 4827 // TODO: Add implicit null checks in intrinsics. 4828 return (obj == InputAt(0)) && !IsIntrinsic(); 4829 } 4830 4831 bool NeedsDexCacheOfDeclaringClass() const override { 4832 // The assembly stub currently needs it. 4833 return true; 4834 } 4835 4836 uint32_t GetImtIndex() const { return imt_index_; } 4837 4838 DECLARE_INSTRUCTION(InvokeInterface); 4839 4840 protected: 4841 DEFAULT_COPY_CONSTRUCTOR(InvokeInterface); 4842 4843 private: 4844 // Cached value of the resolved method, to avoid needing the mutator lock. 4845 const uint32_t imt_index_; 4846 }; 4847 4848 class HNeg final : public HUnaryOperation { 4849 public: 4850 HNeg(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) 4851 : HUnaryOperation(kNeg, result_type, input, dex_pc) { 4852 DCHECK_EQ(result_type, DataType::Kind(input->GetType())); 4853 } 4854 4855 template <typename T> static T Compute(T x) { return -x; } 4856 4857 HConstant* Evaluate(HIntConstant* x) const override { 4858 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); 4859 } 4860 HConstant* Evaluate(HLongConstant* x) const override { 4861 return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); 4862 } 4863 HConstant* Evaluate(HFloatConstant* x) const override { 4864 return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc()); 4865 } 4866 HConstant* Evaluate(HDoubleConstant* x) const override { 4867 return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc()); 4868 } 4869 4870 DECLARE_INSTRUCTION(Neg); 4871 4872 protected: 4873 DEFAULT_COPY_CONSTRUCTOR(Neg); 4874 }; 4875 4876 class HNewArray final : public HExpression<2> { 4877 public: 4878 HNewArray(HInstruction* cls, HInstruction* length, uint32_t dex_pc, size_t component_size_shift) 4879 : HExpression(kNewArray, DataType::Type::kReference, SideEffects::CanTriggerGC(), dex_pc) { 4880 SetRawInputAt(0, cls); 4881 SetRawInputAt(1, length); 4882 SetPackedField<ComponentSizeShiftField>(component_size_shift); 4883 } 4884 4885 bool IsClonable() const override { return true; } 4886 4887 // Calls runtime so needs an environment. 4888 bool NeedsEnvironment() const override { return true; } 4889 4890 // May throw NegativeArraySizeException, OutOfMemoryError, etc. 4891 bool CanThrow() const override { return true; } 4892 4893 bool CanBeNull() const override { return false; } 4894 4895 HLoadClass* GetLoadClass() const { 4896 DCHECK(InputAt(0)->IsLoadClass()); 4897 return InputAt(0)->AsLoadClass(); 4898 } 4899 4900 HInstruction* GetLength() const { 4901 return InputAt(1); 4902 } 4903 4904 size_t GetComponentSizeShift() { 4905 return GetPackedField<ComponentSizeShiftField>(); 4906 } 4907 4908 DECLARE_INSTRUCTION(NewArray); 4909 4910 protected: 4911 DEFAULT_COPY_CONSTRUCTOR(NewArray); 4912 4913 private: 4914 static constexpr size_t kFieldComponentSizeShift = kNumberOfGenericPackedBits; 4915 static constexpr size_t kFieldComponentSizeShiftSize = MinimumBitsToStore(3u); 4916 static constexpr size_t kNumberOfNewArrayPackedBits = 4917 kFieldComponentSizeShift + kFieldComponentSizeShiftSize; 4918 static_assert(kNumberOfNewArrayPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 4919 using ComponentSizeShiftField = 4920 BitField<size_t, kFieldComponentSizeShift, kFieldComponentSizeShift>; 4921 }; 4922 4923 class HAdd final : public HBinaryOperation { 4924 public: 4925 HAdd(DataType::Type result_type, 4926 HInstruction* left, 4927 HInstruction* right, 4928 uint32_t dex_pc = kNoDexPc) 4929 : HBinaryOperation(kAdd, result_type, left, right, SideEffects::None(), dex_pc) { 4930 } 4931 4932 bool IsCommutative() const override { return true; } 4933 4934 template <typename T> static T Compute(T x, T y) { return x + y; } 4935 4936 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 4937 return GetBlock()->GetGraph()->GetIntConstant( 4938 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4939 } 4940 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 4941 return GetBlock()->GetGraph()->GetLongConstant( 4942 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4943 } 4944 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 4945 return GetBlock()->GetGraph()->GetFloatConstant( 4946 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4947 } 4948 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 4949 return GetBlock()->GetGraph()->GetDoubleConstant( 4950 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4951 } 4952 4953 DECLARE_INSTRUCTION(Add); 4954 4955 protected: 4956 DEFAULT_COPY_CONSTRUCTOR(Add); 4957 }; 4958 4959 class HSub final : public HBinaryOperation { 4960 public: 4961 HSub(DataType::Type result_type, 4962 HInstruction* left, 4963 HInstruction* right, 4964 uint32_t dex_pc = kNoDexPc) 4965 : HBinaryOperation(kSub, result_type, left, right, SideEffects::None(), dex_pc) { 4966 } 4967 4968 template <typename T> static T Compute(T x, T y) { return x - y; } 4969 4970 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 4971 return GetBlock()->GetGraph()->GetIntConstant( 4972 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4973 } 4974 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 4975 return GetBlock()->GetGraph()->GetLongConstant( 4976 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4977 } 4978 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 4979 return GetBlock()->GetGraph()->GetFloatConstant( 4980 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4981 } 4982 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 4983 return GetBlock()->GetGraph()->GetDoubleConstant( 4984 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 4985 } 4986 4987 DECLARE_INSTRUCTION(Sub); 4988 4989 protected: 4990 DEFAULT_COPY_CONSTRUCTOR(Sub); 4991 }; 4992 4993 class HMul final : public HBinaryOperation { 4994 public: 4995 HMul(DataType::Type result_type, 4996 HInstruction* left, 4997 HInstruction* right, 4998 uint32_t dex_pc = kNoDexPc) 4999 : HBinaryOperation(kMul, result_type, left, right, SideEffects::None(), dex_pc) { 5000 } 5001 5002 bool IsCommutative() const override { return true; } 5003 5004 template <typename T> static T Compute(T x, T y) { return x * y; } 5005 5006 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5007 return GetBlock()->GetGraph()->GetIntConstant( 5008 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5009 } 5010 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5011 return GetBlock()->GetGraph()->GetLongConstant( 5012 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5013 } 5014 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 5015 return GetBlock()->GetGraph()->GetFloatConstant( 5016 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5017 } 5018 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 5019 return GetBlock()->GetGraph()->GetDoubleConstant( 5020 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5021 } 5022 5023 DECLARE_INSTRUCTION(Mul); 5024 5025 protected: 5026 DEFAULT_COPY_CONSTRUCTOR(Mul); 5027 }; 5028 5029 class HDiv final : public HBinaryOperation { 5030 public: 5031 HDiv(DataType::Type result_type, 5032 HInstruction* left, 5033 HInstruction* right, 5034 uint32_t dex_pc) 5035 : HBinaryOperation(kDiv, result_type, left, right, SideEffects::None(), dex_pc) { 5036 } 5037 5038 template <typename T> 5039 T ComputeIntegral(T x, T y) const { 5040 DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType(); 5041 // Our graph structure ensures we never have 0 for `y` during 5042 // constant folding. 5043 DCHECK_NE(y, 0); 5044 // Special case -1 to avoid getting a SIGFPE on x86(_64). 5045 return (y == -1) ? -x : x / y; 5046 } 5047 5048 template <typename T> 5049 T ComputeFP(T x, T y) const { 5050 DCHECK(DataType::IsFloatingPointType(GetType())) << GetType(); 5051 return x / y; 5052 } 5053 5054 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5055 return GetBlock()->GetGraph()->GetIntConstant( 5056 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5057 } 5058 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5059 return GetBlock()->GetGraph()->GetLongConstant( 5060 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5061 } 5062 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 5063 return GetBlock()->GetGraph()->GetFloatConstant( 5064 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); 5065 } 5066 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 5067 return GetBlock()->GetGraph()->GetDoubleConstant( 5068 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); 5069 } 5070 5071 DECLARE_INSTRUCTION(Div); 5072 5073 protected: 5074 DEFAULT_COPY_CONSTRUCTOR(Div); 5075 }; 5076 5077 class HRem final : public HBinaryOperation { 5078 public: 5079 HRem(DataType::Type result_type, 5080 HInstruction* left, 5081 HInstruction* right, 5082 uint32_t dex_pc) 5083 : HBinaryOperation(kRem, result_type, left, right, SideEffects::None(), dex_pc) { 5084 } 5085 5086 template <typename T> 5087 T ComputeIntegral(T x, T y) const { 5088 DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType(); 5089 // Our graph structure ensures we never have 0 for `y` during 5090 // constant folding. 5091 DCHECK_NE(y, 0); 5092 // Special case -1 to avoid getting a SIGFPE on x86(_64). 5093 return (y == -1) ? 0 : x % y; 5094 } 5095 5096 template <typename T> 5097 T ComputeFP(T x, T y) const { 5098 DCHECK(DataType::IsFloatingPointType(GetType())) << GetType(); 5099 return std::fmod(x, y); 5100 } 5101 5102 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5103 return GetBlock()->GetGraph()->GetIntConstant( 5104 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5105 } 5106 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5107 return GetBlock()->GetGraph()->GetLongConstant( 5108 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5109 } 5110 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { 5111 return GetBlock()->GetGraph()->GetFloatConstant( 5112 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); 5113 } 5114 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { 5115 return GetBlock()->GetGraph()->GetDoubleConstant( 5116 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); 5117 } 5118 5119 DECLARE_INSTRUCTION(Rem); 5120 5121 protected: 5122 DEFAULT_COPY_CONSTRUCTOR(Rem); 5123 }; 5124 5125 class HMin final : public HBinaryOperation { 5126 public: 5127 HMin(DataType::Type result_type, 5128 HInstruction* left, 5129 HInstruction* right, 5130 uint32_t dex_pc) 5131 : HBinaryOperation(kMin, result_type, left, right, SideEffects::None(), dex_pc) {} 5132 5133 bool IsCommutative() const override { return true; } 5134 5135 // Evaluation for integral values. 5136 template <typename T> static T ComputeIntegral(T x, T y) { 5137 return (x <= y) ? x : y; 5138 } 5139 5140 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5141 return GetBlock()->GetGraph()->GetIntConstant( 5142 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5143 } 5144 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5145 return GetBlock()->GetGraph()->GetLongConstant( 5146 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5147 } 5148 // TODO: Evaluation for floating-point values. 5149 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 5150 HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; } 5151 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 5152 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; } 5153 5154 DECLARE_INSTRUCTION(Min); 5155 5156 protected: 5157 DEFAULT_COPY_CONSTRUCTOR(Min); 5158 }; 5159 5160 class HMax final : public HBinaryOperation { 5161 public: 5162 HMax(DataType::Type result_type, 5163 HInstruction* left, 5164 HInstruction* right, 5165 uint32_t dex_pc) 5166 : HBinaryOperation(kMax, result_type, left, right, SideEffects::None(), dex_pc) {} 5167 5168 bool IsCommutative() const override { return true; } 5169 5170 // Evaluation for integral values. 5171 template <typename T> static T ComputeIntegral(T x, T y) { 5172 return (x >= y) ? x : y; 5173 } 5174 5175 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5176 return GetBlock()->GetGraph()->GetIntConstant( 5177 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5178 } 5179 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5180 return GetBlock()->GetGraph()->GetLongConstant( 5181 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); 5182 } 5183 // TODO: Evaluation for floating-point values. 5184 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 5185 HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; } 5186 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 5187 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; } 5188 5189 DECLARE_INSTRUCTION(Max); 5190 5191 protected: 5192 DEFAULT_COPY_CONSTRUCTOR(Max); 5193 }; 5194 5195 class HAbs final : public HUnaryOperation { 5196 public: 5197 HAbs(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) 5198 : HUnaryOperation(kAbs, result_type, input, dex_pc) {} 5199 5200 // Evaluation for integral values. 5201 template <typename T> static T ComputeIntegral(T x) { 5202 return x < 0 ? -x : x; 5203 } 5204 5205 // Evaluation for floating-point values. 5206 // Note, as a "quality of implementation", rather than pure "spec compliance", 5207 // we require that Math.abs() clears the sign bit (but changes nothing else) 5208 // for all floating-point numbers, including NaN (signaling NaN may become quiet though). 5209 // http://b/30758343 5210 template <typename T, typename S> static T ComputeFP(T x) { 5211 S bits = bit_cast<S, T>(x); 5212 return bit_cast<T, S>(bits & std::numeric_limits<S>::max()); 5213 } 5214 5215 HConstant* Evaluate(HIntConstant* x) const override { 5216 return GetBlock()->GetGraph()->GetIntConstant(ComputeIntegral(x->GetValue()), GetDexPc()); 5217 } 5218 HConstant* Evaluate(HLongConstant* x) const override { 5219 return GetBlock()->GetGraph()->GetLongConstant(ComputeIntegral(x->GetValue()), GetDexPc()); 5220 } 5221 HConstant* Evaluate(HFloatConstant* x) const override { 5222 return GetBlock()->GetGraph()->GetFloatConstant( 5223 ComputeFP<float, int32_t>(x->GetValue()), GetDexPc()); 5224 } 5225 HConstant* Evaluate(HDoubleConstant* x) const override { 5226 return GetBlock()->GetGraph()->GetDoubleConstant( 5227 ComputeFP<double, int64_t>(x->GetValue()), GetDexPc()); 5228 } 5229 5230 DECLARE_INSTRUCTION(Abs); 5231 5232 protected: 5233 DEFAULT_COPY_CONSTRUCTOR(Abs); 5234 }; 5235 5236 class HDivZeroCheck final : public HExpression<1> { 5237 public: 5238 // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException` 5239 // constructor. However it can only do it on a fatal slow path so execution never returns to the 5240 // instruction following the current one; thus 'SideEffects::None()' is used. 5241 HDivZeroCheck(HInstruction* value, uint32_t dex_pc) 5242 : HExpression(kDivZeroCheck, value->GetType(), SideEffects::None(), dex_pc) { 5243 SetRawInputAt(0, value); 5244 } 5245 5246 bool IsClonable() const override { return true; } 5247 bool CanBeMoved() const override { return true; } 5248 5249 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 5250 return true; 5251 } 5252 5253 bool NeedsEnvironment() const override { return true; } 5254 bool CanThrow() const override { return true; } 5255 5256 DECLARE_INSTRUCTION(DivZeroCheck); 5257 5258 protected: 5259 DEFAULT_COPY_CONSTRUCTOR(DivZeroCheck); 5260 }; 5261 5262 class HShl final : public HBinaryOperation { 5263 public: 5264 HShl(DataType::Type result_type, 5265 HInstruction* value, 5266 HInstruction* distance, 5267 uint32_t dex_pc = kNoDexPc) 5268 : HBinaryOperation(kShl, result_type, value, distance, SideEffects::None(), dex_pc) { 5269 DCHECK_EQ(result_type, DataType::Kind(value->GetType())); 5270 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType())); 5271 } 5272 5273 template <typename T> 5274 static T Compute(T value, int32_t distance, int32_t max_shift_distance) { 5275 return value << (distance & max_shift_distance); 5276 } 5277 5278 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override { 5279 return GetBlock()->GetGraph()->GetIntConstant( 5280 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); 5281 } 5282 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override { 5283 return GetBlock()->GetGraph()->GetLongConstant( 5284 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); 5285 } 5286 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, 5287 HLongConstant* distance ATTRIBUTE_UNUSED) const override { 5288 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; 5289 UNREACHABLE(); 5290 } 5291 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, 5292 HFloatConstant* distance ATTRIBUTE_UNUSED) const override { 5293 LOG(FATAL) << DebugName() << " is not defined for float values"; 5294 UNREACHABLE(); 5295 } 5296 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, 5297 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override { 5298 LOG(FATAL) << DebugName() << " is not defined for double values"; 5299 UNREACHABLE(); 5300 } 5301 5302 DECLARE_INSTRUCTION(Shl); 5303 5304 protected: 5305 DEFAULT_COPY_CONSTRUCTOR(Shl); 5306 }; 5307 5308 class HShr final : public HBinaryOperation { 5309 public: 5310 HShr(DataType::Type result_type, 5311 HInstruction* value, 5312 HInstruction* distance, 5313 uint32_t dex_pc = kNoDexPc) 5314 : HBinaryOperation(kShr, result_type, value, distance, SideEffects::None(), dex_pc) { 5315 DCHECK_EQ(result_type, DataType::Kind(value->GetType())); 5316 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType())); 5317 } 5318 5319 template <typename T> 5320 static T Compute(T value, int32_t distance, int32_t max_shift_distance) { 5321 return value >> (distance & max_shift_distance); 5322 } 5323 5324 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override { 5325 return GetBlock()->GetGraph()->GetIntConstant( 5326 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); 5327 } 5328 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override { 5329 return GetBlock()->GetGraph()->GetLongConstant( 5330 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); 5331 } 5332 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, 5333 HLongConstant* distance ATTRIBUTE_UNUSED) const override { 5334 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; 5335 UNREACHABLE(); 5336 } 5337 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, 5338 HFloatConstant* distance ATTRIBUTE_UNUSED) const override { 5339 LOG(FATAL) << DebugName() << " is not defined for float values"; 5340 UNREACHABLE(); 5341 } 5342 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, 5343 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override { 5344 LOG(FATAL) << DebugName() << " is not defined for double values"; 5345 UNREACHABLE(); 5346 } 5347 5348 DECLARE_INSTRUCTION(Shr); 5349 5350 protected: 5351 DEFAULT_COPY_CONSTRUCTOR(Shr); 5352 }; 5353 5354 class HUShr final : public HBinaryOperation { 5355 public: 5356 HUShr(DataType::Type result_type, 5357 HInstruction* value, 5358 HInstruction* distance, 5359 uint32_t dex_pc = kNoDexPc) 5360 : HBinaryOperation(kUShr, result_type, value, distance, SideEffects::None(), dex_pc) { 5361 DCHECK_EQ(result_type, DataType::Kind(value->GetType())); 5362 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType())); 5363 } 5364 5365 template <typename T> 5366 static T Compute(T value, int32_t distance, int32_t max_shift_distance) { 5367 typedef typename std::make_unsigned<T>::type V; 5368 V ux = static_cast<V>(value); 5369 return static_cast<T>(ux >> (distance & max_shift_distance)); 5370 } 5371 5372 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override { 5373 return GetBlock()->GetGraph()->GetIntConstant( 5374 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); 5375 } 5376 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override { 5377 return GetBlock()->GetGraph()->GetLongConstant( 5378 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); 5379 } 5380 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, 5381 HLongConstant* distance ATTRIBUTE_UNUSED) const override { 5382 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; 5383 UNREACHABLE(); 5384 } 5385 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, 5386 HFloatConstant* distance ATTRIBUTE_UNUSED) const override { 5387 LOG(FATAL) << DebugName() << " is not defined for float values"; 5388 UNREACHABLE(); 5389 } 5390 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, 5391 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override { 5392 LOG(FATAL) << DebugName() << " is not defined for double values"; 5393 UNREACHABLE(); 5394 } 5395 5396 DECLARE_INSTRUCTION(UShr); 5397 5398 protected: 5399 DEFAULT_COPY_CONSTRUCTOR(UShr); 5400 }; 5401 5402 class HAnd final : public HBinaryOperation { 5403 public: 5404 HAnd(DataType::Type result_type, 5405 HInstruction* left, 5406 HInstruction* right, 5407 uint32_t dex_pc = kNoDexPc) 5408 : HBinaryOperation(kAnd, result_type, left, right, SideEffects::None(), dex_pc) { 5409 } 5410 5411 bool IsCommutative() const override { return true; } 5412 5413 template <typename T> static T Compute(T x, T y) { return x & y; } 5414 5415 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5416 return GetBlock()->GetGraph()->GetIntConstant( 5417 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5418 } 5419 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5420 return GetBlock()->GetGraph()->GetLongConstant( 5421 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5422 } 5423 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 5424 HFloatConstant* y ATTRIBUTE_UNUSED) const override { 5425 LOG(FATAL) << DebugName() << " is not defined for float values"; 5426 UNREACHABLE(); 5427 } 5428 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 5429 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { 5430 LOG(FATAL) << DebugName() << " is not defined for double values"; 5431 UNREACHABLE(); 5432 } 5433 5434 DECLARE_INSTRUCTION(And); 5435 5436 protected: 5437 DEFAULT_COPY_CONSTRUCTOR(And); 5438 }; 5439 5440 class HOr final : public HBinaryOperation { 5441 public: 5442 HOr(DataType::Type result_type, 5443 HInstruction* left, 5444 HInstruction* right, 5445 uint32_t dex_pc = kNoDexPc) 5446 : HBinaryOperation(kOr, result_type, left, right, SideEffects::None(), dex_pc) { 5447 } 5448 5449 bool IsCommutative() const override { return true; } 5450 5451 template <typename T> static T Compute(T x, T y) { return x | y; } 5452 5453 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5454 return GetBlock()->GetGraph()->GetIntConstant( 5455 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5456 } 5457 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5458 return GetBlock()->GetGraph()->GetLongConstant( 5459 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5460 } 5461 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 5462 HFloatConstant* y ATTRIBUTE_UNUSED) const override { 5463 LOG(FATAL) << DebugName() << " is not defined for float values"; 5464 UNREACHABLE(); 5465 } 5466 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 5467 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { 5468 LOG(FATAL) << DebugName() << " is not defined for double values"; 5469 UNREACHABLE(); 5470 } 5471 5472 DECLARE_INSTRUCTION(Or); 5473 5474 protected: 5475 DEFAULT_COPY_CONSTRUCTOR(Or); 5476 }; 5477 5478 class HXor final : public HBinaryOperation { 5479 public: 5480 HXor(DataType::Type result_type, 5481 HInstruction* left, 5482 HInstruction* right, 5483 uint32_t dex_pc = kNoDexPc) 5484 : HBinaryOperation(kXor, result_type, left, right, SideEffects::None(), dex_pc) { 5485 } 5486 5487 bool IsCommutative() const override { return true; } 5488 5489 template <typename T> static T Compute(T x, T y) { return x ^ y; } 5490 5491 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { 5492 return GetBlock()->GetGraph()->GetIntConstant( 5493 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5494 } 5495 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { 5496 return GetBlock()->GetGraph()->GetLongConstant( 5497 Compute(x->GetValue(), y->GetValue()), GetDexPc()); 5498 } 5499 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, 5500 HFloatConstant* y ATTRIBUTE_UNUSED) const override { 5501 LOG(FATAL) << DebugName() << " is not defined for float values"; 5502 UNREACHABLE(); 5503 } 5504 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, 5505 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { 5506 LOG(FATAL) << DebugName() << " is not defined for double values"; 5507 UNREACHABLE(); 5508 } 5509 5510 DECLARE_INSTRUCTION(Xor); 5511 5512 protected: 5513 DEFAULT_COPY_CONSTRUCTOR(Xor); 5514 }; 5515 5516 class HRor final : public HBinaryOperation { 5517 public: 5518 HRor(DataType::Type result_type, HInstruction* value, HInstruction* distance) 5519 : HBinaryOperation(kRor, result_type, value, distance) { 5520 DCHECK_EQ(result_type, DataType::Kind(value->GetType())); 5521 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType())); 5522 } 5523 5524 template <typename T> 5525 static T Compute(T value, int32_t distance, int32_t max_shift_value) { 5526 typedef typename std::make_unsigned<T>::type V; 5527 V ux = static_cast<V>(value); 5528 if ((distance & max_shift_value) == 0) { 5529 return static_cast<T>(ux); 5530 } else { 5531 const V reg_bits = sizeof(T) * 8; 5532 return static_cast<T>(ux >> (distance & max_shift_value)) | 5533 (value << (reg_bits - (distance & max_shift_value))); 5534 } 5535 } 5536 5537 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override { 5538 return GetBlock()->GetGraph()->GetIntConstant( 5539 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); 5540 } 5541 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override { 5542 return GetBlock()->GetGraph()->GetLongConstant( 5543 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); 5544 } 5545 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, 5546 HLongConstant* distance ATTRIBUTE_UNUSED) const override { 5547 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; 5548 UNREACHABLE(); 5549 } 5550 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, 5551 HFloatConstant* distance ATTRIBUTE_UNUSED) const override { 5552 LOG(FATAL) << DebugName() << " is not defined for float values"; 5553 UNREACHABLE(); 5554 } 5555 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, 5556 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override { 5557 LOG(FATAL) << DebugName() << " is not defined for double values"; 5558 UNREACHABLE(); 5559 } 5560 5561 DECLARE_INSTRUCTION(Ror); 5562 5563 protected: 5564 DEFAULT_COPY_CONSTRUCTOR(Ror); 5565 }; 5566 5567 // The value of a parameter in this method. Its location depends on 5568 // the calling convention. 5569 class HParameterValue final : public HExpression<0> { 5570 public: 5571 HParameterValue(const DexFile& dex_file, 5572 dex::TypeIndex type_index, 5573 uint8_t index, 5574 DataType::Type parameter_type, 5575 bool is_this = false) 5576 : HExpression(kParameterValue, parameter_type, SideEffects::None(), kNoDexPc), 5577 dex_file_(dex_file), 5578 type_index_(type_index), 5579 index_(index) { 5580 SetPackedFlag<kFlagIsThis>(is_this); 5581 SetPackedFlag<kFlagCanBeNull>(!is_this); 5582 } 5583 5584 const DexFile& GetDexFile() const { return dex_file_; } 5585 dex::TypeIndex GetTypeIndex() const { return type_index_; } 5586 uint8_t GetIndex() const { return index_; } 5587 bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); } 5588 5589 bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); } 5590 void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); } 5591 5592 DECLARE_INSTRUCTION(ParameterValue); 5593 5594 protected: 5595 DEFAULT_COPY_CONSTRUCTOR(ParameterValue); 5596 5597 private: 5598 // Whether or not the parameter value corresponds to 'this' argument. 5599 static constexpr size_t kFlagIsThis = kNumberOfGenericPackedBits; 5600 static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1; 5601 static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1; 5602 static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits, 5603 "Too many packed fields."); 5604 5605 const DexFile& dex_file_; 5606 const dex::TypeIndex type_index_; 5607 // The index of this parameter in the parameters list. Must be less 5608 // than HGraph::number_of_in_vregs_. 5609 const uint8_t index_; 5610 }; 5611 5612 class HNot final : public HUnaryOperation { 5613 public: 5614 HNot(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) 5615 : HUnaryOperation(kNot, result_type, input, dex_pc) { 5616 } 5617 5618 bool CanBeMoved() const override { return true; } 5619 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 5620 return true; 5621 } 5622 5623 template <typename T> static T Compute(T x) { return ~x; } 5624 5625 HConstant* Evaluate(HIntConstant* x) const override { 5626 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); 5627 } 5628 HConstant* Evaluate(HLongConstant* x) const override { 5629 return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); 5630 } 5631 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override { 5632 LOG(FATAL) << DebugName() << " is not defined for float values"; 5633 UNREACHABLE(); 5634 } 5635 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override { 5636 LOG(FATAL) << DebugName() << " is not defined for double values"; 5637 UNREACHABLE(); 5638 } 5639 5640 DECLARE_INSTRUCTION(Not); 5641 5642 protected: 5643 DEFAULT_COPY_CONSTRUCTOR(Not); 5644 }; 5645 5646 class HBooleanNot final : public HUnaryOperation { 5647 public: 5648 explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc) 5649 : HUnaryOperation(kBooleanNot, DataType::Type::kBool, input, dex_pc) { 5650 } 5651 5652 bool CanBeMoved() const override { return true; } 5653 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 5654 return true; 5655 } 5656 5657 template <typename T> static bool Compute(T x) { 5658 DCHECK(IsUint<1>(x)) << x; 5659 return !x; 5660 } 5661 5662 HConstant* Evaluate(HIntConstant* x) const override { 5663 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); 5664 } 5665 HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const override { 5666 LOG(FATAL) << DebugName() << " is not defined for long values"; 5667 UNREACHABLE(); 5668 } 5669 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override { 5670 LOG(FATAL) << DebugName() << " is not defined for float values"; 5671 UNREACHABLE(); 5672 } 5673 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override { 5674 LOG(FATAL) << DebugName() << " is not defined for double values"; 5675 UNREACHABLE(); 5676 } 5677 5678 DECLARE_INSTRUCTION(BooleanNot); 5679 5680 protected: 5681 DEFAULT_COPY_CONSTRUCTOR(BooleanNot); 5682 }; 5683 5684 class HTypeConversion final : public HExpression<1> { 5685 public: 5686 // Instantiate a type conversion of `input` to `result_type`. 5687 HTypeConversion(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) 5688 : HExpression(kTypeConversion, result_type, SideEffects::None(), dex_pc) { 5689 SetRawInputAt(0, input); 5690 // Invariant: We should never generate a conversion to a Boolean value. 5691 DCHECK_NE(DataType::Type::kBool, result_type); 5692 } 5693 5694 HInstruction* GetInput() const { return InputAt(0); } 5695 DataType::Type GetInputType() const { return GetInput()->GetType(); } 5696 DataType::Type GetResultType() const { return GetType(); } 5697 5698 bool IsClonable() const override { return true; } 5699 bool CanBeMoved() const override { return true; } 5700 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 5701 return true; 5702 } 5703 // Return whether the conversion is implicit. This includes conversion to the same type. 5704 bool IsImplicitConversion() const { 5705 return DataType::IsTypeConversionImplicit(GetInputType(), GetResultType()); 5706 } 5707 5708 // Try to statically evaluate the conversion and return a HConstant 5709 // containing the result. If the input cannot be converted, return nullptr. 5710 HConstant* TryStaticEvaluation() const; 5711 5712 DECLARE_INSTRUCTION(TypeConversion); 5713 5714 protected: 5715 DEFAULT_COPY_CONSTRUCTOR(TypeConversion); 5716 }; 5717 5718 static constexpr uint32_t kNoRegNumber = -1; 5719 5720 class HNullCheck final : public HExpression<1> { 5721 public: 5722 // `HNullCheck` can trigger GC, as it may call the `NullPointerException` 5723 // constructor. However it can only do it on a fatal slow path so execution never returns to the 5724 // instruction following the current one; thus 'SideEffects::None()' is used. 5725 HNullCheck(HInstruction* value, uint32_t dex_pc) 5726 : HExpression(kNullCheck, value->GetType(), SideEffects::None(), dex_pc) { 5727 SetRawInputAt(0, value); 5728 } 5729 5730 bool IsClonable() const override { return true; } 5731 bool CanBeMoved() const override { return true; } 5732 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 5733 return true; 5734 } 5735 5736 bool NeedsEnvironment() const override { return true; } 5737 5738 bool CanThrow() const override { return true; } 5739 5740 bool CanBeNull() const override { return false; } 5741 5742 DECLARE_INSTRUCTION(NullCheck); 5743 5744 protected: 5745 DEFAULT_COPY_CONSTRUCTOR(NullCheck); 5746 }; 5747 5748 // Embeds an ArtField and all the information required by the compiler. We cache 5749 // that information to avoid requiring the mutator lock every time we need it. 5750 class FieldInfo : public ValueObject { 5751 public: 5752 FieldInfo(ArtField* field, 5753 MemberOffset field_offset, 5754 DataType::Type field_type, 5755 bool is_volatile, 5756 uint32_t index, 5757 uint16_t declaring_class_def_index, 5758 const DexFile& dex_file) 5759 : field_(field), 5760 field_offset_(field_offset), 5761 field_type_(field_type), 5762 is_volatile_(is_volatile), 5763 index_(index), 5764 declaring_class_def_index_(declaring_class_def_index), 5765 dex_file_(dex_file) {} 5766 5767 ArtField* GetField() const { return field_; } 5768 MemberOffset GetFieldOffset() const { return field_offset_; } 5769 DataType::Type GetFieldType() const { return field_type_; } 5770 uint32_t GetFieldIndex() const { return index_; } 5771 uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;} 5772 const DexFile& GetDexFile() const { return dex_file_; } 5773 bool IsVolatile() const { return is_volatile_; } 5774 5775 private: 5776 ArtField* const field_; 5777 const MemberOffset field_offset_; 5778 const DataType::Type field_type_; 5779 const bool is_volatile_; 5780 const uint32_t index_; 5781 const uint16_t declaring_class_def_index_; 5782 const DexFile& dex_file_; 5783 }; 5784 5785 class HInstanceFieldGet final : public HExpression<1> { 5786 public: 5787 HInstanceFieldGet(HInstruction* value, 5788 ArtField* field, 5789 DataType::Type field_type, 5790 MemberOffset field_offset, 5791 bool is_volatile, 5792 uint32_t field_idx, 5793 uint16_t declaring_class_def_index, 5794 const DexFile& dex_file, 5795 uint32_t dex_pc) 5796 : HExpression(kInstanceFieldGet, 5797 field_type, 5798 SideEffects::FieldReadOfType(field_type, is_volatile), 5799 dex_pc), 5800 field_info_(field, 5801 field_offset, 5802 field_type, 5803 is_volatile, 5804 field_idx, 5805 declaring_class_def_index, 5806 dex_file) { 5807 SetRawInputAt(0, value); 5808 } 5809 5810 bool IsClonable() const override { return true; } 5811 bool CanBeMoved() const override { return !IsVolatile(); } 5812 5813 bool InstructionDataEquals(const HInstruction* other) const override { 5814 const HInstanceFieldGet* other_get = other->AsInstanceFieldGet(); 5815 return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); 5816 } 5817 5818 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override { 5819 return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value()); 5820 } 5821 5822 size_t ComputeHashCode() const override { 5823 return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); 5824 } 5825 5826 const FieldInfo& GetFieldInfo() const { return field_info_; } 5827 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } 5828 DataType::Type GetFieldType() const { return field_info_.GetFieldType(); } 5829 bool IsVolatile() const { return field_info_.IsVolatile(); } 5830 5831 void SetType(DataType::Type new_type) { 5832 DCHECK(DataType::IsIntegralType(GetType())); 5833 DCHECK(DataType::IsIntegralType(new_type)); 5834 DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type)); 5835 SetPackedField<TypeField>(new_type); 5836 } 5837 5838 DECLARE_INSTRUCTION(InstanceFieldGet); 5839 5840 protected: 5841 DEFAULT_COPY_CONSTRUCTOR(InstanceFieldGet); 5842 5843 private: 5844 const FieldInfo field_info_; 5845 }; 5846 5847 class HInstanceFieldSet final : public HExpression<2> { 5848 public: 5849 HInstanceFieldSet(HInstruction* object, 5850 HInstruction* value, 5851 ArtField* field, 5852 DataType::Type field_type, 5853 MemberOffset field_offset, 5854 bool is_volatile, 5855 uint32_t field_idx, 5856 uint16_t declaring_class_def_index, 5857 const DexFile& dex_file, 5858 uint32_t dex_pc) 5859 : HExpression(kInstanceFieldSet, 5860 SideEffects::FieldWriteOfType(field_type, is_volatile), 5861 dex_pc), 5862 field_info_(field, 5863 field_offset, 5864 field_type, 5865 is_volatile, 5866 field_idx, 5867 declaring_class_def_index, 5868 dex_file) { 5869 SetPackedFlag<kFlagValueCanBeNull>(true); 5870 SetRawInputAt(0, object); 5871 SetRawInputAt(1, value); 5872 } 5873 5874 bool IsClonable() const override { return true; } 5875 5876 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override { 5877 return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value()); 5878 } 5879 5880 const FieldInfo& GetFieldInfo() const { return field_info_; } 5881 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } 5882 DataType::Type GetFieldType() const { return field_info_.GetFieldType(); } 5883 bool IsVolatile() const { return field_info_.IsVolatile(); } 5884 HInstruction* GetValue() const { return InputAt(1); } 5885 bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } 5886 void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); } 5887 5888 DECLARE_INSTRUCTION(InstanceFieldSet); 5889 5890 protected: 5891 DEFAULT_COPY_CONSTRUCTOR(InstanceFieldSet); 5892 5893 private: 5894 static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits; 5895 static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagValueCanBeNull + 1; 5896 static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits, 5897 "Too many packed fields."); 5898 5899 const FieldInfo field_info_; 5900 }; 5901 5902 class HArrayGet final : public HExpression<2> { 5903 public: 5904 HArrayGet(HInstruction* array, 5905 HInstruction* index, 5906 DataType::Type type, 5907 uint32_t dex_pc) 5908 : HArrayGet(array, 5909 index, 5910 type, 5911 SideEffects::ArrayReadOfType(type), 5912 dex_pc, 5913 /* is_string_char_at= */ false) { 5914 } 5915 5916 HArrayGet(HInstruction* array, 5917 HInstruction* index, 5918 DataType::Type type, 5919 SideEffects side_effects, 5920 uint32_t dex_pc, 5921 bool is_string_char_at) 5922 : HExpression(kArrayGet, type, side_effects, dex_pc) { 5923 SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at); 5924 SetRawInputAt(0, array); 5925 SetRawInputAt(1, index); 5926 } 5927 5928 bool IsClonable() const override { return true; } 5929 bool CanBeMoved() const override { return true; } 5930 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 5931 return true; 5932 } 5933 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override { 5934 // TODO: We can be smarter here. 5935 // Currently, unless the array is the result of NewArray, the array access is always 5936 // preceded by some form of null NullCheck necessary for the bounds check, usually 5937 // implicit null check on the ArrayLength input to BoundsCheck or Deoptimize for 5938 // dynamic BCE. There are cases when these could be removed to produce better code. 5939 // If we ever add optimizations to do so we should allow an implicit check here 5940 // (as long as the address falls in the first page). 5941 // 5942 // As an example of such fancy optimization, we could eliminate BoundsCheck for 5943 // a = cond ? new int[1] : null; 5944 // a[0]; // The Phi does not need bounds check for either input. 5945 return false; 5946 } 5947 5948 bool IsEquivalentOf(HArrayGet* other) const { 5949 bool result = (GetDexPc() == other->GetDexPc()); 5950 if (kIsDebugBuild && result) { 5951 DCHECK_EQ(GetBlock(), other->GetBlock()); 5952 DCHECK_EQ(GetArray(), other->GetArray()); 5953 DCHECK_EQ(GetIndex(), other->GetIndex()); 5954 if (DataType::IsIntOrLongType(GetType())) { 5955 DCHECK(DataType::IsFloatingPointType(other->GetType())) << other->GetType(); 5956 } else { 5957 DCHECK(DataType::IsFloatingPointType(GetType())) << GetType(); 5958 DCHECK(DataType::IsIntOrLongType(other->GetType())) << other->GetType(); 5959 } 5960 } 5961 return result; 5962 } 5963 5964 bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); } 5965 5966 HInstruction* GetArray() const { return InputAt(0); } 5967 HInstruction* GetIndex() const { return InputAt(1); } 5968 5969 void SetType(DataType::Type new_type) { 5970 DCHECK(DataType::IsIntegralType(GetType())); 5971 DCHECK(DataType::IsIntegralType(new_type)); 5972 DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type)); 5973 SetPackedField<TypeField>(new_type); 5974 } 5975 5976 DECLARE_INSTRUCTION(ArrayGet); 5977 5978 protected: 5979 DEFAULT_COPY_CONSTRUCTOR(ArrayGet); 5980 5981 private: 5982 // We treat a String as an array, creating the HArrayGet from String.charAt() 5983 // intrinsic in the instruction simplifier. We can always determine whether 5984 // a particular HArrayGet is actually a String.charAt() by looking at the type 5985 // of the input but that requires holding the mutator lock, so we prefer to use 5986 // a flag, so that code generators don't need to do the locking. 5987 static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits; 5988 static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1; 5989 static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits, 5990 "Too many packed fields."); 5991 }; 5992 5993 class HArraySet final : public HExpression<3> { 5994 public: 5995 HArraySet(HInstruction* array, 5996 HInstruction* index, 5997 HInstruction* value, 5998 DataType::Type expected_component_type, 5999 uint32_t dex_pc) 6000 : HArraySet(array, 6001 index, 6002 value, 6003 expected_component_type, 6004 // Make a best guess for side effects now, may be refined during SSA building. 6005 ComputeSideEffects(GetComponentType(value->GetType(), expected_component_type)), 6006 dex_pc) { 6007 } 6008 6009 HArraySet(HInstruction* array, 6010 HInstruction* index, 6011 HInstruction* value, 6012 DataType::Type expected_component_type, 6013 SideEffects side_effects, 6014 uint32_t dex_pc) 6015 : HExpression(kArraySet, side_effects, dex_pc) { 6016 SetPackedField<ExpectedComponentTypeField>(expected_component_type); 6017 SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == DataType::Type::kReference); 6018 SetPackedFlag<kFlagValueCanBeNull>(true); 6019 SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false); 6020 SetRawInputAt(0, array); 6021 SetRawInputAt(1, index); 6022 SetRawInputAt(2, value); 6023 } 6024 6025 bool IsClonable() const override { return true; } 6026 6027 bool NeedsEnvironment() const override { 6028 // We call a runtime method to throw ArrayStoreException. 6029 return NeedsTypeCheck(); 6030 } 6031 6032 // Can throw ArrayStoreException. 6033 bool CanThrow() const override { return NeedsTypeCheck(); } 6034 6035 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override { 6036 // TODO: Same as for ArrayGet. 6037 return false; 6038 } 6039 6040 void ClearNeedsTypeCheck() { 6041 SetPackedFlag<kFlagNeedsTypeCheck>(false); 6042 } 6043 6044 void ClearValueCanBeNull() { 6045 SetPackedFlag<kFlagValueCanBeNull>(false); 6046 } 6047 6048 void SetStaticTypeOfArrayIsObjectArray() { 6049 SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true); 6050 } 6051 6052 bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } 6053 bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); } 6054 bool StaticTypeOfArrayIsObjectArray() const { 6055 return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(); 6056 } 6057 6058 HInstruction* GetArray() const { return InputAt(0); } 6059 HInstruction* GetIndex() const { return InputAt(1); } 6060 HInstruction* GetValue() const { return InputAt(2); } 6061 6062 DataType::Type GetComponentType() const { 6063 return GetComponentType(GetValue()->GetType(), GetRawExpectedComponentType()); 6064 } 6065 6066 static DataType::Type GetComponentType(DataType::Type value_type, 6067 DataType::Type expected_component_type) { 6068 // The Dex format does not type floating point index operations. Since the 6069 // `expected_component_type` comes from SSA building and can therefore not 6070 // be correct, we also check what is the value type. If it is a floating 6071 // point type, we must use that type. 6072 return ((value_type == DataType::Type::kFloat32) || (value_type == DataType::Type::kFloat64)) 6073 ? value_type 6074 : expected_component_type; 6075 } 6076 6077 DataType::Type GetRawExpectedComponentType() const { 6078 return GetPackedField<ExpectedComponentTypeField>(); 6079 } 6080 6081 static SideEffects ComputeSideEffects(DataType::Type type) { 6082 return SideEffects::ArrayWriteOfType(type).Union(SideEffectsForArchRuntimeCalls(type)); 6083 } 6084 6085 static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type value_type) { 6086 return (value_type == DataType::Type::kReference) ? SideEffects::CanTriggerGC() 6087 : SideEffects::None(); 6088 } 6089 6090 DECLARE_INSTRUCTION(ArraySet); 6091 6092 protected: 6093 DEFAULT_COPY_CONSTRUCTOR(ArraySet); 6094 6095 private: 6096 static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits; 6097 static constexpr size_t kFieldExpectedComponentTypeSize = 6098 MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); 6099 static constexpr size_t kFlagNeedsTypeCheck = 6100 kFieldExpectedComponentType + kFieldExpectedComponentTypeSize; 6101 static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1; 6102 // Cached information for the reference_type_info_ so that codegen 6103 // does not need to inspect the static type. 6104 static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1; 6105 static constexpr size_t kNumberOfArraySetPackedBits = 6106 kFlagStaticTypeOfArrayIsObjectArray + 1; 6107 static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 6108 using ExpectedComponentTypeField = 6109 BitField<DataType::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>; 6110 }; 6111 6112 class HArrayLength final : public HExpression<1> { 6113 public: 6114 HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false) 6115 : HExpression(kArrayLength, DataType::Type::kInt32, SideEffects::None(), dex_pc) { 6116 SetPackedFlag<kFlagIsStringLength>(is_string_length); 6117 // Note that arrays do not change length, so the instruction does not 6118 // depend on any write. 6119 SetRawInputAt(0, array); 6120 } 6121 6122 bool IsClonable() const override { return true; } 6123 bool CanBeMoved() const override { return true; } 6124 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 6125 return true; 6126 } 6127 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override { 6128 return obj == InputAt(0); 6129 } 6130 6131 bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); } 6132 6133 DECLARE_INSTRUCTION(ArrayLength); 6134 6135 protected: 6136 DEFAULT_COPY_CONSTRUCTOR(ArrayLength); 6137 6138 private: 6139 // We treat a String as an array, creating the HArrayLength from String.length() 6140 // or String.isEmpty() intrinsic in the instruction simplifier. We can always 6141 // determine whether a particular HArrayLength is actually a String.length() by 6142 // looking at the type of the input but that requires holding the mutator lock, so 6143 // we prefer to use a flag, so that code generators don't need to do the locking. 6144 static constexpr size_t kFlagIsStringLength = kNumberOfGenericPackedBits; 6145 static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1; 6146 static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits, 6147 "Too many packed fields."); 6148 }; 6149 6150 class HBoundsCheck final : public HExpression<2> { 6151 public: 6152 // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException` 6153 // constructor. However it can only do it on a fatal slow path so execution never returns to the 6154 // instruction following the current one; thus 'SideEffects::None()' is used. 6155 HBoundsCheck(HInstruction* index, 6156 HInstruction* length, 6157 uint32_t dex_pc, 6158 bool is_string_char_at = false) 6159 : HExpression(kBoundsCheck, index->GetType(), SideEffects::None(), dex_pc) { 6160 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(index->GetType())); 6161 SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at); 6162 SetRawInputAt(0, index); 6163 SetRawInputAt(1, length); 6164 } 6165 6166 bool IsClonable() const override { return true; } 6167 bool CanBeMoved() const override { return true; } 6168 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 6169 return true; 6170 } 6171 6172 bool NeedsEnvironment() const override { return true; } 6173 6174 bool CanThrow() const override { return true; } 6175 6176 bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); } 6177 6178 HInstruction* GetIndex() const { return InputAt(0); } 6179 6180 DECLARE_INSTRUCTION(BoundsCheck); 6181 6182 protected: 6183 DEFAULT_COPY_CONSTRUCTOR(BoundsCheck); 6184 6185 private: 6186 static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits; 6187 static constexpr size_t kNumberOfBoundsCheckPackedBits = kFlagIsStringCharAt + 1; 6188 static_assert(kNumberOfBoundsCheckPackedBits <= HInstruction::kMaxNumberOfPackedBits, 6189 "Too many packed fields."); 6190 }; 6191 6192 class HSuspendCheck final : public HExpression<0> { 6193 public: 6194 explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc) 6195 : HExpression(kSuspendCheck, SideEffects::CanTriggerGC(), dex_pc), 6196 slow_path_(nullptr) { 6197 } 6198 6199 bool IsClonable() const override { return true; } 6200 6201 bool NeedsEnvironment() const override { 6202 return true; 6203 } 6204 6205 void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; } 6206 SlowPathCode* GetSlowPath() const { return slow_path_; } 6207 6208 DECLARE_INSTRUCTION(SuspendCheck); 6209 6210 protected: 6211 DEFAULT_COPY_CONSTRUCTOR(SuspendCheck); 6212 6213 private: 6214 // Only used for code generation, in order to share the same slow path between back edges 6215 // of a same loop. 6216 SlowPathCode* slow_path_; 6217 }; 6218 6219 // Pseudo-instruction which provides the native debugger with mapping information. 6220 // It ensures that we can generate line number and local variables at this point. 6221 class HNativeDebugInfo : public HExpression<0> { 6222 public: 6223 explicit HNativeDebugInfo(uint32_t dex_pc) 6224 : HExpression<0>(kNativeDebugInfo, SideEffects::None(), dex_pc) { 6225 } 6226 6227 bool NeedsEnvironment() const override { 6228 return true; 6229 } 6230 6231 DECLARE_INSTRUCTION(NativeDebugInfo); 6232 6233 protected: 6234 DEFAULT_COPY_CONSTRUCTOR(NativeDebugInfo); 6235 }; 6236 6237 /** 6238 * Instruction to load a Class object. 6239 */ 6240 class HLoadClass final : public HInstruction { 6241 public: 6242 // Determines how to load the Class. 6243 enum class LoadKind { 6244 // We cannot load this class. See HSharpening::SharpenLoadClass. 6245 kInvalid = -1, 6246 6247 // Use the Class* from the method's own ArtMethod*. 6248 kReferrersClass, 6249 6250 // Use PC-relative boot image Class* address that will be known at link time. 6251 // Used for boot image classes referenced by boot image code. 6252 kBootImageLinkTimePcRelative, 6253 6254 // Load from an entry in the .data.bimg.rel.ro using a PC-relative load. 6255 // Used for boot image classes referenced by apps in AOT-compiled code. 6256 kBootImageRelRo, 6257 6258 // Load from an entry in the .bss section using a PC-relative load. 6259 // Used for classes outside boot image referenced by AOT-compiled app and boot image code. 6260 kBssEntry, 6261 6262 // Use a known boot image Class* address, embedded in the code by the codegen. 6263 // Used for boot image classes referenced by apps in JIT-compiled code. 6264 kJitBootImageAddress, 6265 6266 // Load from the root table associated with the JIT compiled method. 6267 kJitTableAddress, 6268 6269 // Load using a simple runtime call. This is the fall-back load kind when 6270 // the codegen is unable to use another appropriate kind. 6271 kRuntimeCall, 6272 6273 kLast = kRuntimeCall 6274 }; 6275 6276 HLoadClass(HCurrentMethod* current_method, 6277 dex::TypeIndex type_index, 6278 const DexFile& dex_file, 6279 Handle<mirror::Class> klass, 6280 bool is_referrers_class, 6281 uint32_t dex_pc, 6282 bool needs_access_check) 6283 : HInstruction(kLoadClass, 6284 DataType::Type::kReference, 6285 SideEffectsForArchRuntimeCalls(), 6286 dex_pc), 6287 special_input_(HUserRecord<HInstruction*>(current_method)), 6288 type_index_(type_index), 6289 dex_file_(dex_file), 6290 klass_(klass) { 6291 // Referrers class should not need access check. We never inline unverified 6292 // methods so we can't possibly end up in this situation. 6293 DCHECK(!is_referrers_class || !needs_access_check); 6294 6295 SetPackedField<LoadKindField>( 6296 is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kRuntimeCall); 6297 SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check); 6298 SetPackedFlag<kFlagIsInBootImage>(false); 6299 SetPackedFlag<kFlagGenerateClInitCheck>(false); 6300 SetPackedFlag<kFlagValidLoadedClassRTI>(false); 6301 } 6302 6303 bool IsClonable() const override { return true; } 6304 6305 void SetLoadKind(LoadKind load_kind); 6306 6307 LoadKind GetLoadKind() const { 6308 return GetPackedField<LoadKindField>(); 6309 } 6310 6311 bool HasPcRelativeLoadKind() const { 6312 return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || 6313 GetLoadKind() == LoadKind::kBootImageRelRo || 6314 GetLoadKind() == LoadKind::kBssEntry; 6315 } 6316 6317 bool CanBeMoved() const override { return true; } 6318 6319 bool InstructionDataEquals(const HInstruction* other) const override; 6320 6321 size_t ComputeHashCode() const override { return type_index_.index_; } 6322 6323 bool CanBeNull() const override { return false; } 6324 6325 bool NeedsEnvironment() const override { 6326 return CanCallRuntime(); 6327 } 6328 6329 void SetMustGenerateClinitCheck(bool generate_clinit_check) { 6330 // The entrypoint the code generator is going to call does not do 6331 // clinit of the class. 6332 DCHECK(!NeedsAccessCheck()); 6333 SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check); 6334 } 6335 6336 bool CanCallRuntime() const { 6337 return NeedsAccessCheck() || 6338 MustGenerateClinitCheck() || 6339 GetLoadKind() == LoadKind::kRuntimeCall || 6340 GetLoadKind() == LoadKind::kBssEntry; 6341 } 6342 6343 bool CanThrow() const override { 6344 return NeedsAccessCheck() || 6345 MustGenerateClinitCheck() || 6346 // If the class is in the boot image, the lookup in the runtime call cannot throw. 6347 ((GetLoadKind() == LoadKind::kRuntimeCall || 6348 GetLoadKind() == LoadKind::kBssEntry) && 6349 !IsInBootImage()); 6350 } 6351 6352 ReferenceTypeInfo GetLoadedClassRTI() { 6353 if (GetPackedFlag<kFlagValidLoadedClassRTI>()) { 6354 // Note: The is_exact flag from the return value should not be used. 6355 return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true); 6356 } else { 6357 return ReferenceTypeInfo::CreateInvalid(); 6358 } 6359 } 6360 6361 // Loaded class RTI is marked as valid by RTP if the klass_ is admissible. 6362 void SetValidLoadedClassRTI() REQUIRES_SHARED(Locks::mutator_lock_) { 6363 DCHECK(klass_ != nullptr); 6364 SetPackedFlag<kFlagValidLoadedClassRTI>(true); 6365 } 6366 6367 dex::TypeIndex GetTypeIndex() const { return type_index_; } 6368 const DexFile& GetDexFile() const { return dex_file_; } 6369 6370 bool NeedsDexCacheOfDeclaringClass() const override { 6371 return GetLoadKind() == LoadKind::kRuntimeCall; 6372 } 6373 6374 static SideEffects SideEffectsForArchRuntimeCalls() { 6375 return SideEffects::CanTriggerGC(); 6376 } 6377 6378 bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; } 6379 bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); } 6380 bool IsInBootImage() const { return GetPackedFlag<kFlagIsInBootImage>(); } 6381 bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); } 6382 6383 bool MustResolveTypeOnSlowPath() const { 6384 // Check that this instruction has a slow path. 6385 DCHECK(GetLoadKind() != LoadKind::kRuntimeCall); // kRuntimeCall calls on main path. 6386 DCHECK(GetLoadKind() == LoadKind::kBssEntry || MustGenerateClinitCheck()); 6387 return GetLoadKind() == LoadKind::kBssEntry; 6388 } 6389 6390 void MarkInBootImage() { 6391 SetPackedFlag<kFlagIsInBootImage>(true); 6392 } 6393 6394 void AddSpecialInput(HInstruction* special_input); 6395 6396 using HInstruction::GetInputRecords; // Keep the const version visible. 6397 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { 6398 return ArrayRef<HUserRecord<HInstruction*>>( 6399 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); 6400 } 6401 6402 Handle<mirror::Class> GetClass() const { 6403 return klass_; 6404 } 6405 6406 DECLARE_INSTRUCTION(LoadClass); 6407 6408 protected: 6409 DEFAULT_COPY_CONSTRUCTOR(LoadClass); 6410 6411 private: 6412 static constexpr size_t kFlagNeedsAccessCheck = kNumberOfGenericPackedBits; 6413 static constexpr size_t kFlagIsInBootImage = kFlagNeedsAccessCheck + 1; 6414 // Whether this instruction must generate the initialization check. 6415 // Used for code generation. 6416 static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInBootImage + 1; 6417 static constexpr size_t kFieldLoadKind = kFlagGenerateClInitCheck + 1; 6418 static constexpr size_t kFieldLoadKindSize = 6419 MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast)); 6420 static constexpr size_t kFlagValidLoadedClassRTI = kFieldLoadKind + kFieldLoadKindSize; 6421 static constexpr size_t kNumberOfLoadClassPackedBits = kFlagValidLoadedClassRTI + 1; 6422 static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields."); 6423 using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>; 6424 6425 static bool HasTypeReference(LoadKind load_kind) { 6426 return load_kind == LoadKind::kReferrersClass || 6427 load_kind == LoadKind::kBootImageLinkTimePcRelative || 6428 load_kind == LoadKind::kBssEntry || 6429 load_kind == LoadKind::kRuntimeCall; 6430 } 6431 6432 void SetLoadKindInternal(LoadKind load_kind); 6433 6434 // The special input is the HCurrentMethod for kRuntimeCall or kReferrersClass. 6435 // For other load kinds it's empty or possibly some architecture-specific instruction 6436 // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative. 6437 HUserRecord<HInstruction*> special_input_; 6438 6439 // A type index and dex file where the class can be accessed. The dex file can be: 6440 // - The compiling method's dex file if the class is defined there too. 6441 // - The compiling method's dex file if the class is referenced there. 6442 // - The dex file where the class is defined. When the load kind can only be 6443 // kBssEntry or kRuntimeCall, we cannot emit code for this `HLoadClass`. 6444 const dex::TypeIndex type_index_; 6445 const DexFile& dex_file_; 6446 6447 Handle<mirror::Class> klass_; 6448 }; 6449 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs); 6450 6451 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind). 6452 inline void HLoadClass::SetLoadKind(LoadKind load_kind) { 6453 // The load kind should be determined before inserting the instruction to the graph. 6454 DCHECK(GetBlock() == nullptr); 6455 DCHECK(GetEnvironment() == nullptr); 6456 SetPackedField<LoadKindField>(load_kind); 6457 if (load_kind != LoadKind::kRuntimeCall && load_kind != LoadKind::kReferrersClass) { 6458 special_input_ = HUserRecord<HInstruction*>(nullptr); 6459 } 6460 if (!NeedsEnvironment()) { 6461 SetSideEffects(SideEffects::None()); 6462 } 6463 } 6464 6465 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind). 6466 inline void HLoadClass::AddSpecialInput(HInstruction* special_input) { 6467 // The special input is used for PC-relative loads on some architectures, 6468 // including literal pool loads, which are PC-relative too. 6469 DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || 6470 GetLoadKind() == LoadKind::kBootImageRelRo || 6471 GetLoadKind() == LoadKind::kBssEntry || 6472 GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind(); 6473 DCHECK(special_input_.GetInstruction() == nullptr); 6474 special_input_ = HUserRecord<HInstruction*>(special_input); 6475 special_input->AddUseAt(this, 0); 6476 } 6477 6478 class HLoadString final : public HInstruction { 6479 public: 6480 // Determines how to load the String. 6481 enum class LoadKind { 6482 // Use PC-relative boot image String* address that will be known at link time. 6483 // Used for boot image strings referenced by boot image code. 6484 kBootImageLinkTimePcRelative, 6485 6486 // Load from an entry in the .data.bimg.rel.ro using a PC-relative load. 6487 // Used for boot image strings referenced by apps in AOT-compiled code. 6488 kBootImageRelRo, 6489 6490 // Load from an entry in the .bss section using a PC-relative load. 6491 // Used for strings outside boot image referenced by AOT-compiled app and boot image code. 6492 kBssEntry, 6493 6494 // Use a known boot image String* address, embedded in the code by the codegen. 6495 // Used for boot image strings referenced by apps in JIT-compiled code. 6496 kJitBootImageAddress, 6497 6498 // Load from the root table associated with the JIT compiled method. 6499 kJitTableAddress, 6500 6501 // Load using a simple runtime call. This is the fall-back load kind when 6502 // the codegen is unable to use another appropriate kind. 6503 kRuntimeCall, 6504 6505 kLast = kRuntimeCall, 6506 }; 6507 6508 HLoadString(HCurrentMethod* current_method, 6509 dex::StringIndex string_index, 6510 const DexFile& dex_file, 6511 uint32_t dex_pc) 6512 : HInstruction(kLoadString, 6513 DataType::Type::kReference, 6514 SideEffectsForArchRuntimeCalls(), 6515 dex_pc), 6516 special_input_(HUserRecord<HInstruction*>(current_method)), 6517 string_index_(string_index), 6518 dex_file_(dex_file) { 6519 SetPackedField<LoadKindField>(LoadKind::kRuntimeCall); 6520 } 6521 6522 bool IsClonable() const override { return true; } 6523 6524 void SetLoadKind(LoadKind load_kind); 6525 6526 LoadKind GetLoadKind() const { 6527 return GetPackedField<LoadKindField>(); 6528 } 6529 6530 bool HasPcRelativeLoadKind() const { 6531 return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || 6532 GetLoadKind() == LoadKind::kBootImageRelRo || 6533 GetLoadKind() == LoadKind::kBssEntry; 6534 } 6535 6536 const DexFile& GetDexFile() const { 6537 return dex_file_; 6538 } 6539 6540 dex::StringIndex GetStringIndex() const { 6541 return string_index_; 6542 } 6543 6544 Handle<mirror::String> GetString() const { 6545 return string_; 6546 } 6547 6548 void SetString(Handle<mirror::String> str) { 6549 string_ = str; 6550 } 6551 6552 bool CanBeMoved() const override { return true; } 6553 6554 bool InstructionDataEquals(const HInstruction* other) const override; 6555 6556 size_t ComputeHashCode() const override { return string_index_.index_; } 6557 6558 // Will call the runtime if we need to load the string through 6559 // the dex cache and the string is not guaranteed to be there yet. 6560 bool NeedsEnvironment() const override { 6561 LoadKind load_kind = GetLoadKind(); 6562 if (load_kind == LoadKind::kBootImageLinkTimePcRelative || 6563 load_kind == LoadKind::kBootImageRelRo || 6564 load_kind == LoadKind::kJitBootImageAddress || 6565 load_kind == LoadKind::kJitTableAddress) { 6566 return false; 6567 } 6568 return true; 6569 } 6570 6571 bool NeedsDexCacheOfDeclaringClass() const override { 6572 return GetLoadKind() == LoadKind::kRuntimeCall; 6573 } 6574 6575 bool CanBeNull() const override { return false; } 6576 bool CanThrow() const override { return NeedsEnvironment(); } 6577 6578 static SideEffects SideEffectsForArchRuntimeCalls() { 6579 return SideEffects::CanTriggerGC(); 6580 } 6581 6582 void AddSpecialInput(HInstruction* special_input); 6583 6584 using HInstruction::GetInputRecords; // Keep the const version visible. 6585 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { 6586 return ArrayRef<HUserRecord<HInstruction*>>( 6587 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); 6588 } 6589 6590 DECLARE_INSTRUCTION(LoadString); 6591 6592 protected: 6593 DEFAULT_COPY_CONSTRUCTOR(LoadString); 6594 6595 private: 6596 static constexpr size_t kFieldLoadKind = kNumberOfGenericPackedBits; 6597 static constexpr size_t kFieldLoadKindSize = 6598 MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast)); 6599 static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize; 6600 static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 6601 using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>; 6602 6603 void SetLoadKindInternal(LoadKind load_kind); 6604 6605 // The special input is the HCurrentMethod for kRuntimeCall. 6606 // For other load kinds it's empty or possibly some architecture-specific instruction 6607 // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative. 6608 HUserRecord<HInstruction*> special_input_; 6609 6610 dex::StringIndex string_index_; 6611 const DexFile& dex_file_; 6612 6613 Handle<mirror::String> string_; 6614 }; 6615 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs); 6616 6617 // Note: defined outside class to see operator<<(., HLoadString::LoadKind). 6618 inline void HLoadString::SetLoadKind(LoadKind load_kind) { 6619 // The load kind should be determined before inserting the instruction to the graph. 6620 DCHECK(GetBlock() == nullptr); 6621 DCHECK(GetEnvironment() == nullptr); 6622 DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall); 6623 SetPackedField<LoadKindField>(load_kind); 6624 if (load_kind != LoadKind::kRuntimeCall) { 6625 special_input_ = HUserRecord<HInstruction*>(nullptr); 6626 } 6627 if (!NeedsEnvironment()) { 6628 SetSideEffects(SideEffects::None()); 6629 } 6630 } 6631 6632 // Note: defined outside class to see operator<<(., HLoadString::LoadKind). 6633 inline void HLoadString::AddSpecialInput(HInstruction* special_input) { 6634 // The special input is used for PC-relative loads on some architectures, 6635 // including literal pool loads, which are PC-relative too. 6636 DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || 6637 GetLoadKind() == LoadKind::kBootImageRelRo || 6638 GetLoadKind() == LoadKind::kBssEntry || 6639 GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind(); 6640 // HLoadString::GetInputRecords() returns an empty array at this point, 6641 // so use the GetInputRecords() from the base class to set the input record. 6642 DCHECK(special_input_.GetInstruction() == nullptr); 6643 special_input_ = HUserRecord<HInstruction*>(special_input); 6644 special_input->AddUseAt(this, 0); 6645 } 6646 6647 class HLoadMethodHandle final : public HInstruction { 6648 public: 6649 HLoadMethodHandle(HCurrentMethod* current_method, 6650 uint16_t method_handle_idx, 6651 const DexFile& dex_file, 6652 uint32_t dex_pc) 6653 : HInstruction(kLoadMethodHandle, 6654 DataType::Type::kReference, 6655 SideEffectsForArchRuntimeCalls(), 6656 dex_pc), 6657 special_input_(HUserRecord<HInstruction*>(current_method)), 6658 method_handle_idx_(method_handle_idx), 6659 dex_file_(dex_file) { 6660 } 6661 6662 using HInstruction::GetInputRecords; // Keep the const version visible. 6663 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { 6664 return ArrayRef<HUserRecord<HInstruction*>>( 6665 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); 6666 } 6667 6668 bool IsClonable() const override { return true; } 6669 6670 uint16_t GetMethodHandleIndex() const { return method_handle_idx_; } 6671 6672 const DexFile& GetDexFile() const { return dex_file_; } 6673 6674 static SideEffects SideEffectsForArchRuntimeCalls() { 6675 return SideEffects::CanTriggerGC(); 6676 } 6677 6678 DECLARE_INSTRUCTION(LoadMethodHandle); 6679 6680 protected: 6681 DEFAULT_COPY_CONSTRUCTOR(LoadMethodHandle); 6682 6683 private: 6684 // The special input is the HCurrentMethod for kRuntimeCall. 6685 HUserRecord<HInstruction*> special_input_; 6686 6687 const uint16_t method_handle_idx_; 6688 const DexFile& dex_file_; 6689 }; 6690 6691 class HLoadMethodType final : public HInstruction { 6692 public: 6693 HLoadMethodType(HCurrentMethod* current_method, 6694 dex::ProtoIndex proto_index, 6695 const DexFile& dex_file, 6696 uint32_t dex_pc) 6697 : HInstruction(kLoadMethodType, 6698 DataType::Type::kReference, 6699 SideEffectsForArchRuntimeCalls(), 6700 dex_pc), 6701 special_input_(HUserRecord<HInstruction*>(current_method)), 6702 proto_index_(proto_index), 6703 dex_file_(dex_file) { 6704 } 6705 6706 using HInstruction::GetInputRecords; // Keep the const version visible. 6707 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { 6708 return ArrayRef<HUserRecord<HInstruction*>>( 6709 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); 6710 } 6711 6712 bool IsClonable() const override { return true; } 6713 6714 dex::ProtoIndex GetProtoIndex() const { return proto_index_; } 6715 6716 const DexFile& GetDexFile() const { return dex_file_; } 6717 6718 static SideEffects SideEffectsForArchRuntimeCalls() { 6719 return SideEffects::CanTriggerGC(); 6720 } 6721 6722 DECLARE_INSTRUCTION(LoadMethodType); 6723 6724 protected: 6725 DEFAULT_COPY_CONSTRUCTOR(LoadMethodType); 6726 6727 private: 6728 // The special input is the HCurrentMethod for kRuntimeCall. 6729 HUserRecord<HInstruction*> special_input_; 6730 6731 const dex::ProtoIndex proto_index_; 6732 const DexFile& dex_file_; 6733 }; 6734 6735 /** 6736 * Performs an initialization check on its Class object input. 6737 */ 6738 class HClinitCheck final : public HExpression<1> { 6739 public: 6740 HClinitCheck(HLoadClass* constant, uint32_t dex_pc) 6741 : HExpression( 6742 kClinitCheck, 6743 DataType::Type::kReference, 6744 SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays. 6745 dex_pc) { 6746 SetRawInputAt(0, constant); 6747 } 6748 // TODO: Make ClinitCheck clonable. 6749 bool CanBeMoved() const override { return true; } 6750 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 6751 return true; 6752 } 6753 6754 bool NeedsEnvironment() const override { 6755 // May call runtime to initialize the class. 6756 return true; 6757 } 6758 6759 bool CanThrow() const override { return true; } 6760 6761 HLoadClass* GetLoadClass() const { 6762 DCHECK(InputAt(0)->IsLoadClass()); 6763 return InputAt(0)->AsLoadClass(); 6764 } 6765 6766 DECLARE_INSTRUCTION(ClinitCheck); 6767 6768 6769 protected: 6770 DEFAULT_COPY_CONSTRUCTOR(ClinitCheck); 6771 }; 6772 6773 class HStaticFieldGet final : public HExpression<1> { 6774 public: 6775 HStaticFieldGet(HInstruction* cls, 6776 ArtField* field, 6777 DataType::Type field_type, 6778 MemberOffset field_offset, 6779 bool is_volatile, 6780 uint32_t field_idx, 6781 uint16_t declaring_class_def_index, 6782 const DexFile& dex_file, 6783 uint32_t dex_pc) 6784 : HExpression(kStaticFieldGet, 6785 field_type, 6786 SideEffects::FieldReadOfType(field_type, is_volatile), 6787 dex_pc), 6788 field_info_(field, 6789 field_offset, 6790 field_type, 6791 is_volatile, 6792 field_idx, 6793 declaring_class_def_index, 6794 dex_file) { 6795 SetRawInputAt(0, cls); 6796 } 6797 6798 6799 bool IsClonable() const override { return true; } 6800 bool CanBeMoved() const override { return !IsVolatile(); } 6801 6802 bool InstructionDataEquals(const HInstruction* other) const override { 6803 const HStaticFieldGet* other_get = other->AsStaticFieldGet(); 6804 return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); 6805 } 6806 6807 size_t ComputeHashCode() const override { 6808 return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); 6809 } 6810 6811 const FieldInfo& GetFieldInfo() const { return field_info_; } 6812 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } 6813 DataType::Type GetFieldType() const { return field_info_.GetFieldType(); } 6814 bool IsVolatile() const { return field_info_.IsVolatile(); } 6815 6816 void SetType(DataType::Type new_type) { 6817 DCHECK(DataType::IsIntegralType(GetType())); 6818 DCHECK(DataType::IsIntegralType(new_type)); 6819 DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type)); 6820 SetPackedField<TypeField>(new_type); 6821 } 6822 6823 DECLARE_INSTRUCTION(StaticFieldGet); 6824 6825 protected: 6826 DEFAULT_COPY_CONSTRUCTOR(StaticFieldGet); 6827 6828 private: 6829 const FieldInfo field_info_; 6830 }; 6831 6832 class HStaticFieldSet final : public HExpression<2> { 6833 public: 6834 HStaticFieldSet(HInstruction* cls, 6835 HInstruction* value, 6836 ArtField* field, 6837 DataType::Type field_type, 6838 MemberOffset field_offset, 6839 bool is_volatile, 6840 uint32_t field_idx, 6841 uint16_t declaring_class_def_index, 6842 const DexFile& dex_file, 6843 uint32_t dex_pc) 6844 : HExpression(kStaticFieldSet, 6845 SideEffects::FieldWriteOfType(field_type, is_volatile), 6846 dex_pc), 6847 field_info_(field, 6848 field_offset, 6849 field_type, 6850 is_volatile, 6851 field_idx, 6852 declaring_class_def_index, 6853 dex_file) { 6854 SetPackedFlag<kFlagValueCanBeNull>(true); 6855 SetRawInputAt(0, cls); 6856 SetRawInputAt(1, value); 6857 } 6858 6859 bool IsClonable() const override { return true; } 6860 const FieldInfo& GetFieldInfo() const { return field_info_; } 6861 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } 6862 DataType::Type GetFieldType() const { return field_info_.GetFieldType(); } 6863 bool IsVolatile() const { return field_info_.IsVolatile(); } 6864 6865 HInstruction* GetValue() const { return InputAt(1); } 6866 bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } 6867 void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); } 6868 6869 DECLARE_INSTRUCTION(StaticFieldSet); 6870 6871 protected: 6872 DEFAULT_COPY_CONSTRUCTOR(StaticFieldSet); 6873 6874 private: 6875 static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits; 6876 static constexpr size_t kNumberOfStaticFieldSetPackedBits = kFlagValueCanBeNull + 1; 6877 static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits, 6878 "Too many packed fields."); 6879 6880 const FieldInfo field_info_; 6881 }; 6882 6883 class HUnresolvedInstanceFieldGet final : public HExpression<1> { 6884 public: 6885 HUnresolvedInstanceFieldGet(HInstruction* obj, 6886 DataType::Type field_type, 6887 uint32_t field_index, 6888 uint32_t dex_pc) 6889 : HExpression(kUnresolvedInstanceFieldGet, 6890 field_type, 6891 SideEffects::AllExceptGCDependency(), 6892 dex_pc), 6893 field_index_(field_index) { 6894 SetRawInputAt(0, obj); 6895 } 6896 6897 bool IsClonable() const override { return true; } 6898 bool NeedsEnvironment() const override { return true; } 6899 bool CanThrow() const override { return true; } 6900 6901 DataType::Type GetFieldType() const { return GetType(); } 6902 uint32_t GetFieldIndex() const { return field_index_; } 6903 6904 DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet); 6905 6906 protected: 6907 DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldGet); 6908 6909 private: 6910 const uint32_t field_index_; 6911 }; 6912 6913 class HUnresolvedInstanceFieldSet final : public HExpression<2> { 6914 public: 6915 HUnresolvedInstanceFieldSet(HInstruction* obj, 6916 HInstruction* value, 6917 DataType::Type field_type, 6918 uint32_t field_index, 6919 uint32_t dex_pc) 6920 : HExpression(kUnresolvedInstanceFieldSet, SideEffects::AllExceptGCDependency(), dex_pc), 6921 field_index_(field_index) { 6922 SetPackedField<FieldTypeField>(field_type); 6923 DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType())); 6924 SetRawInputAt(0, obj); 6925 SetRawInputAt(1, value); 6926 } 6927 6928 bool IsClonable() const override { return true; } 6929 bool NeedsEnvironment() const override { return true; } 6930 bool CanThrow() const override { return true; } 6931 6932 DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); } 6933 uint32_t GetFieldIndex() const { return field_index_; } 6934 6935 DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet); 6936 6937 protected: 6938 DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldSet); 6939 6940 private: 6941 static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits; 6942 static constexpr size_t kFieldFieldTypeSize = 6943 MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); 6944 static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits = 6945 kFieldFieldType + kFieldFieldTypeSize; 6946 static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits, 6947 "Too many packed fields."); 6948 using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>; 6949 6950 const uint32_t field_index_; 6951 }; 6952 6953 class HUnresolvedStaticFieldGet final : public HExpression<0> { 6954 public: 6955 HUnresolvedStaticFieldGet(DataType::Type field_type, 6956 uint32_t field_index, 6957 uint32_t dex_pc) 6958 : HExpression(kUnresolvedStaticFieldGet, 6959 field_type, 6960 SideEffects::AllExceptGCDependency(), 6961 dex_pc), 6962 field_index_(field_index) { 6963 } 6964 6965 bool IsClonable() const override { return true; } 6966 bool NeedsEnvironment() const override { return true; } 6967 bool CanThrow() const override { return true; } 6968 6969 DataType::Type GetFieldType() const { return GetType(); } 6970 uint32_t GetFieldIndex() const { return field_index_; } 6971 6972 DECLARE_INSTRUCTION(UnresolvedStaticFieldGet); 6973 6974 protected: 6975 DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldGet); 6976 6977 private: 6978 const uint32_t field_index_; 6979 }; 6980 6981 class HUnresolvedStaticFieldSet final : public HExpression<1> { 6982 public: 6983 HUnresolvedStaticFieldSet(HInstruction* value, 6984 DataType::Type field_type, 6985 uint32_t field_index, 6986 uint32_t dex_pc) 6987 : HExpression(kUnresolvedStaticFieldSet, SideEffects::AllExceptGCDependency(), dex_pc), 6988 field_index_(field_index) { 6989 SetPackedField<FieldTypeField>(field_type); 6990 DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType())); 6991 SetRawInputAt(0, value); 6992 } 6993 6994 bool IsClonable() const override { return true; } 6995 bool NeedsEnvironment() const override { return true; } 6996 bool CanThrow() const override { return true; } 6997 6998 DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); } 6999 uint32_t GetFieldIndex() const { return field_index_; } 7000 7001 DECLARE_INSTRUCTION(UnresolvedStaticFieldSet); 7002 7003 protected: 7004 DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldSet); 7005 7006 private: 7007 static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits; 7008 static constexpr size_t kFieldFieldTypeSize = 7009 MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); 7010 static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits = 7011 kFieldFieldType + kFieldFieldTypeSize; 7012 static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits, 7013 "Too many packed fields."); 7014 using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>; 7015 7016 const uint32_t field_index_; 7017 }; 7018 7019 // Implement the move-exception DEX instruction. 7020 class HLoadException final : public HExpression<0> { 7021 public: 7022 explicit HLoadException(uint32_t dex_pc = kNoDexPc) 7023 : HExpression(kLoadException, DataType::Type::kReference, SideEffects::None(), dex_pc) { 7024 } 7025 7026 bool CanBeNull() const override { return false; } 7027 7028 DECLARE_INSTRUCTION(LoadException); 7029 7030 protected: 7031 DEFAULT_COPY_CONSTRUCTOR(LoadException); 7032 }; 7033 7034 // Implicit part of move-exception which clears thread-local exception storage. 7035 // Must not be removed because the runtime expects the TLS to get cleared. 7036 class HClearException final : public HExpression<0> { 7037 public: 7038 explicit HClearException(uint32_t dex_pc = kNoDexPc) 7039 : HExpression(kClearException, SideEffects::AllWrites(), dex_pc) { 7040 } 7041 7042 DECLARE_INSTRUCTION(ClearException); 7043 7044 protected: 7045 DEFAULT_COPY_CONSTRUCTOR(ClearException); 7046 }; 7047 7048 class HThrow final : public HExpression<1> { 7049 public: 7050 HThrow(HInstruction* exception, uint32_t dex_pc) 7051 : HExpression(kThrow, SideEffects::CanTriggerGC(), dex_pc) { 7052 SetRawInputAt(0, exception); 7053 } 7054 7055 bool IsControlFlow() const override { return true; } 7056 7057 bool NeedsEnvironment() const override { return true; } 7058 7059 bool CanThrow() const override { return true; } 7060 7061 bool AlwaysThrows() const override { return true; } 7062 7063 DECLARE_INSTRUCTION(Throw); 7064 7065 protected: 7066 DEFAULT_COPY_CONSTRUCTOR(Throw); 7067 }; 7068 7069 /** 7070 * Implementation strategies for the code generator of a HInstanceOf 7071 * or `HCheckCast`. 7072 */ 7073 enum class TypeCheckKind { 7074 kUnresolvedCheck, // Check against an unresolved type. 7075 kExactCheck, // Can do a single class compare. 7076 kClassHierarchyCheck, // Can just walk the super class chain. 7077 kAbstractClassCheck, // Can just walk the super class chain, starting one up. 7078 kInterfaceCheck, // No optimization yet when checking against an interface. 7079 kArrayObjectCheck, // Can just check if the array is not primitive. 7080 kArrayCheck, // No optimization yet when checking against a generic array. 7081 kBitstringCheck, // Compare the type check bitstring. 7082 kLast = kArrayCheck 7083 }; 7084 7085 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs); 7086 7087 // Note: HTypeCheckInstruction is just a helper class, not an abstract instruction with an 7088 // `IsTypeCheckInstruction()`. (New virtual methods in the HInstruction class have a high cost.) 7089 class HTypeCheckInstruction : public HVariableInputSizeInstruction { 7090 public: 7091 HTypeCheckInstruction(InstructionKind kind, 7092 DataType::Type type, 7093 HInstruction* object, 7094 HInstruction* target_class_or_null, 7095 TypeCheckKind check_kind, 7096 Handle<mirror::Class> klass, 7097 uint32_t dex_pc, 7098 ArenaAllocator* allocator, 7099 HIntConstant* bitstring_path_to_root, 7100 HIntConstant* bitstring_mask, 7101 SideEffects side_effects) 7102 : HVariableInputSizeInstruction( 7103 kind, 7104 type, 7105 side_effects, 7106 dex_pc, 7107 allocator, 7108 /* number_of_inputs= */ check_kind == TypeCheckKind::kBitstringCheck ? 4u : 2u, 7109 kArenaAllocTypeCheckInputs), 7110 klass_(klass) { 7111 SetPackedField<TypeCheckKindField>(check_kind); 7112 SetPackedFlag<kFlagMustDoNullCheck>(true); 7113 SetPackedFlag<kFlagValidTargetClassRTI>(false); 7114 SetRawInputAt(0, object); 7115 SetRawInputAt(1, target_class_or_null); 7116 DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_path_to_root != nullptr); 7117 DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_mask != nullptr); 7118 if (check_kind == TypeCheckKind::kBitstringCheck) { 7119 DCHECK(target_class_or_null->IsNullConstant()); 7120 SetRawInputAt(2, bitstring_path_to_root); 7121 SetRawInputAt(3, bitstring_mask); 7122 } else { 7123 DCHECK(target_class_or_null->IsLoadClass()); 7124 } 7125 } 7126 7127 HLoadClass* GetTargetClass() const { 7128 DCHECK_NE(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck); 7129 HInstruction* load_class = InputAt(1); 7130 DCHECK(load_class->IsLoadClass()); 7131 return load_class->AsLoadClass(); 7132 } 7133 7134 uint32_t GetBitstringPathToRoot() const { 7135 DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck); 7136 HInstruction* path_to_root = InputAt(2); 7137 DCHECK(path_to_root->IsIntConstant()); 7138 return static_cast<uint32_t>(path_to_root->AsIntConstant()->GetValue()); 7139 } 7140 7141 uint32_t GetBitstringMask() const { 7142 DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck); 7143 HInstruction* mask = InputAt(3); 7144 DCHECK(mask->IsIntConstant()); 7145 return static_cast<uint32_t>(mask->AsIntConstant()->GetValue()); 7146 } 7147 7148 bool IsClonable() const override { return true; } 7149 bool CanBeMoved() const override { return true; } 7150 7151 bool InstructionDataEquals(const HInstruction* other) const override { 7152 DCHECK(other->IsInstanceOf() || other->IsCheckCast()) << other->DebugName(); 7153 return GetPackedFields() == down_cast<const HTypeCheckInstruction*>(other)->GetPackedFields(); 7154 } 7155 7156 bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); } 7157 void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); } 7158 TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); } 7159 bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; } 7160 7161 ReferenceTypeInfo GetTargetClassRTI() { 7162 if (GetPackedFlag<kFlagValidTargetClassRTI>()) { 7163 // Note: The is_exact flag from the return value should not be used. 7164 return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true); 7165 } else { 7166 return ReferenceTypeInfo::CreateInvalid(); 7167 } 7168 } 7169 7170 // Target class RTI is marked as valid by RTP if the klass_ is admissible. 7171 void SetValidTargetClassRTI() REQUIRES_SHARED(Locks::mutator_lock_) { 7172 DCHECK(klass_ != nullptr); 7173 SetPackedFlag<kFlagValidTargetClassRTI>(true); 7174 } 7175 7176 Handle<mirror::Class> GetClass() const { 7177 return klass_; 7178 } 7179 7180 protected: 7181 DEFAULT_COPY_CONSTRUCTOR(TypeCheckInstruction); 7182 7183 private: 7184 static constexpr size_t kFieldTypeCheckKind = kNumberOfGenericPackedBits; 7185 static constexpr size_t kFieldTypeCheckKindSize = 7186 MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast)); 7187 static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize; 7188 static constexpr size_t kFlagValidTargetClassRTI = kFlagMustDoNullCheck + 1; 7189 static constexpr size_t kNumberOfInstanceOfPackedBits = kFlagValidTargetClassRTI + 1; 7190 static_assert(kNumberOfInstanceOfPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 7191 using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>; 7192 7193 Handle<mirror::Class> klass_; 7194 }; 7195 7196 class HInstanceOf final : public HTypeCheckInstruction { 7197 public: 7198 HInstanceOf(HInstruction* object, 7199 HInstruction* target_class_or_null, 7200 TypeCheckKind check_kind, 7201 Handle<mirror::Class> klass, 7202 uint32_t dex_pc, 7203 ArenaAllocator* allocator, 7204 HIntConstant* bitstring_path_to_root, 7205 HIntConstant* bitstring_mask) 7206 : HTypeCheckInstruction(kInstanceOf, 7207 DataType::Type::kBool, 7208 object, 7209 target_class_or_null, 7210 check_kind, 7211 klass, 7212 dex_pc, 7213 allocator, 7214 bitstring_path_to_root, 7215 bitstring_mask, 7216 SideEffectsForArchRuntimeCalls(check_kind)) {} 7217 7218 bool IsClonable() const override { return true; } 7219 7220 bool NeedsEnvironment() const override { 7221 return CanCallRuntime(GetTypeCheckKind()); 7222 } 7223 7224 static bool CanCallRuntime(TypeCheckKind check_kind) { 7225 // Mips currently does runtime calls for any other checks. 7226 return check_kind != TypeCheckKind::kExactCheck; 7227 } 7228 7229 static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) { 7230 return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None(); 7231 } 7232 7233 DECLARE_INSTRUCTION(InstanceOf); 7234 7235 protected: 7236 DEFAULT_COPY_CONSTRUCTOR(InstanceOf); 7237 }; 7238 7239 class HBoundType final : public HExpression<1> { 7240 public: 7241 explicit HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc) 7242 : HExpression(kBoundType, DataType::Type::kReference, SideEffects::None(), dex_pc), 7243 upper_bound_(ReferenceTypeInfo::CreateInvalid()) { 7244 SetPackedFlag<kFlagUpperCanBeNull>(true); 7245 SetPackedFlag<kFlagCanBeNull>(true); 7246 DCHECK_EQ(input->GetType(), DataType::Type::kReference); 7247 SetRawInputAt(0, input); 7248 } 7249 7250 bool InstructionDataEquals(const HInstruction* other) const override; 7251 bool IsClonable() const override { return true; } 7252 7253 // {Get,Set}Upper* should only be used in reference type propagation. 7254 const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; } 7255 bool GetUpperCanBeNull() const { return GetPackedFlag<kFlagUpperCanBeNull>(); } 7256 void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null); 7257 7258 void SetCanBeNull(bool can_be_null) { 7259 DCHECK(GetUpperCanBeNull() || !can_be_null); 7260 SetPackedFlag<kFlagCanBeNull>(can_be_null); 7261 } 7262 7263 bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); } 7264 7265 DECLARE_INSTRUCTION(BoundType); 7266 7267 protected: 7268 DEFAULT_COPY_CONSTRUCTOR(BoundType); 7269 7270 private: 7271 // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this 7272 // is false then CanBeNull() cannot be true). 7273 static constexpr size_t kFlagUpperCanBeNull = kNumberOfGenericPackedBits; 7274 static constexpr size_t kFlagCanBeNull = kFlagUpperCanBeNull + 1; 7275 static constexpr size_t kNumberOfBoundTypePackedBits = kFlagCanBeNull + 1; 7276 static_assert(kNumberOfBoundTypePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); 7277 7278 // Encodes the most upper class that this instruction can have. In other words 7279 // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()). 7280 // It is used to bound the type in cases like: 7281 // if (x instanceof ClassX) { 7282 // // uper_bound_ will be ClassX 7283 // } 7284 ReferenceTypeInfo upper_bound_; 7285 }; 7286 7287 class HCheckCast final : public HTypeCheckInstruction { 7288 public: 7289 HCheckCast(HInstruction* object, 7290 HInstruction* target_class_or_null, 7291 TypeCheckKind check_kind, 7292 Handle<mirror::Class> klass, 7293 uint32_t dex_pc, 7294 ArenaAllocator* allocator, 7295 HIntConstant* bitstring_path_to_root, 7296 HIntConstant* bitstring_mask) 7297 : HTypeCheckInstruction(kCheckCast, 7298 DataType::Type::kVoid, 7299 object, 7300 target_class_or_null, 7301 check_kind, 7302 klass, 7303 dex_pc, 7304 allocator, 7305 bitstring_path_to_root, 7306 bitstring_mask, 7307 SideEffects::CanTriggerGC()) {} 7308 7309 bool IsClonable() const override { return true; } 7310 bool NeedsEnvironment() const override { 7311 // Instruction may throw a CheckCastError. 7312 return true; 7313 } 7314 7315 bool CanThrow() const override { return true; } 7316 7317 DECLARE_INSTRUCTION(CheckCast); 7318 7319 protected: 7320 DEFAULT_COPY_CONSTRUCTOR(CheckCast); 7321 }; 7322 7323 /** 7324 * @brief Memory barrier types (see "The JSR-133 Cookbook for Compiler Writers"). 7325 * @details We define the combined barrier types that are actually required 7326 * by the Java Memory Model, rather than using exactly the terminology from 7327 * the JSR-133 cookbook. These should, in many cases, be replaced by acquire/release 7328 * primitives. Note that the JSR-133 cookbook generally does not deal with 7329 * store atomicity issues, and the recipes there are not always entirely sufficient. 7330 * The current recipe is as follows: 7331 * -# Use AnyStore ~= (LoadStore | StoreStore) ~= release barrier before volatile store. 7332 * -# Use AnyAny barrier after volatile store. (StoreLoad is as expensive.) 7333 * -# Use LoadAny barrier ~= (LoadLoad | LoadStore) ~= acquire barrier after each volatile load. 7334 * -# Use StoreStore barrier after all stores but before return from any constructor whose 7335 * class has final fields. 7336 * -# Use NTStoreStore to order non-temporal stores with respect to all later 7337 * store-to-memory instructions. Only generated together with non-temporal stores. 7338 */ 7339 enum MemBarrierKind { 7340 kAnyStore, 7341 kLoadAny, 7342 kStoreStore, 7343 kAnyAny, 7344 kNTStoreStore, 7345 kLastBarrierKind = kNTStoreStore 7346 }; 7347 std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind); 7348 7349 class HMemoryBarrier final : public HExpression<0> { 7350 public: 7351 explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc) 7352 : HExpression(kMemoryBarrier, 7353 SideEffects::AllWritesAndReads(), // Assume write/read on all fields/arrays. 7354 dex_pc) { 7355 SetPackedField<BarrierKindField>(barrier_kind); 7356 } 7357 7358 bool IsClonable() const override { return true; } 7359 7360 MemBarrierKind GetBarrierKind() { return GetPackedField<BarrierKindField>(); } 7361 7362 DECLARE_INSTRUCTION(MemoryBarrier); 7363 7364 protected: 7365 DEFAULT_COPY_CONSTRUCTOR(MemoryBarrier); 7366 7367 private: 7368 static constexpr size_t kFieldBarrierKind = HInstruction::kNumberOfGenericPackedBits; 7369 static constexpr size_t kFieldBarrierKindSize = 7370 MinimumBitsToStore(static_cast<size_t>(kLastBarrierKind)); 7371 static constexpr size_t kNumberOfMemoryBarrierPackedBits = 7372 kFieldBarrierKind + kFieldBarrierKindSize; 7373 static_assert(kNumberOfMemoryBarrierPackedBits <= kMaxNumberOfPackedBits, 7374 "Too many packed fields."); 7375 using BarrierKindField = BitField<MemBarrierKind, kFieldBarrierKind, kFieldBarrierKindSize>; 7376 }; 7377 7378 // A constructor fence orders all prior stores to fields that could be accessed via a final field of 7379 // the specified object(s), with respect to any subsequent store that might "publish" 7380 // (i.e. make visible) the specified object to another thread. 7381 // 7382 // JLS 17.5.1 "Semantics of final fields" states that a freeze action happens 7383 // for all final fields (that were set) at the end of the invoked constructor. 7384 // 7385 // The constructor fence models the freeze actions for the final fields of an object 7386 // being constructed (semantically at the end of the constructor). Constructor fences 7387 // have a per-object affinity; two separate objects being constructed get two separate 7388 // constructor fences. 7389 // 7390 // (Note: that if calling a super-constructor or forwarding to another constructor, 7391 // the freezes would happen at the end of *that* constructor being invoked). 7392 // 7393 // The memory model guarantees that when the object being constructed is "published" after 7394 // constructor completion (i.e. escapes the current thread via a store), then any final field 7395 // writes must be observable on other threads (once they observe that publication). 7396 // 7397 // Further, anything written before the freeze, and read by dereferencing through the final field, 7398 // must also be visible (so final object field could itself have an object with non-final fields; 7399 // yet the freeze must also extend to them). 7400 // 7401 // Constructor example: 7402 // 7403 // class HasFinal { 7404 // final int field; Optimizing IR for <init>()V: 7405 // HasFinal() { 7406 // field = 123; HInstanceFieldSet(this, HasFinal.field, 123) 7407 // // freeze(this.field); HConstructorFence(this) 7408 // } HReturn 7409 // } 7410 // 7411 // HConstructorFence can serve double duty as a fence for new-instance/new-array allocations of 7412 // already-initialized classes; in that case the allocation must act as a "default-initializer" 7413 // of the object which effectively writes the class pointer "final field". 7414 // 7415 // For example, we can model default-initialiation as roughly the equivalent of the following: 7416 // 7417 // class Object { 7418 // private final Class header; 7419 // } 7420 // 7421 // Java code: Optimizing IR: 7422 // 7423 // T new_instance<T>() { 7424 // Object obj = allocate_memory(T.class.size); obj = HInvoke(art_quick_alloc_object, T) 7425 // obj.header = T.class; // header write is done by above call. 7426 // // freeze(obj.header) HConstructorFence(obj) 7427 // return (T)obj; 7428 // } 7429 // 7430 // See also: 7431 // * DexCompilationUnit::RequiresConstructorBarrier 7432 // * QuasiAtomic::ThreadFenceForConstructor 7433 // 7434 class HConstructorFence final : public HVariableInputSizeInstruction { 7435 // A fence has variable inputs because the inputs can be removed 7436 // after prepare_for_register_allocation phase. 7437 // (TODO: In the future a fence could freeze multiple objects 7438 // after merging two fences together.) 7439 public: 7440 // `fence_object` is the reference that needs to be protected for correct publication. 7441 // 7442 // It makes sense in the following situations: 7443 // * <init> constructors, it's the "this" parameter (i.e. HParameterValue, s.t. IsThis() == true). 7444 // * new-instance-like instructions, it's the return value (i.e. HNewInstance). 7445 // 7446 // After construction the `fence_object` becomes the 0th input. 7447 // This is not an input in a real sense, but just a convenient place to stash the information 7448 // about the associated object. 7449 HConstructorFence(HInstruction* fence_object, 7450 uint32_t dex_pc, 7451 ArenaAllocator* allocator) 7452 // We strongly suspect there is not a more accurate way to describe the fine-grained reordering 7453 // constraints described in the class header. We claim that these SideEffects constraints 7454 // enforce a superset of the real constraints. 7455 // 7456 // The ordering described above is conservatively modeled with SideEffects as follows: 7457 // 7458 // * To prevent reordering of the publication stores: 7459 // ----> "Reads of objects" is the initial SideEffect. 7460 // * For every primitive final field store in the constructor: 7461 // ----> Union that field's type as a read (e.g. "Read of T") into the SideEffect. 7462 // * If there are any stores to reference final fields in the constructor: 7463 // ----> Use a more conservative "AllReads" SideEffect because any stores to any references 7464 // that are reachable from `fence_object` also need to be prevented for reordering 7465 // (and we do not want to do alias analysis to figure out what those stores are). 7466 // 7467 // In the implementation, this initially starts out as an "all reads" side effect; this is an 7468 // even more conservative approach than the one described above, and prevents all of the 7469 // above reordering without analyzing any of the instructions in the constructor. 7470 // 7471 // If in a later phase we discover that there are no writes to reference final fields, 7472 // we can refine the side effect to a smaller set of type reads (see above constraints). 7473 : HVariableInputSizeInstruction(kConstructorFence, 7474 SideEffects::AllReads(), 7475 dex_pc, 7476 allocator, 7477 /* number_of_inputs= */ 1, 7478 kArenaAllocConstructorFenceInputs) { 7479 DCHECK(fence_object != nullptr); 7480 SetRawInputAt(0, fence_object); 7481 } 7482 7483 // The object associated with this constructor fence. 7484 // 7485 // (Note: This will be null after the prepare_for_register_allocation phase, 7486 // as all constructor fence inputs are removed there). 7487 HInstruction* GetFenceObject() const { 7488 return InputAt(0); 7489 } 7490 7491 // Find all the HConstructorFence uses (`fence_use`) for `this` and: 7492 // - Delete `fence_use` from `this`'s use list. 7493 // - Delete `this` from `fence_use`'s inputs list. 7494 // - If the `fence_use` is dead, remove it from the graph. 7495 // 7496 // A fence is considered dead once it no longer has any uses 7497 // and all of the inputs are dead. 7498 // 7499 // This must *not* be called during/after prepare_for_register_allocation, 7500 // because that removes all the inputs to the fences but the fence is actually 7501 // still considered live. 7502 // 7503 // Returns how many HConstructorFence instructions were removed from graph. 7504 static size_t RemoveConstructorFences(HInstruction* instruction); 7505 7506 // Combine all inputs of `this` and `other` instruction and remove 7507 // `other` from the graph. 7508 // 7509 // Inputs are unique after the merge. 7510 // 7511 // Requirement: `this` must not be the same as `other. 7512 void Merge(HConstructorFence* other); 7513 7514 // Check if this constructor fence is protecting 7515 // an HNewInstance or HNewArray that is also the immediate 7516 // predecessor of `this`. 7517 // 7518 // If `ignore_inputs` is true, then the immediate predecessor doesn't need 7519 // to be one of the inputs of `this`. 7520 // 7521 // Returns the associated HNewArray or HNewInstance, 7522 // or null otherwise. 7523 HInstruction* GetAssociatedAllocation(bool ignore_inputs = false); 7524 7525 DECLARE_INSTRUCTION(ConstructorFence); 7526 7527 protected: 7528 DEFAULT_COPY_CONSTRUCTOR(ConstructorFence); 7529 }; 7530 7531 class HMonitorOperation final : public HExpression<1> { 7532 public: 7533 enum class OperationKind { 7534 kEnter, 7535 kExit, 7536 kLast = kExit 7537 }; 7538 7539 HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc) 7540 : HExpression(kMonitorOperation, 7541 SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays. 7542 dex_pc) { 7543 SetPackedField<OperationKindField>(kind); 7544 SetRawInputAt(0, object); 7545 } 7546 7547 // Instruction may go into runtime, so we need an environment. 7548 bool NeedsEnvironment() const override { return true; } 7549 7550 bool CanThrow() const override { 7551 // Verifier guarantees that monitor-exit cannot throw. 7552 // This is important because it allows the HGraphBuilder to remove 7553 // a dead throw-catch loop generated for `synchronized` blocks/methods. 7554 return IsEnter(); 7555 } 7556 7557 OperationKind GetOperationKind() const { return GetPackedField<OperationKindField>(); } 7558 bool IsEnter() const { return GetOperationKind() == OperationKind::kEnter; } 7559 7560 DECLARE_INSTRUCTION(MonitorOperation); 7561 7562 protected: 7563 DEFAULT_COPY_CONSTRUCTOR(MonitorOperation); 7564 7565 private: 7566 static constexpr size_t kFieldOperationKind = HInstruction::kNumberOfGenericPackedBits; 7567 static constexpr size_t kFieldOperationKindSize = 7568 MinimumBitsToStore(static_cast<size_t>(OperationKind::kLast)); 7569 static constexpr size_t kNumberOfMonitorOperationPackedBits = 7570 kFieldOperationKind + kFieldOperationKindSize; 7571 static_assert(kNumberOfMonitorOperationPackedBits <= HInstruction::kMaxNumberOfPackedBits, 7572 "Too many packed fields."); 7573 using OperationKindField = BitField<OperationKind, kFieldOperationKind, kFieldOperationKindSize>; 7574 }; 7575 7576 class HSelect final : public HExpression<3> { 7577 public: 7578 HSelect(HInstruction* condition, 7579 HInstruction* true_value, 7580 HInstruction* false_value, 7581 uint32_t dex_pc) 7582 : HExpression(kSelect, HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) { 7583 DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType())); 7584 7585 // First input must be `true_value` or `false_value` to allow codegens to 7586 // use the SameAsFirstInput allocation policy. We make it `false_value`, so 7587 // that architectures which implement HSelect as a conditional move also 7588 // will not need to invert the condition. 7589 SetRawInputAt(0, false_value); 7590 SetRawInputAt(1, true_value); 7591 SetRawInputAt(2, condition); 7592 } 7593 7594 bool IsClonable() const override { return true; } 7595 HInstruction* GetFalseValue() const { return InputAt(0); } 7596 HInstruction* GetTrueValue() const { return InputAt(1); } 7597 HInstruction* GetCondition() const { return InputAt(2); } 7598 7599 bool CanBeMoved() const override { return true; } 7600 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 7601 return true; 7602 } 7603 7604 bool CanBeNull() const override { 7605 return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull(); 7606 } 7607 7608 DECLARE_INSTRUCTION(Select); 7609 7610 protected: 7611 DEFAULT_COPY_CONSTRUCTOR(Select); 7612 }; 7613 7614 class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> { 7615 public: 7616 MoveOperands(Location source, 7617 Location destination, 7618 DataType::Type type, 7619 HInstruction* instruction) 7620 : source_(source), destination_(destination), type_(type), instruction_(instruction) {} 7621 7622 Location GetSource() const { return source_; } 7623 Location GetDestination() const { return destination_; } 7624 7625 void SetSource(Location value) { source_ = value; } 7626 void SetDestination(Location value) { destination_ = value; } 7627 7628 // The parallel move resolver marks moves as "in-progress" by clearing the 7629 // destination (but not the source). 7630 Location MarkPending() { 7631 DCHECK(!IsPending()); 7632 Location dest = destination_; 7633 destination_ = Location::NoLocation(); 7634 return dest; 7635 } 7636 7637 void ClearPending(Location dest) { 7638 DCHECK(IsPending()); 7639 destination_ = dest; 7640 } 7641 7642 bool IsPending() const { 7643 DCHECK(source_.IsValid() || destination_.IsInvalid()); 7644 return destination_.IsInvalid() && source_.IsValid(); 7645 } 7646 7647 // True if this blocks a move from the given location. 7648 bool Blocks(Location loc) const { 7649 return !IsEliminated() && source_.OverlapsWith(loc); 7650 } 7651 7652 // A move is redundant if it's been eliminated, if its source and 7653 // destination are the same, or if its destination is unneeded. 7654 bool IsRedundant() const { 7655 return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_); 7656 } 7657 7658 // We clear both operands to indicate move that's been eliminated. 7659 void Eliminate() { 7660 source_ = destination_ = Location::NoLocation(); 7661 } 7662 7663 bool IsEliminated() const { 7664 DCHECK(!source_.IsInvalid() || destination_.IsInvalid()); 7665 return source_.IsInvalid(); 7666 } 7667 7668 DataType::Type GetType() const { return type_; } 7669 7670 bool Is64BitMove() const { 7671 return DataType::Is64BitType(type_); 7672 } 7673 7674 HInstruction* GetInstruction() const { return instruction_; } 7675 7676 private: 7677 Location source_; 7678 Location destination_; 7679 // The type this move is for. 7680 DataType::Type type_; 7681 // The instruction this move is assocatied with. Null when this move is 7682 // for moving an input in the expected locations of user (including a phi user). 7683 // This is only used in debug mode, to ensure we do not connect interval siblings 7684 // in the same parallel move. 7685 HInstruction* instruction_; 7686 }; 7687 7688 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs); 7689 7690 static constexpr size_t kDefaultNumberOfMoves = 4; 7691 7692 class HParallelMove final : public HExpression<0> { 7693 public: 7694 explicit HParallelMove(ArenaAllocator* allocator, uint32_t dex_pc = kNoDexPc) 7695 : HExpression(kParallelMove, SideEffects::None(), dex_pc), 7696 moves_(allocator->Adapter(kArenaAllocMoveOperands)) { 7697 moves_.reserve(kDefaultNumberOfMoves); 7698 } 7699 7700 void AddMove(Location source, 7701 Location destination, 7702 DataType::Type type, 7703 HInstruction* instruction) { 7704 DCHECK(source.IsValid()); 7705 DCHECK(destination.IsValid()); 7706 if (kIsDebugBuild) { 7707 if (instruction != nullptr) { 7708 for (const MoveOperands& move : moves_) { 7709 if (move.GetInstruction() == instruction) { 7710 // Special case the situation where the move is for the spill slot 7711 // of the instruction. 7712 if ((GetPrevious() == instruction) 7713 || ((GetPrevious() == nullptr) 7714 && instruction->IsPhi() 7715 && instruction->GetBlock() == GetBlock())) { 7716 DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind()) 7717 << "Doing parallel moves for the same instruction."; 7718 } else { 7719 DCHECK(false) << "Doing parallel moves for the same instruction."; 7720 } 7721 } 7722 } 7723 } 7724 for (const MoveOperands& move : moves_) { 7725 DCHECK(!destination.OverlapsWith(move.GetDestination())) 7726 << "Overlapped destination for two moves in a parallel move: " 7727 << move.GetSource() << " ==> " << move.GetDestination() << " and " 7728 << source << " ==> " << destination; 7729 } 7730 } 7731 moves_.emplace_back(source, destination, type, instruction); 7732 } 7733 7734 MoveOperands* MoveOperandsAt(size_t index) { 7735 return &moves_[index]; 7736 } 7737 7738 size_t NumMoves() const { return moves_.size(); } 7739 7740 DECLARE_INSTRUCTION(ParallelMove); 7741 7742 protected: 7743 DEFAULT_COPY_CONSTRUCTOR(ParallelMove); 7744 7745 private: 7746 ArenaVector<MoveOperands> moves_; 7747 }; 7748 7749 // This instruction computes an intermediate address pointing in the 'middle' of an object. The 7750 // result pointer cannot be handled by GC, so extra care is taken to make sure that this value is 7751 // never used across anything that can trigger GC. 7752 // The result of this instruction is not a pointer in the sense of `DataType::Type::kreference`. 7753 // So we represent it by the type `DataType::Type::kInt`. 7754 class HIntermediateAddress final : public HExpression<2> { 7755 public: 7756 HIntermediateAddress(HInstruction* base_address, HInstruction* offset, uint32_t dex_pc) 7757 : HExpression(kIntermediateAddress, 7758 DataType::Type::kInt32, 7759 SideEffects::DependsOnGC(), 7760 dex_pc) { 7761 DCHECK_EQ(DataType::Size(DataType::Type::kInt32), 7762 DataType::Size(DataType::Type::kReference)) 7763 << "kPrimInt and kPrimNot have different sizes."; 7764 SetRawInputAt(0, base_address); 7765 SetRawInputAt(1, offset); 7766 } 7767 7768 bool IsClonable() const override { return true; } 7769 bool CanBeMoved() const override { return true; } 7770 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { 7771 return true; 7772 } 7773 bool IsActualObject() const override { return false; } 7774 7775 HInstruction* GetBaseAddress() const { return InputAt(0); } 7776 HInstruction* GetOffset() const { return InputAt(1); } 7777 7778 DECLARE_INSTRUCTION(IntermediateAddress); 7779 7780 protected: 7781 DEFAULT_COPY_CONSTRUCTOR(IntermediateAddress); 7782 }; 7783 7784 7785 } // namespace art 7786 7787 #include "nodes_vector.h" 7788 7789 #if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64) 7790 #include "nodes_shared.h" 7791 #endif 7792 #ifdef ART_ENABLE_CODEGEN_mips 7793 #include "nodes_mips.h" 7794 #endif 7795 #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64) 7796 #include "nodes_x86.h" 7797 #endif 7798 7799 namespace art { 7800 7801 class OptimizingCompilerStats; 7802 7803 class HGraphVisitor : public ValueObject { 7804 public: 7805 explicit HGraphVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr) 7806 : stats_(stats), 7807 graph_(graph) {} 7808 virtual ~HGraphVisitor() {} 7809 7810 virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {} 7811 virtual void VisitBasicBlock(HBasicBlock* block); 7812 7813 // Visit the graph following basic block insertion order. 7814 void VisitInsertionOrder(); 7815 7816 // Visit the graph following dominator tree reverse post-order. 7817 void VisitReversePostOrder(); 7818 7819 HGraph* GetGraph() const { return graph_; } 7820 7821 // Visit functions for instruction classes. 7822 #define DECLARE_VISIT_INSTRUCTION(name, super) \ 7823 virtual void Visit##name(H##name* instr) { VisitInstruction(instr); } 7824 7825 FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) 7826 7827 #undef DECLARE_VISIT_INSTRUCTION 7828 7829 protected: 7830 OptimizingCompilerStats* stats_; 7831 7832 private: 7833 HGraph* const graph_; 7834 7835 DISALLOW_COPY_AND_ASSIGN(HGraphVisitor); 7836 }; 7837 7838 class HGraphDelegateVisitor : public HGraphVisitor { 7839 public: 7840 explicit HGraphDelegateVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr) 7841 : HGraphVisitor(graph, stats) {} 7842 virtual ~HGraphDelegateVisitor() {} 7843 7844 // Visit functions that delegate to to super class. 7845 #define DECLARE_VISIT_INSTRUCTION(name, super) \ 7846 void Visit##name(H##name* instr) override { Visit##super(instr); } 7847 7848 FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) 7849 7850 #undef DECLARE_VISIT_INSTRUCTION 7851 7852 private: 7853 DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor); 7854 }; 7855 7856 // Create a clone of the instruction, insert it into the graph; replace the old one with a new 7857 // and remove the old instruction. 7858 HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr); 7859 7860 // Create a clone for each clonable instructions/phis and replace the original with the clone. 7861 // 7862 // Used for testing individual instruction cloner. 7863 class CloneAndReplaceInstructionVisitor : public HGraphDelegateVisitor { 7864 public: 7865 explicit CloneAndReplaceInstructionVisitor(HGraph* graph) 7866 : HGraphDelegateVisitor(graph), instr_replaced_by_clones_count_(0) {} 7867 7868 void VisitInstruction(HInstruction* instruction) override { 7869 if (instruction->IsClonable()) { 7870 ReplaceInstrOrPhiByClone(instruction); 7871 instr_replaced_by_clones_count_++; 7872 } 7873 } 7874 7875 size_t GetInstrReplacedByClonesCount() const { return instr_replaced_by_clones_count_; } 7876 7877 private: 7878 size_t instr_replaced_by_clones_count_; 7879 7880 DISALLOW_COPY_AND_ASSIGN(CloneAndReplaceInstructionVisitor); 7881 }; 7882 7883 // Iterator over the blocks that art part of the loop. Includes blocks part 7884 // of an inner loop. The order in which the blocks are iterated is on their 7885 // block id. 7886 class HBlocksInLoopIterator : public ValueObject { 7887 public: 7888 explicit HBlocksInLoopIterator(const HLoopInformation& info) 7889 : blocks_in_loop_(info.GetBlocks()), 7890 blocks_(info.GetHeader()->GetGraph()->GetBlocks()), 7891 index_(0) { 7892 if (!blocks_in_loop_.IsBitSet(index_)) { 7893 Advance(); 7894 } 7895 } 7896 7897 bool Done() const { return index_ == blocks_.size(); } 7898 HBasicBlock* Current() const { return blocks_[index_]; } 7899 void Advance() { 7900 ++index_; 7901 for (size_t e = blocks_.size(); index_ < e; ++index_) { 7902 if (blocks_in_loop_.IsBitSet(index_)) { 7903 break; 7904 } 7905 } 7906 } 7907 7908 private: 7909 const BitVector& blocks_in_loop_; 7910 const ArenaVector<HBasicBlock*>& blocks_; 7911 size_t index_; 7912 7913 DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator); 7914 }; 7915 7916 // Iterator over the blocks that art part of the loop. Includes blocks part 7917 // of an inner loop. The order in which the blocks are iterated is reverse 7918 // post order. 7919 class HBlocksInLoopReversePostOrderIterator : public ValueObject { 7920 public: 7921 explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info) 7922 : blocks_in_loop_(info.GetBlocks()), 7923 blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()), 7924 index_(0) { 7925 if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) { 7926 Advance(); 7927 } 7928 } 7929 7930 bool Done() const { return index_ == blocks_.size(); } 7931 HBasicBlock* Current() const { return blocks_[index_]; } 7932 void Advance() { 7933 ++index_; 7934 for (size_t e = blocks_.size(); index_ < e; ++index_) { 7935 if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) { 7936 break; 7937 } 7938 } 7939 } 7940 7941 private: 7942 const BitVector& blocks_in_loop_; 7943 const ArenaVector<HBasicBlock*>& blocks_; 7944 size_t index_; 7945 7946 DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator); 7947 }; 7948 7949 // Returns int64_t value of a properly typed constant. 7950 inline int64_t Int64FromConstant(HConstant* constant) { 7951 if (constant->IsIntConstant()) { 7952 return constant->AsIntConstant()->GetValue(); 7953 } else if (constant->IsLongConstant()) { 7954 return constant->AsLongConstant()->GetValue(); 7955 } else { 7956 DCHECK(constant->IsNullConstant()) << constant->DebugName(); 7957 return 0; 7958 } 7959 } 7960 7961 // Returns true iff instruction is an integral constant (and sets value on success). 7962 inline bool IsInt64AndGet(HInstruction* instruction, /*out*/ int64_t* value) { 7963 if (instruction->IsIntConstant()) { 7964 *value = instruction->AsIntConstant()->GetValue(); 7965 return true; 7966 } else if (instruction->IsLongConstant()) { 7967 *value = instruction->AsLongConstant()->GetValue(); 7968 return true; 7969 } else if (instruction->IsNullConstant()) { 7970 *value = 0; 7971 return true; 7972 } 7973 return false; 7974 } 7975 7976 // Returns true iff instruction is the given integral constant. 7977 inline bool IsInt64Value(HInstruction* instruction, int64_t value) { 7978 int64_t val = 0; 7979 return IsInt64AndGet(instruction, &val) && val == value; 7980 } 7981 7982 // Returns true iff instruction is a zero bit pattern. 7983 inline bool IsZeroBitPattern(HInstruction* instruction) { 7984 return instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern(); 7985 } 7986 7987 // Implement HInstruction::Is##type() for concrete instructions. 7988 #define INSTRUCTION_TYPE_CHECK(type, super) \ 7989 inline bool HInstruction::Is##type() const { return GetKind() == k##type; } 7990 FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK) 7991 #undef INSTRUCTION_TYPE_CHECK 7992 7993 // Implement HInstruction::Is##type() for abstract instructions. 7994 #define INSTRUCTION_TYPE_CHECK_RESULT(type, super) \ 7995 std::is_base_of<BaseType, H##type>::value, 7996 #define INSTRUCTION_TYPE_CHECK(type, super) \ 7997 inline bool HInstruction::Is##type() const { \ 7998 DCHECK_LT(GetKind(), kLastInstructionKind); \ 7999 using BaseType = H##type; \ 8000 static constexpr bool results[] = { \ 8001 FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK_RESULT) \ 8002 }; \ 8003 return results[static_cast<size_t>(GetKind())]; \ 8004 } 8005 8006 FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK) 8007 #undef INSTRUCTION_TYPE_CHECK 8008 #undef INSTRUCTION_TYPE_CHECK_RESULT 8009 8010 #define INSTRUCTION_TYPE_CAST(type, super) \ 8011 inline const H##type* HInstruction::As##type() const { \ 8012 return Is##type() ? down_cast<const H##type*>(this) : nullptr; \ 8013 } \ 8014 inline H##type* HInstruction::As##type() { \ 8015 return Is##type() ? static_cast<H##type*>(this) : nullptr; \ 8016 } 8017 8018 FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST) 8019 #undef INSTRUCTION_TYPE_CAST 8020 8021 8022 // Create space in `blocks` for adding `number_of_new_blocks` entries 8023 // starting at location `at`. Blocks after `at` are moved accordingly. 8024 inline void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks, 8025 size_t number_of_new_blocks, 8026 size_t after) { 8027 DCHECK_LT(after, blocks->size()); 8028 size_t old_size = blocks->size(); 8029 size_t new_size = old_size + number_of_new_blocks; 8030 blocks->resize(new_size); 8031 std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end()); 8032 } 8033 8034 /* 8035 * Hunt "under the hood" of array lengths (leading to array references), 8036 * null checks (also leading to array references), and new arrays 8037 * (leading to the actual length). This makes it more likely related 8038 * instructions become actually comparable. 8039 */ 8040 inline HInstruction* HuntForDeclaration(HInstruction* instruction) { 8041 while (instruction->IsArrayLength() || 8042 instruction->IsNullCheck() || 8043 instruction->IsNewArray()) { 8044 instruction = instruction->IsNewArray() 8045 ? instruction->AsNewArray()->GetLength() 8046 : instruction->InputAt(0); 8047 } 8048 return instruction; 8049 } 8050 8051 void RemoveEnvironmentUses(HInstruction* instruction); 8052 bool HasEnvironmentUsedByOthers(HInstruction* instruction); 8053 void ResetEnvironmentInputRecords(HInstruction* instruction); 8054 8055 } // namespace art 8056 8057 #endif // ART_COMPILER_OPTIMIZING_NODES_H_ 8058