Home | History | Annotate | Download | only in heap
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/heap/factory.h"
      6 
      7 #include "src/accessors.h"
      8 #include "src/allocation-site-scopes.h"
      9 #include "src/ast/ast-source-ranges.h"
     10 #include "src/ast/ast.h"
     11 #include "src/base/bits.h"
     12 #include "src/bootstrapper.h"
     13 #include "src/builtins/constants-table-builder.h"
     14 #include "src/compiler.h"
     15 #include "src/conversions.h"
     16 #include "src/interpreter/interpreter.h"
     17 #include "src/isolate-inl.h"
     18 #include "src/macro-assembler.h"
     19 #include "src/objects/api-callbacks.h"
     20 #include "src/objects/arguments-inl.h"
     21 #include "src/objects/bigint.h"
     22 #include "src/objects/debug-objects-inl.h"
     23 #include "src/objects/frame-array-inl.h"
     24 #include "src/objects/js-array-inl.h"
     25 #include "src/objects/js-collection-inl.h"
     26 #include "src/objects/js-generator-inl.h"
     27 #include "src/objects/js-regexp-inl.h"
     28 #include "src/objects/literal-objects-inl.h"
     29 #include "src/objects/microtask-inl.h"
     30 #include "src/objects/module-inl.h"
     31 #include "src/objects/promise-inl.h"
     32 #include "src/objects/scope-info.h"
     33 #include "src/unicode-cache.h"
     34 #include "src/unicode-decoder.h"
     35 
     36 namespace v8 {
     37 namespace internal {
     38 
     39 namespace {
     40 
     41 int ComputeCodeObjectSize(const CodeDesc& desc) {
     42   bool has_unwinding_info = desc.unwinding_info != nullptr;
     43   DCHECK((has_unwinding_info && desc.unwinding_info_size > 0) ||
     44          (!has_unwinding_info && desc.unwinding_info_size == 0));
     45   int body_size = desc.instr_size;
     46   int unwinding_info_size_field_size = kInt64Size;
     47   if (has_unwinding_info) {
     48     body_size = RoundUp(body_size, kInt64Size) + desc.unwinding_info_size +
     49                 unwinding_info_size_field_size;
     50   }
     51   int object_size = Code::SizeFor(RoundUp(body_size, kObjectAlignment));
     52   DCHECK(IsAligned(static_cast<intptr_t>(object_size), kCodeAlignment));
     53   return object_size;
     54 }
     55 
     56 void InitializeCode(Heap* heap, Handle<Code> code, int object_size,
     57                     const CodeDesc& desc, Code::Kind kind,
     58                     Handle<Object> self_ref, int32_t builtin_index,
     59                     Handle<ByteArray> source_position_table,
     60                     Handle<DeoptimizationData> deopt_data,
     61                     Handle<ByteArray> reloc_info,
     62                     Handle<CodeDataContainer> data_container, uint32_t stub_key,
     63                     bool is_turbofanned, int stack_slots,
     64                     int safepoint_table_offset, int handler_table_offset) {
     65   DCHECK(IsAligned(code->address(), kCodeAlignment));
     66   DCHECK(!heap->memory_allocator()->code_range()->valid() ||
     67          heap->memory_allocator()->code_range()->contains(code->address()) ||
     68          object_size <= heap->code_space()->AreaSize());
     69 
     70   bool has_unwinding_info = desc.unwinding_info != nullptr;
     71 
     72   code->set_raw_instruction_size(desc.instr_size);
     73   code->set_relocation_info(*reloc_info);
     74   const bool is_off_heap_trampoline = false;
     75   code->initialize_flags(kind, has_unwinding_info, is_turbofanned, stack_slots,
     76                          is_off_heap_trampoline);
     77   code->set_safepoint_table_offset(safepoint_table_offset);
     78   code->set_handler_table_offset(handler_table_offset);
     79   code->set_code_data_container(*data_container);
     80   code->set_deoptimization_data(*deopt_data);
     81   code->set_stub_key(stub_key);
     82   code->set_source_position_table(*source_position_table);
     83   code->set_constant_pool_offset(desc.instr_size - desc.constant_pool_size);
     84   code->set_builtin_index(builtin_index);
     85 
     86   // Allow self references to created code object by patching the handle to
     87   // point to the newly allocated Code object.
     88   if (!self_ref.is_null()) {
     89     DCHECK(self_ref->IsOddball());
     90     DCHECK(Oddball::cast(*self_ref)->kind() == Oddball::kSelfReferenceMarker);
     91     if (FLAG_embedded_builtins) {
     92       auto builder = heap->isolate()->builtins_constants_table_builder();
     93       if (builder != nullptr) builder->PatchSelfReference(self_ref, code);
     94     }
     95     *(self_ref.location()) = *code;
     96   }
     97 
     98   // Migrate generated code.
     99   // The generated code can contain Object** values (typically from handles)
    100   // that are dereferenced during the copy to point directly to the actual heap
    101   // objects. These pointers can include references to the code object itself,
    102   // through the self_reference parameter.
    103   code->CopyFromNoFlush(heap, desc);
    104 
    105   code->clear_padding();
    106 
    107 #ifdef VERIFY_HEAP
    108   if (FLAG_verify_heap) code->ObjectVerify(heap->isolate());
    109 #endif
    110 }
    111 
    112 }  // namespace
    113 
    114 HeapObject* Factory::AllocateRawWithImmortalMap(int size,
    115                                                 PretenureFlag pretenure,
    116                                                 Map* map,
    117                                                 AllocationAlignment alignment) {
    118   HeapObject* result = isolate()->heap()->AllocateRawWithRetryOrFail(
    119       size, Heap::SelectSpace(pretenure), alignment);
    120   result->set_map_after_allocation(map, SKIP_WRITE_BARRIER);
    121   return result;
    122 }
    123 
    124 HeapObject* Factory::AllocateRawWithAllocationSite(
    125     Handle<Map> map, PretenureFlag pretenure,
    126     Handle<AllocationSite> allocation_site) {
    127   DCHECK(map->instance_type() != MAP_TYPE);
    128   int size = map->instance_size();
    129   if (!allocation_site.is_null()) size += AllocationMemento::kSize;
    130   AllocationSpace space = Heap::SelectSpace(pretenure);
    131   HeapObject* result =
    132       isolate()->heap()->AllocateRawWithRetryOrFail(size, space);
    133   WriteBarrierMode write_barrier_mode =
    134       space == NEW_SPACE ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER;
    135   result->set_map_after_allocation(*map, write_barrier_mode);
    136   if (!allocation_site.is_null()) {
    137     AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>(
    138         reinterpret_cast<Address>(result) + map->instance_size());
    139     InitializeAllocationMemento(alloc_memento, *allocation_site);
    140   }
    141   return result;
    142 }
    143 
    144 void Factory::InitializeAllocationMemento(AllocationMemento* memento,
    145                                           AllocationSite* allocation_site) {
    146   memento->set_map_after_allocation(*allocation_memento_map(),
    147                                     SKIP_WRITE_BARRIER);
    148   memento->set_allocation_site(allocation_site, SKIP_WRITE_BARRIER);
    149   if (FLAG_allocation_site_pretenuring) {
    150     allocation_site->IncrementMementoCreateCount();
    151   }
    152 }
    153 
    154 HeapObject* Factory::AllocateRawArray(int size, PretenureFlag pretenure) {
    155   AllocationSpace space = Heap::SelectSpace(pretenure);
    156   HeapObject* result =
    157       isolate()->heap()->AllocateRawWithRetryOrFail(size, space);
    158   if (size > kMaxRegularHeapObjectSize && FLAG_use_marking_progress_bar) {
    159     MemoryChunk* chunk = MemoryChunk::FromAddress(result->address());
    160     chunk->SetFlag<AccessMode::ATOMIC>(MemoryChunk::HAS_PROGRESS_BAR);
    161   }
    162   return result;
    163 }
    164 
    165 HeapObject* Factory::AllocateRawFixedArray(int length,
    166                                            PretenureFlag pretenure) {
    167   if (length < 0 || length > FixedArray::kMaxLength) {
    168     isolate()->heap()->FatalProcessOutOfMemory("invalid array length");
    169   }
    170   return AllocateRawArray(FixedArray::SizeFor(length), pretenure);
    171 }
    172 
    173 HeapObject* Factory::AllocateRawWeakArrayList(int capacity,
    174                                               PretenureFlag pretenure) {
    175   if (capacity < 0 || capacity > WeakArrayList::kMaxCapacity) {
    176     isolate()->heap()->FatalProcessOutOfMemory("invalid array length");
    177   }
    178   return AllocateRawArray(WeakArrayList::SizeForCapacity(capacity), pretenure);
    179 }
    180 
    181 HeapObject* Factory::New(Handle<Map> map, PretenureFlag pretenure) {
    182   DCHECK(map->instance_type() != MAP_TYPE);
    183   int size = map->instance_size();
    184   AllocationSpace space = Heap::SelectSpace(pretenure);
    185   HeapObject* result =
    186       isolate()->heap()->AllocateRawWithRetryOrFail(size, space);
    187   // New space objects are allocated white.
    188   WriteBarrierMode write_barrier_mode =
    189       space == NEW_SPACE ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER;
    190   result->set_map_after_allocation(*map, write_barrier_mode);
    191   return result;
    192 }
    193 
    194 Handle<HeapObject> Factory::NewFillerObject(int size, bool double_align,
    195                                             AllocationSpace space) {
    196   AllocationAlignment alignment = double_align ? kDoubleAligned : kWordAligned;
    197   Heap* heap = isolate()->heap();
    198   HeapObject* result = heap->AllocateRawWithRetryOrFail(size, space, alignment);
    199 #ifdef DEBUG
    200   MemoryChunk* chunk = MemoryChunk::FromAddress(result->address());
    201   DCHECK(chunk->owner()->identity() == space);
    202 #endif
    203   heap->CreateFillerObjectAt(result->address(), size, ClearRecordedSlots::kNo);
    204   return Handle<HeapObject>(result, isolate());
    205 }
    206 
    207 Handle<PrototypeInfo> Factory::NewPrototypeInfo() {
    208   Handle<PrototypeInfo> result =
    209       Handle<PrototypeInfo>::cast(NewStruct(PROTOTYPE_INFO_TYPE, TENURED));
    210   result->set_prototype_users(*empty_weak_array_list());
    211   result->set_registry_slot(PrototypeInfo::UNREGISTERED);
    212   result->set_bit_field(0);
    213   result->set_module_namespace(*undefined_value());
    214   return result;
    215 }
    216 
    217 Handle<EnumCache> Factory::NewEnumCache(Handle<FixedArray> keys,
    218                                         Handle<FixedArray> indices) {
    219   return Handle<EnumCache>::cast(NewTuple2(keys, indices, TENURED));
    220 }
    221 
    222 Handle<Tuple2> Factory::NewTuple2(Handle<Object> value1, Handle<Object> value2,
    223                                   PretenureFlag pretenure) {
    224   Handle<Tuple2> result =
    225       Handle<Tuple2>::cast(NewStruct(TUPLE2_TYPE, pretenure));
    226   result->set_value1(*value1);
    227   result->set_value2(*value2);
    228   return result;
    229 }
    230 
    231 Handle<Tuple3> Factory::NewTuple3(Handle<Object> value1, Handle<Object> value2,
    232                                   Handle<Object> value3,
    233                                   PretenureFlag pretenure) {
    234   Handle<Tuple3> result =
    235       Handle<Tuple3>::cast(NewStruct(TUPLE3_TYPE, pretenure));
    236   result->set_value1(*value1);
    237   result->set_value2(*value2);
    238   result->set_value3(*value3);
    239   return result;
    240 }
    241 
    242 Handle<ArrayBoilerplateDescription> Factory::NewArrayBoilerplateDescription(
    243     ElementsKind elements_kind, Handle<FixedArrayBase> constant_values) {
    244   Handle<ArrayBoilerplateDescription> result =
    245       Handle<ArrayBoilerplateDescription>::cast(
    246           NewStruct(ARRAY_BOILERPLATE_DESCRIPTION_TYPE, TENURED));
    247   result->set_elements_kind(elements_kind);
    248   result->set_constant_elements(*constant_values);
    249   return result;
    250 }
    251 
    252 Handle<TemplateObjectDescription> Factory::NewTemplateObjectDescription(
    253     Handle<FixedArray> raw_strings, Handle<FixedArray> cooked_strings) {
    254   DCHECK_EQ(raw_strings->length(), cooked_strings->length());
    255   DCHECK_LT(0, raw_strings->length());
    256   Handle<TemplateObjectDescription> result =
    257       Handle<TemplateObjectDescription>::cast(NewStruct(TUPLE2_TYPE, TENURED));
    258   result->set_raw_strings(*raw_strings);
    259   result->set_cooked_strings(*cooked_strings);
    260   return result;
    261 }
    262 
    263 Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string,
    264                                     Handle<Object> to_number,
    265                                     const char* type_of, byte kind,
    266                                     PretenureFlag pretenure) {
    267   Handle<Oddball> oddball(Oddball::cast(New(map, pretenure)), isolate());
    268   Oddball::Initialize(isolate(), oddball, to_string, to_number, type_of, kind);
    269   return oddball;
    270 }
    271 
    272 Handle<Oddball> Factory::NewSelfReferenceMarker(PretenureFlag pretenure) {
    273   return NewOddball(self_reference_marker_map(), "self_reference_marker",
    274                     handle(Smi::FromInt(-1), isolate()), "undefined",
    275                     Oddball::kSelfReferenceMarker, pretenure);
    276 }
    277 
    278 Handle<PropertyArray> Factory::NewPropertyArray(int length,
    279                                                 PretenureFlag pretenure) {
    280   DCHECK_LE(0, length);
    281   if (length == 0) return empty_property_array();
    282   HeapObject* result = AllocateRawFixedArray(length, pretenure);
    283   result->set_map_after_allocation(*property_array_map(), SKIP_WRITE_BARRIER);
    284   Handle<PropertyArray> array(PropertyArray::cast(result), isolate());
    285   array->initialize_length(length);
    286   MemsetPointer(array->data_start(), *undefined_value(), length);
    287   return array;
    288 }
    289 
    290 Handle<FixedArray> Factory::NewFixedArrayWithFiller(
    291     Heap::RootListIndex map_root_index, int length, Object* filler,
    292     PretenureFlag pretenure) {
    293   HeapObject* result = AllocateRawFixedArray(length, pretenure);
    294   DCHECK(Heap::RootIsImmortalImmovable(map_root_index));
    295   Map* map = Map::cast(isolate()->heap()->root(map_root_index));
    296   result->set_map_after_allocation(map, SKIP_WRITE_BARRIER);
    297   Handle<FixedArray> array(FixedArray::cast(result), isolate());
    298   array->set_length(length);
    299   MemsetPointer(array->data_start(), filler, length);
    300   return array;
    301 }
    302 
    303 template <typename T>
    304 Handle<T> Factory::NewFixedArrayWithMap(Heap::RootListIndex map_root_index,
    305                                         int length, PretenureFlag pretenure) {
    306   static_assert(std::is_base_of<FixedArray, T>::value,
    307                 "T must be a descendant of FixedArray");
    308   // Zero-length case must be handled outside, where the knowledge about
    309   // the map is.
    310   DCHECK_LT(0, length);
    311   return Handle<T>::cast(NewFixedArrayWithFiller(
    312       map_root_index, length, *undefined_value(), pretenure));
    313 }
    314 
    315 template <typename T>
    316 Handle<T> Factory::NewWeakFixedArrayWithMap(Heap::RootListIndex map_root_index,
    317                                             int length,
    318                                             PretenureFlag pretenure) {
    319   static_assert(std::is_base_of<WeakFixedArray, T>::value,
    320                 "T must be a descendant of WeakFixedArray");
    321 
    322   // Zero-length case must be handled outside.
    323   DCHECK_LT(0, length);
    324 
    325   HeapObject* result =
    326       AllocateRawArray(WeakFixedArray::SizeFor(length), pretenure);
    327   Map* map = Map::cast(isolate()->heap()->root(map_root_index));
    328   result->set_map_after_allocation(map, SKIP_WRITE_BARRIER);
    329 
    330   Handle<WeakFixedArray> array(WeakFixedArray::cast(result), isolate());
    331   array->set_length(length);
    332   MemsetPointer(array->data_start(),
    333                 HeapObjectReference::Strong(*undefined_value()), length);
    334 
    335   return Handle<T>::cast(array);
    336 }
    337 
    338 template Handle<FixedArray> Factory::NewFixedArrayWithMap<FixedArray>(
    339     Heap::RootListIndex, int, PretenureFlag);
    340 
    341 template Handle<DescriptorArray>
    342 Factory::NewWeakFixedArrayWithMap<DescriptorArray>(Heap::RootListIndex, int,
    343                                                    PretenureFlag);
    344 
    345 Handle<FixedArray> Factory::NewFixedArray(int length, PretenureFlag pretenure) {
    346   DCHECK_LE(0, length);
    347   if (length == 0) return empty_fixed_array();
    348   return NewFixedArrayWithFiller(Heap::kFixedArrayMapRootIndex, length,
    349                                  *undefined_value(), pretenure);
    350 }
    351 
    352 Handle<WeakFixedArray> Factory::NewWeakFixedArray(int length,
    353                                                   PretenureFlag pretenure) {
    354   DCHECK_LE(0, length);
    355   if (length == 0) return empty_weak_fixed_array();
    356   HeapObject* result =
    357       AllocateRawArray(WeakFixedArray::SizeFor(length), pretenure);
    358   DCHECK(Heap::RootIsImmortalImmovable(Heap::kWeakFixedArrayMapRootIndex));
    359   result->set_map_after_allocation(*weak_fixed_array_map(), SKIP_WRITE_BARRIER);
    360   Handle<WeakFixedArray> array(WeakFixedArray::cast(result), isolate());
    361   array->set_length(length);
    362   MemsetPointer(array->data_start(),
    363                 HeapObjectReference::Strong(*undefined_value()), length);
    364   return array;
    365 }
    366 
    367 MaybeHandle<FixedArray> Factory::TryNewFixedArray(int length,
    368                                                   PretenureFlag pretenure) {
    369   DCHECK_LE(0, length);
    370   if (length == 0) return empty_fixed_array();
    371 
    372   int size = FixedArray::SizeFor(length);
    373   AllocationSpace space = Heap::SelectSpace(pretenure);
    374   Heap* heap = isolate()->heap();
    375   AllocationResult allocation = heap->AllocateRaw(size, space);
    376   HeapObject* result = nullptr;
    377   if (!allocation.To(&result)) return MaybeHandle<FixedArray>();
    378   if (size > kMaxRegularHeapObjectSize && FLAG_use_marking_progress_bar) {
    379     MemoryChunk* chunk = MemoryChunk::FromAddress(result->address());
    380     chunk->SetFlag<AccessMode::ATOMIC>(MemoryChunk::HAS_PROGRESS_BAR);
    381   }
    382   result->set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER);
    383   Handle<FixedArray> array(FixedArray::cast(result), isolate());
    384   array->set_length(length);
    385   MemsetPointer(array->data_start(), ReadOnlyRoots(heap).undefined_value(),
    386                 length);
    387   return array;
    388 }
    389 
    390 Handle<FixedArray> Factory::NewFixedArrayWithHoles(int length,
    391                                                    PretenureFlag pretenure) {
    392   DCHECK_LE(0, length);
    393   if (length == 0) return empty_fixed_array();
    394   return NewFixedArrayWithFiller(Heap::kFixedArrayMapRootIndex, length,
    395                                  *the_hole_value(), pretenure);
    396 }
    397 
    398 Handle<FixedArray> Factory::NewUninitializedFixedArray(
    399     int length, PretenureFlag pretenure) {
    400   DCHECK_LE(0, length);
    401   if (length == 0) return empty_fixed_array();
    402 
    403   // TODO(ulan): As an experiment this temporarily returns an initialized fixed
    404   // array. After getting canary/performance coverage, either remove the
    405   // function or revert to returning uninitilized array.
    406   return NewFixedArrayWithFiller(Heap::kFixedArrayMapRootIndex, length,
    407                                  *undefined_value(), pretenure);
    408 }
    409 
    410 Handle<FeedbackVector> Factory::NewFeedbackVector(
    411     Handle<SharedFunctionInfo> shared, PretenureFlag pretenure) {
    412   int length = shared->feedback_metadata()->slot_count();
    413   DCHECK_LE(0, length);
    414   int size = FeedbackVector::SizeFor(length);
    415 
    416   HeapObject* result =
    417       AllocateRawWithImmortalMap(size, pretenure, *feedback_vector_map());
    418   Handle<FeedbackVector> vector(FeedbackVector::cast(result), isolate());
    419   vector->set_shared_function_info(*shared);
    420   vector->set_optimized_code_weak_or_smi(MaybeObject::FromSmi(Smi::FromEnum(
    421       FLAG_log_function_events ? OptimizationMarker::kLogFirstExecution
    422                                : OptimizationMarker::kNone)));
    423   vector->set_length(length);
    424   vector->set_invocation_count(0);
    425   vector->set_profiler_ticks(0);
    426   vector->set_deopt_count(0);
    427   // TODO(leszeks): Initialize based on the feedback metadata.
    428   MemsetPointer(vector->slots_start(),
    429                 MaybeObject::FromObject(*undefined_value()), length);
    430   return vector;
    431 }
    432 
    433 Handle<ObjectBoilerplateDescription> Factory::NewObjectBoilerplateDescription(
    434     int boilerplate, int all_properties, int index_keys, bool has_seen_proto) {
    435   DCHECK_GE(boilerplate, 0);
    436   DCHECK_GE(all_properties, index_keys);
    437   DCHECK_GE(index_keys, 0);
    438 
    439   int backing_store_size =
    440       all_properties - index_keys - (has_seen_proto ? 1 : 0);
    441   DCHECK_GE(backing_store_size, 0);
    442   bool has_different_size_backing_store = boilerplate != backing_store_size;
    443 
    444   // Space for name and value for every boilerplate property + LiteralType flag.
    445   int size =
    446       2 * boilerplate + ObjectBoilerplateDescription::kDescriptionStartIndex;
    447 
    448   if (has_different_size_backing_store) {
    449     // An extra entry for the backing store size.
    450     size++;
    451   }
    452 
    453   Handle<ObjectBoilerplateDescription> description =
    454       Handle<ObjectBoilerplateDescription>::cast(NewFixedArrayWithMap(
    455           Heap::kObjectBoilerplateDescriptionMapRootIndex, size, TENURED));
    456 
    457   if (has_different_size_backing_store) {
    458     DCHECK_IMPLIES((boilerplate == (all_properties - index_keys)),
    459                    has_seen_proto);
    460     description->set_backing_store_size(isolate(), backing_store_size);
    461   }
    462 
    463   description->set_flags(0);
    464 
    465   return description;
    466 }
    467 
    468 Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int length,
    469                                                     PretenureFlag pretenure) {
    470   DCHECK_LE(0, length);
    471   if (length == 0) return empty_fixed_array();
    472   if (length > FixedDoubleArray::kMaxLength) {
    473     isolate()->heap()->FatalProcessOutOfMemory("invalid array length");
    474   }
    475   int size = FixedDoubleArray::SizeFor(length);
    476   Map* map = *fixed_double_array_map();
    477   HeapObject* result =
    478       AllocateRawWithImmortalMap(size, pretenure, map, kDoubleAligned);
    479   Handle<FixedDoubleArray> array(FixedDoubleArray::cast(result), isolate());
    480   array->set_length(length);
    481   return array;
    482 }
    483 
    484 Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(
    485     int length, PretenureFlag pretenure) {
    486   DCHECK_LE(0, length);
    487   Handle<FixedArrayBase> array = NewFixedDoubleArray(length, pretenure);
    488   if (length > 0) {
    489     Handle<FixedDoubleArray>::cast(array)->FillWithHoles(0, length);
    490   }
    491   return array;
    492 }
    493 
    494 Handle<FeedbackMetadata> Factory::NewFeedbackMetadata(int slot_count,
    495                                                       PretenureFlag tenure) {
    496   DCHECK_LE(0, slot_count);
    497   int size = FeedbackMetadata::SizeFor(slot_count);
    498   HeapObject* result =
    499       AllocateRawWithImmortalMap(size, tenure, *feedback_metadata_map());
    500   Handle<FeedbackMetadata> data(FeedbackMetadata::cast(result), isolate());
    501   data->set_slot_count(slot_count);
    502 
    503   // Initialize the data section to 0.
    504   int data_size = size - FeedbackMetadata::kHeaderSize;
    505   Address data_start = data->address() + FeedbackMetadata::kHeaderSize;
    506   memset(reinterpret_cast<byte*>(data_start), 0, data_size);
    507   // Fields have been zeroed out but not initialized, so this object will not
    508   // pass object verification at this point.
    509   return data;
    510 }
    511 
    512 Handle<FrameArray> Factory::NewFrameArray(int number_of_frames,
    513                                           PretenureFlag pretenure) {
    514   DCHECK_LE(0, number_of_frames);
    515   Handle<FixedArray> result = NewFixedArrayWithHoles(
    516       FrameArray::LengthFor(number_of_frames), pretenure);
    517   result->set(FrameArray::kFrameCountIndex, Smi::kZero);
    518   return Handle<FrameArray>::cast(result);
    519 }
    520 
    521 Handle<SmallOrderedHashSet> Factory::NewSmallOrderedHashSet(
    522     int capacity, PretenureFlag pretenure) {
    523   DCHECK_LE(0, capacity);
    524   CHECK_LE(capacity, SmallOrderedHashSet::kMaxCapacity);
    525   DCHECK_EQ(0, capacity % SmallOrderedHashSet::kLoadFactor);
    526 
    527   int size = SmallOrderedHashSet::SizeFor(capacity);
    528   Map* map = *small_ordered_hash_set_map();
    529   HeapObject* result = AllocateRawWithImmortalMap(size, pretenure, map);
    530   Handle<SmallOrderedHashSet> table(SmallOrderedHashSet::cast(result),
    531                                     isolate());
    532   table->Initialize(isolate(), capacity);
    533   return table;
    534 }
    535 
    536 Handle<SmallOrderedHashMap> Factory::NewSmallOrderedHashMap(
    537     int capacity, PretenureFlag pretenure) {
    538   DCHECK_LE(0, capacity);
    539   CHECK_LE(capacity, SmallOrderedHashMap::kMaxCapacity);
    540   DCHECK_EQ(0, capacity % SmallOrderedHashMap::kLoadFactor);
    541 
    542   int size = SmallOrderedHashMap::SizeFor(capacity);
    543   Map* map = *small_ordered_hash_map_map();
    544   HeapObject* result = AllocateRawWithImmortalMap(size, pretenure, map);
    545   Handle<SmallOrderedHashMap> table(SmallOrderedHashMap::cast(result),
    546                                     isolate());
    547   table->Initialize(isolate(), capacity);
    548   return table;
    549 }
    550 
    551 Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
    552   return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kMinCapacity);
    553 }
    554 
    555 Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
    556   return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kMinCapacity);
    557 }
    558 
    559 Handle<AccessorPair> Factory::NewAccessorPair() {
    560   Handle<AccessorPair> accessors =
    561       Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE, TENURED));
    562   accessors->set_getter(*null_value(), SKIP_WRITE_BARRIER);
    563   accessors->set_setter(*null_value(), SKIP_WRITE_BARRIER);
    564   return accessors;
    565 }
    566 
    567 // Internalized strings are created in the old generation (data space).
    568 Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) {
    569   Utf8StringKey key(string, isolate()->heap()->HashSeed());
    570   return InternalizeStringWithKey(&key);
    571 }
    572 
    573 Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) {
    574   OneByteStringKey key(string, isolate()->heap()->HashSeed());
    575   return InternalizeStringWithKey(&key);
    576 }
    577 
    578 Handle<String> Factory::InternalizeOneByteString(
    579     Handle<SeqOneByteString> string, int from, int length) {
    580   SeqOneByteSubStringKey key(isolate(), string, from, length);
    581   return InternalizeStringWithKey(&key);
    582 }
    583 
    584 Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) {
    585   TwoByteStringKey key(string, isolate()->heap()->HashSeed());
    586   return InternalizeStringWithKey(&key);
    587 }
    588 
    589 template <class StringTableKey>
    590 Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
    591   return StringTable::LookupKey(isolate(), key);
    592 }
    593 
    594 MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string,
    595                                                   PretenureFlag pretenure) {
    596   int length = string.length();
    597   if (length == 0) return empty_string();
    598   if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
    599   Handle<SeqOneByteString> result;
    600   ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
    601                              NewRawOneByteString(string.length(), pretenure),
    602                              String);
    603 
    604   DisallowHeapAllocation no_gc;
    605   // Copy the characters into the new object.
    606   CopyChars(SeqOneByteString::cast(*result)->GetChars(), string.start(),
    607             length);
    608   return result;
    609 }
    610 
    611 MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string,
    612                                                PretenureFlag pretenure) {
    613   // Check for ASCII first since this is the common case.
    614   const char* ascii_data = string.start();
    615   int length = string.length();
    616   int non_ascii_start = String::NonAsciiStart(ascii_data, length);
    617   if (non_ascii_start >= length) {
    618     // If the string is ASCII, we do not need to convert the characters
    619     // since UTF8 is backwards compatible with ASCII.
    620     return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure);
    621   }
    622 
    623   // Non-ASCII and we need to decode.
    624   auto non_ascii = string.SubVector(non_ascii_start, length);
    625   Access<UnicodeCache::Utf8Decoder> decoder(
    626       isolate()->unicode_cache()->utf8_decoder());
    627   decoder->Reset(non_ascii);
    628 
    629   int utf16_length = static_cast<int>(decoder->Utf16Length());
    630   DCHECK_GT(utf16_length, 0);
    631 
    632   // Allocate string.
    633   Handle<SeqTwoByteString> result;
    634   ASSIGN_RETURN_ON_EXCEPTION(
    635       isolate(), result,
    636       NewRawTwoByteString(non_ascii_start + utf16_length, pretenure), String);
    637 
    638   // Copy ASCII portion.
    639   uint16_t* data = result->GetChars();
    640   for (int i = 0; i < non_ascii_start; i++) {
    641     *data++ = *ascii_data++;
    642   }
    643 
    644   // Now write the remainder.
    645   decoder->WriteUtf16(data, utf16_length, non_ascii);
    646   return result;
    647 }
    648 
    649 MaybeHandle<String> Factory::NewStringFromUtf8SubString(
    650     Handle<SeqOneByteString> str, int begin, int length,
    651     PretenureFlag pretenure) {
    652   const char* ascii_data =
    653       reinterpret_cast<const char*>(str->GetChars() + begin);
    654   int non_ascii_start = String::NonAsciiStart(ascii_data, length);
    655   if (non_ascii_start >= length) {
    656     // If the string is ASCII, we can just make a substring.
    657     // TODO(v8): the pretenure flag is ignored in this case.
    658     return NewSubString(str, begin, begin + length);
    659   }
    660 
    661   // Non-ASCII and we need to decode.
    662   auto non_ascii = Vector<const char>(ascii_data + non_ascii_start,
    663                                       length - non_ascii_start);
    664   Access<UnicodeCache::Utf8Decoder> decoder(
    665       isolate()->unicode_cache()->utf8_decoder());
    666   decoder->Reset(non_ascii);
    667 
    668   int utf16_length = static_cast<int>(decoder->Utf16Length());
    669   DCHECK_GT(utf16_length, 0);
    670 
    671   // Allocate string.
    672   Handle<SeqTwoByteString> result;
    673   ASSIGN_RETURN_ON_EXCEPTION(
    674       isolate(), result,
    675       NewRawTwoByteString(non_ascii_start + utf16_length, pretenure), String);
    676 
    677   // Update pointer references, since the original string may have moved after
    678   // allocation.
    679   ascii_data = reinterpret_cast<const char*>(str->GetChars() + begin);
    680   non_ascii = Vector<const char>(ascii_data + non_ascii_start,
    681                                  length - non_ascii_start);
    682 
    683   // Copy ASCII portion.
    684   uint16_t* data = result->GetChars();
    685   for (int i = 0; i < non_ascii_start; i++) {
    686     *data++ = *ascii_data++;
    687   }
    688 
    689   // Now write the remainder.
    690   decoder->WriteUtf16(data, utf16_length, non_ascii);
    691   return result;
    692 }
    693 
    694 MaybeHandle<String> Factory::NewStringFromTwoByte(const uc16* string,
    695                                                   int length,
    696                                                   PretenureFlag pretenure) {
    697   if (length == 0) return empty_string();
    698   if (String::IsOneByte(string, length)) {
    699     if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
    700     Handle<SeqOneByteString> result;
    701     ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
    702                                NewRawOneByteString(length, pretenure), String);
    703     CopyChars(result->GetChars(), string, length);
    704     return result;
    705   } else {
    706     Handle<SeqTwoByteString> result;
    707     ASSIGN_RETURN_ON_EXCEPTION(isolate(), result,
    708                                NewRawTwoByteString(length, pretenure), String);
    709     CopyChars(result->GetChars(), string, length);
    710     return result;
    711   }
    712 }
    713 
    714 MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string,
    715                                                   PretenureFlag pretenure) {
    716   return NewStringFromTwoByte(string.start(), string.length(), pretenure);
    717 }
    718 
    719 MaybeHandle<String> Factory::NewStringFromTwoByte(
    720     const ZoneVector<uc16>* string, PretenureFlag pretenure) {
    721   return NewStringFromTwoByte(string->data(), static_cast<int>(string->size()),
    722                               pretenure);
    723 }
    724 
    725 namespace {
    726 
    727 bool inline IsOneByte(Vector<const char> str, int chars) {
    728   // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
    729   return chars == str.length();
    730 }
    731 
    732 bool inline IsOneByte(Handle<String> str) {
    733   return str->IsOneByteRepresentation();
    734 }
    735 
    736 inline void WriteOneByteData(Vector<const char> vector, uint8_t* chars,
    737                              int len) {
    738   // Only works for one byte strings.
    739   DCHECK(vector.length() == len);
    740   MemCopy(chars, vector.start(), len);
    741 }
    742 
    743 inline void WriteTwoByteData(Vector<const char> vector, uint16_t* chars,
    744                              int len) {
    745   unibrow::Utf8Iterator it = unibrow::Utf8Iterator(vector);
    746   while (!it.Done()) {
    747     DCHECK_GT(len, 0);
    748     len -= 1;
    749 
    750     uint16_t c = *it;
    751     ++it;
    752     DCHECK_NE(unibrow::Utf8::kBadChar, c);
    753     *chars++ = c;
    754   }
    755   DCHECK_EQ(len, 0);
    756 }
    757 
    758 inline void WriteOneByteData(Handle<String> s, uint8_t* chars, int len) {
    759   DCHECK(s->length() == len);
    760   String::WriteToFlat(*s, chars, 0, len);
    761 }
    762 
    763 inline void WriteTwoByteData(Handle<String> s, uint16_t* chars, int len) {
    764   DCHECK(s->length() == len);
    765   String::WriteToFlat(*s, chars, 0, len);
    766 }
    767 
    768 }  // namespace
    769 
    770 Handle<SeqOneByteString> Factory::AllocateRawOneByteInternalizedString(
    771     int length, uint32_t hash_field) {
    772   CHECK_GE(String::kMaxLength, length);
    773   // The canonical empty_string is the only zero-length string we allow.
    774   DCHECK_IMPLIES(
    775       length == 0,
    776       isolate()->heap()->roots_[Heap::kempty_stringRootIndex] == nullptr);
    777 
    778   Map* map = *one_byte_internalized_string_map();
    779   int size = SeqOneByteString::SizeFor(length);
    780   HeapObject* result = AllocateRawWithImmortalMap(
    781       size,
    782       isolate()->heap()->CanAllocateInReadOnlySpace() ? TENURED_READ_ONLY
    783                                                       : TENURED,
    784       map);
    785   Handle<SeqOneByteString> answer(SeqOneByteString::cast(result), isolate());
    786   answer->set_length(length);
    787   answer->set_hash_field(hash_field);
    788   DCHECK_EQ(size, answer->Size());
    789   return answer;
    790 }
    791 
    792 Handle<String> Factory::AllocateTwoByteInternalizedString(
    793     Vector<const uc16> str, uint32_t hash_field) {
    794   CHECK_GE(String::kMaxLength, str.length());
    795   DCHECK_NE(0, str.length());  // Use Heap::empty_string() instead.
    796 
    797   Map* map = *internalized_string_map();
    798   int size = SeqTwoByteString::SizeFor(str.length());
    799   HeapObject* result = AllocateRawWithImmortalMap(size, TENURED, map);
    800   Handle<SeqTwoByteString> answer(SeqTwoByteString::cast(result), isolate());
    801   answer->set_length(str.length());
    802   answer->set_hash_field(hash_field);
    803   DCHECK_EQ(size, answer->Size());
    804 
    805   // Fill in the characters.
    806   MemCopy(answer->GetChars(), str.start(), str.length() * kUC16Size);
    807 
    808   return answer;
    809 }
    810 
    811 template <bool is_one_byte, typename T>
    812 Handle<String> Factory::AllocateInternalizedStringImpl(T t, int chars,
    813                                                        uint32_t hash_field) {
    814   DCHECK_LE(0, chars);
    815   DCHECK_GE(String::kMaxLength, chars);
    816 
    817   // Compute map and object size.
    818   int size;
    819   Map* map;
    820   if (is_one_byte) {
    821     map = *one_byte_internalized_string_map();
    822     size = SeqOneByteString::SizeFor(chars);
    823   } else {
    824     map = *internalized_string_map();
    825     size = SeqTwoByteString::SizeFor(chars);
    826   }
    827 
    828   HeapObject* result = AllocateRawWithImmortalMap(
    829       size,
    830       isolate()->heap()->CanAllocateInReadOnlySpace() ? TENURED_READ_ONLY
    831                                                       : TENURED,
    832       map);
    833   Handle<String> answer(String::cast(result), isolate());
    834   answer->set_length(chars);
    835   answer->set_hash_field(hash_field);
    836   DCHECK_EQ(size, answer->Size());
    837 
    838   if (is_one_byte) {
    839     WriteOneByteData(t, SeqOneByteString::cast(*answer)->GetChars(), chars);
    840   } else {
    841     WriteTwoByteData(t, SeqTwoByteString::cast(*answer)->GetChars(), chars);
    842   }
    843   return answer;
    844 }
    845 
    846 Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str,
    847                                                       int chars,
    848                                                       uint32_t hash_field) {
    849   if (IsOneByte(str, chars)) {
    850     Handle<SeqOneByteString> result =
    851         AllocateRawOneByteInternalizedString(str.length(), hash_field);
    852     MemCopy(result->GetChars(), str.start(), str.length());
    853     return result;
    854   }
    855   return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
    856 }
    857 
    858 Handle<String> Factory::NewOneByteInternalizedString(Vector<const uint8_t> str,
    859                                                      uint32_t hash_field) {
    860   Handle<SeqOneByteString> result =
    861       AllocateRawOneByteInternalizedString(str.length(), hash_field);
    862   MemCopy(result->GetChars(), str.start(), str.length());
    863   return result;
    864 }
    865 
    866 Handle<String> Factory::NewOneByteInternalizedSubString(
    867     Handle<SeqOneByteString> string, int offset, int length,
    868     uint32_t hash_field) {
    869   Handle<SeqOneByteString> result =
    870       AllocateRawOneByteInternalizedString(length, hash_field);
    871   MemCopy(result->GetChars(), string->GetChars() + offset, length);
    872   return result;
    873 }
    874 
    875 Handle<String> Factory::NewTwoByteInternalizedString(Vector<const uc16> str,
    876                                                      uint32_t hash_field) {
    877   return AllocateTwoByteInternalizedString(str, hash_field);
    878 }
    879 
    880 Handle<String> Factory::NewInternalizedStringImpl(Handle<String> string,
    881                                                   int chars,
    882                                                   uint32_t hash_field) {
    883   if (IsOneByte(string)) {
    884     return AllocateInternalizedStringImpl<true>(string, chars, hash_field);
    885   }
    886   return AllocateInternalizedStringImpl<false>(string, chars, hash_field);
    887 }
    888 
    889 namespace {
    890 
    891 MaybeHandle<Map> GetInternalizedStringMap(Factory* f, Handle<String> string) {
    892   switch (string->map()->instance_type()) {
    893     case STRING_TYPE:
    894       return f->internalized_string_map();
    895     case ONE_BYTE_STRING_TYPE:
    896       return f->one_byte_internalized_string_map();
    897     case EXTERNAL_STRING_TYPE:
    898       return f->external_internalized_string_map();
    899     case EXTERNAL_ONE_BYTE_STRING_TYPE:
    900       return f->external_one_byte_internalized_string_map();
    901     case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
    902       return f->external_internalized_string_with_one_byte_data_map();
    903     case SHORT_EXTERNAL_STRING_TYPE:
    904       return f->short_external_internalized_string_map();
    905     case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
    906       return f->short_external_one_byte_internalized_string_map();
    907     case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
    908       return f->short_external_internalized_string_with_one_byte_data_map();
    909     default:
    910       return MaybeHandle<Map>();  // No match found.
    911   }
    912 }
    913 
    914 }  // namespace
    915 
    916 MaybeHandle<Map> Factory::InternalizedStringMapForString(
    917     Handle<String> string) {
    918   // If the string is in new space it cannot be used as internalized.
    919   if (Heap::InNewSpace(*string)) return MaybeHandle<Map>();
    920 
    921   return GetInternalizedStringMap(this, string);
    922 }
    923 
    924 template <class StringClass>
    925 Handle<StringClass> Factory::InternalizeExternalString(Handle<String> string) {
    926   Handle<StringClass> cast_string = Handle<StringClass>::cast(string);
    927   Handle<Map> map = GetInternalizedStringMap(this, string).ToHandleChecked();
    928   Handle<StringClass> external_string(StringClass::cast(New(map, TENURED)),
    929                                       isolate());
    930   external_string->set_length(cast_string->length());
    931   external_string->set_hash_field(cast_string->hash_field());
    932   external_string->SetResource(isolate(), nullptr);
    933   isolate()->heap()->RegisterExternalString(*external_string);
    934   return external_string;
    935 }
    936 
    937 template Handle<ExternalOneByteString>
    938     Factory::InternalizeExternalString<ExternalOneByteString>(Handle<String>);
    939 template Handle<ExternalTwoByteString>
    940     Factory::InternalizeExternalString<ExternalTwoByteString>(Handle<String>);
    941 
    942 MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString(
    943     int length, PretenureFlag pretenure) {
    944   if (length > String::kMaxLength || length < 0) {
    945     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString);
    946   }
    947   DCHECK_GT(length, 0);  // Use Factory::empty_string() instead.
    948   int size = SeqOneByteString::SizeFor(length);
    949   DCHECK_GE(SeqOneByteString::kMaxSize, size);
    950 
    951   HeapObject* result =
    952       AllocateRawWithImmortalMap(size, pretenure, *one_byte_string_map());
    953   Handle<SeqOneByteString> string(SeqOneByteString::cast(result), isolate());
    954   string->set_length(length);
    955   string->set_hash_field(String::kEmptyHashField);
    956   DCHECK_EQ(size, string->Size());
    957   return string;
    958 }
    959 
    960 MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString(
    961     int length, PretenureFlag pretenure) {
    962   if (length > String::kMaxLength || length < 0) {
    963     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString);
    964   }
    965   DCHECK_GT(length, 0);  // Use Factory::empty_string() instead.
    966   int size = SeqTwoByteString::SizeFor(length);
    967   DCHECK_GE(SeqTwoByteString::kMaxSize, size);
    968 
    969   HeapObject* result =
    970       AllocateRawWithImmortalMap(size, pretenure, *string_map());
    971   Handle<SeqTwoByteString> string(SeqTwoByteString::cast(result), isolate());
    972   string->set_length(length);
    973   string->set_hash_field(String::kEmptyHashField);
    974   DCHECK_EQ(size, string->Size());
    975   return string;
    976 }
    977 
    978 Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) {
    979   if (code <= String::kMaxOneByteCharCodeU) {
    980     {
    981       DisallowHeapAllocation no_allocation;
    982       Object* value = single_character_string_cache()->get(code);
    983       if (value != *undefined_value()) {
    984         return handle(String::cast(value), isolate());
    985       }
    986     }
    987     uint8_t buffer[1];
    988     buffer[0] = static_cast<uint8_t>(code);
    989     Handle<String> result =
    990         InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
    991     single_character_string_cache()->set(code, *result);
    992     return result;
    993   }
    994   DCHECK_LE(code, String::kMaxUtf16CodeUnitU);
    995 
    996   Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked();
    997   result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code));
    998   return result;
    999 }
   1000 
   1001 // Returns true for a character in a range.  Both limits are inclusive.
   1002 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
   1003   // This makes uses of the the unsigned wraparound.
   1004   return character - from <= to - from;
   1005 }
   1006 
   1007 static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate,
   1008                                                           uint16_t c1,
   1009                                                           uint16_t c2) {
   1010   // Numeric strings have a different hash algorithm not known by
   1011   // LookupTwoCharsStringIfExists, so we skip this step for such strings.
   1012   if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) {
   1013     Handle<String> result;
   1014     if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2)
   1015             .ToHandle(&result)) {
   1016       return result;
   1017     }
   1018   }
   1019 
   1020   // Now we know the length is 2, we might as well make use of that fact
   1021   // when building the new string.
   1022   if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
   1023     // We can do this.
   1024     DCHECK(base::bits::IsPowerOfTwo(String::kMaxOneByteCharCodeU +
   1025                                     1));  // because of this.
   1026     Handle<SeqOneByteString> str =
   1027         isolate->factory()->NewRawOneByteString(2).ToHandleChecked();
   1028     uint8_t* dest = str->GetChars();
   1029     dest[0] = static_cast<uint8_t>(c1);
   1030     dest[1] = static_cast<uint8_t>(c2);
   1031     return str;
   1032   } else {
   1033     Handle<SeqTwoByteString> str =
   1034         isolate->factory()->NewRawTwoByteString(2).ToHandleChecked();
   1035     uc16* dest = str->GetChars();
   1036     dest[0] = c1;
   1037     dest[1] = c2;
   1038     return str;
   1039   }
   1040 }
   1041 
   1042 template <typename SinkChar, typename StringType>
   1043 Handle<String> ConcatStringContent(Handle<StringType> result,
   1044                                    Handle<String> first,
   1045                                    Handle<String> second) {
   1046   DisallowHeapAllocation pointer_stays_valid;
   1047   SinkChar* sink = result->GetChars();
   1048   String::WriteToFlat(*first, sink, 0, first->length());
   1049   String::WriteToFlat(*second, sink + first->length(), 0, second->length());
   1050   return result;
   1051 }
   1052 
   1053 MaybeHandle<String> Factory::NewConsString(Handle<String> left,
   1054                                            Handle<String> right) {
   1055   if (left->IsThinString()) {
   1056     left = handle(Handle<ThinString>::cast(left)->actual(), isolate());
   1057   }
   1058   if (right->IsThinString()) {
   1059     right = handle(Handle<ThinString>::cast(right)->actual(), isolate());
   1060   }
   1061   int left_length = left->length();
   1062   if (left_length == 0) return right;
   1063   int right_length = right->length();
   1064   if (right_length == 0) return left;
   1065 
   1066   int length = left_length + right_length;
   1067 
   1068   if (length == 2) {
   1069     uint16_t c1 = left->Get(0);
   1070     uint16_t c2 = right->Get(0);
   1071     return MakeOrFindTwoCharacterString(isolate(), c1, c2);
   1072   }
   1073 
   1074   // Make sure that an out of memory exception is thrown if the length
   1075   // of the new cons string is too large.
   1076   if (length > String::kMaxLength || length < 0) {
   1077     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
   1078   }
   1079 
   1080   bool left_is_one_byte = left->IsOneByteRepresentation();
   1081   bool right_is_one_byte = right->IsOneByteRepresentation();
   1082   bool is_one_byte = left_is_one_byte && right_is_one_byte;
   1083   bool is_one_byte_data_in_two_byte_string = false;
   1084   if (!is_one_byte) {
   1085     // At least one of the strings uses two-byte representation so we
   1086     // can't use the fast case code for short one-byte strings below, but
   1087     // we can try to save memory if all chars actually fit in one-byte.
   1088     is_one_byte_data_in_two_byte_string =
   1089         left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars();
   1090     if (is_one_byte_data_in_two_byte_string) {
   1091       isolate()->counters()->string_add_runtime_ext_to_one_byte()->Increment();
   1092     }
   1093   }
   1094 
   1095   // If the resulting string is small make a flat string.
   1096   if (length < ConsString::kMinLength) {
   1097     // Note that neither of the two inputs can be a slice because:
   1098     STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
   1099     DCHECK(left->IsFlat());
   1100     DCHECK(right->IsFlat());
   1101 
   1102     STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
   1103     if (is_one_byte) {
   1104       Handle<SeqOneByteString> result =
   1105           NewRawOneByteString(length).ToHandleChecked();
   1106       DisallowHeapAllocation no_gc;
   1107       uint8_t* dest = result->GetChars();
   1108       // Copy left part.
   1109       const uint8_t* src =
   1110           left->IsExternalString()
   1111               ? Handle<ExternalOneByteString>::cast(left)->GetChars()
   1112               : Handle<SeqOneByteString>::cast(left)->GetChars();
   1113       for (int i = 0; i < left_length; i++) *dest++ = src[i];
   1114       // Copy right part.
   1115       src = right->IsExternalString()
   1116                 ? Handle<ExternalOneByteString>::cast(right)->GetChars()
   1117                 : Handle<SeqOneByteString>::cast(right)->GetChars();
   1118       for (int i = 0; i < right_length; i++) *dest++ = src[i];
   1119       return result;
   1120     }
   1121 
   1122     return (is_one_byte_data_in_two_byte_string)
   1123                ? ConcatStringContent<uint8_t>(
   1124                      NewRawOneByteString(length).ToHandleChecked(), left, right)
   1125                : ConcatStringContent<uc16>(
   1126                      NewRawTwoByteString(length).ToHandleChecked(), left,
   1127                      right);
   1128   }
   1129 
   1130   bool one_byte = (is_one_byte || is_one_byte_data_in_two_byte_string);
   1131   return NewConsString(left, right, length, one_byte);
   1132 }
   1133 
   1134 Handle<String> Factory::NewConsString(Handle<String> left, Handle<String> right,
   1135                                       int length, bool one_byte) {
   1136   DCHECK(!left->IsThinString());
   1137   DCHECK(!right->IsThinString());
   1138   DCHECK_GE(length, ConsString::kMinLength);
   1139   DCHECK_LE(length, String::kMaxLength);
   1140 
   1141   Handle<ConsString> result(
   1142       ConsString::cast(one_byte ? New(cons_one_byte_string_map(), NOT_TENURED)
   1143                                 : New(cons_string_map(), NOT_TENURED)),
   1144       isolate());
   1145 
   1146   DisallowHeapAllocation no_gc;
   1147   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
   1148 
   1149   result->set_hash_field(String::kEmptyHashField);
   1150   result->set_length(length);
   1151   result->set_first(isolate(), *left, mode);
   1152   result->set_second(isolate(), *right, mode);
   1153   return result;
   1154 }
   1155 
   1156 Handle<String> Factory::NewSurrogatePairString(uint16_t lead, uint16_t trail) {
   1157   DCHECK_GE(lead, 0xD800);
   1158   DCHECK_LE(lead, 0xDBFF);
   1159   DCHECK_GE(trail, 0xDC00);
   1160   DCHECK_LE(trail, 0xDFFF);
   1161 
   1162   Handle<SeqTwoByteString> str =
   1163       isolate()->factory()->NewRawTwoByteString(2).ToHandleChecked();
   1164   uc16* dest = str->GetChars();
   1165   dest[0] = lead;
   1166   dest[1] = trail;
   1167   return str;
   1168 }
   1169 
   1170 Handle<String> Factory::NewProperSubString(Handle<String> str, int begin,
   1171                                            int end) {
   1172 #if VERIFY_HEAP
   1173   if (FLAG_verify_heap) str->StringVerify(isolate());
   1174 #endif
   1175   DCHECK(begin > 0 || end < str->length());
   1176 
   1177   str = String::Flatten(isolate(), str);
   1178 
   1179   int length = end - begin;
   1180   if (length <= 0) return empty_string();
   1181   if (length == 1) {
   1182     return LookupSingleCharacterStringFromCode(str->Get(begin));
   1183   }
   1184   if (length == 2) {
   1185     // Optimization for 2-byte strings often used as keys in a decompression
   1186     // dictionary.  Check whether we already have the string in the string
   1187     // table to prevent creation of many unnecessary strings.
   1188     uint16_t c1 = str->Get(begin);
   1189     uint16_t c2 = str->Get(begin + 1);
   1190     return MakeOrFindTwoCharacterString(isolate(), c1, c2);
   1191   }
   1192 
   1193   if (!FLAG_string_slices || length < SlicedString::kMinLength) {
   1194     if (str->IsOneByteRepresentation()) {
   1195       Handle<SeqOneByteString> result =
   1196           NewRawOneByteString(length).ToHandleChecked();
   1197       uint8_t* dest = result->GetChars();
   1198       DisallowHeapAllocation no_gc;
   1199       String::WriteToFlat(*str, dest, begin, end);
   1200       return result;
   1201     } else {
   1202       Handle<SeqTwoByteString> result =
   1203           NewRawTwoByteString(length).ToHandleChecked();
   1204       uc16* dest = result->GetChars();
   1205       DisallowHeapAllocation no_gc;
   1206       String::WriteToFlat(*str, dest, begin, end);
   1207       return result;
   1208     }
   1209   }
   1210 
   1211   int offset = begin;
   1212 
   1213   if (str->IsSlicedString()) {
   1214     Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
   1215     str = Handle<String>(slice->parent(), isolate());
   1216     offset += slice->offset();
   1217   }
   1218   if (str->IsThinString()) {
   1219     Handle<ThinString> thin = Handle<ThinString>::cast(str);
   1220     str = handle(thin->actual(), isolate());
   1221   }
   1222 
   1223   DCHECK(str->IsSeqString() || str->IsExternalString());
   1224   Handle<Map> map = str->IsOneByteRepresentation()
   1225                         ? sliced_one_byte_string_map()
   1226                         : sliced_string_map();
   1227   Handle<SlicedString> slice(SlicedString::cast(New(map, NOT_TENURED)),
   1228                              isolate());
   1229 
   1230   slice->set_hash_field(String::kEmptyHashField);
   1231   slice->set_length(length);
   1232   slice->set_parent(isolate(), *str);
   1233   slice->set_offset(offset);
   1234   return slice;
   1235 }
   1236 
   1237 MaybeHandle<String> Factory::NewExternalStringFromOneByte(
   1238     const ExternalOneByteString::Resource* resource) {
   1239   size_t length = resource->length();
   1240   if (length > static_cast<size_t>(String::kMaxLength)) {
   1241     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
   1242   }
   1243   if (length == 0) return empty_string();
   1244 
   1245   Handle<Map> map;
   1246   if (resource->IsCompressible()) {
   1247     // TODO(hajimehoshi): Rename this to 'uncached_external_one_byte_string_map'
   1248     map = short_external_one_byte_string_map();
   1249   } else {
   1250     map = external_one_byte_string_map();
   1251   }
   1252   Handle<ExternalOneByteString> external_string(
   1253       ExternalOneByteString::cast(New(map, TENURED)), isolate());
   1254   external_string->set_length(static_cast<int>(length));
   1255   external_string->set_hash_field(String::kEmptyHashField);
   1256   external_string->SetResource(isolate(), resource);
   1257   isolate()->heap()->RegisterExternalString(*external_string);
   1258 
   1259   return external_string;
   1260 }
   1261 
   1262 MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
   1263     const ExternalTwoByteString::Resource* resource) {
   1264   size_t length = resource->length();
   1265   if (length > static_cast<size_t>(String::kMaxLength)) {
   1266     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
   1267   }
   1268   if (length == 0) return empty_string();
   1269 
   1270   // For small strings we check whether the resource contains only
   1271   // one byte characters.  If yes, we use a different string map.
   1272   static const size_t kOneByteCheckLengthLimit = 32;
   1273   bool is_one_byte =
   1274       length <= kOneByteCheckLengthLimit &&
   1275       String::IsOneByte(resource->data(), static_cast<int>(length));
   1276   Handle<Map> map;
   1277   if (resource->IsCompressible()) {
   1278     // TODO(hajimehoshi): Rename these to 'uncached_external_string_...'.
   1279     map = is_one_byte ? short_external_string_with_one_byte_data_map()
   1280                       : short_external_string_map();
   1281   } else {
   1282     map = is_one_byte ? external_string_with_one_byte_data_map()
   1283                       : external_string_map();
   1284   }
   1285   Handle<ExternalTwoByteString> external_string(
   1286       ExternalTwoByteString::cast(New(map, TENURED)), isolate());
   1287   external_string->set_length(static_cast<int>(length));
   1288   external_string->set_hash_field(String::kEmptyHashField);
   1289   external_string->SetResource(isolate(), resource);
   1290   isolate()->heap()->RegisterExternalString(*external_string);
   1291 
   1292   return external_string;
   1293 }
   1294 
   1295 Handle<ExternalOneByteString> Factory::NewNativeSourceString(
   1296     const ExternalOneByteString::Resource* resource) {
   1297   size_t length = resource->length();
   1298   DCHECK_LE(length, static_cast<size_t>(String::kMaxLength));
   1299 
   1300   Handle<Map> map = native_source_string_map();
   1301   Handle<ExternalOneByteString> external_string(
   1302       ExternalOneByteString::cast(New(map, TENURED)), isolate());
   1303   external_string->set_length(static_cast<int>(length));
   1304   external_string->set_hash_field(String::kEmptyHashField);
   1305   external_string->SetResource(isolate(), resource);
   1306   isolate()->heap()->RegisterExternalString(*external_string);
   1307 
   1308   return external_string;
   1309 }
   1310 
   1311 Handle<JSStringIterator> Factory::NewJSStringIterator(Handle<String> string) {
   1312   Handle<Map> map(isolate()->native_context()->string_iterator_map(),
   1313                   isolate());
   1314   Handle<String> flat_string = String::Flatten(isolate(), string);
   1315   Handle<JSStringIterator> iterator =
   1316       Handle<JSStringIterator>::cast(NewJSObjectFromMap(map));
   1317   iterator->set_string(*flat_string);
   1318   iterator->set_index(0);
   1319 
   1320   return iterator;
   1321 }
   1322 
   1323 Handle<Symbol> Factory::NewSymbol(PretenureFlag flag) {
   1324   DCHECK(flag != NOT_TENURED);
   1325   // Statically ensure that it is safe to allocate symbols in paged spaces.
   1326   STATIC_ASSERT(Symbol::kSize <= kMaxRegularHeapObjectSize);
   1327 
   1328   HeapObject* result =
   1329       AllocateRawWithImmortalMap(Symbol::kSize, flag, *symbol_map());
   1330 
   1331   // Generate a random hash value.
   1332   int hash = isolate()->GenerateIdentityHash(Name::kHashBitMask);
   1333 
   1334   Handle<Symbol> symbol(Symbol::cast(result), isolate());
   1335   symbol->set_hash_field(Name::kIsNotArrayIndexMask |
   1336                          (hash << Name::kHashShift));
   1337   symbol->set_name(*undefined_value());
   1338   symbol->set_flags(0);
   1339   DCHECK(!symbol->is_private());
   1340   return symbol;
   1341 }
   1342 
   1343 Handle<Symbol> Factory::NewPrivateSymbol(PretenureFlag flag) {
   1344   DCHECK(flag != NOT_TENURED);
   1345   Handle<Symbol> symbol = NewSymbol(flag);
   1346   symbol->set_is_private(true);
   1347   return symbol;
   1348 }
   1349 
   1350 Handle<Symbol> Factory::NewPrivateFieldSymbol() {
   1351   Handle<Symbol> symbol = NewSymbol();
   1352   symbol->set_is_private_field();
   1353   return symbol;
   1354 }
   1355 
   1356 Handle<NativeContext> Factory::NewNativeContext() {
   1357   Handle<NativeContext> context = NewFixedArrayWithMap<NativeContext>(
   1358       Heap::kNativeContextMapRootIndex, Context::NATIVE_CONTEXT_SLOTS, TENURED);
   1359   context->set_native_context(*context);
   1360   context->set_errors_thrown(Smi::kZero);
   1361   context->set_math_random_index(Smi::kZero);
   1362   context->set_serialized_objects(*empty_fixed_array());
   1363   return context;
   1364 }
   1365 
   1366 Handle<Context> Factory::NewScriptContext(Handle<NativeContext> outer,
   1367                                           Handle<ScopeInfo> scope_info) {
   1368   DCHECK_EQ(scope_info->scope_type(), SCRIPT_SCOPE);
   1369   Handle<Context> context = NewFixedArrayWithMap<Context>(
   1370       Heap::kScriptContextMapRootIndex, scope_info->ContextLength(), TENURED);
   1371   context->set_scope_info(*scope_info);
   1372   context->set_previous(*outer);
   1373   context->set_extension(*the_hole_value());
   1374   context->set_native_context(*outer);
   1375   DCHECK(context->IsScriptContext());
   1376   return context;
   1377 }
   1378 
   1379 Handle<ScriptContextTable> Factory::NewScriptContextTable() {
   1380   Handle<ScriptContextTable> context_table =
   1381       NewFixedArrayWithMap<ScriptContextTable>(
   1382           Heap::kScriptContextTableMapRootIndex,
   1383           ScriptContextTable::kMinLength);
   1384   context_table->set_used(0);
   1385   return context_table;
   1386 }
   1387 
   1388 Handle<Context> Factory::NewModuleContext(Handle<Module> module,
   1389                                           Handle<NativeContext> outer,
   1390                                           Handle<ScopeInfo> scope_info) {
   1391   DCHECK_EQ(scope_info->scope_type(), MODULE_SCOPE);
   1392   Handle<Context> context = NewFixedArrayWithMap<Context>(
   1393       Heap::kModuleContextMapRootIndex, scope_info->ContextLength(), TENURED);
   1394   context->set_scope_info(*scope_info);
   1395   context->set_previous(*outer);
   1396   context->set_extension(*module);
   1397   context->set_native_context(*outer);
   1398   DCHECK(context->IsModuleContext());
   1399   return context;
   1400 }
   1401 
   1402 Handle<Context> Factory::NewFunctionContext(Handle<Context> outer,
   1403                                             Handle<ScopeInfo> scope_info) {
   1404   int length = scope_info->ContextLength();
   1405   DCHECK_LE(Context::MIN_CONTEXT_SLOTS, length);
   1406   Heap::RootListIndex mapRootIndex;
   1407   switch (scope_info->scope_type()) {
   1408     case EVAL_SCOPE:
   1409       mapRootIndex = Heap::kEvalContextMapRootIndex;
   1410       break;
   1411     case FUNCTION_SCOPE:
   1412       mapRootIndex = Heap::kFunctionContextMapRootIndex;
   1413       break;
   1414     default:
   1415       UNREACHABLE();
   1416   }
   1417   Handle<Context> context = NewFixedArrayWithMap<Context>(mapRootIndex, length);
   1418   context->set_scope_info(*scope_info);
   1419   context->set_previous(*outer);
   1420   context->set_extension(*the_hole_value());
   1421   context->set_native_context(outer->native_context());
   1422   return context;
   1423 }
   1424 
   1425 Handle<Context> Factory::NewCatchContext(Handle<Context> previous,
   1426                                          Handle<ScopeInfo> scope_info,
   1427                                          Handle<Object> thrown_object) {
   1428   STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
   1429   Handle<Context> context = NewFixedArrayWithMap<Context>(
   1430       Heap::kCatchContextMapRootIndex, Context::MIN_CONTEXT_SLOTS + 1);
   1431   context->set_scope_info(*scope_info);
   1432   context->set_previous(*previous);
   1433   context->set_extension(*the_hole_value());
   1434   context->set_native_context(previous->native_context());
   1435   context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
   1436   return context;
   1437 }
   1438 
   1439 Handle<Context> Factory::NewDebugEvaluateContext(Handle<Context> previous,
   1440                                                  Handle<ScopeInfo> scope_info,
   1441                                                  Handle<JSReceiver> extension,
   1442                                                  Handle<Context> wrapped,
   1443                                                  Handle<StringSet> whitelist) {
   1444   STATIC_ASSERT(Context::WHITE_LIST_INDEX == Context::MIN_CONTEXT_SLOTS + 1);
   1445   DCHECK(scope_info->IsDebugEvaluateScope());
   1446   Handle<HeapObject> ext = extension.is_null()
   1447                                ? Handle<HeapObject>::cast(the_hole_value())
   1448                                : Handle<HeapObject>::cast(extension);
   1449   Handle<Context> c = NewFixedArrayWithMap<Context>(
   1450       Heap::kDebugEvaluateContextMapRootIndex, Context::MIN_CONTEXT_SLOTS + 2);
   1451   c->set_scope_info(*scope_info);
   1452   c->set_previous(*previous);
   1453   c->set_native_context(previous->native_context());
   1454   c->set_extension(*ext);
   1455   if (!wrapped.is_null()) c->set(Context::WRAPPED_CONTEXT_INDEX, *wrapped);
   1456   if (!whitelist.is_null()) c->set(Context::WHITE_LIST_INDEX, *whitelist);
   1457   return c;
   1458 }
   1459 
   1460 Handle<Context> Factory::NewWithContext(Handle<Context> previous,
   1461                                         Handle<ScopeInfo> scope_info,
   1462                                         Handle<JSReceiver> extension) {
   1463   Handle<Context> context = NewFixedArrayWithMap<Context>(
   1464       Heap::kWithContextMapRootIndex, Context::MIN_CONTEXT_SLOTS);
   1465   context->set_scope_info(*scope_info);
   1466   context->set_previous(*previous);
   1467   context->set_extension(*extension);
   1468   context->set_native_context(previous->native_context());
   1469   return context;
   1470 }
   1471 
   1472 Handle<Context> Factory::NewBlockContext(Handle<Context> previous,
   1473                                          Handle<ScopeInfo> scope_info) {
   1474   DCHECK_EQ(scope_info->scope_type(), BLOCK_SCOPE);
   1475   Handle<Context> context = NewFixedArrayWithMap<Context>(
   1476       Heap::kBlockContextMapRootIndex, scope_info->ContextLength());
   1477   context->set_scope_info(*scope_info);
   1478   context->set_previous(*previous);
   1479   context->set_extension(*the_hole_value());
   1480   context->set_native_context(previous->native_context());
   1481   return context;
   1482 }
   1483 
   1484 Handle<Context> Factory::NewBuiltinContext(Handle<NativeContext> native_context,
   1485                                            int length) {
   1486   DCHECK_GE(length, Context::MIN_CONTEXT_SLOTS);
   1487   Handle<Context> context =
   1488       NewFixedArrayWithMap<Context>(Heap::kFunctionContextMapRootIndex, length);
   1489   context->set_scope_info(ReadOnlyRoots(isolate()).empty_scope_info());
   1490   context->set_extension(*the_hole_value());
   1491   context->set_native_context(*native_context);
   1492   return context;
   1493 }
   1494 
   1495 Handle<Struct> Factory::NewStruct(InstanceType type, PretenureFlag pretenure) {
   1496   Map* map;
   1497   switch (type) {
   1498 #define MAKE_CASE(NAME, Name, name) \
   1499   case NAME##_TYPE:                 \
   1500     map = *name##_map();            \
   1501     break;
   1502     STRUCT_LIST(MAKE_CASE)
   1503 #undef MAKE_CASE
   1504     default:
   1505       UNREACHABLE();
   1506   }
   1507   int size = map->instance_size();
   1508   HeapObject* result = AllocateRawWithImmortalMap(size, pretenure, map);
   1509   Handle<Struct> str(Struct::cast(result), isolate());
   1510   str->InitializeBody(size);
   1511   return str;
   1512 }
   1513 
   1514 Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
   1515     int aliased_context_slot) {
   1516   Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
   1517       NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE, NOT_TENURED));
   1518   entry->set_aliased_context_slot(aliased_context_slot);
   1519   return entry;
   1520 }
   1521 
   1522 Handle<AccessorInfo> Factory::NewAccessorInfo() {
   1523   Handle<AccessorInfo> info =
   1524       Handle<AccessorInfo>::cast(NewStruct(ACCESSOR_INFO_TYPE, TENURED));
   1525   info->set_name(*empty_string());
   1526   info->set_flags(0);  // Must clear the flags, it was initialized as undefined.
   1527   info->set_is_sloppy(true);
   1528   info->set_initial_property_attributes(NONE);
   1529   return info;
   1530 }
   1531 
   1532 Handle<Script> Factory::NewScript(Handle<String> source, PretenureFlag tenure) {
   1533   return NewScriptWithId(source, isolate()->heap()->NextScriptId(), tenure);
   1534 }
   1535 
   1536 Handle<Script> Factory::NewScriptWithId(Handle<String> source, int script_id,
   1537                                         PretenureFlag tenure) {
   1538   DCHECK(tenure == TENURED || tenure == TENURED_READ_ONLY);
   1539   // Create and initialize script object.
   1540   Heap* heap = isolate()->heap();
   1541   ReadOnlyRoots roots(heap);
   1542   Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE, tenure));
   1543   script->set_source(*source);
   1544   script->set_name(roots.undefined_value());
   1545   script->set_id(script_id);
   1546   script->set_line_offset(0);
   1547   script->set_column_offset(0);
   1548   script->set_context_data(roots.undefined_value());
   1549   script->set_type(Script::TYPE_NORMAL);
   1550   script->set_line_ends(roots.undefined_value());
   1551   script->set_eval_from_shared_or_wrapped_arguments(roots.undefined_value());
   1552   script->set_eval_from_position(0);
   1553   script->set_shared_function_infos(*empty_weak_fixed_array(),
   1554                                     SKIP_WRITE_BARRIER);
   1555   script->set_flags(0);
   1556   script->set_host_defined_options(*empty_fixed_array());
   1557   Handle<WeakArrayList> scripts = script_list();
   1558   scripts = WeakArrayList::AddToEnd(isolate(), scripts,
   1559                                     MaybeObjectHandle::Weak(script));
   1560   heap->set_script_list(*scripts);
   1561   LOG(isolate(), ScriptEvent(Logger::ScriptEventType::kCreate, script_id));
   1562   return script;
   1563 }
   1564 
   1565 Handle<Script> Factory::CloneScript(Handle<Script> script) {
   1566   Heap* heap = isolate()->heap();
   1567   int script_id = isolate()->heap()->NextScriptId();
   1568   Handle<Script> new_script =
   1569       Handle<Script>::cast(NewStruct(SCRIPT_TYPE, TENURED));
   1570   new_script->set_source(script->source());
   1571   new_script->set_name(script->name());
   1572   new_script->set_id(script_id);
   1573   new_script->set_line_offset(script->line_offset());
   1574   new_script->set_column_offset(script->column_offset());
   1575   new_script->set_context_data(script->context_data());
   1576   new_script->set_type(script->type());
   1577   new_script->set_line_ends(ReadOnlyRoots(heap).undefined_value());
   1578   new_script->set_eval_from_shared_or_wrapped_arguments(
   1579       script->eval_from_shared_or_wrapped_arguments());
   1580   new_script->set_shared_function_infos(*empty_weak_fixed_array(),
   1581                                         SKIP_WRITE_BARRIER);
   1582   new_script->set_eval_from_position(script->eval_from_position());
   1583   new_script->set_flags(script->flags());
   1584   new_script->set_host_defined_options(script->host_defined_options());
   1585   Handle<WeakArrayList> scripts = script_list();
   1586   scripts = WeakArrayList::AddToEnd(isolate(), scripts,
   1587                                     MaybeObjectHandle::Weak(new_script));
   1588   heap->set_script_list(*scripts);
   1589   LOG(isolate(), ScriptEvent(Logger::ScriptEventType::kCreate, script_id));
   1590   return new_script;
   1591 }
   1592 
   1593 Handle<CallableTask> Factory::NewCallableTask(Handle<JSReceiver> callable,
   1594                                               Handle<Context> context) {
   1595   DCHECK(callable->IsCallable());
   1596   Handle<CallableTask> microtask =
   1597       Handle<CallableTask>::cast(NewStruct(CALLABLE_TASK_TYPE));
   1598   microtask->set_callable(*callable);
   1599   microtask->set_context(*context);
   1600   return microtask;
   1601 }
   1602 
   1603 Handle<CallbackTask> Factory::NewCallbackTask(Handle<Foreign> callback,
   1604                                               Handle<Foreign> data) {
   1605   Handle<CallbackTask> microtask =
   1606       Handle<CallbackTask>::cast(NewStruct(CALLBACK_TASK_TYPE));
   1607   microtask->set_callback(*callback);
   1608   microtask->set_data(*data);
   1609   return microtask;
   1610 }
   1611 
   1612 Handle<PromiseResolveThenableJobTask> Factory::NewPromiseResolveThenableJobTask(
   1613     Handle<JSPromise> promise_to_resolve, Handle<JSReceiver> then,
   1614     Handle<JSReceiver> thenable, Handle<Context> context) {
   1615   DCHECK(then->IsCallable());
   1616   Handle<PromiseResolveThenableJobTask> microtask =
   1617       Handle<PromiseResolveThenableJobTask>::cast(
   1618           NewStruct(PROMISE_RESOLVE_THENABLE_JOB_TASK_TYPE));
   1619   microtask->set_promise_to_resolve(*promise_to_resolve);
   1620   microtask->set_then(*then);
   1621   microtask->set_thenable(*thenable);
   1622   microtask->set_context(*context);
   1623   return microtask;
   1624 }
   1625 
   1626 Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) {
   1627   // Statically ensure that it is safe to allocate foreigns in paged spaces.
   1628   STATIC_ASSERT(Foreign::kSize <= kMaxRegularHeapObjectSize);
   1629   Map* map = *foreign_map();
   1630   HeapObject* result =
   1631       AllocateRawWithImmortalMap(map->instance_size(), pretenure, map);
   1632   Handle<Foreign> foreign(Foreign::cast(result), isolate());
   1633   foreign->set_foreign_address(addr);
   1634   return foreign;
   1635 }
   1636 
   1637 Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) {
   1638   DCHECK_LE(0, length);
   1639   if (length > ByteArray::kMaxLength) {
   1640     isolate()->heap()->FatalProcessOutOfMemory("invalid array length");
   1641   }
   1642   int size = ByteArray::SizeFor(length);
   1643   HeapObject* result =
   1644       AllocateRawWithImmortalMap(size, pretenure, *byte_array_map());
   1645   Handle<ByteArray> array(ByteArray::cast(result), isolate());
   1646   array->set_length(length);
   1647   array->clear_padding();
   1648   return array;
   1649 }
   1650 
   1651 Handle<BytecodeArray> Factory::NewBytecodeArray(
   1652     int length, const byte* raw_bytecodes, int frame_size, int parameter_count,
   1653     Handle<FixedArray> constant_pool) {
   1654   DCHECK_LE(0, length);
   1655   if (length > BytecodeArray::kMaxLength) {
   1656     isolate()->heap()->FatalProcessOutOfMemory("invalid array length");
   1657   }
   1658   // Bytecode array is pretenured, so constant pool array should be too.
   1659   DCHECK(!Heap::InNewSpace(*constant_pool));
   1660 
   1661   int size = BytecodeArray::SizeFor(length);
   1662   HeapObject* result =
   1663       AllocateRawWithImmortalMap(size, TENURED, *bytecode_array_map());
   1664   Handle<BytecodeArray> instance(BytecodeArray::cast(result), isolate());
   1665   instance->set_length(length);
   1666   instance->set_frame_size(frame_size);
   1667   instance->set_parameter_count(parameter_count);
   1668   instance->set_incoming_new_target_or_generator_register(
   1669       interpreter::Register::invalid_value());
   1670   instance->set_interrupt_budget(interpreter::Interpreter::InterruptBudget());
   1671   instance->set_osr_loop_nesting_level(0);
   1672   instance->set_bytecode_age(BytecodeArray::kNoAgeBytecodeAge);
   1673   instance->set_constant_pool(*constant_pool);
   1674   instance->set_handler_table(*empty_byte_array());
   1675   instance->set_source_position_table(*empty_byte_array());
   1676   CopyBytes(reinterpret_cast<byte*>(instance->GetFirstBytecodeAddress()),
   1677             raw_bytecodes, length);
   1678   instance->clear_padding();
   1679 
   1680   return instance;
   1681 }
   1682 
   1683 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArrayWithExternalPointer(
   1684     int length, ExternalArrayType array_type, void* external_pointer,
   1685     PretenureFlag pretenure) {
   1686   // TODO(7881): Smi length check
   1687   DCHECK(0 <= length && length <= Smi::kMaxValue);
   1688   int size = FixedTypedArrayBase::kHeaderSize;
   1689   HeapObject* result = AllocateRawWithImmortalMap(
   1690       size, pretenure, isolate()->heap()->MapForFixedTypedArray(array_type));
   1691   Handle<FixedTypedArrayBase> elements(FixedTypedArrayBase::cast(result),
   1692                                        isolate());
   1693   elements->set_base_pointer(Smi::kZero, SKIP_WRITE_BARRIER);
   1694   elements->set_external_pointer(external_pointer, SKIP_WRITE_BARRIER);
   1695   elements->set_length(length);
   1696   return elements;
   1697 }
   1698 
   1699 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray(
   1700     size_t length, size_t byte_length, ExternalArrayType array_type,
   1701     bool initialize, PretenureFlag pretenure) {
   1702   // TODO(7881): Smi length check
   1703   DCHECK(0 <= length && length <= Smi::kMaxValue);
   1704   CHECK(byte_length <= kMaxInt - FixedTypedArrayBase::kDataOffset);
   1705   size_t size =
   1706       OBJECT_POINTER_ALIGN(byte_length + FixedTypedArrayBase::kDataOffset);
   1707   Map* map = isolate()->heap()->MapForFixedTypedArray(array_type);
   1708   AllocationAlignment alignment =
   1709       array_type == kExternalFloat64Array ? kDoubleAligned : kWordAligned;
   1710   HeapObject* object = AllocateRawWithImmortalMap(static_cast<int>(size),
   1711                                                   pretenure, map, alignment);
   1712 
   1713   Handle<FixedTypedArrayBase> elements(FixedTypedArrayBase::cast(object),
   1714                                        isolate());
   1715   elements->set_base_pointer(*elements, SKIP_WRITE_BARRIER);
   1716   elements->set_external_pointer(
   1717       reinterpret_cast<void*>(
   1718           ExternalReference::fixed_typed_array_base_data_offset().address()),
   1719       SKIP_WRITE_BARRIER);
   1720   elements->set_length(static_cast<int>(length));
   1721   if (initialize) memset(elements->DataPtr(), 0, elements->DataSize());
   1722   return elements;
   1723 }
   1724 
   1725 Handle<Cell> Factory::NewCell(Handle<Object> value) {
   1726   AllowDeferredHandleDereference convert_to_cell;
   1727   STATIC_ASSERT(Cell::kSize <= kMaxRegularHeapObjectSize);
   1728   HeapObject* result =
   1729       AllocateRawWithImmortalMap(Cell::kSize, TENURED, *cell_map());
   1730   Handle<Cell> cell(Cell::cast(result), isolate());
   1731   cell->set_value(*value);
   1732   return cell;
   1733 }
   1734 
   1735 Handle<FeedbackCell> Factory::NewNoClosuresCell(Handle<HeapObject> value) {
   1736   AllowDeferredHandleDereference convert_to_cell;
   1737   HeapObject* result = AllocateRawWithImmortalMap(FeedbackCell::kSize, TENURED,
   1738                                                   *no_closures_cell_map());
   1739   Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate());
   1740   cell->set_value(*value);
   1741   return cell;
   1742 }
   1743 
   1744 Handle<FeedbackCell> Factory::NewOneClosureCell(Handle<HeapObject> value) {
   1745   AllowDeferredHandleDereference convert_to_cell;
   1746   HeapObject* result = AllocateRawWithImmortalMap(FeedbackCell::kSize, TENURED,
   1747                                                   *one_closure_cell_map());
   1748   Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate());
   1749   cell->set_value(*value);
   1750   return cell;
   1751 }
   1752 
   1753 Handle<FeedbackCell> Factory::NewManyClosuresCell(Handle<HeapObject> value) {
   1754   AllowDeferredHandleDereference convert_to_cell;
   1755   HeapObject* result = AllocateRawWithImmortalMap(FeedbackCell::kSize, TENURED,
   1756                                                   *many_closures_cell_map());
   1757   Handle<FeedbackCell> cell(FeedbackCell::cast(result), isolate());
   1758   cell->set_value(*value);
   1759   return cell;
   1760 }
   1761 
   1762 Handle<PropertyCell> Factory::NewPropertyCell(Handle<Name> name,
   1763                                               PretenureFlag pretenure) {
   1764   DCHECK(name->IsUniqueName());
   1765   STATIC_ASSERT(PropertyCell::kSize <= kMaxRegularHeapObjectSize);
   1766   HeapObject* result = AllocateRawWithImmortalMap(
   1767       PropertyCell::kSize, pretenure, *global_property_cell_map());
   1768   Handle<PropertyCell> cell(PropertyCell::cast(result), isolate());
   1769   cell->set_dependent_code(DependentCode::cast(*empty_weak_fixed_array()),
   1770                            SKIP_WRITE_BARRIER);
   1771   cell->set_property_details(PropertyDetails(Smi::kZero));
   1772   cell->set_name(*name);
   1773   cell->set_value(*the_hole_value());
   1774   return cell;
   1775 }
   1776 
   1777 Handle<TransitionArray> Factory::NewTransitionArray(int number_of_transitions,
   1778                                                     int slack) {
   1779   int capacity = TransitionArray::LengthFor(number_of_transitions + slack);
   1780   Handle<TransitionArray> array = NewWeakFixedArrayWithMap<TransitionArray>(
   1781       Heap::kTransitionArrayMapRootIndex, capacity, TENURED);
   1782   // Transition arrays are tenured. When black allocation is on we have to
   1783   // add the transition array to the list of encountered_transition_arrays.
   1784   Heap* heap = isolate()->heap();
   1785   if (heap->incremental_marking()->black_allocation()) {
   1786     heap->mark_compact_collector()->AddTransitionArray(*array);
   1787   }
   1788   array->WeakFixedArray::Set(TransitionArray::kPrototypeTransitionsIndex,
   1789                              MaybeObject::FromObject(Smi::kZero));
   1790   array->WeakFixedArray::Set(
   1791       TransitionArray::kTransitionLengthIndex,
   1792       MaybeObject::FromObject(Smi::FromInt(number_of_transitions)));
   1793   return array;
   1794 }
   1795 
   1796 Handle<AllocationSite> Factory::NewAllocationSite(bool with_weak_next) {
   1797   Handle<Map> map = with_weak_next ? allocation_site_map()
   1798                                    : allocation_site_without_weaknext_map();
   1799   Handle<AllocationSite> site(AllocationSite::cast(New(map, TENURED)),
   1800                               isolate());
   1801   site->Initialize();
   1802 
   1803   if (with_weak_next) {
   1804     // Link the site
   1805     site->set_weak_next(isolate()->heap()->allocation_sites_list());
   1806     isolate()->heap()->set_allocation_sites_list(*site);
   1807   }
   1808   return site;
   1809 }
   1810 
   1811 Handle<Map> Factory::NewMap(InstanceType type, int instance_size,
   1812                             ElementsKind elements_kind,
   1813                             int inobject_properties) {
   1814   STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
   1815   DCHECK_IMPLIES(Map::IsJSObject(type) &&
   1816                      !Map::CanHaveFastTransitionableElementsKind(type),
   1817                  IsDictionaryElementsKind(elements_kind) ||
   1818                      IsTerminalElementsKind(elements_kind));
   1819   HeapObject* result =
   1820       isolate()->heap()->AllocateRawWithRetryOrFail(Map::kSize, MAP_SPACE);
   1821   result->set_map_after_allocation(*meta_map(), SKIP_WRITE_BARRIER);
   1822   return handle(InitializeMap(Map::cast(result), type, instance_size,
   1823                               elements_kind, inobject_properties),
   1824                 isolate());
   1825 }
   1826 
   1827 Map* Factory::InitializeMap(Map* map, InstanceType type, int instance_size,
   1828                             ElementsKind elements_kind,
   1829                             int inobject_properties) {
   1830   map->set_instance_type(type);
   1831   map->set_prototype(*null_value(), SKIP_WRITE_BARRIER);
   1832   map->set_constructor_or_backpointer(*null_value(), SKIP_WRITE_BARRIER);
   1833   map->set_instance_size(instance_size);
   1834   if (map->IsJSObjectMap()) {
   1835     DCHECK(!isolate()->heap()->InReadOnlySpace(map));
   1836     map->SetInObjectPropertiesStartInWords(instance_size / kPointerSize -
   1837                                            inobject_properties);
   1838     DCHECK_EQ(map->GetInObjectProperties(), inobject_properties);
   1839     map->set_prototype_validity_cell(*invalid_prototype_validity_cell());
   1840   } else {
   1841     DCHECK_EQ(inobject_properties, 0);
   1842     map->set_inobject_properties_start_or_constructor_function_index(0);
   1843     map->set_prototype_validity_cell(Smi::FromInt(Map::kPrototypeChainValid));
   1844   }
   1845   map->set_dependent_code(DependentCode::cast(*empty_weak_fixed_array()),
   1846                           SKIP_WRITE_BARRIER);
   1847   map->set_raw_transitions(MaybeObject::FromSmi(Smi::kZero));
   1848   map->SetInObjectUnusedPropertyFields(inobject_properties);
   1849   map->set_instance_descriptors(*empty_descriptor_array());
   1850   if (FLAG_unbox_double_fields) {
   1851     map->set_layout_descriptor(LayoutDescriptor::FastPointerLayout());
   1852   }
   1853   // Must be called only after |instance_type|, |instance_size| and
   1854   // |layout_descriptor| are set.
   1855   map->set_visitor_id(Map::GetVisitorId(map));
   1856   map->set_bit_field(0);
   1857   map->set_bit_field2(Map::IsExtensibleBit::kMask);
   1858   DCHECK(!map->is_in_retained_map_list());
   1859   int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) |
   1860                    Map::OwnsDescriptorsBit::encode(true) |
   1861                    Map::ConstructionCounterBits::encode(Map::kNoSlackTracking);
   1862   map->set_bit_field3(bit_field3);
   1863   map->set_elements_kind(elements_kind);
   1864   map->set_new_target_is_base(true);
   1865   isolate()->counters()->maps_created()->Increment();
   1866   if (FLAG_trace_maps) LOG(isolate(), MapCreate(map));
   1867   return map;
   1868 }
   1869 
   1870 Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> source) {
   1871   return CopyJSObjectWithAllocationSite(source, Handle<AllocationSite>());
   1872 }
   1873 
   1874 Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
   1875     Handle<JSObject> source, Handle<AllocationSite> site) {
   1876   Handle<Map> map(source->map(), isolate());
   1877 
   1878   // We can only clone regexps, normal objects, api objects, errors or arrays.
   1879   // Copying anything else will break invariants.
   1880   CHECK(map->instance_type() == JS_REGEXP_TYPE ||
   1881         map->instance_type() == JS_OBJECT_TYPE ||
   1882         map->instance_type() == JS_ERROR_TYPE ||
   1883         map->instance_type() == JS_ARRAY_TYPE ||
   1884         map->instance_type() == JS_API_OBJECT_TYPE ||
   1885         map->instance_type() == WASM_GLOBAL_TYPE ||
   1886         map->instance_type() == WASM_INSTANCE_TYPE ||
   1887         map->instance_type() == WASM_MEMORY_TYPE ||
   1888         map->instance_type() == WASM_MODULE_TYPE ||
   1889         map->instance_type() == WASM_TABLE_TYPE ||
   1890         map->instance_type() == JS_SPECIAL_API_OBJECT_TYPE);
   1891   DCHECK(site.is_null() || AllocationSite::CanTrack(map->instance_type()));
   1892 
   1893   int object_size = map->instance_size();
   1894   int adjusted_object_size =
   1895       site.is_null() ? object_size : object_size + AllocationMemento::kSize;
   1896   HeapObject* raw_clone = isolate()->heap()->AllocateRawWithRetryOrFail(
   1897       adjusted_object_size, NEW_SPACE);
   1898 
   1899   SLOW_DCHECK(Heap::InNewSpace(raw_clone));
   1900   // Since we know the clone is allocated in new space, we can copy
   1901   // the contents without worrying about updating the write barrier.
   1902   Heap::CopyBlock(raw_clone->address(), source->address(), object_size);
   1903   Handle<JSObject> clone(JSObject::cast(raw_clone), isolate());
   1904 
   1905   if (!site.is_null()) {
   1906     AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>(
   1907         reinterpret_cast<Address>(raw_clone) + object_size);
   1908     InitializeAllocationMemento(alloc_memento, *site);
   1909   }
   1910 
   1911   SLOW_DCHECK(clone->GetElementsKind() == source->GetElementsKind());
   1912   FixedArrayBase* elements = FixedArrayBase::cast(source->elements());
   1913   // Update elements if necessary.
   1914   if (elements->length() > 0) {
   1915     FixedArrayBase* elem = nullptr;
   1916     if (elements->map() == *fixed_cow_array_map()) {
   1917       elem = elements;
   1918     } else if (source->HasDoubleElements()) {
   1919       elem = *CopyFixedDoubleArray(
   1920           handle(FixedDoubleArray::cast(elements), isolate()));
   1921     } else {
   1922       elem = *CopyFixedArray(handle(FixedArray::cast(elements), isolate()));
   1923     }
   1924     clone->set_elements(elem);
   1925   }
   1926 
   1927   // Update properties if necessary.
   1928   if (source->HasFastProperties()) {
   1929     PropertyArray* properties = source->property_array();
   1930     if (properties->length() > 0) {
   1931       // TODO(gsathya): Do not copy hash code.
   1932       Handle<PropertyArray> prop = CopyArrayWithMap(
   1933           handle(properties, isolate()), handle(properties->map(), isolate()));
   1934       clone->set_raw_properties_or_hash(*prop);
   1935     }
   1936   } else {
   1937     Handle<FixedArray> properties(
   1938         FixedArray::cast(source->property_dictionary()), isolate());
   1939     Handle<FixedArray> prop = CopyFixedArray(properties);
   1940     clone->set_raw_properties_or_hash(*prop);
   1941   }
   1942   return clone;
   1943 }
   1944 
   1945 namespace {
   1946 template <typename T>
   1947 void initialize_length(T* array, int length) {
   1948   array->set_length(length);
   1949 }
   1950 
   1951 template <>
   1952 void initialize_length<PropertyArray>(PropertyArray* array, int length) {
   1953   array->initialize_length(length);
   1954 }
   1955 
   1956 }  // namespace
   1957 
   1958 template <typename T>
   1959 Handle<T> Factory::CopyArrayWithMap(Handle<T> src, Handle<Map> map) {
   1960   int len = src->length();
   1961   HeapObject* obj = AllocateRawFixedArray(len, NOT_TENURED);
   1962   obj->set_map_after_allocation(*map, SKIP_WRITE_BARRIER);
   1963 
   1964   T* result = T::cast(obj);
   1965   DisallowHeapAllocation no_gc;
   1966   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
   1967 
   1968   if (mode == SKIP_WRITE_BARRIER) {
   1969     // Eliminate the write barrier if possible.
   1970     Heap::CopyBlock(obj->address() + kPointerSize,
   1971                     src->address() + kPointerSize,
   1972                     T::SizeFor(len) - kPointerSize);
   1973   } else {
   1974     // Slow case: Just copy the content one-by-one.
   1975     initialize_length(result, len);
   1976     for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
   1977   }
   1978   return Handle<T>(result, isolate());
   1979 }
   1980 
   1981 template <typename T>
   1982 Handle<T> Factory::CopyArrayAndGrow(Handle<T> src, int grow_by,
   1983                                     PretenureFlag pretenure) {
   1984   DCHECK_LT(0, grow_by);
   1985   DCHECK_LE(grow_by, kMaxInt - src->length());
   1986   int old_len = src->length();
   1987   int new_len = old_len + grow_by;
   1988   HeapObject* obj = AllocateRawFixedArray(new_len, pretenure);
   1989   obj->set_map_after_allocation(src->map(), SKIP_WRITE_BARRIER);
   1990 
   1991   T* result = T::cast(obj);
   1992   initialize_length(result, new_len);
   1993 
   1994   // Copy the content.
   1995   DisallowHeapAllocation no_gc;
   1996   WriteBarrierMode mode = obj->GetWriteBarrierMode(no_gc);
   1997   for (int i = 0; i < old_len; i++) result->set(i, src->get(i), mode);
   1998   MemsetPointer(result->data_start() + old_len, *undefined_value(), grow_by);
   1999   return Handle<T>(result, isolate());
   2000 }
   2001 
   2002 Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
   2003                                                   Handle<Map> map) {
   2004   return CopyArrayWithMap(array, map);
   2005 }
   2006 
   2007 Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array,
   2008                                                   int grow_by,
   2009                                                   PretenureFlag pretenure) {
   2010   return CopyArrayAndGrow(array, grow_by, pretenure);
   2011 }
   2012 
   2013 Handle<WeakFixedArray> Factory::CopyWeakFixedArrayAndGrow(
   2014     Handle<WeakFixedArray> src, int grow_by, PretenureFlag pretenure) {
   2015   DCHECK(
   2016       !src->IsTransitionArray());  // Compacted by GC, this code doesn't work.
   2017   int old_len = src->length();
   2018   int new_len = old_len + grow_by;
   2019   DCHECK_GE(new_len, old_len);
   2020   HeapObject* obj = AllocateRawFixedArray(new_len, pretenure);
   2021   DCHECK_EQ(old_len, src->length());
   2022   obj->set_map_after_allocation(src->map(), SKIP_WRITE_BARRIER);
   2023 
   2024   WeakFixedArray* result = WeakFixedArray::cast(obj);
   2025   result->set_length(new_len);
   2026 
   2027   // Copy the content.
   2028   DisallowHeapAllocation no_gc;
   2029   WriteBarrierMode mode = obj->GetWriteBarrierMode(no_gc);
   2030   for (int i = 0; i < old_len; i++) result->Set(i, src->Get(i), mode);
   2031   HeapObjectReference* undefined_reference =
   2032       HeapObjectReference::Strong(ReadOnlyRoots(isolate()).undefined_value());
   2033   MemsetPointer(result->data_start() + old_len, undefined_reference, grow_by);
   2034   return Handle<WeakFixedArray>(result, isolate());
   2035 }
   2036 
   2037 Handle<WeakArrayList> Factory::CopyWeakArrayListAndGrow(
   2038     Handle<WeakArrayList> src, int grow_by, PretenureFlag pretenure) {
   2039   int old_capacity = src->capacity();
   2040   int new_capacity = old_capacity + grow_by;
   2041   DCHECK_GE(new_capacity, old_capacity);
   2042   HeapObject* obj = AllocateRawWeakArrayList(new_capacity, pretenure);
   2043   obj->set_map_after_allocation(src->map(), SKIP_WRITE_BARRIER);
   2044 
   2045   WeakArrayList* result = WeakArrayList::cast(obj);
   2046   result->set_length(src->length());
   2047   result->set_capacity(new_capacity);
   2048 
   2049   // Copy the content.
   2050   DisallowHeapAllocation no_gc;
   2051   WriteBarrierMode mode = obj->GetWriteBarrierMode(no_gc);
   2052   for (int i = 0; i < old_capacity; i++) result->Set(i, src->Get(i), mode);
   2053   HeapObjectReference* undefined_reference =
   2054       HeapObjectReference::Strong(ReadOnlyRoots(isolate()).undefined_value());
   2055   MemsetPointer(result->data_start() + old_capacity, undefined_reference,
   2056                 grow_by);
   2057   return Handle<WeakArrayList>(result, isolate());
   2058 }
   2059 
   2060 Handle<PropertyArray> Factory::CopyPropertyArrayAndGrow(
   2061     Handle<PropertyArray> array, int grow_by, PretenureFlag pretenure) {
   2062   return CopyArrayAndGrow(array, grow_by, pretenure);
   2063 }
   2064 
   2065 Handle<FixedArray> Factory::CopyFixedArrayUpTo(Handle<FixedArray> array,
   2066                                                int new_len,
   2067                                                PretenureFlag pretenure) {
   2068   DCHECK_LE(0, new_len);
   2069   DCHECK_LE(new_len, array->length());
   2070   if (new_len == 0) return empty_fixed_array();
   2071 
   2072   HeapObject* obj = AllocateRawFixedArray(new_len, pretenure);
   2073   obj->set_map_after_allocation(*fixed_array_map(), SKIP_WRITE_BARRIER);
   2074   Handle<FixedArray> result(FixedArray::cast(obj), isolate());
   2075   result->set_length(new_len);
   2076 
   2077   // Copy the content.
   2078   DisallowHeapAllocation no_gc;
   2079   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
   2080   for (int i = 0; i < new_len; i++) result->set(i, array->get(i), mode);
   2081   return result;
   2082 }
   2083 
   2084 Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
   2085   if (array->length() == 0) return array;
   2086   return CopyArrayWithMap(array, handle(array->map(), isolate()));
   2087 }
   2088 
   2089 Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
   2090     Handle<FixedArray> array) {
   2091   DCHECK(Heap::InNewSpace(*array));
   2092   Handle<FixedArray> result =
   2093       CopyFixedArrayUpTo(array, array->length(), TENURED);
   2094 
   2095   // TODO(mvstanton): The map is set twice because of protection against calling
   2096   // set() on a COW FixedArray. Issue v8:3221 created to track this, and
   2097   // we might then be able to remove this whole method.
   2098   result->set_map_after_allocation(*fixed_cow_array_map(), SKIP_WRITE_BARRIER);
   2099   return result;
   2100 }
   2101 
   2102 Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
   2103     Handle<FixedDoubleArray> array) {
   2104   int len = array->length();
   2105   if (len == 0) return array;
   2106   Handle<FixedDoubleArray> result =
   2107       Handle<FixedDoubleArray>::cast(NewFixedDoubleArray(len, NOT_TENURED));
   2108   Heap::CopyBlock(
   2109       result->address() + FixedDoubleArray::kLengthOffset,
   2110       array->address() + FixedDoubleArray::kLengthOffset,
   2111       FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset);
   2112   return result;
   2113 }
   2114 
   2115 Handle<FeedbackVector> Factory::CopyFeedbackVector(
   2116     Handle<FeedbackVector> array) {
   2117   int len = array->length();
   2118   HeapObject* obj = AllocateRawWithImmortalMap(
   2119       FeedbackVector::SizeFor(len), NOT_TENURED, *feedback_vector_map());
   2120   Handle<FeedbackVector> result(FeedbackVector::cast(obj), isolate());
   2121 
   2122   DisallowHeapAllocation no_gc;
   2123   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
   2124 
   2125   // Eliminate the write barrier if possible.
   2126   if (mode == SKIP_WRITE_BARRIER) {
   2127     Heap::CopyBlock(result->address() + kPointerSize,
   2128                     result->address() + kPointerSize,
   2129                     FeedbackVector::SizeFor(len) - kPointerSize);
   2130   } else {
   2131     // Slow case: Just copy the content one-by-one.
   2132     result->set_shared_function_info(array->shared_function_info());
   2133     result->set_optimized_code_weak_or_smi(array->optimized_code_weak_or_smi());
   2134     result->set_invocation_count(array->invocation_count());
   2135     result->set_profiler_ticks(array->profiler_ticks());
   2136     result->set_deopt_count(array->deopt_count());
   2137     for (int i = 0; i < len; i++) result->set(i, array->get(i), mode);
   2138   }
   2139   return result;
   2140 }
   2141 
   2142 Handle<Object> Factory::NewNumber(double value, PretenureFlag pretenure) {
   2143   // Materialize as a SMI if possible.
   2144   int32_t int_value;
   2145   if (DoubleToSmiInteger(value, &int_value)) {
   2146     return handle(Smi::FromInt(int_value), isolate());
   2147   }
   2148   return NewHeapNumber(value, pretenure);
   2149 }
   2150 
   2151 Handle<Object> Factory::NewNumberFromInt(int32_t value,
   2152                                          PretenureFlag pretenure) {
   2153   if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate());
   2154   // Bypass NewNumber to avoid various redundant checks.
   2155   return NewHeapNumber(FastI2D(value), pretenure);
   2156 }
   2157 
   2158 Handle<Object> Factory::NewNumberFromUint(uint32_t value,
   2159                                           PretenureFlag pretenure) {
   2160   int32_t int32v = static_cast<int32_t>(value);
   2161   if (int32v >= 0 && Smi::IsValid(int32v)) {
   2162     return handle(Smi::FromInt(int32v), isolate());
   2163   }
   2164   return NewHeapNumber(FastUI2D(value), pretenure);
   2165 }
   2166 
   2167 Handle<HeapNumber> Factory::NewHeapNumber(PretenureFlag pretenure) {
   2168   STATIC_ASSERT(HeapNumber::kSize <= kMaxRegularHeapObjectSize);
   2169   Map* map = *heap_number_map();
   2170   HeapObject* result = AllocateRawWithImmortalMap(HeapNumber::kSize, pretenure,
   2171                                                   map, kDoubleUnaligned);
   2172   return handle(HeapNumber::cast(result), isolate());
   2173 }
   2174 
   2175 Handle<MutableHeapNumber> Factory::NewMutableHeapNumber(
   2176     PretenureFlag pretenure) {
   2177   STATIC_ASSERT(HeapNumber::kSize <= kMaxRegularHeapObjectSize);
   2178   Map* map = *mutable_heap_number_map();
   2179   HeapObject* result = AllocateRawWithImmortalMap(
   2180       MutableHeapNumber::kSize, pretenure, map, kDoubleUnaligned);
   2181   return handle(MutableHeapNumber::cast(result), isolate());
   2182 }
   2183 
   2184 Handle<FreshlyAllocatedBigInt> Factory::NewBigInt(int length,
   2185                                                   PretenureFlag pretenure) {
   2186   if (length < 0 || length > BigInt::kMaxLength) {
   2187     isolate()->heap()->FatalProcessOutOfMemory("invalid BigInt length");
   2188   }
   2189   HeapObject* result = AllocateRawWithImmortalMap(BigInt::SizeFor(length),
   2190                                                   pretenure, *bigint_map());
   2191   return handle(FreshlyAllocatedBigInt::cast(result), isolate());
   2192 }
   2193 
   2194 Handle<Object> Factory::NewError(Handle<JSFunction> constructor,
   2195                                  MessageTemplate::Template template_index,
   2196                                  Handle<Object> arg0, Handle<Object> arg1,
   2197                                  Handle<Object> arg2) {
   2198   HandleScope scope(isolate());
   2199   if (isolate()->bootstrapper()->IsActive()) {
   2200     // During bootstrapping we cannot construct error objects.
   2201     return scope.CloseAndEscape(NewStringFromAsciiChecked(
   2202         MessageTemplate::TemplateString(template_index)));
   2203   }
   2204 
   2205   if (arg0.is_null()) arg0 = undefined_value();
   2206   if (arg1.is_null()) arg1 = undefined_value();
   2207   if (arg2.is_null()) arg2 = undefined_value();
   2208 
   2209   Handle<Object> result;
   2210   if (!ErrorUtils::MakeGenericError(isolate(), constructor, template_index,
   2211                                     arg0, arg1, arg2, SKIP_NONE)
   2212            .ToHandle(&result)) {
   2213     // If an exception is thrown while
   2214     // running the factory method, use the exception as the result.
   2215     DCHECK(isolate()->has_pending_exception());
   2216     result = handle(isolate()->pending_exception(), isolate());
   2217     isolate()->clear_pending_exception();
   2218   }
   2219 
   2220   return scope.CloseAndEscape(result);
   2221 }
   2222 
   2223 Handle<Object> Factory::NewError(Handle<JSFunction> constructor,
   2224                                  Handle<String> message) {
   2225   // Construct a new error object. If an exception is thrown, use the exception
   2226   // as the result.
   2227 
   2228   Handle<Object> no_caller;
   2229   MaybeHandle<Object> maybe_error =
   2230       ErrorUtils::Construct(isolate(), constructor, constructor, message,
   2231                             SKIP_NONE, no_caller, false);
   2232   if (maybe_error.is_null()) {
   2233     DCHECK(isolate()->has_pending_exception());
   2234     maybe_error = handle(isolate()->pending_exception(), isolate());
   2235     isolate()->clear_pending_exception();
   2236   }
   2237 
   2238   return maybe_error.ToHandleChecked();
   2239 }
   2240 
   2241 Handle<Object> Factory::NewInvalidStringLengthError() {
   2242   if (FLAG_abort_on_stack_or_string_length_overflow) {
   2243     FATAL("Aborting on invalid string length");
   2244   }
   2245   // Invalidate the "string length" protector.
   2246   if (isolate()->IsStringLengthOverflowIntact()) {
   2247     isolate()->InvalidateStringLengthOverflowProtector();
   2248   }
   2249   return NewRangeError(MessageTemplate::kInvalidStringLength);
   2250 }
   2251 
   2252 #define DEFINE_ERROR(NAME, name)                                              \
   2253   Handle<Object> Factory::New##NAME(MessageTemplate::Template template_index, \
   2254                                     Handle<Object> arg0, Handle<Object> arg1, \
   2255                                     Handle<Object> arg2) {                    \
   2256     return NewError(isolate()->name##_function(), template_index, arg0, arg1, \
   2257                     arg2);                                                    \
   2258   }
   2259 DEFINE_ERROR(Error, error)
   2260 DEFINE_ERROR(EvalError, eval_error)
   2261 DEFINE_ERROR(RangeError, range_error)
   2262 DEFINE_ERROR(ReferenceError, reference_error)
   2263 DEFINE_ERROR(SyntaxError, syntax_error)
   2264 DEFINE_ERROR(TypeError, type_error)
   2265 DEFINE_ERROR(WasmCompileError, wasm_compile_error)
   2266 DEFINE_ERROR(WasmLinkError, wasm_link_error)
   2267 DEFINE_ERROR(WasmRuntimeError, wasm_runtime_error)
   2268 #undef DEFINE_ERROR
   2269 
   2270 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
   2271                                         Handle<SharedFunctionInfo> info,
   2272                                         Handle<Context> context,
   2273                                         PretenureFlag pretenure) {
   2274   Handle<JSFunction> function(JSFunction::cast(New(map, pretenure)), isolate());
   2275 
   2276   function->initialize_properties();
   2277   function->initialize_elements();
   2278   function->set_shared(*info);
   2279   function->set_code(info->GetCode());
   2280   function->set_context(*context);
   2281   function->set_feedback_cell(*many_closures_cell());
   2282   int header_size;
   2283   if (map->has_prototype_slot()) {
   2284     header_size = JSFunction::kSizeWithPrototype;
   2285     function->set_prototype_or_initial_map(*the_hole_value());
   2286   } else {
   2287     header_size = JSFunction::kSizeWithoutPrototype;
   2288   }
   2289   InitializeJSObjectBody(function, map, header_size);
   2290   return function;
   2291 }
   2292 
   2293 Handle<JSFunction> Factory::NewFunctionForTest(Handle<String> name) {
   2294   NewFunctionArgs args = NewFunctionArgs::ForFunctionWithoutCode(
   2295       name, isolate()->sloppy_function_map(), LanguageMode::kSloppy);
   2296   Handle<JSFunction> result = NewFunction(args);
   2297   DCHECK(is_sloppy(result->shared()->language_mode()));
   2298   return result;
   2299 }
   2300 
   2301 Handle<JSFunction> Factory::NewFunction(const NewFunctionArgs& args) {
   2302   DCHECK(!args.name_.is_null());
   2303 
   2304   // Create the SharedFunctionInfo.
   2305   Handle<NativeContext> context(isolate()->native_context());
   2306   Handle<Map> map = args.GetMap(isolate());
   2307   Handle<SharedFunctionInfo> info =
   2308       NewSharedFunctionInfo(args.name_, args.maybe_exported_function_data_,
   2309                             args.maybe_builtin_id_, kNormalFunction);
   2310 
   2311   // Proper language mode in shared function info will be set later.
   2312   DCHECK(is_sloppy(info->language_mode()));
   2313   DCHECK(!map->IsUndefined(isolate()));
   2314 
   2315 #ifdef DEBUG
   2316   if (isolate()->bootstrapper()->IsActive()) {
   2317     Handle<Code> code;
   2318     DCHECK(
   2319         // During bootstrapping some of these maps could be not created yet.
   2320         (*map == context->get(Context::STRICT_FUNCTION_MAP_INDEX)) ||
   2321         (*map ==
   2322          context->get(Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX)) ||
   2323         (*map ==
   2324          context->get(
   2325              Context::STRICT_FUNCTION_WITH_READONLY_PROTOTYPE_MAP_INDEX)) ||
   2326         // Check if it's a creation of an empty or Proxy function during
   2327         // bootstrapping.
   2328         (args.maybe_builtin_id_ == Builtins::kEmptyFunction ||
   2329          args.maybe_builtin_id_ == Builtins::kProxyConstructor));
   2330   } else {
   2331     DCHECK(
   2332         (*map == *isolate()->sloppy_function_map()) ||
   2333         (*map == *isolate()->sloppy_function_without_prototype_map()) ||
   2334         (*map == *isolate()->sloppy_function_with_readonly_prototype_map()) ||
   2335         (*map == *isolate()->strict_function_map()) ||
   2336         (*map == *isolate()->strict_function_without_prototype_map()) ||
   2337         (*map == *isolate()->native_function_map()));
   2338   }
   2339 #endif
   2340 
   2341   Handle<JSFunction> result = NewFunction(map, info, context);
   2342 
   2343   if (args.should_set_prototype_) {
   2344     result->set_prototype_or_initial_map(
   2345         *args.maybe_prototype_.ToHandleChecked());
   2346   }
   2347 
   2348   if (args.should_set_language_mode_) {
   2349     result->shared()->set_language_mode(args.language_mode_);
   2350   }
   2351 
   2352   if (args.should_create_and_set_initial_map_) {
   2353     ElementsKind elements_kind;
   2354     switch (args.type_) {
   2355       case JS_ARRAY_TYPE:
   2356         elements_kind = PACKED_SMI_ELEMENTS;
   2357         break;
   2358       case JS_ARGUMENTS_TYPE:
   2359         elements_kind = PACKED_ELEMENTS;
   2360         break;
   2361       default:
   2362         elements_kind = TERMINAL_FAST_ELEMENTS_KIND;
   2363         break;
   2364     }
   2365     Handle<Map> initial_map = NewMap(args.type_, args.instance_size_,
   2366                                      elements_kind, args.inobject_properties_);
   2367     result->shared()->set_expected_nof_properties(args.inobject_properties_);
   2368     // TODO(littledan): Why do we have this is_generator test when
   2369     // NewFunctionPrototype already handles finding an appropriately
   2370     // shared prototype?
   2371     Handle<Object> prototype = args.maybe_prototype_.ToHandleChecked();
   2372     if (!IsResumableFunction(result->shared()->kind())) {
   2373       if (prototype->IsTheHole(isolate())) {
   2374         prototype = NewFunctionPrototype(result);
   2375       }
   2376     }
   2377     JSFunction::SetInitialMap(result, initial_map, prototype);
   2378   }
   2379 
   2380   return result;
   2381 }
   2382 
   2383 Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
   2384   // Make sure to use globals from the function's context, since the function
   2385   // can be from a different context.
   2386   Handle<NativeContext> native_context(function->context()->native_context(),
   2387                                        isolate());
   2388   Handle<Map> new_map;
   2389   if (V8_UNLIKELY(IsAsyncGeneratorFunction(function->shared()->kind()))) {
   2390     new_map = handle(native_context->async_generator_object_prototype_map(),
   2391                      isolate());
   2392   } else if (IsResumableFunction(function->shared()->kind())) {
   2393     // Generator and async function prototypes can share maps since they
   2394     // don't have "constructor" properties.
   2395     new_map =
   2396         handle(native_context->generator_object_prototype_map(), isolate());
   2397   } else {
   2398     // Each function prototype gets a fresh map to avoid unwanted sharing of
   2399     // maps between prototypes of different constructors.
   2400     Handle<JSFunction> object_function(native_context->object_function(),
   2401                                        isolate());
   2402     DCHECK(object_function->has_initial_map());
   2403     new_map = handle(object_function->initial_map(), isolate());
   2404   }
   2405 
   2406   DCHECK(!new_map->is_prototype_map());
   2407   Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
   2408 
   2409   if (!IsResumableFunction(function->shared()->kind())) {
   2410     JSObject::AddProperty(isolate(), prototype, constructor_string(), function,
   2411                           DONT_ENUM);
   2412   }
   2413 
   2414   return prototype;
   2415 }
   2416 
   2417 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
   2418     Handle<SharedFunctionInfo> info, Handle<Context> context,
   2419     PretenureFlag pretenure) {
   2420   Handle<Map> initial_map(
   2421       Map::cast(context->native_context()->get(info->function_map_index())),
   2422       isolate());
   2423   return NewFunctionFromSharedFunctionInfo(initial_map, info, context,
   2424                                            pretenure);
   2425 }
   2426 
   2427 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
   2428     Handle<SharedFunctionInfo> info, Handle<Context> context,
   2429     Handle<FeedbackCell> feedback_cell, PretenureFlag pretenure) {
   2430   Handle<Map> initial_map(
   2431       Map::cast(context->native_context()->get(info->function_map_index())),
   2432       isolate());
   2433   return NewFunctionFromSharedFunctionInfo(initial_map, info, context,
   2434                                            feedback_cell, pretenure);
   2435 }
   2436 
   2437 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
   2438     Handle<Map> initial_map, Handle<SharedFunctionInfo> info,
   2439     Handle<Context> context, PretenureFlag pretenure) {
   2440   DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
   2441   Handle<JSFunction> result =
   2442       NewFunction(initial_map, info, context, pretenure);
   2443 
   2444   // Give compiler a chance to pre-initialize.
   2445   Compiler::PostInstantiation(result, pretenure);
   2446 
   2447   return result;
   2448 }
   2449 
   2450 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
   2451     Handle<Map> initial_map, Handle<SharedFunctionInfo> info,
   2452     Handle<Context> context, Handle<FeedbackCell> feedback_cell,
   2453     PretenureFlag pretenure) {
   2454   DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
   2455   Handle<JSFunction> result =
   2456       NewFunction(initial_map, info, context, pretenure);
   2457 
   2458   // Bump the closure count that is encoded in the feedback cell's map.
   2459   if (feedback_cell->map() == *no_closures_cell_map()) {
   2460     feedback_cell->set_map(*one_closure_cell_map());
   2461   } else if (feedback_cell->map() == *one_closure_cell_map()) {
   2462     feedback_cell->set_map(*many_closures_cell_map());
   2463   } else {
   2464     DCHECK_EQ(feedback_cell->map(), *many_closures_cell_map());
   2465   }
   2466 
   2467   // Check that the optimized code in the feedback cell wasn't marked for
   2468   // deoptimization while not pointed to by any live JSFunction.
   2469   if (feedback_cell->value()->IsFeedbackVector()) {
   2470     FeedbackVector::cast(feedback_cell->value())
   2471         ->EvictOptimizedCodeMarkedForDeoptimization(
   2472             *info, "new function from shared function info");
   2473   }
   2474   result->set_feedback_cell(*feedback_cell);
   2475 
   2476   // Give compiler a chance to pre-initialize.
   2477   Compiler::PostInstantiation(result, pretenure);
   2478 
   2479   return result;
   2480 }
   2481 
   2482 Handle<ScopeInfo> Factory::NewScopeInfo(int length) {
   2483   return NewFixedArrayWithMap<ScopeInfo>(Heap::kScopeInfoMapRootIndex, length,
   2484                                          TENURED);
   2485 }
   2486 
   2487 Handle<ModuleInfo> Factory::NewModuleInfo() {
   2488   return NewFixedArrayWithMap<ModuleInfo>(Heap::kModuleInfoMapRootIndex,
   2489                                           ModuleInfo::kLength, TENURED);
   2490 }
   2491 
   2492 Handle<PreParsedScopeData> Factory::NewPreParsedScopeData(int length) {
   2493   int size = PreParsedScopeData::SizeFor(length);
   2494   Handle<PreParsedScopeData> result(
   2495       PreParsedScopeData::cast(AllocateRawWithImmortalMap(
   2496           size, TENURED, *pre_parsed_scope_data_map())),
   2497       isolate());
   2498   result->set_scope_data(PodArray<uint8_t>::cast(*empty_byte_array()));
   2499   result->set_length(length);
   2500   MemsetPointer(result->child_data_start(), *null_value(), length);
   2501 
   2502   result->clear_padding();
   2503   return result;
   2504 }
   2505 
   2506 Handle<UncompiledDataWithoutPreParsedScope>
   2507 Factory::NewUncompiledDataWithoutPreParsedScope(Handle<String> inferred_name,
   2508                                                 int32_t start_position,
   2509                                                 int32_t end_position,
   2510                                                 int32_t function_literal_id) {
   2511   Handle<UncompiledDataWithoutPreParsedScope> result(
   2512       UncompiledDataWithoutPreParsedScope::cast(
   2513           New(uncompiled_data_without_pre_parsed_scope_map(), TENURED)),
   2514       isolate());
   2515   result->set_inferred_name(*inferred_name);
   2516   result->set_start_position(start_position);
   2517   result->set_end_position(end_position);
   2518   result->set_function_literal_id(function_literal_id);
   2519 
   2520   result->clear_padding();
   2521   return result;
   2522 }
   2523 
   2524 Handle<UncompiledDataWithPreParsedScope>
   2525 Factory::NewUncompiledDataWithPreParsedScope(
   2526     Handle<String> inferred_name, int32_t start_position, int32_t end_position,
   2527     int32_t function_literal_id,
   2528     Handle<PreParsedScopeData> pre_parsed_scope_data) {
   2529   Handle<UncompiledDataWithPreParsedScope> result(
   2530       UncompiledDataWithPreParsedScope::cast(
   2531           New(uncompiled_data_with_pre_parsed_scope_map(), TENURED)),
   2532       isolate());
   2533   result->set_inferred_name(*inferred_name);
   2534   result->set_start_position(start_position);
   2535   result->set_end_position(end_position);
   2536   result->set_function_literal_id(function_literal_id);
   2537   result->set_pre_parsed_scope_data(*pre_parsed_scope_data);
   2538 
   2539   result->clear_padding();
   2540   return result;
   2541 }
   2542 
   2543 Handle<JSObject> Factory::NewExternal(void* value) {
   2544   Handle<Foreign> foreign = NewForeign(reinterpret_cast<Address>(value));
   2545   Handle<JSObject> external = NewJSObjectFromMap(external_map());
   2546   external->SetEmbedderField(0, *foreign);
   2547   return external;
   2548 }
   2549 
   2550 Handle<CodeDataContainer> Factory::NewCodeDataContainer(int flags) {
   2551   Handle<CodeDataContainer> data_container(
   2552       CodeDataContainer::cast(New(code_data_container_map(), TENURED)),
   2553       isolate());
   2554   data_container->set_next_code_link(*undefined_value(), SKIP_WRITE_BARRIER);
   2555   data_container->set_kind_specific_flags(flags);
   2556   data_container->clear_padding();
   2557   return data_container;
   2558 }
   2559 
   2560 MaybeHandle<Code> Factory::TryNewCode(
   2561     const CodeDesc& desc, Code::Kind kind, Handle<Object> self_ref,
   2562     int32_t builtin_index, MaybeHandle<ByteArray> maybe_source_position_table,
   2563     MaybeHandle<DeoptimizationData> maybe_deopt_data, Movability movability,
   2564     uint32_t stub_key, bool is_turbofanned, int stack_slots,
   2565     int safepoint_table_offset, int handler_table_offset) {
   2566   // Allocate objects needed for code initialization.
   2567   Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED);
   2568   Handle<CodeDataContainer> data_container = NewCodeDataContainer(0);
   2569   Handle<ByteArray> source_position_table =
   2570       maybe_source_position_table.is_null()
   2571           ? empty_byte_array()
   2572           : maybe_source_position_table.ToHandleChecked();
   2573   Handle<DeoptimizationData> deopt_data =
   2574       maybe_deopt_data.is_null() ? DeoptimizationData::Empty(isolate())
   2575                                  : maybe_deopt_data.ToHandleChecked();
   2576   Handle<Code> code;
   2577   {
   2578     int object_size = ComputeCodeObjectSize(desc);
   2579 
   2580     Heap* heap = isolate()->heap();
   2581     CodePageCollectionMemoryModificationScope code_allocation(heap);
   2582     HeapObject* result =
   2583         heap->AllocateRawWithLightRetry(object_size, CODE_SPACE);
   2584 
   2585     // Return an empty handle if we cannot allocate the code object.
   2586     if (!result) return MaybeHandle<Code>();
   2587 
   2588     if (movability == kImmovable) {
   2589       result = heap->EnsureImmovableCode(result, object_size);
   2590     }
   2591 
   2592     // The code object has not been fully initialized yet.  We rely on the
   2593     // fact that no allocation will happen from this point on.
   2594     DisallowHeapAllocation no_gc;
   2595 
   2596     result->set_map_after_allocation(*code_map(), SKIP_WRITE_BARRIER);
   2597     code = handle(Code::cast(result), isolate());
   2598 
   2599     InitializeCode(heap, code, object_size, desc, kind, self_ref, builtin_index,
   2600                    source_position_table, deopt_data, reloc_info,
   2601                    data_container, stub_key, is_turbofanned, stack_slots,
   2602                    safepoint_table_offset, handler_table_offset);
   2603   }
   2604   // Flush the instruction cache after changing the permissions.
   2605   code->FlushICache();
   2606 
   2607   return code;
   2608 }
   2609 
   2610 Handle<Code> Factory::NewCode(
   2611     const CodeDesc& desc, Code::Kind kind, Handle<Object> self_ref,
   2612     int32_t builtin_index, MaybeHandle<ByteArray> maybe_source_position_table,
   2613     MaybeHandle<DeoptimizationData> maybe_deopt_data, Movability movability,
   2614     uint32_t stub_key, bool is_turbofanned, int stack_slots,
   2615     int safepoint_table_offset, int handler_table_offset) {
   2616   // Allocate objects needed for code initialization.
   2617   Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED);
   2618   Handle<CodeDataContainer> data_container = NewCodeDataContainer(0);
   2619   Handle<ByteArray> source_position_table =
   2620       maybe_source_position_table.is_null()
   2621           ? empty_byte_array()
   2622           : maybe_source_position_table.ToHandleChecked();
   2623   Handle<DeoptimizationData> deopt_data =
   2624       maybe_deopt_data.is_null() ? DeoptimizationData::Empty(isolate())
   2625                                  : maybe_deopt_data.ToHandleChecked();
   2626 
   2627   Handle<Code> code;
   2628   {
   2629     int object_size = ComputeCodeObjectSize(desc);
   2630 
   2631     Heap* heap = isolate()->heap();
   2632     CodePageCollectionMemoryModificationScope code_allocation(heap);
   2633     HeapObject* result =
   2634         heap->AllocateRawWithRetryOrFail(object_size, CODE_SPACE);
   2635 
   2636     if (movability == kImmovable) {
   2637       result = heap->EnsureImmovableCode(result, object_size);
   2638     }
   2639 
   2640     // The code object has not been fully initialized yet.  We rely on the
   2641     // fact that no allocation will happen from this point on.
   2642     DisallowHeapAllocation no_gc;
   2643 
   2644     result->set_map_after_allocation(*code_map(), SKIP_WRITE_BARRIER);
   2645     code = handle(Code::cast(result), isolate());
   2646 
   2647     InitializeCode(heap, code, object_size, desc, kind, self_ref, builtin_index,
   2648                    source_position_table, deopt_data, reloc_info,
   2649                    data_container, stub_key, is_turbofanned, stack_slots,
   2650                    safepoint_table_offset, handler_table_offset);
   2651   }
   2652   // Flush the instruction cache after changing the permissions.
   2653   code->FlushICache();
   2654 
   2655   return code;
   2656 }
   2657 
   2658 Handle<Code> Factory::NewCodeForDeserialization(uint32_t size) {
   2659   DCHECK(IsAligned(static_cast<intptr_t>(size), kCodeAlignment));
   2660   Heap* heap = isolate()->heap();
   2661   HeapObject* result = heap->AllocateRawWithRetryOrFail(size, CODE_SPACE);
   2662   // Unprotect the memory chunk of the object if it was not unprotected
   2663   // already.
   2664   heap->UnprotectAndRegisterMemoryChunk(result);
   2665   heap->ZapCodeObject(result->address(), size);
   2666   result->set_map_after_allocation(*code_map(), SKIP_WRITE_BARRIER);
   2667   DCHECK(IsAligned(result->address(), kCodeAlignment));
   2668   DCHECK(!heap->memory_allocator()->code_range()->valid() ||
   2669          heap->memory_allocator()->code_range()->contains(result->address()) ||
   2670          static_cast<int>(size) <= heap->code_space()->AreaSize());
   2671   return handle(Code::cast(result), isolate());
   2672 }
   2673 
   2674 Handle<Code> Factory::NewOffHeapTrampolineFor(Handle<Code> code,
   2675                                               Address off_heap_entry) {
   2676   CHECK(isolate()->serializer_enabled());
   2677   CHECK_NOT_NULL(isolate()->embedded_blob());
   2678   CHECK_NE(0, isolate()->embedded_blob_size());
   2679   CHECK(Builtins::IsIsolateIndependentBuiltin(*code));
   2680 
   2681   Handle<Code> result =
   2682       Builtins::GenerateOffHeapTrampolineFor(isolate(), off_heap_entry);
   2683 
   2684   // The trampoline code object must inherit specific flags from the original
   2685   // builtin (e.g. the safepoint-table offset). We set them manually here.
   2686 
   2687   const bool set_is_off_heap_trampoline = true;
   2688   const int stack_slots = code->has_safepoint_info() ? code->stack_slots() : 0;
   2689   result->initialize_flags(code->kind(), code->has_unwinding_info(),
   2690                            code->is_turbofanned(), stack_slots,
   2691                            set_is_off_heap_trampoline);
   2692   result->set_builtin_index(code->builtin_index());
   2693   result->set_handler_table_offset(code->handler_table_offset());
   2694   result->code_data_container()->set_kind_specific_flags(
   2695       code->code_data_container()->kind_specific_flags());
   2696   result->set_constant_pool_offset(code->constant_pool_offset());
   2697   if (code->has_safepoint_info()) {
   2698     result->set_safepoint_table_offset(code->safepoint_table_offset());
   2699   }
   2700 
   2701   return result;
   2702 }
   2703 
   2704 Handle<Code> Factory::CopyCode(Handle<Code> code) {
   2705   Handle<CodeDataContainer> data_container =
   2706       NewCodeDataContainer(code->code_data_container()->kind_specific_flags());
   2707 
   2708   Heap* heap = isolate()->heap();
   2709   int obj_size = code->Size();
   2710   HeapObject* result = heap->AllocateRawWithRetryOrFail(obj_size, CODE_SPACE);
   2711 
   2712   // Copy code object.
   2713   Address old_addr = code->address();
   2714   Address new_addr = result->address();
   2715   Heap::CopyBlock(new_addr, old_addr, obj_size);
   2716   Handle<Code> new_code(Code::cast(result), isolate());
   2717 
   2718   // Set the {CodeDataContainer}, it cannot be shared.
   2719   new_code->set_code_data_container(*data_container);
   2720 
   2721   new_code->Relocate(new_addr - old_addr);
   2722   // We have to iterate over the object and process its pointers when black
   2723   // allocation is on.
   2724   heap->incremental_marking()->ProcessBlackAllocatedObject(*new_code);
   2725   // Record all references to embedded objects in the new code object.
   2726   WriteBarrierForCode(*new_code);
   2727 
   2728 #ifdef VERIFY_HEAP
   2729   if (FLAG_verify_heap) new_code->ObjectVerify(isolate());
   2730 #endif
   2731   DCHECK(IsAligned(new_code->address(), kCodeAlignment));
   2732   DCHECK(
   2733       !heap->memory_allocator()->code_range()->valid() ||
   2734       heap->memory_allocator()->code_range()->contains(new_code->address()) ||
   2735       obj_size <= heap->code_space()->AreaSize());
   2736   return new_code;
   2737 }
   2738 
   2739 Handle<BytecodeArray> Factory::CopyBytecodeArray(
   2740     Handle<BytecodeArray> bytecode_array) {
   2741   int size = BytecodeArray::SizeFor(bytecode_array->length());
   2742   HeapObject* result =
   2743       AllocateRawWithImmortalMap(size, TENURED, *bytecode_array_map());
   2744 
   2745   Handle<BytecodeArray> copy(BytecodeArray::cast(result), isolate());
   2746   copy->set_length(bytecode_array->length());
   2747   copy->set_frame_size(bytecode_array->frame_size());
   2748   copy->set_parameter_count(bytecode_array->parameter_count());
   2749   copy->set_incoming_new_target_or_generator_register(
   2750       bytecode_array->incoming_new_target_or_generator_register());
   2751   copy->set_constant_pool(bytecode_array->constant_pool());
   2752   copy->set_handler_table(bytecode_array->handler_table());
   2753   copy->set_source_position_table(bytecode_array->source_position_table());
   2754   copy->set_interrupt_budget(bytecode_array->interrupt_budget());
   2755   copy->set_osr_loop_nesting_level(bytecode_array->osr_loop_nesting_level());
   2756   copy->set_bytecode_age(bytecode_array->bytecode_age());
   2757   bytecode_array->CopyBytecodesTo(*copy);
   2758   return copy;
   2759 }
   2760 
   2761 Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
   2762                                       PretenureFlag pretenure) {
   2763   JSFunction::EnsureHasInitialMap(constructor);
   2764   Handle<Map> map(constructor->initial_map(), isolate());
   2765   return NewJSObjectFromMap(map, pretenure);
   2766 }
   2767 
   2768 Handle<JSObject> Factory::NewJSObjectWithNullProto(PretenureFlag pretenure) {
   2769   Handle<JSObject> result =
   2770       NewJSObject(isolate()->object_function(), pretenure);
   2771   Handle<Map> new_map = Map::Copy(
   2772       isolate(), Handle<Map>(result->map(), isolate()), "ObjectWithNullProto");
   2773   Map::SetPrototype(isolate(), new_map, null_value());
   2774   JSObject::MigrateToMap(result, new_map);
   2775   return result;
   2776 }
   2777 
   2778 Handle<JSGlobalObject> Factory::NewJSGlobalObject(
   2779     Handle<JSFunction> constructor) {
   2780   DCHECK(constructor->has_initial_map());
   2781   Handle<Map> map(constructor->initial_map(), isolate());
   2782   DCHECK(map->is_dictionary_map());
   2783 
   2784   // Make sure no field properties are described in the initial map.
   2785   // This guarantees us that normalizing the properties does not
   2786   // require us to change property values to PropertyCells.
   2787   DCHECK_EQ(map->NextFreePropertyIndex(), 0);
   2788 
   2789   // Make sure we don't have a ton of pre-allocated slots in the
   2790   // global objects. They will be unused once we normalize the object.
   2791   DCHECK_EQ(map->UnusedPropertyFields(), 0);
   2792   DCHECK_EQ(map->GetInObjectProperties(), 0);
   2793 
   2794   // Initial size of the backing store to avoid resize of the storage during
   2795   // bootstrapping. The size differs between the JS global object ad the
   2796   // builtins object.
   2797   int initial_size = 64;
   2798 
   2799   // Allocate a dictionary object for backing storage.
   2800   int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
   2801   Handle<GlobalDictionary> dictionary =
   2802       GlobalDictionary::New(isolate(), at_least_space_for);
   2803 
   2804   // The global object might be created from an object template with accessors.
   2805   // Fill these accessors into the dictionary.
   2806   Handle<DescriptorArray> descs(map->instance_descriptors(), isolate());
   2807   for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
   2808     PropertyDetails details = descs->GetDetails(i);
   2809     // Only accessors are expected.
   2810     DCHECK_EQ(kAccessor, details.kind());
   2811     PropertyDetails d(kAccessor, details.attributes(),
   2812                       PropertyCellType::kMutable);
   2813     Handle<Name> name(descs->GetKey(i), isolate());
   2814     Handle<PropertyCell> cell = NewPropertyCell(name);
   2815     cell->set_value(descs->GetStrongValue(i));
   2816     // |dictionary| already contains enough space for all properties.
   2817     USE(GlobalDictionary::Add(isolate(), dictionary, name, cell, d));
   2818   }
   2819 
   2820   // Allocate the global object and initialize it with the backing store.
   2821   Handle<JSGlobalObject> global(JSGlobalObject::cast(New(map, TENURED)),
   2822                                 isolate());
   2823   InitializeJSObjectFromMap(global, dictionary, map);
   2824 
   2825   // Create a new map for the global object.
   2826   Handle<Map> new_map = Map::CopyDropDescriptors(isolate(), map);
   2827   new_map->set_may_have_interesting_symbols(true);
   2828   new_map->set_is_dictionary_map(true);
   2829 
   2830   // Set up the global object as a normalized object.
   2831   global->set_global_dictionary(*dictionary);
   2832   global->synchronized_set_map(*new_map);
   2833 
   2834   // Make sure result is a global object with properties in dictionary.
   2835   DCHECK(global->IsJSGlobalObject() && !global->HasFastProperties());
   2836   return global;
   2837 }
   2838 
   2839 void Factory::InitializeJSObjectFromMap(Handle<JSObject> obj,
   2840                                         Handle<Object> properties,
   2841                                         Handle<Map> map) {
   2842   obj->set_raw_properties_or_hash(*properties);
   2843   obj->initialize_elements();
   2844   // TODO(1240798): Initialize the object's body using valid initial values
   2845   // according to the object's initial map.  For example, if the map's
   2846   // instance type is JS_ARRAY_TYPE, the length field should be initialized
   2847   // to a number (e.g. Smi::kZero) and the elements initialized to a
   2848   // fixed array (e.g. Heap::empty_fixed_array()).  Currently, the object
   2849   // verification code has to cope with (temporarily) invalid objects.  See
   2850   // for example, JSArray::JSArrayVerify).
   2851   InitializeJSObjectBody(obj, map, JSObject::kHeaderSize);
   2852 }
   2853 
   2854 void Factory::InitializeJSObjectBody(Handle<JSObject> obj, Handle<Map> map,
   2855                                      int start_offset) {
   2856   if (start_offset == map->instance_size()) return;
   2857   DCHECK_LT(start_offset, map->instance_size());
   2858 
   2859   // We cannot always fill with one_pointer_filler_map because objects
   2860   // created from API functions expect their embedder fields to be initialized
   2861   // with undefined_value.
   2862   // Pre-allocated fields need to be initialized with undefined_value as well
   2863   // so that object accesses before the constructor completes (e.g. in the
   2864   // debugger) will not cause a crash.
   2865 
   2866   // In case of Array subclassing the |map| could already be transitioned
   2867   // to different elements kind from the initial map on which we track slack.
   2868   bool in_progress = map->IsInobjectSlackTrackingInProgress();
   2869   Object* filler;
   2870   if (in_progress) {
   2871     filler = *one_pointer_filler_map();
   2872   } else {
   2873     filler = *undefined_value();
   2874   }
   2875   obj->InitializeBody(*map, start_offset, *undefined_value(), filler);
   2876   if (in_progress) {
   2877     map->FindRootMap(isolate())->InobjectSlackTrackingStep(isolate());
   2878   }
   2879 }
   2880 
   2881 Handle<JSObject> Factory::NewJSObjectFromMap(
   2882     Handle<Map> map, PretenureFlag pretenure,
   2883     Handle<AllocationSite> allocation_site) {
   2884   // JSFunctions should be allocated using AllocateFunction to be
   2885   // properly initialized.
   2886   DCHECK(map->instance_type() != JS_FUNCTION_TYPE);
   2887 
   2888   // Both types of global objects should be allocated using
   2889   // AllocateGlobalObject to be properly initialized.
   2890   DCHECK(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
   2891 
   2892   HeapObject* obj =
   2893       AllocateRawWithAllocationSite(map, pretenure, allocation_site);
   2894   Handle<JSObject> js_obj(JSObject::cast(obj), isolate());
   2895 
   2896   InitializeJSObjectFromMap(js_obj, empty_fixed_array(), map);
   2897 
   2898   DCHECK(js_obj->HasFastElements() || js_obj->HasFixedTypedArrayElements() ||
   2899          js_obj->HasFastStringWrapperElements() ||
   2900          js_obj->HasFastArgumentsElements());
   2901   return js_obj;
   2902 }
   2903 
   2904 Handle<JSObject> Factory::NewSlowJSObjectFromMap(Handle<Map> map, int capacity,
   2905                                                  PretenureFlag pretenure) {
   2906   DCHECK(map->is_dictionary_map());
   2907   Handle<NameDictionary> object_properties =
   2908       NameDictionary::New(isolate(), capacity);
   2909   Handle<JSObject> js_object = NewJSObjectFromMap(map, pretenure);
   2910   js_object->set_raw_properties_or_hash(*object_properties);
   2911   return js_object;
   2912 }
   2913 
   2914 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
   2915                                     PretenureFlag pretenure) {
   2916   NativeContext* native_context = isolate()->raw_native_context();
   2917   Map* map = native_context->GetInitialJSArrayMap(elements_kind);
   2918   if (map == nullptr) {
   2919     JSFunction* array_function = native_context->array_function();
   2920     map = array_function->initial_map();
   2921   }
   2922   return Handle<JSArray>::cast(
   2923       NewJSObjectFromMap(handle(map, isolate()), pretenure));
   2924 }
   2925 
   2926 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, int length,
   2927                                     int capacity,
   2928                                     ArrayStorageAllocationMode mode,
   2929                                     PretenureFlag pretenure) {
   2930   Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
   2931   NewJSArrayStorage(array, length, capacity, mode);
   2932   return array;
   2933 }
   2934 
   2935 Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
   2936                                                 ElementsKind elements_kind,
   2937                                                 int length,
   2938                                                 PretenureFlag pretenure) {
   2939   DCHECK(length <= elements->length());
   2940   Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
   2941 
   2942   array->set_elements(*elements);
   2943   array->set_length(Smi::FromInt(length));
   2944   JSObject::ValidateElements(*array);
   2945   return array;
   2946 }
   2947 
   2948 void Factory::NewJSArrayStorage(Handle<JSArray> array, int length, int capacity,
   2949                                 ArrayStorageAllocationMode mode) {
   2950   DCHECK(capacity >= length);
   2951 
   2952   if (capacity == 0) {
   2953     array->set_length(Smi::kZero);
   2954     array->set_elements(*empty_fixed_array());
   2955     return;
   2956   }
   2957 
   2958   HandleScope inner_scope(isolate());
   2959   Handle<FixedArrayBase> elms;
   2960   ElementsKind elements_kind = array->GetElementsKind();
   2961   if (IsDoubleElementsKind(elements_kind)) {
   2962     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
   2963       elms = NewFixedDoubleArray(capacity);
   2964     } else {
   2965       DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
   2966       elms = NewFixedDoubleArrayWithHoles(capacity);
   2967     }
   2968   } else {
   2969     DCHECK(IsSmiOrObjectElementsKind(elements_kind));
   2970     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
   2971       elms = NewUninitializedFixedArray(capacity);
   2972     } else {
   2973       DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
   2974       elms = NewFixedArrayWithHoles(capacity);
   2975     }
   2976   }
   2977 
   2978   array->set_elements(*elms);
   2979   array->set_length(Smi::FromInt(length));
   2980 }
   2981 
   2982 Handle<JSWeakMap> Factory::NewJSWeakMap() {
   2983   NativeContext* native_context = isolate()->raw_native_context();
   2984   Handle<Map> map(native_context->js_weak_map_fun()->initial_map(), isolate());
   2985   Handle<JSWeakMap> weakmap(JSWeakMap::cast(*NewJSObjectFromMap(map)),
   2986                             isolate());
   2987   {
   2988     // Do not leak handles for the hash table, it would make entries strong.
   2989     HandleScope scope(isolate());
   2990     JSWeakCollection::Initialize(weakmap, isolate());
   2991   }
   2992   return weakmap;
   2993 }
   2994 
   2995 Handle<JSModuleNamespace> Factory::NewJSModuleNamespace() {
   2996   Handle<Map> map = isolate()->js_module_namespace_map();
   2997   Handle<JSModuleNamespace> module_namespace(
   2998       Handle<JSModuleNamespace>::cast(NewJSObjectFromMap(map)));
   2999   FieldIndex index = FieldIndex::ForDescriptor(
   3000       *map, JSModuleNamespace::kToStringTagFieldIndex);
   3001   module_namespace->FastPropertyAtPut(index,
   3002                                       ReadOnlyRoots(isolate()).Module_string());
   3003   return module_namespace;
   3004 }
   3005 
   3006 Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
   3007     Handle<JSFunction> function) {
   3008   DCHECK(IsResumableFunction(function->shared()->kind()));
   3009   JSFunction::EnsureHasInitialMap(function);
   3010   Handle<Map> map(function->initial_map(), isolate());
   3011 
   3012   DCHECK(map->instance_type() == JS_GENERATOR_OBJECT_TYPE ||
   3013          map->instance_type() == JS_ASYNC_GENERATOR_OBJECT_TYPE);
   3014 
   3015   return Handle<JSGeneratorObject>::cast(NewJSObjectFromMap(map));
   3016 }
   3017 
   3018 Handle<Module> Factory::NewModule(Handle<SharedFunctionInfo> code) {
   3019   Handle<ModuleInfo> module_info(code->scope_info()->ModuleDescriptorInfo(),
   3020                                  isolate());
   3021   Handle<ObjectHashTable> exports =
   3022       ObjectHashTable::New(isolate(), module_info->RegularExportCount());
   3023   Handle<FixedArray> regular_exports =
   3024       NewFixedArray(module_info->RegularExportCount());
   3025   Handle<FixedArray> regular_imports =
   3026       NewFixedArray(module_info->regular_imports()->length());
   3027   int requested_modules_length = module_info->module_requests()->length();
   3028   Handle<FixedArray> requested_modules =
   3029       requested_modules_length > 0 ? NewFixedArray(requested_modules_length)
   3030                                    : empty_fixed_array();
   3031 
   3032   ReadOnlyRoots roots(isolate());
   3033   Handle<Module> module = Handle<Module>::cast(NewStruct(MODULE_TYPE, TENURED));
   3034   module->set_code(*code);
   3035   module->set_exports(*exports);
   3036   module->set_regular_exports(*regular_exports);
   3037   module->set_regular_imports(*regular_imports);
   3038   module->set_hash(isolate()->GenerateIdentityHash(Smi::kMaxValue));
   3039   module->set_module_namespace(roots.undefined_value());
   3040   module->set_requested_modules(*requested_modules);
   3041   module->set_script(Script::cast(code->script()));
   3042   module->set_status(Module::kUninstantiated);
   3043   module->set_exception(roots.the_hole_value());
   3044   module->set_import_meta(roots.the_hole_value());
   3045   module->set_dfs_index(-1);
   3046   module->set_dfs_ancestor_index(-1);
   3047   return module;
   3048 }
   3049 
   3050 Handle<JSArrayBuffer> Factory::NewJSArrayBuffer(SharedFlag shared,
   3051                                                 PretenureFlag pretenure) {
   3052   Handle<JSFunction> array_buffer_fun(
   3053       shared == SharedFlag::kShared
   3054           ? isolate()->native_context()->shared_array_buffer_fun()
   3055           : isolate()->native_context()->array_buffer_fun(),
   3056       isolate());
   3057   Handle<Map> map(array_buffer_fun->initial_map(), isolate());
   3058   return Handle<JSArrayBuffer>::cast(NewJSObjectFromMap(map, pretenure));
   3059 }
   3060 
   3061 Handle<JSIteratorResult> Factory::NewJSIteratorResult(Handle<Object> value,
   3062                                                       bool done) {
   3063   Handle<Map> map(isolate()->native_context()->iterator_result_map(),
   3064                   isolate());
   3065   Handle<JSIteratorResult> js_iter_result =
   3066       Handle<JSIteratorResult>::cast(NewJSObjectFromMap(map));
   3067   js_iter_result->set_value(*value);
   3068   js_iter_result->set_done(*ToBoolean(done));
   3069   return js_iter_result;
   3070 }
   3071 
   3072 Handle<JSAsyncFromSyncIterator> Factory::NewJSAsyncFromSyncIterator(
   3073     Handle<JSReceiver> sync_iterator, Handle<Object> next) {
   3074   Handle<Map> map(isolate()->native_context()->async_from_sync_iterator_map(),
   3075                   isolate());
   3076   Handle<JSAsyncFromSyncIterator> iterator =
   3077       Handle<JSAsyncFromSyncIterator>::cast(NewJSObjectFromMap(map));
   3078 
   3079   iterator->set_sync_iterator(*sync_iterator);
   3080   iterator->set_next(*next);
   3081   return iterator;
   3082 }
   3083 
   3084 Handle<JSMap> Factory::NewJSMap() {
   3085   Handle<Map> map(isolate()->native_context()->js_map_map(), isolate());
   3086   Handle<JSMap> js_map = Handle<JSMap>::cast(NewJSObjectFromMap(map));
   3087   JSMap::Initialize(js_map, isolate());
   3088   return js_map;
   3089 }
   3090 
   3091 Handle<JSSet> Factory::NewJSSet() {
   3092   Handle<Map> map(isolate()->native_context()->js_set_map(), isolate());
   3093   Handle<JSSet> js_set = Handle<JSSet>::cast(NewJSObjectFromMap(map));
   3094   JSSet::Initialize(js_set, isolate());
   3095   return js_set;
   3096 }
   3097 
   3098 Handle<JSMapIterator> Factory::NewJSMapIterator(Handle<Map> map,
   3099                                                 Handle<OrderedHashMap> table,
   3100                                                 int index) {
   3101   Handle<JSMapIterator> result =
   3102       Handle<JSMapIterator>::cast(NewJSObjectFromMap(map));
   3103   result->set_table(*table);
   3104   result->set_index(Smi::FromInt(index));
   3105   return result;
   3106 }
   3107 
   3108 Handle<JSSetIterator> Factory::NewJSSetIterator(Handle<Map> map,
   3109                                                 Handle<OrderedHashSet> table,
   3110                                                 int index) {
   3111   Handle<JSSetIterator> result =
   3112       Handle<JSSetIterator>::cast(NewJSObjectFromMap(map));
   3113   result->set_table(*table);
   3114   result->set_index(Smi::FromInt(index));
   3115   return result;
   3116 }
   3117 
   3118 void Factory::TypeAndSizeForElementsKind(ElementsKind kind,
   3119                                          ExternalArrayType* array_type,
   3120                                          size_t* element_size) {
   3121   switch (kind) {
   3122 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
   3123   case TYPE##_ELEMENTS:                           \
   3124     *array_type = kExternal##Type##Array;         \
   3125     *element_size = sizeof(ctype);                \
   3126     break;
   3127     TYPED_ARRAYS(TYPED_ARRAY_CASE)
   3128 #undef TYPED_ARRAY_CASE
   3129 
   3130     default:
   3131       UNREACHABLE();
   3132   }
   3133 }
   3134 
   3135 namespace {
   3136 
   3137 static void ForFixedTypedArray(ExternalArrayType array_type,
   3138                                size_t* element_size,
   3139                                ElementsKind* element_kind) {
   3140   switch (array_type) {
   3141 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype) \
   3142   case kExternal##Type##Array:                    \
   3143     *element_size = sizeof(ctype);                \
   3144     *element_kind = TYPE##_ELEMENTS;              \
   3145     return;
   3146 
   3147     TYPED_ARRAYS(TYPED_ARRAY_CASE)
   3148 #undef TYPED_ARRAY_CASE
   3149   }
   3150   UNREACHABLE();
   3151 }
   3152 
   3153 JSFunction* GetTypedArrayFun(ExternalArrayType type, Isolate* isolate) {
   3154   NativeContext* native_context = isolate->context()->native_context();
   3155   switch (type) {
   3156 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype) \
   3157   case kExternal##Type##Array:                   \
   3158     return native_context->type##_array_fun();
   3159 
   3160     TYPED_ARRAYS(TYPED_ARRAY_FUN)
   3161 #undef TYPED_ARRAY_FUN
   3162   }
   3163   UNREACHABLE();
   3164 }
   3165 
   3166 JSFunction* GetTypedArrayFun(ElementsKind elements_kind, Isolate* isolate) {
   3167   NativeContext* native_context = isolate->context()->native_context();
   3168   switch (elements_kind) {
   3169 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype) \
   3170   case TYPE##_ELEMENTS:                          \
   3171     return native_context->type##_array_fun();
   3172 
   3173     TYPED_ARRAYS(TYPED_ARRAY_FUN)
   3174 #undef TYPED_ARRAY_FUN
   3175 
   3176     default:
   3177       UNREACHABLE();
   3178   }
   3179 }
   3180 
   3181 void SetupArrayBufferView(i::Isolate* isolate,
   3182                           i::Handle<i::JSArrayBufferView> obj,
   3183                           i::Handle<i::JSArrayBuffer> buffer,
   3184                           size_t byte_offset, size_t byte_length,
   3185                           PretenureFlag pretenure = NOT_TENURED) {
   3186   DCHECK(byte_offset + byte_length <=
   3187          static_cast<size_t>(buffer->byte_length()->Number()));
   3188 
   3189   DCHECK_EQ(obj->GetEmbedderFieldCount(),
   3190             v8::ArrayBufferView::kEmbedderFieldCount);
   3191   for (int i = 0; i < v8::ArrayBufferView::kEmbedderFieldCount; i++) {
   3192     obj->SetEmbedderField(i, Smi::kZero);
   3193   }
   3194 
   3195   obj->set_buffer(*buffer);
   3196 
   3197   i::Handle<i::Object> byte_offset_object =
   3198       isolate->factory()->NewNumberFromSize(byte_offset, pretenure);
   3199   obj->set_byte_offset(*byte_offset_object);
   3200 
   3201   i::Handle<i::Object> byte_length_object =
   3202       isolate->factory()->NewNumberFromSize(byte_length, pretenure);
   3203   obj->set_byte_length(*byte_length_object);
   3204 }
   3205 
   3206 }  // namespace
   3207 
   3208 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
   3209                                               PretenureFlag pretenure) {
   3210   Handle<JSFunction> typed_array_fun(GetTypedArrayFun(type, isolate()),
   3211                                      isolate());
   3212   Handle<Map> map(typed_array_fun->initial_map(), isolate());
   3213   return Handle<JSTypedArray>::cast(NewJSObjectFromMap(map, pretenure));
   3214 }
   3215 
   3216 Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind,
   3217                                               PretenureFlag pretenure) {
   3218   Handle<JSFunction> typed_array_fun(GetTypedArrayFun(elements_kind, isolate()),
   3219                                      isolate());
   3220   Handle<Map> map(typed_array_fun->initial_map(), isolate());
   3221   return Handle<JSTypedArray>::cast(NewJSObjectFromMap(map, pretenure));
   3222 }
   3223 
   3224 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
   3225                                               Handle<JSArrayBuffer> buffer,
   3226                                               size_t byte_offset, size_t length,
   3227                                               PretenureFlag pretenure) {
   3228   Handle<JSTypedArray> obj = NewJSTypedArray(type, pretenure);
   3229 
   3230   size_t element_size;
   3231   ElementsKind elements_kind;
   3232   ForFixedTypedArray(type, &element_size, &elements_kind);
   3233 
   3234   CHECK_EQ(byte_offset % element_size, 0);
   3235 
   3236   CHECK(length <= (std::numeric_limits<size_t>::max() / element_size));
   3237   // TODO(7881): Smi length check
   3238   CHECK(length <= static_cast<size_t>(Smi::kMaxValue));
   3239   size_t byte_length = length * element_size;
   3240   SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length,
   3241                        pretenure);
   3242 
   3243   Handle<Object> length_object = NewNumberFromSize(length, pretenure);
   3244   obj->set_length(*length_object);
   3245 
   3246   Handle<FixedTypedArrayBase> elements = NewFixedTypedArrayWithExternalPointer(
   3247       static_cast<int>(length), type,
   3248       static_cast<uint8_t*>(buffer->backing_store()) + byte_offset, pretenure);
   3249   Handle<Map> map = JSObject::GetElementsTransitionMap(obj, elements_kind);
   3250   JSObject::SetMapAndElements(obj, map, elements);
   3251   return obj;
   3252 }
   3253 
   3254 Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind,
   3255                                               size_t number_of_elements,
   3256                                               PretenureFlag pretenure) {
   3257   Handle<JSTypedArray> obj = NewJSTypedArray(elements_kind, pretenure);
   3258   DCHECK_EQ(obj->GetEmbedderFieldCount(),
   3259             v8::ArrayBufferView::kEmbedderFieldCount);
   3260   for (int i = 0; i < v8::ArrayBufferView::kEmbedderFieldCount; i++) {
   3261     obj->SetEmbedderField(i, Smi::kZero);
   3262   }
   3263 
   3264   size_t element_size;
   3265   ExternalArrayType array_type;
   3266   TypeAndSizeForElementsKind(elements_kind, &array_type, &element_size);
   3267 
   3268   CHECK(number_of_elements <=
   3269         (std::numeric_limits<size_t>::max() / element_size));
   3270   // TODO(7881): Smi length check
   3271   CHECK(number_of_elements <= static_cast<size_t>(Smi::kMaxValue));
   3272   size_t byte_length = number_of_elements * element_size;
   3273 
   3274   obj->set_byte_offset(Smi::kZero);
   3275   i::Handle<i::Object> byte_length_object =
   3276       NewNumberFromSize(byte_length, pretenure);
   3277   obj->set_byte_length(*byte_length_object);
   3278   Handle<Object> length_object =
   3279       NewNumberFromSize(number_of_elements, pretenure);
   3280   obj->set_length(*length_object);
   3281 
   3282   Handle<JSArrayBuffer> buffer =
   3283       NewJSArrayBuffer(SharedFlag::kNotShared, pretenure);
   3284   JSArrayBuffer::Setup(buffer, isolate(), true, nullptr, byte_length,
   3285                        SharedFlag::kNotShared);
   3286   obj->set_buffer(*buffer);
   3287   Handle<FixedTypedArrayBase> elements = NewFixedTypedArray(
   3288       number_of_elements, byte_length, array_type, true, pretenure);
   3289   obj->set_elements(*elements);
   3290   return obj;
   3291 }
   3292 
   3293 Handle<JSDataView> Factory::NewJSDataView(Handle<JSArrayBuffer> buffer,
   3294                                           size_t byte_offset,
   3295                                           size_t byte_length) {
   3296   Handle<Map> map(isolate()->native_context()->data_view_fun()->initial_map(),
   3297                   isolate());
   3298   Handle<JSDataView> obj = Handle<JSDataView>::cast(NewJSObjectFromMap(map));
   3299   SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length);
   3300   return obj;
   3301 }
   3302 
   3303 MaybeHandle<JSBoundFunction> Factory::NewJSBoundFunction(
   3304     Handle<JSReceiver> target_function, Handle<Object> bound_this,
   3305     Vector<Handle<Object>> bound_args) {
   3306   DCHECK(target_function->IsCallable());
   3307   STATIC_ASSERT(Code::kMaxArguments <= FixedArray::kMaxLength);
   3308   if (bound_args.length() >= Code::kMaxArguments) {
   3309     THROW_NEW_ERROR(isolate(),
   3310                     NewRangeError(MessageTemplate::kTooManyArguments),
   3311                     JSBoundFunction);
   3312   }
   3313 
   3314   // Determine the prototype of the {target_function}.
   3315   Handle<Object> prototype;
   3316   ASSIGN_RETURN_ON_EXCEPTION(
   3317       isolate(), prototype,
   3318       JSReceiver::GetPrototype(isolate(), target_function), JSBoundFunction);
   3319 
   3320   SaveContext save(isolate());
   3321   isolate()->set_context(*target_function->GetCreationContext());
   3322 
   3323   // Create the [[BoundArguments]] for the result.
   3324   Handle<FixedArray> bound_arguments;
   3325   if (bound_args.length() == 0) {
   3326     bound_arguments = empty_fixed_array();
   3327   } else {
   3328     bound_arguments = NewFixedArray(bound_args.length());
   3329     for (int i = 0; i < bound_args.length(); ++i) {
   3330       bound_arguments->set(i, *bound_args[i]);
   3331     }
   3332   }
   3333 
   3334   // Setup the map for the JSBoundFunction instance.
   3335   Handle<Map> map = target_function->IsConstructor()
   3336                         ? isolate()->bound_function_with_constructor_map()
   3337                         : isolate()->bound_function_without_constructor_map();
   3338   if (map->prototype() != *prototype) {
   3339     map = Map::TransitionToPrototype(isolate(), map, prototype);
   3340   }
   3341   DCHECK_EQ(target_function->IsConstructor(), map->is_constructor());
   3342 
   3343   // Setup the JSBoundFunction instance.
   3344   Handle<JSBoundFunction> result =
   3345       Handle<JSBoundFunction>::cast(NewJSObjectFromMap(map));
   3346   result->set_bound_target_function(*target_function);
   3347   result->set_bound_this(*bound_this);
   3348   result->set_bound_arguments(*bound_arguments);
   3349   return result;
   3350 }
   3351 
   3352 // ES6 section 9.5.15 ProxyCreate (target, handler)
   3353 Handle<JSProxy> Factory::NewJSProxy(Handle<JSReceiver> target,
   3354                                     Handle<JSReceiver> handler) {
   3355   // Allocate the proxy object.
   3356   Handle<Map> map;
   3357   if (target->IsCallable()) {
   3358     if (target->IsConstructor()) {
   3359       map = Handle<Map>(isolate()->proxy_constructor_map());
   3360     } else {
   3361       map = Handle<Map>(isolate()->proxy_callable_map());
   3362     }
   3363   } else {
   3364     map = Handle<Map>(isolate()->proxy_map());
   3365   }
   3366   DCHECK(map->prototype()->IsNull(isolate()));
   3367   Handle<JSProxy> result(JSProxy::cast(New(map, NOT_TENURED)), isolate());
   3368   result->initialize_properties();
   3369   result->set_target(*target);
   3370   result->set_handler(*handler);
   3371   return result;
   3372 }
   3373 
   3374 Handle<JSGlobalProxy> Factory::NewUninitializedJSGlobalProxy(int size) {
   3375   // Create an empty shell of a JSGlobalProxy that needs to be reinitialized
   3376   // via ReinitializeJSGlobalProxy later.
   3377   Handle<Map> map = NewMap(JS_GLOBAL_PROXY_TYPE, size);
   3378   // Maintain invariant expected from any JSGlobalProxy.
   3379   map->set_is_access_check_needed(true);
   3380   map->set_may_have_interesting_symbols(true);
   3381   return Handle<JSGlobalProxy>::cast(NewJSObjectFromMap(map, NOT_TENURED));
   3382 }
   3383 
   3384 void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
   3385                                         Handle<JSFunction> constructor) {
   3386   DCHECK(constructor->has_initial_map());
   3387   Handle<Map> map(constructor->initial_map(), isolate());
   3388   Handle<Map> old_map(object->map(), isolate());
   3389 
   3390   // The proxy's hash should be retained across reinitialization.
   3391   Handle<Object> raw_properties_or_hash(object->raw_properties_or_hash(),
   3392                                         isolate());
   3393 
   3394   if (old_map->is_prototype_map()) {
   3395     map = Map::Copy(isolate(), map, "CopyAsPrototypeForJSGlobalProxy");
   3396     map->set_is_prototype_map(true);
   3397   }
   3398   JSObject::NotifyMapChange(old_map, map, isolate());
   3399   old_map->NotifyLeafMapLayoutChange(isolate());
   3400 
   3401   // Check that the already allocated object has the same size and type as
   3402   // objects allocated using the constructor.
   3403   DCHECK(map->instance_size() == old_map->instance_size());
   3404   DCHECK(map->instance_type() == old_map->instance_type());
   3405 
   3406   // In order to keep heap in consistent state there must be no allocations
   3407   // before object re-initialization is finished.
   3408   DisallowHeapAllocation no_allocation;
   3409 
   3410   // Reset the map for the object.
   3411   object->synchronized_set_map(*map);
   3412 
   3413   // Reinitialize the object from the constructor map.
   3414   InitializeJSObjectFromMap(object, raw_properties_or_hash, map);
   3415 }
   3416 
   3417 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForLiteral(
   3418     FunctionLiteral* literal, Handle<Script> script, bool is_toplevel) {
   3419   FunctionKind kind = literal->kind();
   3420   Handle<SharedFunctionInfo> shared = NewSharedFunctionInfoForBuiltin(
   3421       literal->name(), Builtins::kCompileLazy, kind);
   3422   SharedFunctionInfo::InitFromFunctionLiteral(shared, literal, is_toplevel);
   3423   SharedFunctionInfo::SetScript(shared, script, literal->function_literal_id(),
   3424                                 false);
   3425   return shared;
   3426 }
   3427 
   3428 Handle<JSMessageObject> Factory::NewJSMessageObject(
   3429     MessageTemplate::Template message, Handle<Object> argument,
   3430     int start_position, int end_position, Handle<Script> script,
   3431     Handle<Object> stack_frames) {
   3432   Handle<Map> map = message_object_map();
   3433   Handle<JSMessageObject> message_obj(
   3434       JSMessageObject::cast(New(map, NOT_TENURED)), isolate());
   3435   message_obj->set_raw_properties_or_hash(*empty_fixed_array(),
   3436                                           SKIP_WRITE_BARRIER);
   3437   message_obj->initialize_elements();
   3438   message_obj->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
   3439   message_obj->set_type(message);
   3440   message_obj->set_argument(*argument);
   3441   message_obj->set_start_position(start_position);
   3442   message_obj->set_end_position(end_position);
   3443   message_obj->set_script(*script);
   3444   message_obj->set_stack_frames(*stack_frames);
   3445   message_obj->set_error_level(v8::Isolate::kMessageError);
   3446   return message_obj;
   3447 }
   3448 
   3449 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForApiFunction(
   3450     MaybeHandle<String> maybe_name,
   3451     Handle<FunctionTemplateInfo> function_template_info, FunctionKind kind) {
   3452   Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(
   3453       maybe_name, function_template_info, Builtins::kNoBuiltinId, kind);
   3454   return shared;
   3455 }
   3456 
   3457 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfoForBuiltin(
   3458     MaybeHandle<String> maybe_name, int builtin_index, FunctionKind kind) {
   3459   Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(
   3460       maybe_name, MaybeHandle<Code>(), builtin_index, kind);
   3461   return shared;
   3462 }
   3463 
   3464 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
   3465     MaybeHandle<String> maybe_name, MaybeHandle<HeapObject> maybe_function_data,
   3466     int maybe_builtin_index, FunctionKind kind) {
   3467   // Function names are assumed to be flat elsewhere. Must flatten before
   3468   // allocating SharedFunctionInfo to avoid GC seeing the uninitialized SFI.
   3469   Handle<String> shared_name;
   3470   bool has_shared_name = maybe_name.ToHandle(&shared_name);
   3471   if (has_shared_name) {
   3472     shared_name = String::Flatten(isolate(), shared_name, TENURED);
   3473   }
   3474 
   3475   Handle<Map> map = shared_function_info_map();
   3476   Handle<SharedFunctionInfo> share(SharedFunctionInfo::cast(New(map, TENURED)),
   3477                                    isolate());
   3478   {
   3479     DisallowHeapAllocation no_allocation;
   3480 
   3481     // Set pointer fields.
   3482     share->set_name_or_scope_info(
   3483         has_shared_name ? *shared_name
   3484                         : SharedFunctionInfo::kNoSharedNameSentinel);
   3485     Handle<HeapObject> function_data;
   3486     if (maybe_function_data.ToHandle(&function_data)) {
   3487       // If we pass function_data then we shouldn't pass a builtin index, and
   3488       // the function_data should not be code with a builtin.
   3489       DCHECK(!Builtins::IsBuiltinId(maybe_builtin_index));
   3490       DCHECK_IMPLIES(function_data->IsCode(),
   3491                      !Code::cast(*function_data)->is_builtin());
   3492       share->set_function_data(*function_data);
   3493     } else if (Builtins::IsBuiltinId(maybe_builtin_index)) {
   3494       DCHECK_NE(maybe_builtin_index, Builtins::kDeserializeLazy);
   3495       share->set_builtin_id(maybe_builtin_index);
   3496     } else {
   3497       share->set_builtin_id(Builtins::kIllegal);
   3498     }
   3499     // Generally functions won't have feedback, unless they have been created
   3500     // from a FunctionLiteral. Those can just reset this field to keep the
   3501     // SharedFunctionInfo in a consistent state.
   3502     if (maybe_builtin_index == Builtins::kCompileLazy) {
   3503       share->set_raw_outer_scope_info_or_feedback_metadata(*the_hole_value(),
   3504                                                            SKIP_WRITE_BARRIER);
   3505     } else {
   3506       share->set_raw_outer_scope_info_or_feedback_metadata(
   3507           *empty_feedback_metadata(), SKIP_WRITE_BARRIER);
   3508     }
   3509     share->set_script_or_debug_info(*undefined_value(), SKIP_WRITE_BARRIER);
   3510 #if V8_SFI_HAS_UNIQUE_ID
   3511     share->set_unique_id(isolate()->GetNextUniqueSharedFunctionInfoId());
   3512 #endif
   3513 
   3514     // Set integer fields (smi or int, depending on the architecture).
   3515     share->set_length(0);
   3516     share->set_internal_formal_parameter_count(0);
   3517     share->set_expected_nof_properties(0);
   3518     share->set_builtin_function_id(
   3519         BuiltinFunctionId::kInvalidBuiltinFunctionId);
   3520     share->set_raw_function_token_offset(0);
   3521     // All flags default to false or 0.
   3522     share->set_flags(0);
   3523     share->CalculateConstructAsBuiltin();
   3524     share->set_kind(kind);
   3525 
   3526     share->clear_padding();
   3527   }
   3528   // Link into the list.
   3529   Handle<WeakArrayList> noscript_list = noscript_shared_function_infos();
   3530   noscript_list = WeakArrayList::AddToEnd(isolate(), noscript_list,
   3531                                           MaybeObjectHandle::Weak(share));
   3532   isolate()->heap()->set_noscript_shared_function_infos(*noscript_list);
   3533 
   3534 #ifdef VERIFY_HEAP
   3535   share->SharedFunctionInfoVerify(isolate());
   3536 #endif
   3537   return share;
   3538 }
   3539 
   3540 namespace {
   3541 inline int NumberToStringCacheHash(Handle<FixedArray> cache, Smi* number) {
   3542   int mask = (cache->length() >> 1) - 1;
   3543   return number->value() & mask;
   3544 }
   3545 inline int NumberToStringCacheHash(Handle<FixedArray> cache, double number) {
   3546   int mask = (cache->length() >> 1) - 1;
   3547   int64_t bits = bit_cast<int64_t>(number);
   3548   return (static_cast<int>(bits) ^ static_cast<int>(bits >> 32)) & mask;
   3549 }
   3550 }  // namespace
   3551 
   3552 Handle<String> Factory::NumberToStringCacheSet(Handle<Object> number, int hash,
   3553                                                const char* string,
   3554                                                bool check_cache) {
   3555   // We tenure the allocated string since it is referenced from the
   3556   // number-string cache which lives in the old space.
   3557   Handle<String> js_string =
   3558       NewStringFromAsciiChecked(string, check_cache ? TENURED : NOT_TENURED);
   3559   if (!check_cache) return js_string;
   3560 
   3561   if (!number_string_cache()->get(hash * 2)->IsUndefined(isolate())) {
   3562     int full_size = isolate()->heap()->MaxNumberToStringCacheSize();
   3563     if (number_string_cache()->length() != full_size) {
   3564       Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED);
   3565       isolate()->heap()->set_number_string_cache(*new_cache);
   3566       return js_string;
   3567     }
   3568   }
   3569   number_string_cache()->set(hash * 2, *number);
   3570   number_string_cache()->set(hash * 2 + 1, *js_string);
   3571   return js_string;
   3572 }
   3573 
   3574 Handle<Object> Factory::NumberToStringCacheGet(Object* number, int hash) {
   3575   DisallowHeapAllocation no_gc;
   3576   Object* key = number_string_cache()->get(hash * 2);
   3577   if (key == number || (key->IsHeapNumber() && number->IsHeapNumber() &&
   3578                         key->Number() == number->Number())) {
   3579     return Handle<String>(
   3580         String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
   3581   }
   3582   return undefined_value();
   3583 }
   3584 
   3585 Handle<String> Factory::NumberToString(Handle<Object> number,
   3586                                        bool check_cache) {
   3587   if (number->IsSmi()) return NumberToString(Smi::cast(*number), check_cache);
   3588 
   3589   double double_value = Handle<HeapNumber>::cast(number)->value();
   3590   // Try to canonicalize doubles.
   3591   int smi_value;
   3592   if (DoubleToSmiInteger(double_value, &smi_value)) {
   3593     return NumberToString(Smi::FromInt(smi_value), check_cache);
   3594   }
   3595 
   3596   int hash = 0;
   3597   if (check_cache) {
   3598     hash = NumberToStringCacheHash(number_string_cache(), double_value);
   3599     Handle<Object> cached = NumberToStringCacheGet(*number, hash);
   3600     if (!cached->IsUndefined(isolate())) return Handle<String>::cast(cached);
   3601   }
   3602 
   3603   char arr[100];
   3604   Vector<char> buffer(arr, arraysize(arr));
   3605   const char* string = DoubleToCString(double_value, buffer);
   3606 
   3607   return NumberToStringCacheSet(number, hash, string, check_cache);
   3608 }
   3609 
   3610 Handle<String> Factory::NumberToString(Smi* number, bool check_cache) {
   3611   int hash = 0;
   3612   if (check_cache) {
   3613     hash = NumberToStringCacheHash(number_string_cache(), number);
   3614     Handle<Object> cached = NumberToStringCacheGet(number, hash);
   3615     if (!cached->IsUndefined(isolate())) return Handle<String>::cast(cached);
   3616   }
   3617 
   3618   char arr[100];
   3619   Vector<char> buffer(arr, arraysize(arr));
   3620   const char* string = IntToCString(number->value(), buffer);
   3621 
   3622   return NumberToStringCacheSet(handle(number, isolate()), hash, string,
   3623                                 check_cache);
   3624 }
   3625 
   3626 Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
   3627   DCHECK(!shared->HasDebugInfo());
   3628   Heap* heap = isolate()->heap();
   3629 
   3630   Handle<DebugInfo> debug_info =
   3631       Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE, TENURED));
   3632   debug_info->set_flags(DebugInfo::kNone);
   3633   debug_info->set_shared(*shared);
   3634   debug_info->set_debugger_hints(0);
   3635   DCHECK_EQ(DebugInfo::kNoDebuggingId, debug_info->debugging_id());
   3636   DCHECK(!shared->HasDebugInfo());
   3637   debug_info->set_script(shared->script_or_debug_info());
   3638   debug_info->set_original_bytecode_array(
   3639       ReadOnlyRoots(heap).undefined_value());
   3640   debug_info->set_break_points(ReadOnlyRoots(heap).empty_fixed_array());
   3641 
   3642   // Link debug info to function.
   3643   shared->SetDebugInfo(*debug_info);
   3644 
   3645   return debug_info;
   3646 }
   3647 
   3648 Handle<CoverageInfo> Factory::NewCoverageInfo(
   3649     const ZoneVector<SourceRange>& slots) {
   3650   const int slot_count = static_cast<int>(slots.size());
   3651 
   3652   const int length = CoverageInfo::FixedArrayLengthForSlotCount(slot_count);
   3653   Handle<CoverageInfo> info =
   3654       Handle<CoverageInfo>::cast(NewUninitializedFixedArray(length));
   3655 
   3656   for (int i = 0; i < slot_count; i++) {
   3657     SourceRange range = slots[i];
   3658     info->InitializeSlot(i, range.start, range.end);
   3659   }
   3660 
   3661   return info;
   3662 }
   3663 
   3664 Handle<BreakPointInfo> Factory::NewBreakPointInfo(int source_position) {
   3665   Handle<BreakPointInfo> new_break_point_info =
   3666       Handle<BreakPointInfo>::cast(NewStruct(TUPLE2_TYPE, TENURED));
   3667   new_break_point_info->set_source_position(source_position);
   3668   new_break_point_info->set_break_points(*undefined_value());
   3669   return new_break_point_info;
   3670 }
   3671 
   3672 Handle<BreakPoint> Factory::NewBreakPoint(int id, Handle<String> condition) {
   3673   Handle<BreakPoint> new_break_point =
   3674       Handle<BreakPoint>::cast(NewStruct(TUPLE2_TYPE, TENURED));
   3675   new_break_point->set_id(id);
   3676   new_break_point->set_condition(*condition);
   3677   return new_break_point;
   3678 }
   3679 
   3680 Handle<StackFrameInfo> Factory::NewStackFrameInfo() {
   3681   Handle<StackFrameInfo> stack_frame_info = Handle<StackFrameInfo>::cast(
   3682       NewStruct(STACK_FRAME_INFO_TYPE, NOT_TENURED));
   3683   stack_frame_info->set_line_number(0);
   3684   stack_frame_info->set_column_number(0);
   3685   stack_frame_info->set_script_id(0);
   3686   stack_frame_info->set_script_name(Smi::kZero);
   3687   stack_frame_info->set_script_name_or_source_url(Smi::kZero);
   3688   stack_frame_info->set_function_name(Smi::kZero);
   3689   stack_frame_info->set_flag(0);
   3690   return stack_frame_info;
   3691 }
   3692 
   3693 Handle<SourcePositionTableWithFrameCache>
   3694 Factory::NewSourcePositionTableWithFrameCache(
   3695     Handle<ByteArray> source_position_table,
   3696     Handle<SimpleNumberDictionary> stack_frame_cache) {
   3697   Handle<SourcePositionTableWithFrameCache>
   3698       source_position_table_with_frame_cache =
   3699           Handle<SourcePositionTableWithFrameCache>::cast(
   3700               NewStruct(TUPLE2_TYPE, TENURED));
   3701   source_position_table_with_frame_cache->set_source_position_table(
   3702       *source_position_table);
   3703   source_position_table_with_frame_cache->set_stack_frame_cache(
   3704       *stack_frame_cache);
   3705   return source_position_table_with_frame_cache;
   3706 }
   3707 
   3708 Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
   3709                                              int length) {
   3710   bool strict_mode_callee = is_strict(callee->shared()->language_mode()) ||
   3711                             !callee->shared()->has_simple_parameters();
   3712   Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
   3713                                        : isolate()->sloppy_arguments_map();
   3714   AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
   3715                                      false);
   3716   DCHECK(!isolate()->has_pending_exception());
   3717   Handle<JSObject> result = NewJSObjectFromMap(map);
   3718   Handle<Smi> value(Smi::FromInt(length), isolate());
   3719   Object::SetProperty(isolate(), result, length_string(), value,
   3720                       LanguageMode::kStrict)
   3721       .Assert();
   3722   if (!strict_mode_callee) {
   3723     Object::SetProperty(isolate(), result, callee_string(), callee,
   3724                         LanguageMode::kStrict)
   3725         .Assert();
   3726   }
   3727   return result;
   3728 }
   3729 
   3730 Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<NativeContext> context,
   3731                                                int number_of_properties) {
   3732   if (number_of_properties == 0) {
   3733     // Reuse the initial map of the Object function if the literal has no
   3734     // predeclared properties.
   3735     return handle(context->object_function()->initial_map(), isolate());
   3736   }
   3737 
   3738   // We do not cache maps for too many properties or when running builtin code.
   3739   if (isolate()->bootstrapper()->IsActive()) {
   3740     return Map::Create(isolate(), number_of_properties);
   3741   }
   3742 
   3743   // Use initial slow object proto map for too many properties.
   3744   const int kMapCacheSize = 128;
   3745   if (number_of_properties > kMapCacheSize) {
   3746     return handle(context->slow_object_with_object_prototype_map(), isolate());
   3747   }
   3748 
   3749   int cache_index = number_of_properties - 1;
   3750   Handle<Object> maybe_cache(context->map_cache(), isolate());
   3751   if (maybe_cache->IsUndefined(isolate())) {
   3752     // Allocate the new map cache for the native context.
   3753     maybe_cache = NewWeakFixedArray(kMapCacheSize, TENURED);
   3754     context->set_map_cache(*maybe_cache);
   3755   } else {
   3756     // Check to see whether there is a matching element in the cache.
   3757     Handle<WeakFixedArray> cache = Handle<WeakFixedArray>::cast(maybe_cache);
   3758     MaybeObject* result = cache->Get(cache_index);
   3759     HeapObject* heap_object;
   3760     if (result->ToWeakHeapObject(&heap_object)) {
   3761       Map* map = Map::cast(heap_object);
   3762       DCHECK(!map->is_dictionary_map());
   3763       return handle(map, isolate());
   3764     }
   3765   }
   3766 
   3767   // Create a new map and add it to the cache.
   3768   Handle<WeakFixedArray> cache = Handle<WeakFixedArray>::cast(maybe_cache);
   3769   Handle<Map> map = Map::Create(isolate(), number_of_properties);
   3770   DCHECK(!map->is_dictionary_map());
   3771   cache->Set(cache_index, HeapObjectReference::Weak(*map));
   3772   return map;
   3773 }
   3774 
   3775 Handle<LoadHandler> Factory::NewLoadHandler(int data_count) {
   3776   Handle<Map> map;
   3777   switch (data_count) {
   3778     case 1:
   3779       map = load_handler1_map();
   3780       break;
   3781     case 2:
   3782       map = load_handler2_map();
   3783       break;
   3784     case 3:
   3785       map = load_handler3_map();
   3786       break;
   3787     default:
   3788       UNREACHABLE();
   3789       break;
   3790   }
   3791   return handle(LoadHandler::cast(New(map, TENURED)), isolate());
   3792 }
   3793 
   3794 Handle<StoreHandler> Factory::NewStoreHandler(int data_count) {
   3795   Handle<Map> map;
   3796   switch (data_count) {
   3797     case 0:
   3798       map = store_handler0_map();
   3799       break;
   3800     case 1:
   3801       map = store_handler1_map();
   3802       break;
   3803     case 2:
   3804       map = store_handler2_map();
   3805       break;
   3806     case 3:
   3807       map = store_handler3_map();
   3808       break;
   3809     default:
   3810       UNREACHABLE();
   3811       break;
   3812   }
   3813   return handle(StoreHandler::cast(New(map, TENURED)), isolate());
   3814 }
   3815 
   3816 void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp, JSRegExp::Type type,
   3817                                 Handle<String> source, JSRegExp::Flags flags,
   3818                                 Handle<Object> data) {
   3819   Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
   3820 
   3821   store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
   3822   store->set(JSRegExp::kSourceIndex, *source);
   3823   store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
   3824   store->set(JSRegExp::kAtomPatternIndex, *data);
   3825   regexp->set_data(*store);
   3826 }
   3827 
   3828 void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
   3829                                     JSRegExp::Type type, Handle<String> source,
   3830                                     JSRegExp::Flags flags, int capture_count) {
   3831   Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
   3832   Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
   3833   store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
   3834   store->set(JSRegExp::kSourceIndex, *source);
   3835   store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
   3836   store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
   3837   store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
   3838   store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::kZero);
   3839   store->set(JSRegExp::kIrregexpCaptureCountIndex, Smi::FromInt(capture_count));
   3840   store->set(JSRegExp::kIrregexpCaptureNameMapIndex, uninitialized);
   3841   regexp->set_data(*store);
   3842 }
   3843 
   3844 Handle<RegExpMatchInfo> Factory::NewRegExpMatchInfo() {
   3845   // Initially, the last match info consists of all fixed fields plus space for
   3846   // the match itself (i.e., 2 capture indices).
   3847   static const int kInitialSize = RegExpMatchInfo::kFirstCaptureIndex +
   3848                                   RegExpMatchInfo::kInitialCaptureIndices;
   3849 
   3850   Handle<FixedArray> elems = NewFixedArray(kInitialSize);
   3851   Handle<RegExpMatchInfo> result = Handle<RegExpMatchInfo>::cast(elems);
   3852 
   3853   result->SetNumberOfCaptureRegisters(RegExpMatchInfo::kInitialCaptureIndices);
   3854   result->SetLastSubject(*empty_string());
   3855   result->SetLastInput(*undefined_value());
   3856   result->SetCapture(0, 0);
   3857   result->SetCapture(1, 0);
   3858 
   3859   return result;
   3860 }
   3861 
   3862 Handle<Object> Factory::GlobalConstantFor(Handle<Name> name) {
   3863   if (Name::Equals(isolate(), name, undefined_string())) {
   3864     return undefined_value();
   3865   }
   3866   if (Name::Equals(isolate(), name, NaN_string())) return nan_value();
   3867   if (Name::Equals(isolate(), name, Infinity_string())) return infinity_value();
   3868   return Handle<Object>::null();
   3869 }
   3870 
   3871 Handle<Object> Factory::ToBoolean(bool value) {
   3872   return value ? true_value() : false_value();
   3873 }
   3874 
   3875 Handle<String> Factory::ToPrimitiveHintString(ToPrimitiveHint hint) {
   3876   switch (hint) {
   3877     case ToPrimitiveHint::kDefault:
   3878       return default_string();
   3879     case ToPrimitiveHint::kNumber:
   3880       return number_string();
   3881     case ToPrimitiveHint::kString:
   3882       return string_string();
   3883   }
   3884   UNREACHABLE();
   3885 }
   3886 
   3887 Handle<Map> Factory::CreateSloppyFunctionMap(
   3888     FunctionMode function_mode, MaybeHandle<JSFunction> maybe_empty_function) {
   3889   bool has_prototype = IsFunctionModeWithPrototype(function_mode);
   3890   int header_size = has_prototype ? JSFunction::kSizeWithPrototype
   3891                                   : JSFunction::kSizeWithoutPrototype;
   3892   int descriptors_count = has_prototype ? 5 : 4;
   3893   int inobject_properties_count = 0;
   3894   if (IsFunctionModeWithName(function_mode)) ++inobject_properties_count;
   3895 
   3896   Handle<Map> map = NewMap(
   3897       JS_FUNCTION_TYPE, header_size + inobject_properties_count * kPointerSize,
   3898       TERMINAL_FAST_ELEMENTS_KIND, inobject_properties_count);
   3899   map->set_has_prototype_slot(has_prototype);
   3900   map->set_is_constructor(has_prototype);
   3901   map->set_is_callable(true);
   3902   Handle<JSFunction> empty_function;
   3903   if (maybe_empty_function.ToHandle(&empty_function)) {
   3904     Map::SetPrototype(isolate(), map, empty_function);
   3905   }
   3906 
   3907   //
   3908   // Setup descriptors array.
   3909   //
   3910   Map::EnsureDescriptorSlack(isolate(), map, descriptors_count);
   3911 
   3912   PropertyAttributes ro_attribs =
   3913       static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
   3914   PropertyAttributes rw_attribs =
   3915       static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
   3916   PropertyAttributes roc_attribs =
   3917       static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
   3918 
   3919   int field_index = 0;
   3920   STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
   3921   {  // Add length accessor.
   3922     Descriptor d = Descriptor::AccessorConstant(
   3923         length_string(), function_length_accessor(), roc_attribs);
   3924     map->AppendDescriptor(&d);
   3925   }
   3926 
   3927   STATIC_ASSERT(JSFunction::kNameDescriptorIndex == 1);
   3928   if (IsFunctionModeWithName(function_mode)) {
   3929     // Add name field.
   3930     Handle<Name> name = isolate()->factory()->name_string();
   3931     Descriptor d = Descriptor::DataField(isolate(), name, field_index++,
   3932                                          roc_attribs, Representation::Tagged());
   3933     map->AppendDescriptor(&d);
   3934 
   3935   } else {
   3936     // Add name accessor.
   3937     Descriptor d = Descriptor::AccessorConstant(
   3938         name_string(), function_name_accessor(), roc_attribs);
   3939     map->AppendDescriptor(&d);
   3940   }
   3941   {  // Add arguments accessor.
   3942     Descriptor d = Descriptor::AccessorConstant(
   3943         arguments_string(), function_arguments_accessor(), ro_attribs);
   3944     map->AppendDescriptor(&d);
   3945   }
   3946   {  // Add caller accessor.
   3947     Descriptor d = Descriptor::AccessorConstant(
   3948         caller_string(), function_caller_accessor(), ro_attribs);
   3949     map->AppendDescriptor(&d);
   3950   }
   3951   if (IsFunctionModeWithPrototype(function_mode)) {
   3952     // Add prototype accessor.
   3953     PropertyAttributes attribs =
   3954         IsFunctionModeWithWritablePrototype(function_mode) ? rw_attribs
   3955                                                            : ro_attribs;
   3956     Descriptor d = Descriptor::AccessorConstant(
   3957         prototype_string(), function_prototype_accessor(), attribs);
   3958     map->AppendDescriptor(&d);
   3959   }
   3960   DCHECK_EQ(inobject_properties_count, field_index);
   3961   return map;
   3962 }
   3963 
   3964 Handle<Map> Factory::CreateStrictFunctionMap(
   3965     FunctionMode function_mode, Handle<JSFunction> empty_function) {
   3966   bool has_prototype = IsFunctionModeWithPrototype(function_mode);
   3967   int header_size = has_prototype ? JSFunction::kSizeWithPrototype
   3968                                   : JSFunction::kSizeWithoutPrototype;
   3969   int inobject_properties_count = 0;
   3970   if (IsFunctionModeWithName(function_mode)) ++inobject_properties_count;
   3971   if (IsFunctionModeWithHomeObject(function_mode)) ++inobject_properties_count;
   3972   int descriptors_count = (IsFunctionModeWithPrototype(function_mode) ? 3 : 2) +
   3973                           inobject_properties_count;
   3974 
   3975   Handle<Map> map = NewMap(
   3976       JS_FUNCTION_TYPE, header_size + inobject_properties_count * kPointerSize,
   3977       TERMINAL_FAST_ELEMENTS_KIND, inobject_properties_count);
   3978   map->set_has_prototype_slot(has_prototype);
   3979   map->set_is_constructor(has_prototype);
   3980   map->set_is_callable(true);
   3981   Map::SetPrototype(isolate(), map, empty_function);
   3982 
   3983   //
   3984   // Setup descriptors array.
   3985   //
   3986   Map::EnsureDescriptorSlack(isolate(), map, descriptors_count);
   3987 
   3988   PropertyAttributes rw_attribs =
   3989       static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
   3990   PropertyAttributes ro_attribs =
   3991       static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
   3992   PropertyAttributes roc_attribs =
   3993       static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
   3994 
   3995   int field_index = 0;
   3996   STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
   3997   {  // Add length accessor.
   3998     Descriptor d = Descriptor::AccessorConstant(
   3999         length_string(), function_length_accessor(), roc_attribs);
   4000     map->AppendDescriptor(&d);
   4001   }
   4002 
   4003   STATIC_ASSERT(JSFunction::kNameDescriptorIndex == 1);
   4004   if (IsFunctionModeWithName(function_mode)) {
   4005     // Add name field.
   4006     Handle<Name> name = isolate()->factory()->name_string();
   4007     Descriptor d = Descriptor::DataField(isolate(), name, field_index++,
   4008                                          roc_attribs, Representation::Tagged());
   4009     map->AppendDescriptor(&d);
   4010 
   4011   } else {
   4012     // Add name accessor.
   4013     Descriptor d = Descriptor::AccessorConstant(
   4014         name_string(), function_name_accessor(), roc_attribs);
   4015     map->AppendDescriptor(&d);
   4016   }
   4017 
   4018   STATIC_ASSERT(JSFunction::kMaybeHomeObjectDescriptorIndex == 2);
   4019   if (IsFunctionModeWithHomeObject(function_mode)) {
   4020     // Add home object field.
   4021     Handle<Name> name = isolate()->factory()->home_object_symbol();
   4022     Descriptor d = Descriptor::DataField(isolate(), name, field_index++,
   4023                                          DONT_ENUM, Representation::Tagged());
   4024     map->AppendDescriptor(&d);
   4025   }
   4026 
   4027   if (IsFunctionModeWithPrototype(function_mode)) {
   4028     // Add prototype accessor.
   4029     PropertyAttributes attribs =
   4030         IsFunctionModeWithWritablePrototype(function_mode) ? rw_attribs
   4031                                                            : ro_attribs;
   4032     Descriptor d = Descriptor::AccessorConstant(
   4033         prototype_string(), function_prototype_accessor(), attribs);
   4034     map->AppendDescriptor(&d);
   4035   }
   4036   DCHECK_EQ(inobject_properties_count, field_index);
   4037   return map;
   4038 }
   4039 
   4040 Handle<Map> Factory::CreateClassFunctionMap(Handle<JSFunction> empty_function) {
   4041   Handle<Map> map = NewMap(JS_FUNCTION_TYPE, JSFunction::kSizeWithPrototype);
   4042   map->set_has_prototype_slot(true);
   4043   map->set_is_constructor(true);
   4044   map->set_is_prototype_map(true);
   4045   map->set_is_callable(true);
   4046   Map::SetPrototype(isolate(), map, empty_function);
   4047 
   4048   //
   4049   // Setup descriptors array.
   4050   //
   4051   Map::EnsureDescriptorSlack(isolate(), map, 2);
   4052 
   4053   PropertyAttributes ro_attribs =
   4054       static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
   4055   PropertyAttributes roc_attribs =
   4056       static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY);
   4057 
   4058   STATIC_ASSERT(JSFunction::kLengthDescriptorIndex == 0);
   4059   {  // Add length accessor.
   4060     Descriptor d = Descriptor::AccessorConstant(
   4061         length_string(), function_length_accessor(), roc_attribs);
   4062     map->AppendDescriptor(&d);
   4063   }
   4064 
   4065   {
   4066     // Add prototype accessor.
   4067     Descriptor d = Descriptor::AccessorConstant(
   4068         prototype_string(), function_prototype_accessor(), ro_attribs);
   4069     map->AppendDescriptor(&d);
   4070   }
   4071   return map;
   4072 }
   4073 
   4074 Handle<JSPromise> Factory::NewJSPromiseWithoutHook(PretenureFlag pretenure) {
   4075   Handle<JSPromise> promise = Handle<JSPromise>::cast(
   4076       NewJSObject(isolate()->promise_function(), pretenure));
   4077   promise->set_reactions_or_result(Smi::kZero);
   4078   promise->set_flags(0);
   4079   for (int i = 0; i < v8::Promise::kEmbedderFieldCount; i++) {
   4080     promise->SetEmbedderField(i, Smi::kZero);
   4081   }
   4082   return promise;
   4083 }
   4084 
   4085 Handle<JSPromise> Factory::NewJSPromise(PretenureFlag pretenure) {
   4086   Handle<JSPromise> promise = NewJSPromiseWithoutHook(pretenure);
   4087   isolate()->RunPromiseHook(PromiseHookType::kInit, promise, undefined_value());
   4088   return promise;
   4089 }
   4090 
   4091 Handle<CallHandlerInfo> Factory::NewCallHandlerInfo(bool has_no_side_effect) {
   4092   Handle<Map> map = has_no_side_effect
   4093                         ? side_effect_free_call_handler_info_map()
   4094                         : side_effect_call_handler_info_map();
   4095   Handle<CallHandlerInfo> info(CallHandlerInfo::cast(New(map, TENURED)),
   4096                                isolate());
   4097   Object* undefined_value = ReadOnlyRoots(isolate()).undefined_value();
   4098   info->set_callback(undefined_value);
   4099   info->set_js_callback(undefined_value);
   4100   info->set_data(undefined_value);
   4101   return info;
   4102 }
   4103 
   4104 // static
   4105 NewFunctionArgs NewFunctionArgs::ForWasm(
   4106     Handle<String> name,
   4107     Handle<WasmExportedFunctionData> exported_function_data, Handle<Map> map) {
   4108   NewFunctionArgs args;
   4109   args.name_ = name;
   4110   args.maybe_map_ = map;
   4111   args.maybe_exported_function_data_ = exported_function_data;
   4112   args.language_mode_ = LanguageMode::kSloppy;
   4113   args.prototype_mutability_ = MUTABLE;
   4114 
   4115   return args;
   4116 }
   4117 
   4118 // static
   4119 NewFunctionArgs NewFunctionArgs::ForBuiltin(Handle<String> name,
   4120                                             Handle<Map> map, int builtin_id) {
   4121   DCHECK(Builtins::IsBuiltinId(builtin_id));
   4122 
   4123   NewFunctionArgs args;
   4124   args.name_ = name;
   4125   args.maybe_map_ = map;
   4126   args.maybe_builtin_id_ = builtin_id;
   4127   args.language_mode_ = LanguageMode::kStrict;
   4128   args.prototype_mutability_ = MUTABLE;
   4129 
   4130   args.SetShouldSetLanguageMode();
   4131 
   4132   return args;
   4133 }
   4134 
   4135 // static
   4136 NewFunctionArgs NewFunctionArgs::ForFunctionWithoutCode(
   4137     Handle<String> name, Handle<Map> map, LanguageMode language_mode) {
   4138   NewFunctionArgs args;
   4139   args.name_ = name;
   4140   args.maybe_map_ = map;
   4141   args.maybe_builtin_id_ = Builtins::kIllegal;
   4142   args.language_mode_ = language_mode;
   4143   args.prototype_mutability_ = MUTABLE;
   4144 
   4145   args.SetShouldSetLanguageMode();
   4146 
   4147   return args;
   4148 }
   4149 
   4150 // static
   4151 NewFunctionArgs NewFunctionArgs::ForBuiltinWithPrototype(
   4152     Handle<String> name, Handle<Object> prototype, InstanceType type,
   4153     int instance_size, int inobject_properties, int builtin_id,
   4154     MutableMode prototype_mutability) {
   4155   DCHECK(Builtins::IsBuiltinId(builtin_id));
   4156 
   4157   NewFunctionArgs args;
   4158   args.name_ = name;
   4159   args.type_ = type;
   4160   args.instance_size_ = instance_size;
   4161   args.inobject_properties_ = inobject_properties;
   4162   args.maybe_prototype_ = prototype;
   4163   args.maybe_builtin_id_ = builtin_id;
   4164   args.language_mode_ = LanguageMode::kStrict;
   4165   args.prototype_mutability_ = prototype_mutability;
   4166 
   4167   args.SetShouldCreateAndSetInitialMap();
   4168   args.SetShouldSetPrototype();
   4169   args.SetShouldSetLanguageMode();
   4170 
   4171   return args;
   4172 }
   4173 
   4174 // static
   4175 NewFunctionArgs NewFunctionArgs::ForBuiltinWithoutPrototype(
   4176     Handle<String> name, int builtin_id, LanguageMode language_mode) {
   4177   DCHECK(Builtins::IsBuiltinId(builtin_id));
   4178 
   4179   NewFunctionArgs args;
   4180   args.name_ = name;
   4181   args.maybe_builtin_id_ = builtin_id;
   4182   args.language_mode_ = language_mode;
   4183   args.prototype_mutability_ = MUTABLE;
   4184 
   4185   args.SetShouldSetLanguageMode();
   4186 
   4187   return args;
   4188 }
   4189 
   4190 void NewFunctionArgs::SetShouldCreateAndSetInitialMap() {
   4191   // Needed to create the initial map.
   4192   maybe_prototype_.Assert();
   4193   DCHECK_NE(kUninitialized, instance_size_);
   4194   DCHECK_NE(kUninitialized, inobject_properties_);
   4195 
   4196   should_create_and_set_initial_map_ = true;
   4197 }
   4198 
   4199 void NewFunctionArgs::SetShouldSetPrototype() {
   4200   maybe_prototype_.Assert();
   4201   should_set_prototype_ = true;
   4202 }
   4203 
   4204 void NewFunctionArgs::SetShouldSetLanguageMode() {
   4205   DCHECK(language_mode_ == LanguageMode::kStrict ||
   4206          language_mode_ == LanguageMode::kSloppy);
   4207   should_set_language_mode_ = true;
   4208 }
   4209 
   4210 Handle<Map> NewFunctionArgs::GetMap(Isolate* isolate) const {
   4211   if (!maybe_map_.is_null()) {
   4212     return maybe_map_.ToHandleChecked();
   4213   } else if (maybe_prototype_.is_null()) {
   4214     return is_strict(language_mode_)
   4215                ? isolate->strict_function_without_prototype_map()
   4216                : isolate->sloppy_function_without_prototype_map();
   4217   } else {
   4218     DCHECK(!maybe_prototype_.is_null());
   4219     switch (prototype_mutability_) {
   4220       case MUTABLE:
   4221         return is_strict(language_mode_) ? isolate->strict_function_map()
   4222                                          : isolate->sloppy_function_map();
   4223       case IMMUTABLE:
   4224         return is_strict(language_mode_)
   4225                    ? isolate->strict_function_with_readonly_prototype_map()
   4226                    : isolate->sloppy_function_with_readonly_prototype_map();
   4227     }
   4228   }
   4229   UNREACHABLE();
   4230 }
   4231 
   4232 }  // namespace internal
   4233 }  // namespace v8
   4234