Home | History | Annotate | Download | only in Vectorize
      1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides loop vectorization legality analysis. Original code
     11 // resided in LoopVectorize.cpp for a long time.
     12 //
     13 // At this point, it is implemented as a utility class, not as an analysis
     14 // pass. It should be easy to create an analysis pass around it if there
     15 // is a need (but D45420 needs to happen first).
     16 //
     17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
     18 #include "llvm/Analysis/VectorUtils.h"
     19 #include "llvm/IR/IntrinsicInst.h"
     20 
     21 using namespace llvm;
     22 
     23 #define LV_NAME "loop-vectorize"
     24 #define DEBUG_TYPE LV_NAME
     25 
     26 static cl::opt<bool>
     27     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
     28                        cl::desc("Enable if-conversion during vectorization."));
     29 
     30 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
     31     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
     32     cl::desc("The maximum allowed number of runtime memory checks with a "
     33              "vectorize(enable) pragma."));
     34 
     35 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
     36     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
     37     cl::desc("The maximum number of SCEV checks allowed."));
     38 
     39 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
     40     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
     41     cl::desc("The maximum number of SCEV checks allowed with a "
     42              "vectorize(enable) pragma"));
     43 
     44 /// Maximum vectorization interleave count.
     45 static const unsigned MaxInterleaveFactor = 16;
     46 
     47 namespace llvm {
     48 
     49 OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
     50                                                   StringRef RemarkName,
     51                                                   Loop *TheLoop,
     52                                                   Instruction *I) {
     53   Value *CodeRegion = TheLoop->getHeader();
     54   DebugLoc DL = TheLoop->getStartLoc();
     55 
     56   if (I) {
     57     CodeRegion = I->getParent();
     58     // If there is no debug location attached to the instruction, revert back to
     59     // using the loop's.
     60     if (I->getDebugLoc())
     61       DL = I->getDebugLoc();
     62   }
     63 
     64   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
     65   R << "loop not vectorized: ";
     66   return R;
     67 }
     68 
     69 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
     70   switch (Kind) {
     71   case HK_WIDTH:
     72     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
     73   case HK_UNROLL:
     74     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
     75   case HK_FORCE:
     76     return (Val <= 1);
     77   case HK_ISVECTORIZED:
     78     return (Val == 0 || Val == 1);
     79   }
     80   return false;
     81 }
     82 
     83 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
     84                                        OptimizationRemarkEmitter &ORE)
     85     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
     86       Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
     87       Force("vectorize.enable", FK_Undefined, HK_FORCE),
     88       IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
     89   // Populate values with existing loop metadata.
     90   getHintsFromMetadata();
     91 
     92   // force-vector-interleave overrides DisableInterleaving.
     93   if (VectorizerParams::isInterleaveForced())
     94     Interleave.Value = VectorizerParams::VectorizationInterleave;
     95 
     96   if (IsVectorized.Value != 1)
     97     // If the vectorization width and interleaving count are both 1 then
     98     // consider the loop to have been already vectorized because there's
     99     // nothing more that we can do.
    100     IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
    101   LLVM_DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
    102              << "LV: Interleaving disabled by the pass manager\n");
    103 }
    104 
    105 bool LoopVectorizeHints::allowVectorization(Function *F, Loop *L,
    106                                             bool AlwaysVectorize) const {
    107   if (getForce() == LoopVectorizeHints::FK_Disabled) {
    108     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
    109     emitRemarkWithHints();
    110     return false;
    111   }
    112 
    113   if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
    114     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
    115     emitRemarkWithHints();
    116     return false;
    117   }
    118 
    119   if (getIsVectorized() == 1) {
    120     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
    121     // FIXME: Add interleave.disable metadata. This will allow
    122     // vectorize.disable to be used without disabling the pass and errors
    123     // to differentiate between disabled vectorization and a width of 1.
    124     ORE.emit([&]() {
    125       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
    126                                         "AllDisabled", L->getStartLoc(),
    127                                         L->getHeader())
    128              << "loop not vectorized: vectorization and interleaving are "
    129                 "explicitly disabled, or the loop has already been "
    130                 "vectorized";
    131     });
    132     return false;
    133   }
    134 
    135   return true;
    136 }
    137 
    138 void LoopVectorizeHints::emitRemarkWithHints() const {
    139   using namespace ore;
    140 
    141   ORE.emit([&]() {
    142     if (Force.Value == LoopVectorizeHints::FK_Disabled)
    143       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
    144                                       TheLoop->getStartLoc(),
    145                                       TheLoop->getHeader())
    146              << "loop not vectorized: vectorization is explicitly disabled";
    147     else {
    148       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
    149                                  TheLoop->getStartLoc(), TheLoop->getHeader());
    150       R << "loop not vectorized";
    151       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
    152         R << " (Force=" << NV("Force", true);
    153         if (Width.Value != 0)
    154           R << ", Vector Width=" << NV("VectorWidth", Width.Value);
    155         if (Interleave.Value != 0)
    156           R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
    157         R << ")";
    158       }
    159       return R;
    160     }
    161   });
    162 }
    163 
    164 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
    165   if (getWidth() == 1)
    166     return LV_NAME;
    167   if (getForce() == LoopVectorizeHints::FK_Disabled)
    168     return LV_NAME;
    169   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
    170     return LV_NAME;
    171   return OptimizationRemarkAnalysis::AlwaysPrint;
    172 }
    173 
    174 void LoopVectorizeHints::getHintsFromMetadata() {
    175   MDNode *LoopID = TheLoop->getLoopID();
    176   if (!LoopID)
    177     return;
    178 
    179   // First operand should refer to the loop id itself.
    180   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
    181   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
    182 
    183   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
    184     const MDString *S = nullptr;
    185     SmallVector<Metadata *, 4> Args;
    186 
    187     // The expected hint is either a MDString or a MDNode with the first
    188     // operand a MDString.
    189     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
    190       if (!MD || MD->getNumOperands() == 0)
    191         continue;
    192       S = dyn_cast<MDString>(MD->getOperand(0));
    193       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
    194         Args.push_back(MD->getOperand(i));
    195     } else {
    196       S = dyn_cast<MDString>(LoopID->getOperand(i));
    197       assert(Args.size() == 0 && "too many arguments for MDString");
    198     }
    199 
    200     if (!S)
    201       continue;
    202 
    203     // Check if the hint starts with the loop metadata prefix.
    204     StringRef Name = S->getString();
    205     if (Args.size() == 1)
    206       setHint(Name, Args[0]);
    207   }
    208 }
    209 
    210 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
    211   if (!Name.startswith(Prefix()))
    212     return;
    213   Name = Name.substr(Prefix().size(), StringRef::npos);
    214 
    215   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
    216   if (!C)
    217     return;
    218   unsigned Val = C->getZExtValue();
    219 
    220   Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
    221   for (auto H : Hints) {
    222     if (Name == H->Name) {
    223       if (H->validate(Val))
    224         H->Value = Val;
    225       else
    226         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
    227       break;
    228     }
    229   }
    230 }
    231 
    232 MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name,
    233                                                unsigned V) const {
    234   LLVMContext &Context = TheLoop->getHeader()->getContext();
    235   Metadata *MDs[] = {
    236       MDString::get(Context, Name),
    237       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
    238   return MDNode::get(Context, MDs);
    239 }
    240 
    241 bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node,
    242                                                  ArrayRef<Hint> HintTypes) {
    243   MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
    244   if (!Name)
    245     return false;
    246 
    247   for (auto H : HintTypes)
    248     if (Name->getString().endswith(H.Name))
    249       return true;
    250   return false;
    251 }
    252 
    253 void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
    254   if (HintTypes.empty())
    255     return;
    256 
    257   // Reserve the first element to LoopID (see below).
    258   SmallVector<Metadata *, 4> MDs(1);
    259   // If the loop already has metadata, then ignore the existing operands.
    260   MDNode *LoopID = TheLoop->getLoopID();
    261   if (LoopID) {
    262     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
    263       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
    264       // If node in update list, ignore old value.
    265       if (!matchesHintMetadataName(Node, HintTypes))
    266         MDs.push_back(Node);
    267     }
    268   }
    269 
    270   // Now, add the missing hints.
    271   for (auto H : HintTypes)
    272     MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
    273 
    274   // Replace current metadata node with new one.
    275   LLVMContext &Context = TheLoop->getHeader()->getContext();
    276   MDNode *NewLoopID = MDNode::get(Context, MDs);
    277   // Set operand 0 to refer to the loop id itself.
    278   NewLoopID->replaceOperandWith(0, NewLoopID);
    279 
    280   TheLoop->setLoopID(NewLoopID);
    281 }
    282 
    283 bool LoopVectorizationRequirements::doesNotMeet(
    284     Function *F, Loop *L, const LoopVectorizeHints &Hints) {
    285   const char *PassName = Hints.vectorizeAnalysisPassName();
    286   bool Failed = false;
    287   if (UnsafeAlgebraInst && !Hints.allowReordering()) {
    288     ORE.emit([&]() {
    289       return OptimizationRemarkAnalysisFPCommute(
    290                  PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
    291                  UnsafeAlgebraInst->getParent())
    292              << "loop not vectorized: cannot prove it is safe to reorder "
    293                 "floating-point operations";
    294     });
    295     Failed = true;
    296   }
    297 
    298   // Test if runtime memcheck thresholds are exceeded.
    299   bool PragmaThresholdReached =
    300       NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
    301   bool ThresholdReached =
    302       NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
    303   if ((ThresholdReached && !Hints.allowReordering()) ||
    304       PragmaThresholdReached) {
    305     ORE.emit([&]() {
    306       return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
    307                                                 L->getStartLoc(),
    308                                                 L->getHeader())
    309              << "loop not vectorized: cannot prove it is safe to reorder "
    310                 "memory operations";
    311     });
    312     LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
    313     Failed = true;
    314   }
    315 
    316   return Failed;
    317 }
    318 
    319 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
    320 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
    321 // executing the inner loop will execute the same iterations). This check is
    322 // very constrained for now but it will be relaxed in the future. \p Lp is
    323 // considered uniform if it meets all the following conditions:
    324 //   1) it has a canonical IV (starting from 0 and with stride 1),
    325 //   2) its latch terminator is a conditional branch and,
    326 //   3) its latch condition is a compare instruction whose operands are the
    327 //      canonical IV and an OuterLp invariant.
    328 // This check doesn't take into account the uniformity of other conditions not
    329 // related to the loop latch because they don't affect the loop uniformity.
    330 //
    331 // NOTE: We decided to keep all these checks and its associated documentation
    332 // together so that we can easily have a picture of the current supported loop
    333 // nests. However, some of the current checks don't depend on \p OuterLp and
    334 // would be redundantly executed for each \p Lp if we invoked this function for
    335 // different candidate outer loops. This is not the case for now because we
    336 // don't currently have the infrastructure to evaluate multiple candidate outer
    337 // loops and \p OuterLp will be a fixed parameter while we only support explicit
    338 // outer loop vectorization. It's also very likely that these checks go away
    339 // before introducing the aforementioned infrastructure. However, if this is not
    340 // the case, we should move the \p OuterLp independent checks to a separate
    341 // function that is only executed once for each \p Lp.
    342 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
    343   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
    344 
    345   // If Lp is the outer loop, it's uniform by definition.
    346   if (Lp == OuterLp)
    347     return true;
    348   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
    349 
    350   // 1.
    351   PHINode *IV = Lp->getCanonicalInductionVariable();
    352   if (!IV) {
    353     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
    354     return false;
    355   }
    356 
    357   // 2.
    358   BasicBlock *Latch = Lp->getLoopLatch();
    359   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
    360   if (!LatchBr || LatchBr->isUnconditional()) {
    361     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
    362     return false;
    363   }
    364 
    365   // 3.
    366   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
    367   if (!LatchCmp) {
    368     LLVM_DEBUG(
    369         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
    370     return false;
    371   }
    372 
    373   Value *CondOp0 = LatchCmp->getOperand(0);
    374   Value *CondOp1 = LatchCmp->getOperand(1);
    375   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
    376   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
    377       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
    378     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
    379     return false;
    380   }
    381 
    382   return true;
    383 }
    384 
    385 // Return true if \p Lp and all its nested loops are uniform with regard to \p
    386 // OuterLp.
    387 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
    388   if (!isUniformLoop(Lp, OuterLp))
    389     return false;
    390 
    391   // Check if nested loops are uniform.
    392   for (Loop *SubLp : *Lp)
    393     if (!isUniformLoopNest(SubLp, OuterLp))
    394       return false;
    395 
    396   return true;
    397 }
    398 
    399 /// Check whether it is safe to if-convert this phi node.
    400 ///
    401 /// Phi nodes with constant expressions that can trap are not safe to if
    402 /// convert.
    403 static bool canIfConvertPHINodes(BasicBlock *BB) {
    404   for (PHINode &Phi : BB->phis()) {
    405     for (Value *V : Phi.incoming_values())
    406       if (auto *C = dyn_cast<Constant>(V))
    407         if (C->canTrap())
    408           return false;
    409   }
    410   return true;
    411 }
    412 
    413 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
    414   if (Ty->isPointerTy())
    415     return DL.getIntPtrType(Ty);
    416 
    417   // It is possible that char's or short's overflow when we ask for the loop's
    418   // trip count, work around this by changing the type size.
    419   if (Ty->getScalarSizeInBits() < 32)
    420     return Type::getInt32Ty(Ty->getContext());
    421 
    422   return Ty;
    423 }
    424 
    425 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
    426   Ty0 = convertPointerToIntegerType(DL, Ty0);
    427   Ty1 = convertPointerToIntegerType(DL, Ty1);
    428   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
    429     return Ty0;
    430   return Ty1;
    431 }
    432 
    433 /// Check that the instruction has outside loop users and is not an
    434 /// identified reduction variable.
    435 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
    436                                SmallPtrSetImpl<Value *> &AllowedExit) {
    437   // Reduction and Induction instructions are allowed to have exit users. All
    438   // other instructions must not have external users.
    439   if (!AllowedExit.count(Inst))
    440     // Check that all of the users of the loop are inside the BB.
    441     for (User *U : Inst->users()) {
    442       Instruction *UI = cast<Instruction>(U);
    443       // This user may be a reduction exit value.
    444       if (!TheLoop->contains(UI)) {
    445         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
    446         return true;
    447       }
    448     }
    449   return false;
    450 }
    451 
    452 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
    453   const ValueToValueMap &Strides =
    454       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
    455 
    456   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
    457   if (Stride == 1 || Stride == -1)
    458     return Stride;
    459   return 0;
    460 }
    461 
    462 bool LoopVectorizationLegality::isUniform(Value *V) {
    463   return LAI->isUniform(V);
    464 }
    465 
    466 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
    467   assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
    468   // Store the result and return it at the end instead of exiting early, in case
    469   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
    470   bool Result = true;
    471   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
    472 
    473   for (BasicBlock *BB : TheLoop->blocks()) {
    474     // Check whether the BB terminator is a BranchInst. Any other terminator is
    475     // not supported yet.
    476     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
    477     if (!Br) {
    478       LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n");
    479       ORE->emit(createMissedAnalysis("CFGNotUnderstood")
    480                 << "loop control flow is not understood by vectorizer");
    481       if (DoExtraAnalysis)
    482         Result = false;
    483       else
    484         return false;
    485     }
    486 
    487     // Check whether the BranchInst is a supported one. Only unconditional
    488     // branches, conditional branches with an outer loop invariant condition or
    489     // backedges are supported.
    490     if (Br && Br->isConditional() &&
    491         !TheLoop->isLoopInvariant(Br->getCondition()) &&
    492         !LI->isLoopHeader(Br->getSuccessor(0)) &&
    493         !LI->isLoopHeader(Br->getSuccessor(1))) {
    494       LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n");
    495       ORE->emit(createMissedAnalysis("CFGNotUnderstood")
    496                 << "loop control flow is not understood by vectorizer");
    497       if (DoExtraAnalysis)
    498         Result = false;
    499       else
    500         return false;
    501     }
    502   }
    503 
    504   // Check whether inner loops are uniform. At this point, we only support
    505   // simple outer loops scenarios with uniform nested loops.
    506   if (!isUniformLoopNest(TheLoop /*loop nest*/,
    507                          TheLoop /*context outer loop*/)) {
    508     LLVM_DEBUG(
    509         dbgs()
    510         << "LV: Not vectorizing: Outer loop contains divergent loops.\n");
    511     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
    512               << "loop control flow is not understood by vectorizer");
    513     if (DoExtraAnalysis)
    514       Result = false;
    515     else
    516       return false;
    517   }
    518 
    519   return Result;
    520 }
    521 
    522 void LoopVectorizationLegality::addInductionPhi(
    523     PHINode *Phi, const InductionDescriptor &ID,
    524     SmallPtrSetImpl<Value *> &AllowedExit) {
    525   Inductions[Phi] = ID;
    526 
    527   // In case this induction also comes with casts that we know we can ignore
    528   // in the vectorized loop body, record them here. All casts could be recorded
    529   // here for ignoring, but suffices to record only the first (as it is the
    530   // only one that may bw used outside the cast sequence).
    531   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
    532   if (!Casts.empty())
    533     InductionCastsToIgnore.insert(*Casts.begin());
    534 
    535   Type *PhiTy = Phi->getType();
    536   const DataLayout &DL = Phi->getModule()->getDataLayout();
    537 
    538   // Get the widest type.
    539   if (!PhiTy->isFloatingPointTy()) {
    540     if (!WidestIndTy)
    541       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
    542     else
    543       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
    544   }
    545 
    546   // Int inductions are special because we only allow one IV.
    547   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
    548       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
    549       isa<Constant>(ID.getStartValue()) &&
    550       cast<Constant>(ID.getStartValue())->isNullValue()) {
    551 
    552     // Use the phi node with the widest type as induction. Use the last
    553     // one if there are multiple (no good reason for doing this other
    554     // than it is expedient). We've checked that it begins at zero and
    555     // steps by one, so this is a canonical induction variable.
    556     if (!PrimaryInduction || PhiTy == WidestIndTy)
    557       PrimaryInduction = Phi;
    558   }
    559 
    560   // Both the PHI node itself, and the "post-increment" value feeding
    561   // back into the PHI node may have external users.
    562   // We can allow those uses, except if the SCEVs we have for them rely
    563   // on predicates that only hold within the loop, since allowing the exit
    564   // currently means re-using this SCEV outside the loop.
    565   if (PSE.getUnionPredicate().isAlwaysTrue()) {
    566     AllowedExit.insert(Phi);
    567     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
    568   }
    569 
    570   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
    571 }
    572 
    573 bool LoopVectorizationLegality::canVectorizeInstrs() {
    574   BasicBlock *Header = TheLoop->getHeader();
    575 
    576   // Look for the attribute signaling the absence of NaNs.
    577   Function &F = *Header->getParent();
    578   HasFunNoNaNAttr =
    579       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
    580 
    581   // For each block in the loop.
    582   for (BasicBlock *BB : TheLoop->blocks()) {
    583     // Scan the instructions in the block and look for hazards.
    584     for (Instruction &I : *BB) {
    585       if (auto *Phi = dyn_cast<PHINode>(&I)) {
    586         Type *PhiTy = Phi->getType();
    587         // Check that this PHI type is allowed.
    588         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
    589             !PhiTy->isPointerTy()) {
    590           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
    591                     << "loop control flow is not understood by vectorizer");
    592           LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
    593           return false;
    594         }
    595 
    596         // If this PHINode is not in the header block, then we know that we
    597         // can convert it to select during if-conversion. No need to check if
    598         // the PHIs in this block are induction or reduction variables.
    599         if (BB != Header) {
    600           // Check that this instruction has no outside users or is an
    601           // identified reduction value with an outside user.
    602           if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit))
    603             continue;
    604           ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi)
    605                     << "value could not be identified as "
    606                        "an induction or reduction variable");
    607           return false;
    608         }
    609 
    610         // We only allow if-converted PHIs with exactly two incoming values.
    611         if (Phi->getNumIncomingValues() != 2) {
    612           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
    613                     << "control flow not understood by vectorizer");
    614           LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
    615           return false;
    616         }
    617 
    618         RecurrenceDescriptor RedDes;
    619         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
    620                                                  DT)) {
    621           if (RedDes.hasUnsafeAlgebra())
    622             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
    623           AllowedExit.insert(RedDes.getLoopExitInstr());
    624           Reductions[Phi] = RedDes;
    625           continue;
    626         }
    627 
    628         InductionDescriptor ID;
    629         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
    630           addInductionPhi(Phi, ID, AllowedExit);
    631           if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
    632             Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
    633           continue;
    634         }
    635 
    636         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
    637                                                          SinkAfter, DT)) {
    638           FirstOrderRecurrences.insert(Phi);
    639           continue;
    640         }
    641 
    642         // As a last resort, coerce the PHI to a AddRec expression
    643         // and re-try classifying it a an induction PHI.
    644         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
    645           addInductionPhi(Phi, ID, AllowedExit);
    646           continue;
    647         }
    648 
    649         ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
    650                   << "value that could not be identified as "
    651                      "reduction is used outside the loop");
    652         LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
    653         return false;
    654       } // end of PHI handling
    655 
    656       // We handle calls that:
    657       //   * Are debug info intrinsics.
    658       //   * Have a mapping to an IR intrinsic.
    659       //   * Have a vector version available.
    660       auto *CI = dyn_cast<CallInst>(&I);
    661       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
    662           !isa<DbgInfoIntrinsic>(CI) &&
    663           !(CI->getCalledFunction() && TLI &&
    664             TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
    665         ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
    666                   << "call instruction cannot be vectorized");
    667         LLVM_DEBUG(
    668             dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
    669         return false;
    670       }
    671 
    672       // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
    673       // second argument is the same (i.e. loop invariant)
    674       if (CI && hasVectorInstrinsicScalarOpd(
    675                     getVectorIntrinsicIDForCall(CI, TLI), 1)) {
    676         auto *SE = PSE.getSE();
    677         if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
    678           ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
    679                     << "intrinsic instruction cannot be vectorized");
    680           LLVM_DEBUG(dbgs()
    681                      << "LV: Found unvectorizable intrinsic " << *CI << "\n");
    682           return false;
    683         }
    684       }
    685 
    686       // Check that the instruction return type is vectorizable.
    687       // Also, we can't vectorize extractelement instructions.
    688       if ((!VectorType::isValidElementType(I.getType()) &&
    689            !I.getType()->isVoidTy()) ||
    690           isa<ExtractElementInst>(I)) {
    691         ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
    692                   << "instruction return type cannot be vectorized");
    693         LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
    694         return false;
    695       }
    696 
    697       // Check that the stored type is vectorizable.
    698       if (auto *ST = dyn_cast<StoreInst>(&I)) {
    699         Type *T = ST->getValueOperand()->getType();
    700         if (!VectorType::isValidElementType(T)) {
    701           ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
    702                     << "store instruction cannot be vectorized");
    703           return false;
    704         }
    705 
    706         // FP instructions can allow unsafe algebra, thus vectorizable by
    707         // non-IEEE-754 compliant SIMD units.
    708         // This applies to floating-point math operations and calls, not memory
    709         // operations, shuffles, or casts, as they don't change precision or
    710         // semantics.
    711       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
    712                  !I.isFast()) {
    713         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
    714         Hints->setPotentiallyUnsafe();
    715       }
    716 
    717       // Reduction instructions are allowed to have exit users.
    718       // All other instructions must not have external users.
    719       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
    720         ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
    721                   << "value cannot be used outside the loop");
    722         return false;
    723       }
    724     } // next instr.
    725   }
    726 
    727   if (!PrimaryInduction) {
    728     LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
    729     if (Inductions.empty()) {
    730       ORE->emit(createMissedAnalysis("NoInductionVariable")
    731                 << "loop induction variable could not be identified");
    732       return false;
    733     }
    734   }
    735 
    736   // Now we know the widest induction type, check if our found induction
    737   // is the same size. If it's not, unset it here and InnerLoopVectorizer
    738   // will create another.
    739   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
    740     PrimaryInduction = nullptr;
    741 
    742   return true;
    743 }
    744 
    745 bool LoopVectorizationLegality::canVectorizeMemory() {
    746   LAI = &(*GetLAA)(*TheLoop);
    747   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
    748   if (LAR) {
    749     ORE->emit([&]() {
    750       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
    751                                         "loop not vectorized: ", *LAR);
    752     });
    753   }
    754   if (!LAI->canVectorizeMemory())
    755     return false;
    756 
    757   if (LAI->hasStoreToLoopInvariantAddress()) {
    758     ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
    759               << "write to a loop invariant address could not be vectorized");
    760     LLVM_DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
    761     return false;
    762   }
    763 
    764   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
    765   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
    766 
    767   return true;
    768 }
    769 
    770 bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
    771   Value *In0 = const_cast<Value *>(V);
    772   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
    773   if (!PN)
    774     return false;
    775 
    776   return Inductions.count(PN);
    777 }
    778 
    779 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
    780   auto *Inst = dyn_cast<Instruction>(V);
    781   return (Inst && InductionCastsToIgnore.count(Inst));
    782 }
    783 
    784 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
    785   return isInductionPhi(V) || isCastedInductionVariable(V);
    786 }
    787 
    788 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
    789   return FirstOrderRecurrences.count(Phi);
    790 }
    791 
    792 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
    793   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
    794 }
    795 
    796 bool LoopVectorizationLegality::blockCanBePredicated(
    797     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
    798   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
    799 
    800   for (Instruction &I : *BB) {
    801     // Check that we don't have a constant expression that can trap as operand.
    802     for (Value *Operand : I.operands()) {
    803       if (auto *C = dyn_cast<Constant>(Operand))
    804         if (C->canTrap())
    805           return false;
    806     }
    807     // We might be able to hoist the load.
    808     if (I.mayReadFromMemory()) {
    809       auto *LI = dyn_cast<LoadInst>(&I);
    810       if (!LI)
    811         return false;
    812       if (!SafePtrs.count(LI->getPointerOperand())) {
    813         // !llvm.mem.parallel_loop_access implies if-conversion safety.
    814         // Otherwise, record that the load needs (real or emulated) masking
    815         // and let the cost model decide.
    816         if (!IsAnnotatedParallel)
    817           MaskedOp.insert(LI);
    818         continue;
    819       }
    820     }
    821 
    822     if (I.mayWriteToMemory()) {
    823       auto *SI = dyn_cast<StoreInst>(&I);
    824       if (!SI)
    825         return false;
    826       // Predicated store requires some form of masking:
    827       // 1) masked store HW instruction,
    828       // 2) emulation via load-blend-store (only if safe and legal to do so,
    829       //    be aware on the race conditions), or
    830       // 3) element-by-element predicate check and scalar store.
    831       MaskedOp.insert(SI);
    832       continue;
    833     }
    834     if (I.mayThrow())
    835       return false;
    836   }
    837 
    838   return true;
    839 }
    840 
    841 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
    842   if (!EnableIfConversion) {
    843     ORE->emit(createMissedAnalysis("IfConversionDisabled")
    844               << "if-conversion is disabled");
    845     return false;
    846   }
    847 
    848   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
    849 
    850   // A list of pointers that we can safely read and write to.
    851   SmallPtrSet<Value *, 8> SafePointes;
    852 
    853   // Collect safe addresses.
    854   for (BasicBlock *BB : TheLoop->blocks()) {
    855     if (blockNeedsPredication(BB))
    856       continue;
    857 
    858     for (Instruction &I : *BB)
    859       if (auto *Ptr = getLoadStorePointerOperand(&I))
    860         SafePointes.insert(Ptr);
    861   }
    862 
    863   // Collect the blocks that need predication.
    864   BasicBlock *Header = TheLoop->getHeader();
    865   for (BasicBlock *BB : TheLoop->blocks()) {
    866     // We don't support switch statements inside loops.
    867     if (!isa<BranchInst>(BB->getTerminator())) {
    868       ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
    869                 << "loop contains a switch statement");
    870       return false;
    871     }
    872 
    873     // We must be able to predicate all blocks that need to be predicated.
    874     if (blockNeedsPredication(BB)) {
    875       if (!blockCanBePredicated(BB, SafePointes)) {
    876         ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
    877                   << "control flow cannot be substituted for a select");
    878         return false;
    879       }
    880     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
    881       ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
    882                 << "control flow cannot be substituted for a select");
    883       return false;
    884     }
    885   }
    886 
    887   // We can if-convert this loop.
    888   return true;
    889 }
    890 
    891 // Helper function to canVectorizeLoopNestCFG.
    892 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
    893                                                     bool UseVPlanNativePath) {
    894   assert((UseVPlanNativePath || Lp->empty()) &&
    895          "VPlan-native path is not enabled.");
    896 
    897   // TODO: ORE should be improved to show more accurate information when an
    898   // outer loop can't be vectorized because a nested loop is not understood or
    899   // legal. Something like: "outer_loop_location: loop not vectorized:
    900   // (inner_loop_location) loop control flow is not understood by vectorizer".
    901 
    902   // Store the result and return it at the end instead of exiting early, in case
    903   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
    904   bool Result = true;
    905   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
    906 
    907   // We must have a loop in canonical form. Loops with indirectbr in them cannot
    908   // be canonicalized.
    909   if (!Lp->getLoopPreheader()) {
    910     LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n");
    911     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
    912               << "loop control flow is not understood by vectorizer");
    913     if (DoExtraAnalysis)
    914       Result = false;
    915     else
    916       return false;
    917   }
    918 
    919   // We must have a single backedge.
    920   if (Lp->getNumBackEdges() != 1) {
    921     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
    922               << "loop control flow is not understood by vectorizer");
    923     if (DoExtraAnalysis)
    924       Result = false;
    925     else
    926       return false;
    927   }
    928 
    929   // We must have a single exiting block.
    930   if (!Lp->getExitingBlock()) {
    931     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
    932               << "loop control flow is not understood by vectorizer");
    933     if (DoExtraAnalysis)
    934       Result = false;
    935     else
    936       return false;
    937   }
    938 
    939   // We only handle bottom-tested loops, i.e. loop in which the condition is
    940   // checked at the end of each iteration. With that we can assume that all
    941   // instructions in the loop are executed the same number of times.
    942   if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
    943     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
    944               << "loop control flow is not understood by vectorizer");
    945     if (DoExtraAnalysis)
    946       Result = false;
    947     else
    948       return false;
    949   }
    950 
    951   return Result;
    952 }
    953 
    954 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
    955     Loop *Lp, bool UseVPlanNativePath) {
    956   // Store the result and return it at the end instead of exiting early, in case
    957   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
    958   bool Result = true;
    959   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
    960   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
    961     if (DoExtraAnalysis)
    962       Result = false;
    963     else
    964       return false;
    965   }
    966 
    967   // Recursively check whether the loop control flow of nested loops is
    968   // understood.
    969   for (Loop *SubLp : *Lp)
    970     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
    971       if (DoExtraAnalysis)
    972         Result = false;
    973       else
    974         return false;
    975     }
    976 
    977   return Result;
    978 }
    979 
    980 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
    981   // Store the result and return it at the end instead of exiting early, in case
    982   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
    983   bool Result = true;
    984 
    985   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
    986   // Check whether the loop-related control flow in the loop nest is expected by
    987   // vectorizer.
    988   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
    989     if (DoExtraAnalysis)
    990       Result = false;
    991     else
    992       return false;
    993   }
    994 
    995   // We need to have a loop header.
    996   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
    997                     << '\n');
    998 
    999   // Specific checks for outer loops. We skip the remaining legal checks at this
   1000   // point because they don't support outer loops.
   1001   if (!TheLoop->empty()) {
   1002     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
   1003 
   1004     if (!canVectorizeOuterLoop()) {
   1005       LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n");
   1006       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
   1007       // outer loops.
   1008       return false;
   1009     }
   1010 
   1011     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
   1012     return Result;
   1013   }
   1014 
   1015   assert(TheLoop->empty() && "Inner loop expected.");
   1016   // Check if we can if-convert non-single-bb loops.
   1017   unsigned NumBlocks = TheLoop->getNumBlocks();
   1018   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
   1019     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
   1020     if (DoExtraAnalysis)
   1021       Result = false;
   1022     else
   1023       return false;
   1024   }
   1025 
   1026   // Check if we can vectorize the instructions and CFG in this loop.
   1027   if (!canVectorizeInstrs()) {
   1028     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
   1029     if (DoExtraAnalysis)
   1030       Result = false;
   1031     else
   1032       return false;
   1033   }
   1034 
   1035   // Go over each instruction and look at memory deps.
   1036   if (!canVectorizeMemory()) {
   1037     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
   1038     if (DoExtraAnalysis)
   1039       Result = false;
   1040     else
   1041       return false;
   1042   }
   1043 
   1044   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
   1045                     << (LAI->getRuntimePointerChecking()->Need
   1046                             ? " (with a runtime bound check)"
   1047                             : "")
   1048                     << "!\n");
   1049 
   1050   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
   1051   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
   1052     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
   1053 
   1054   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
   1055     ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
   1056               << "Too many SCEV assumptions need to be made and checked "
   1057               << "at runtime");
   1058     LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
   1059     if (DoExtraAnalysis)
   1060       Result = false;
   1061     else
   1062       return false;
   1063   }
   1064 
   1065   // Okay! We've done all the tests. If any have failed, return false. Otherwise
   1066   // we can vectorize, and at this point we don't have any other mem analysis
   1067   // which may limit our maximum vectorization factor, so just return true with
   1068   // no restrictions.
   1069   return Result;
   1070 }
   1071 
   1072 } // namespace llvm
   1073