1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "inliner.h" 18 19 #include "art_method-inl.h" 20 #include "base/enums.h" 21 #include "base/logging.h" 22 #include "builder.h" 23 #include "class_linker.h" 24 #include "class_root.h" 25 #include "constant_folding.h" 26 #include "data_type-inl.h" 27 #include "dead_code_elimination.h" 28 #include "dex/inline_method_analyser.h" 29 #include "dex/verification_results.h" 30 #include "dex/verified_method.h" 31 #include "driver/compiler_options.h" 32 #include "driver/dex_compilation_unit.h" 33 #include "instruction_simplifier.h" 34 #include "intrinsics.h" 35 #include "jit/jit.h" 36 #include "jit/jit_code_cache.h" 37 #include "mirror/class_loader.h" 38 #include "mirror/dex_cache.h" 39 #include "mirror/object_array-alloc-inl.h" 40 #include "mirror/object_array-inl.h" 41 #include "nodes.h" 42 #include "reference_type_propagation.h" 43 #include "register_allocator_linear_scan.h" 44 #include "scoped_thread_state_change-inl.h" 45 #include "sharpening.h" 46 #include "ssa_builder.h" 47 #include "ssa_phi_elimination.h" 48 #include "thread.h" 49 50 namespace art { 51 52 // Instruction limit to control memory. 53 static constexpr size_t kMaximumNumberOfTotalInstructions = 1024; 54 55 // Maximum number of instructions for considering a method small, 56 // which we will always try to inline if the other non-instruction limits 57 // are not reached. 58 static constexpr size_t kMaximumNumberOfInstructionsForSmallMethod = 3; 59 60 // Limit the number of dex registers that we accumulate while inlining 61 // to avoid creating large amount of nested environments. 62 static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 32; 63 64 // Limit recursive call inlining, which do not benefit from too 65 // much inlining compared to code locality. 66 static constexpr size_t kMaximumNumberOfRecursiveCalls = 4; 67 68 // Controls the use of inline caches in AOT mode. 69 static constexpr bool kUseAOTInlineCaches = true; 70 71 // We check for line numbers to make sure the DepthString implementation 72 // aligns the output nicely. 73 #define LOG_INTERNAL(msg) \ 74 static_assert(__LINE__ > 10, "Unhandled line number"); \ 75 static_assert(__LINE__ < 10000, "Unhandled line number"); \ 76 VLOG(compiler) << DepthString(__LINE__) << msg 77 78 #define LOG_TRY() LOG_INTERNAL("Try inlinining call: ") 79 #define LOG_NOTE() LOG_INTERNAL("Note: ") 80 #define LOG_SUCCESS() LOG_INTERNAL("Success: ") 81 #define LOG_FAIL(stats_ptr, stat) MaybeRecordStat(stats_ptr, stat); LOG_INTERNAL("Fail: ") 82 #define LOG_FAIL_NO_STAT() LOG_INTERNAL("Fail: ") 83 84 std::string HInliner::DepthString(int line) const { 85 std::string value; 86 // Indent according to the inlining depth. 87 size_t count = depth_; 88 // Line numbers get printed in the log, so add a space if the log's line is less 89 // than 1000, and two if less than 100. 10 cannot be reached as it's the copyright. 90 if (!kIsTargetBuild) { 91 if (line < 100) { 92 value += " "; 93 } 94 if (line < 1000) { 95 value += " "; 96 } 97 // Safeguard if this file reaches more than 10000 lines. 98 DCHECK_LT(line, 10000); 99 } 100 for (size_t i = 0; i < count; ++i) { 101 value += " "; 102 } 103 return value; 104 } 105 106 static size_t CountNumberOfInstructions(HGraph* graph) { 107 size_t number_of_instructions = 0; 108 for (HBasicBlock* block : graph->GetReversePostOrderSkipEntryBlock()) { 109 for (HInstructionIterator instr_it(block->GetInstructions()); 110 !instr_it.Done(); 111 instr_it.Advance()) { 112 ++number_of_instructions; 113 } 114 } 115 return number_of_instructions; 116 } 117 118 void HInliner::UpdateInliningBudget() { 119 if (total_number_of_instructions_ >= kMaximumNumberOfTotalInstructions) { 120 // Always try to inline small methods. 121 inlining_budget_ = kMaximumNumberOfInstructionsForSmallMethod; 122 } else { 123 inlining_budget_ = std::max( 124 kMaximumNumberOfInstructionsForSmallMethod, 125 kMaximumNumberOfTotalInstructions - total_number_of_instructions_); 126 } 127 } 128 129 bool HInliner::Run() { 130 if (codegen_->GetCompilerOptions().GetInlineMaxCodeUnits() == 0) { 131 // Inlining effectively disabled. 132 return false; 133 } else if (graph_->IsDebuggable()) { 134 // For simplicity, we currently never inline when the graph is debuggable. This avoids 135 // doing some logic in the runtime to discover if a method could have been inlined. 136 return false; 137 } 138 139 bool didInline = false; 140 141 // Initialize the number of instructions for the method being compiled. Recursive calls 142 // to HInliner::Run have already updated the instruction count. 143 if (outermost_graph_ == graph_) { 144 total_number_of_instructions_ = CountNumberOfInstructions(graph_); 145 } 146 147 UpdateInliningBudget(); 148 DCHECK_NE(total_number_of_instructions_, 0u); 149 DCHECK_NE(inlining_budget_, 0u); 150 151 // If we're compiling with a core image (which is only used for 152 // test purposes), honor inlining directives in method names: 153 // - if a method's name contains the substring "$noinline$", do not 154 // inline that method; 155 // - if a method's name contains the substring "$inline$", ensure 156 // that this method is actually inlined. 157 // We limit the latter to AOT compilation, as the JIT may or may not inline 158 // depending on the state of classes at runtime. 159 const bool honor_noinline_directives = codegen_->GetCompilerOptions().CompilingWithCoreImage(); 160 const bool honor_inline_directives = 161 honor_noinline_directives && Runtime::Current()->IsAotCompiler(); 162 163 // Keep a copy of all blocks when starting the visit. 164 ArenaVector<HBasicBlock*> blocks = graph_->GetReversePostOrder(); 165 DCHECK(!blocks.empty()); 166 // Because we are changing the graph when inlining, 167 // we just iterate over the blocks of the outer method. 168 // This avoids doing the inlining work again on the inlined blocks. 169 for (HBasicBlock* block : blocks) { 170 for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) { 171 HInstruction* next = instruction->GetNext(); 172 HInvoke* call = instruction->AsInvoke(); 173 // As long as the call is not intrinsified, it is worth trying to inline. 174 if (call != nullptr && call->GetIntrinsic() == Intrinsics::kNone) { 175 if (honor_noinline_directives) { 176 // Debugging case: directives in method names control or assert on inlining. 177 std::string callee_name = outer_compilation_unit_.GetDexFile()->PrettyMethod( 178 call->GetDexMethodIndex(), /* with_signature= */ false); 179 // Tests prevent inlining by having $noinline$ in their method names. 180 if (callee_name.find("$noinline$") == std::string::npos) { 181 if (TryInline(call)) { 182 didInline = true; 183 } else if (honor_inline_directives) { 184 bool should_have_inlined = (callee_name.find("$inline$") != std::string::npos); 185 CHECK(!should_have_inlined) << "Could not inline " << callee_name; 186 } 187 } 188 } else { 189 DCHECK(!honor_inline_directives); 190 // Normal case: try to inline. 191 if (TryInline(call)) { 192 didInline = true; 193 } 194 } 195 } 196 instruction = next; 197 } 198 } 199 200 return didInline; 201 } 202 203 static bool IsMethodOrDeclaringClassFinal(ArtMethod* method) 204 REQUIRES_SHARED(Locks::mutator_lock_) { 205 return method->IsFinal() || method->GetDeclaringClass()->IsFinal(); 206 } 207 208 /** 209 * Given the `resolved_method` looked up in the dex cache, try to find 210 * the actual runtime target of an interface or virtual call. 211 * Return nullptr if the runtime target cannot be proven. 212 */ 213 static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke, ArtMethod* resolved_method) 214 REQUIRES_SHARED(Locks::mutator_lock_) { 215 if (IsMethodOrDeclaringClassFinal(resolved_method)) { 216 // No need to lookup further, the resolved method will be the target. 217 return resolved_method; 218 } 219 220 HInstruction* receiver = invoke->InputAt(0); 221 if (receiver->IsNullCheck()) { 222 // Due to multiple levels of inlining within the same pass, it might be that 223 // null check does not have the reference type of the actual receiver. 224 receiver = receiver->InputAt(0); 225 } 226 ReferenceTypeInfo info = receiver->GetReferenceTypeInfo(); 227 DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName(); 228 if (!info.IsExact()) { 229 // We currently only support inlining with known receivers. 230 // TODO: Remove this check, we should be able to inline final methods 231 // on unknown receivers. 232 return nullptr; 233 } else if (info.GetTypeHandle()->IsInterface()) { 234 // Statically knowing that the receiver has an interface type cannot 235 // help us find what is the target method. 236 return nullptr; 237 } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) { 238 // The method that we're trying to call is not in the receiver's class or super classes. 239 return nullptr; 240 } else if (info.GetTypeHandle()->IsErroneous()) { 241 // If the type is erroneous, do not go further, as we are going to query the vtable or 242 // imt table, that we can only safely do on non-erroneous classes. 243 return nullptr; 244 } 245 246 ClassLinker* cl = Runtime::Current()->GetClassLinker(); 247 PointerSize pointer_size = cl->GetImagePointerSize(); 248 if (invoke->IsInvokeInterface()) { 249 resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface( 250 resolved_method, pointer_size); 251 } else { 252 DCHECK(invoke->IsInvokeVirtual()); 253 resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual( 254 resolved_method, pointer_size); 255 } 256 257 if (resolved_method == nullptr) { 258 // The information we had on the receiver was not enough to find 259 // the target method. Since we check above the exact type of the receiver, 260 // the only reason this can happen is an IncompatibleClassChangeError. 261 return nullptr; 262 } else if (!resolved_method->IsInvokable()) { 263 // The information we had on the receiver was not enough to find 264 // the target method. Since we check above the exact type of the receiver, 265 // the only reason this can happen is an IncompatibleClassChangeError. 266 return nullptr; 267 } else if (IsMethodOrDeclaringClassFinal(resolved_method)) { 268 // A final method has to be the target method. 269 return resolved_method; 270 } else if (info.IsExact()) { 271 // If we found a method and the receiver's concrete type is statically 272 // known, we know for sure the target. 273 return resolved_method; 274 } else { 275 // Even if we did find a method, the receiver type was not enough to 276 // statically find the runtime target. 277 return nullptr; 278 } 279 } 280 281 static uint32_t FindMethodIndexIn(ArtMethod* method, 282 const DexFile& dex_file, 283 uint32_t name_and_signature_index) 284 REQUIRES_SHARED(Locks::mutator_lock_) { 285 if (IsSameDexFile(*method->GetDexFile(), dex_file)) { 286 return method->GetDexMethodIndex(); 287 } else { 288 return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index); 289 } 290 } 291 292 static dex::TypeIndex FindClassIndexIn(ObjPtr<mirror::Class> cls, 293 const DexCompilationUnit& compilation_unit) 294 REQUIRES_SHARED(Locks::mutator_lock_) { 295 const DexFile& dex_file = *compilation_unit.GetDexFile(); 296 dex::TypeIndex index; 297 if (cls->GetDexCache() == nullptr) { 298 DCHECK(cls->IsArrayClass()) << cls->PrettyClass(); 299 index = cls->FindTypeIndexInOtherDexFile(dex_file); 300 } else if (!cls->GetDexTypeIndex().IsValid()) { 301 DCHECK(cls->IsProxyClass()) << cls->PrettyClass(); 302 // TODO: deal with proxy classes. 303 } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) { 304 DCHECK_EQ(cls->GetDexCache(), compilation_unit.GetDexCache().Get()); 305 index = cls->GetDexTypeIndex(); 306 } else { 307 index = cls->FindTypeIndexInOtherDexFile(dex_file); 308 // We cannot guarantee the entry will resolve to the same class, 309 // as there may be different class loaders. So only return the index if it's 310 // the right class already resolved with the class loader. 311 if (index.IsValid()) { 312 ObjPtr<mirror::Class> resolved = compilation_unit.GetClassLinker()->LookupResolvedType( 313 index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get()); 314 if (resolved != cls) { 315 index = dex::TypeIndex::Invalid(); 316 } 317 } 318 } 319 320 return index; 321 } 322 323 class ScopedProfilingInfoInlineUse { 324 public: 325 explicit ScopedProfilingInfoInlineUse(ArtMethod* method, Thread* self) 326 : method_(method), 327 self_(self), 328 // Fetch the profiling info ahead of using it. If it's null when fetching, 329 // we should not call JitCodeCache::DoneInlining. 330 profiling_info_( 331 Runtime::Current()->GetJit()->GetCodeCache()->NotifyCompilerUse(method, self)) { 332 } 333 334 ~ScopedProfilingInfoInlineUse() { 335 if (profiling_info_ != nullptr) { 336 PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); 337 DCHECK_EQ(profiling_info_, method_->GetProfilingInfo(pointer_size)); 338 Runtime::Current()->GetJit()->GetCodeCache()->DoneCompilerUse(method_, self_); 339 } 340 } 341 342 ProfilingInfo* GetProfilingInfo() const { return profiling_info_; } 343 344 private: 345 ArtMethod* const method_; 346 Thread* const self_; 347 ProfilingInfo* const profiling_info_; 348 }; 349 350 HInliner::InlineCacheType HInliner::GetInlineCacheType( 351 const Handle<mirror::ObjectArray<mirror::Class>>& classes) 352 REQUIRES_SHARED(Locks::mutator_lock_) { 353 uint8_t number_of_types = 0; 354 for (; number_of_types < InlineCache::kIndividualCacheSize; ++number_of_types) { 355 if (classes->Get(number_of_types) == nullptr) { 356 break; 357 } 358 } 359 360 if (number_of_types == 0) { 361 return kInlineCacheUninitialized; 362 } else if (number_of_types == 1) { 363 return kInlineCacheMonomorphic; 364 } else if (number_of_types == InlineCache::kIndividualCacheSize) { 365 return kInlineCacheMegamorphic; 366 } else { 367 return kInlineCachePolymorphic; 368 } 369 } 370 371 static ObjPtr<mirror::Class> GetMonomorphicType(Handle<mirror::ObjectArray<mirror::Class>> classes) 372 REQUIRES_SHARED(Locks::mutator_lock_) { 373 DCHECK(classes->Get(0) != nullptr); 374 return classes->Get(0); 375 } 376 377 ArtMethod* HInliner::TryCHADevirtualization(ArtMethod* resolved_method) { 378 if (!resolved_method->HasSingleImplementation()) { 379 return nullptr; 380 } 381 if (Runtime::Current()->IsAotCompiler()) { 382 // No CHA-based devirtulization for AOT compiler (yet). 383 return nullptr; 384 } 385 if (Runtime::Current()->IsZygote()) { 386 // No CHA-based devirtulization for Zygote, as it compiles with 387 // offline information. 388 return nullptr; 389 } 390 if (outermost_graph_->IsCompilingOsr()) { 391 // We do not support HDeoptimize in OSR methods. 392 return nullptr; 393 } 394 PointerSize pointer_size = caller_compilation_unit_.GetClassLinker()->GetImagePointerSize(); 395 ArtMethod* single_impl = resolved_method->GetSingleImplementation(pointer_size); 396 if (single_impl == nullptr) { 397 return nullptr; 398 } 399 if (single_impl->IsProxyMethod()) { 400 // Proxy method is a generic invoker that's not worth 401 // devirtualizing/inlining. It also causes issues when the proxy 402 // method is in another dex file if we try to rewrite invoke-interface to 403 // invoke-virtual because a proxy method doesn't have a real dex file. 404 return nullptr; 405 } 406 if (!single_impl->GetDeclaringClass()->IsResolved()) { 407 // There's a race with the class loading, which updates the CHA info 408 // before setting the class to resolved. So we just bail for this 409 // rare occurence. 410 return nullptr; 411 } 412 return single_impl; 413 } 414 415 static bool IsMethodUnverified(const CompilerOptions& compiler_options, ArtMethod* method) 416 REQUIRES_SHARED(Locks::mutator_lock_) { 417 if (!method->GetDeclaringClass()->IsVerified()) { 418 if (Runtime::Current()->UseJitCompilation()) { 419 // We're at runtime, we know this is cold code if the class 420 // is not verified, so don't bother analyzing. 421 return true; 422 } 423 uint16_t class_def_idx = method->GetDeclaringClass()->GetDexClassDefIndex(); 424 if (!compiler_options.IsMethodVerifiedWithoutFailures(method->GetDexMethodIndex(), 425 class_def_idx, 426 *method->GetDexFile())) { 427 // Method has soft or hard failures, don't analyze. 428 return true; 429 } 430 } 431 return false; 432 } 433 434 static bool AlwaysThrows(const CompilerOptions& compiler_options, ArtMethod* method) 435 REQUIRES_SHARED(Locks::mutator_lock_) { 436 DCHECK(method != nullptr); 437 // Skip non-compilable and unverified methods. 438 if (!method->IsCompilable() || IsMethodUnverified(compiler_options, method)) { 439 return false; 440 } 441 // Skip native methods, methods with try blocks, and methods that are too large. 442 CodeItemDataAccessor accessor(method->DexInstructionData()); 443 if (!accessor.HasCodeItem() || 444 accessor.TriesSize() != 0 || 445 accessor.InsnsSizeInCodeUnits() > kMaximumNumberOfTotalInstructions) { 446 return false; 447 } 448 // Scan for exits. 449 bool throw_seen = false; 450 for (const DexInstructionPcPair& pair : accessor) { 451 switch (pair.Inst().Opcode()) { 452 case Instruction::RETURN: 453 case Instruction::RETURN_VOID: 454 case Instruction::RETURN_WIDE: 455 case Instruction::RETURN_OBJECT: 456 case Instruction::RETURN_VOID_NO_BARRIER: 457 return false; // found regular control flow back 458 case Instruction::THROW: 459 throw_seen = true; 460 break; 461 default: 462 break; 463 } 464 } 465 return throw_seen; 466 } 467 468 bool HInliner::TryInline(HInvoke* invoke_instruction) { 469 if (invoke_instruction->IsInvokeUnresolved() || 470 invoke_instruction->IsInvokePolymorphic() || 471 invoke_instruction->IsInvokeCustom()) { 472 return false; // Don't bother to move further if we know the method is unresolved or the 473 // invocation is polymorphic (invoke-{polymorphic,custom}). 474 } 475 476 ScopedObjectAccess soa(Thread::Current()); 477 uint32_t method_index = invoke_instruction->GetDexMethodIndex(); 478 const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); 479 LOG_TRY() << caller_dex_file.PrettyMethod(method_index); 480 481 ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod(); 482 if (resolved_method == nullptr) { 483 DCHECK(invoke_instruction->IsInvokeStaticOrDirect()); 484 DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit()); 485 LOG_FAIL_NO_STAT() << "Not inlining a String.<init> method"; 486 return false; 487 } 488 ArtMethod* actual_method = nullptr; 489 490 if (invoke_instruction->IsInvokeStaticOrDirect()) { 491 actual_method = resolved_method; 492 } else { 493 // Check if we can statically find the method. 494 actual_method = FindVirtualOrInterfaceTarget(invoke_instruction, resolved_method); 495 } 496 497 bool cha_devirtualize = false; 498 if (actual_method == nullptr) { 499 ArtMethod* method = TryCHADevirtualization(resolved_method); 500 if (method != nullptr) { 501 cha_devirtualize = true; 502 actual_method = method; 503 LOG_NOTE() << "Try CHA-based inlining of " << actual_method->PrettyMethod(); 504 } 505 } 506 507 if (actual_method != nullptr) { 508 // Single target. 509 bool result = TryInlineAndReplace(invoke_instruction, 510 actual_method, 511 ReferenceTypeInfo::CreateInvalid(), 512 /* do_rtp= */ true, 513 cha_devirtualize); 514 if (result) { 515 // Successfully inlined. 516 if (!invoke_instruction->IsInvokeStaticOrDirect()) { 517 if (cha_devirtualize) { 518 // Add dependency due to devirtualization. We've assumed resolved_method 519 // has single implementation. 520 outermost_graph_->AddCHASingleImplementationDependency(resolved_method); 521 MaybeRecordStat(stats_, MethodCompilationStat::kCHAInline); 522 } else { 523 MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvokeVirtualOrInterface); 524 } 525 } 526 } else if (!cha_devirtualize && AlwaysThrows(codegen_->GetCompilerOptions(), actual_method)) { 527 // Set always throws property for non-inlined method call with single target 528 // (unless it was obtained through CHA, because that would imply we have 529 // to add the CHA dependency, which seems not worth it). 530 invoke_instruction->SetAlwaysThrows(true); 531 } 532 return result; 533 } 534 DCHECK(!invoke_instruction->IsInvokeStaticOrDirect()); 535 536 // Try using inline caches. 537 return TryInlineFromInlineCache(caller_dex_file, invoke_instruction, resolved_method); 538 } 539 540 static Handle<mirror::ObjectArray<mirror::Class>> AllocateInlineCacheHolder( 541 const DexCompilationUnit& compilation_unit, 542 StackHandleScope<1>* hs) 543 REQUIRES_SHARED(Locks::mutator_lock_) { 544 Thread* self = Thread::Current(); 545 ClassLinker* class_linker = compilation_unit.GetClassLinker(); 546 Handle<mirror::ObjectArray<mirror::Class>> inline_cache = hs->NewHandle( 547 mirror::ObjectArray<mirror::Class>::Alloc( 548 self, 549 GetClassRoot<mirror::ObjectArray<mirror::Class>>(class_linker), 550 InlineCache::kIndividualCacheSize)); 551 if (inline_cache == nullptr) { 552 // We got an OOME. Just clear the exception, and don't inline. 553 DCHECK(self->IsExceptionPending()); 554 self->ClearException(); 555 VLOG(compiler) << "Out of memory in the compiler when trying to inline"; 556 } 557 return inline_cache; 558 } 559 560 bool HInliner::UseOnlyPolymorphicInliningWithNoDeopt() { 561 // If we are compiling AOT or OSR, pretend the call using inline caches is polymorphic and 562 // do not generate a deopt. 563 // 564 // For AOT: 565 // Generating a deopt does not ensure that we will actually capture the new types; 566 // and the danger is that we could be stuck in a loop with "forever" deoptimizations. 567 // Take for example the following scenario: 568 // - we capture the inline cache in one run 569 // - the next run, we deoptimize because we miss a type check, but the method 570 // never becomes hot again 571 // In this case, the inline cache will not be updated in the profile and the AOT code 572 // will keep deoptimizing. 573 // Another scenario is if we use profile compilation for a process which is not allowed 574 // to JIT (e.g. system server). If we deoptimize we will run interpreted code for the 575 // rest of the lifetime. 576 // TODO(calin): 577 // This is a compromise because we will most likely never update the inline cache 578 // in the profile (unless there's another reason to deopt). So we might be stuck with 579 // a sub-optimal inline cache. 580 // We could be smarter when capturing inline caches to mitigate this. 581 // (e.g. by having different thresholds for new and old methods). 582 // 583 // For OSR: 584 // We may come from the interpreter and it may have seen different receiver types. 585 return Runtime::Current()->IsAotCompiler() || outermost_graph_->IsCompilingOsr(); 586 } 587 bool HInliner::TryInlineFromInlineCache(const DexFile& caller_dex_file, 588 HInvoke* invoke_instruction, 589 ArtMethod* resolved_method) 590 REQUIRES_SHARED(Locks::mutator_lock_) { 591 if (Runtime::Current()->IsAotCompiler() && !kUseAOTInlineCaches) { 592 return false; 593 } 594 595 StackHandleScope<1> hs(Thread::Current()); 596 Handle<mirror::ObjectArray<mirror::Class>> inline_cache; 597 // The Zygote JIT compiles based on a profile, so we shouldn't use runtime inline caches 598 // for it. 599 InlineCacheType inline_cache_type = 600 (Runtime::Current()->IsAotCompiler() || Runtime::Current()->IsZygote()) 601 ? GetInlineCacheAOT(caller_dex_file, invoke_instruction, &hs, &inline_cache) 602 : GetInlineCacheJIT(invoke_instruction, &hs, &inline_cache); 603 604 switch (inline_cache_type) { 605 case kInlineCacheNoData: { 606 LOG_FAIL_NO_STAT() 607 << "Interface or virtual call to " 608 << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex()) 609 << " could not be statically determined"; 610 return false; 611 } 612 613 case kInlineCacheUninitialized: { 614 LOG_FAIL_NO_STAT() 615 << "Interface or virtual call to " 616 << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex()) 617 << " is not hit and not inlined"; 618 return false; 619 } 620 621 case kInlineCacheMonomorphic: { 622 MaybeRecordStat(stats_, MethodCompilationStat::kMonomorphicCall); 623 if (UseOnlyPolymorphicInliningWithNoDeopt()) { 624 return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache); 625 } else { 626 return TryInlineMonomorphicCall(invoke_instruction, resolved_method, inline_cache); 627 } 628 } 629 630 case kInlineCachePolymorphic: { 631 MaybeRecordStat(stats_, MethodCompilationStat::kPolymorphicCall); 632 return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache); 633 } 634 635 case kInlineCacheMegamorphic: { 636 LOG_FAIL_NO_STAT() 637 << "Interface or virtual call to " 638 << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex()) 639 << " is megamorphic and not inlined"; 640 MaybeRecordStat(stats_, MethodCompilationStat::kMegamorphicCall); 641 return false; 642 } 643 644 case kInlineCacheMissingTypes: { 645 LOG_FAIL_NO_STAT() 646 << "Interface or virtual call to " 647 << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex()) 648 << " is missing types and not inlined"; 649 return false; 650 } 651 } 652 UNREACHABLE(); 653 } 654 655 HInliner::InlineCacheType HInliner::GetInlineCacheJIT( 656 HInvoke* invoke_instruction, 657 StackHandleScope<1>* hs, 658 /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache) 659 REQUIRES_SHARED(Locks::mutator_lock_) { 660 DCHECK(Runtime::Current()->UseJitCompilation()); 661 662 ArtMethod* caller = graph_->GetArtMethod(); 663 // Under JIT, we should always know the caller. 664 DCHECK(caller != nullptr); 665 ScopedProfilingInfoInlineUse spiis(caller, Thread::Current()); 666 ProfilingInfo* profiling_info = spiis.GetProfilingInfo(); 667 668 if (profiling_info == nullptr) { 669 return kInlineCacheNoData; 670 } 671 672 *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs); 673 if (inline_cache->Get() == nullptr) { 674 // We can't extract any data if we failed to allocate; 675 return kInlineCacheNoData; 676 } else { 677 Runtime::Current()->GetJit()->GetCodeCache()->CopyInlineCacheInto( 678 *profiling_info->GetInlineCache(invoke_instruction->GetDexPc()), 679 *inline_cache); 680 return GetInlineCacheType(*inline_cache); 681 } 682 } 683 684 HInliner::InlineCacheType HInliner::GetInlineCacheAOT( 685 const DexFile& caller_dex_file, 686 HInvoke* invoke_instruction, 687 StackHandleScope<1>* hs, 688 /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache) 689 REQUIRES_SHARED(Locks::mutator_lock_) { 690 const ProfileCompilationInfo* pci = codegen_->GetCompilerOptions().GetProfileCompilationInfo(); 691 if (pci == nullptr) { 692 return kInlineCacheNoData; 693 } 694 695 std::unique_ptr<ProfileCompilationInfo::OfflineProfileMethodInfo> offline_profile = 696 pci->GetMethod(caller_dex_file.GetLocation(), 697 caller_dex_file.GetLocationChecksum(), 698 caller_compilation_unit_.GetDexMethodIndex()); 699 if (offline_profile == nullptr) { 700 return kInlineCacheNoData; // no profile information for this invocation. 701 } 702 703 *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs); 704 if (inline_cache == nullptr) { 705 // We can't extract any data if we failed to allocate; 706 return kInlineCacheNoData; 707 } else { 708 return ExtractClassesFromOfflineProfile(invoke_instruction, 709 *(offline_profile.get()), 710 *inline_cache); 711 } 712 } 713 714 HInliner::InlineCacheType HInliner::ExtractClassesFromOfflineProfile( 715 const HInvoke* invoke_instruction, 716 const ProfileCompilationInfo::OfflineProfileMethodInfo& offline_profile, 717 /*out*/Handle<mirror::ObjectArray<mirror::Class>> inline_cache) 718 REQUIRES_SHARED(Locks::mutator_lock_) { 719 const auto it = offline_profile.inline_caches->find(invoke_instruction->GetDexPc()); 720 if (it == offline_profile.inline_caches->end()) { 721 return kInlineCacheUninitialized; 722 } 723 724 const ProfileCompilationInfo::DexPcData& dex_pc_data = it->second; 725 726 if (dex_pc_data.is_missing_types) { 727 return kInlineCacheMissingTypes; 728 } 729 if (dex_pc_data.is_megamorphic) { 730 return kInlineCacheMegamorphic; 731 } 732 733 DCHECK_LE(dex_pc_data.classes.size(), InlineCache::kIndividualCacheSize); 734 Thread* self = Thread::Current(); 735 // We need to resolve the class relative to the containing dex file. 736 // So first, build a mapping from the index of dex file in the profile to 737 // its dex cache. This will avoid repeating the lookup when walking over 738 // the inline cache types. 739 std::vector<ObjPtr<mirror::DexCache>> dex_profile_index_to_dex_cache( 740 offline_profile.dex_references.size()); 741 for (size_t i = 0; i < offline_profile.dex_references.size(); i++) { 742 bool found = false; 743 for (const DexFile* dex_file : codegen_->GetCompilerOptions().GetDexFilesForOatFile()) { 744 if (offline_profile.dex_references[i].MatchesDex(dex_file)) { 745 dex_profile_index_to_dex_cache[i] = 746 caller_compilation_unit_.GetClassLinker()->FindDexCache(self, *dex_file); 747 found = true; 748 } 749 } 750 if (!found) { 751 VLOG(compiler) << "Could not find profiled dex file: " 752 << offline_profile.dex_references[i].dex_location; 753 return kInlineCacheMissingTypes; 754 } 755 } 756 757 // Walk over the classes and resolve them. If we cannot find a type we return 758 // kInlineCacheMissingTypes. 759 int ic_index = 0; 760 for (const ProfileCompilationInfo::ClassReference& class_ref : dex_pc_data.classes) { 761 ObjPtr<mirror::DexCache> dex_cache = 762 dex_profile_index_to_dex_cache[class_ref.dex_profile_index]; 763 DCHECK(dex_cache != nullptr); 764 765 if (!dex_cache->GetDexFile()->IsTypeIndexValid(class_ref.type_index)) { 766 VLOG(compiler) << "Profile data corrupt: type index " << class_ref.type_index 767 << "is invalid in location" << dex_cache->GetDexFile()->GetLocation(); 768 return kInlineCacheNoData; 769 } 770 ObjPtr<mirror::Class> clazz = caller_compilation_unit_.GetClassLinker()->LookupResolvedType( 771 class_ref.type_index, 772 dex_cache, 773 caller_compilation_unit_.GetClassLoader().Get()); 774 if (clazz != nullptr) { 775 inline_cache->Set(ic_index++, clazz); 776 } else { 777 VLOG(compiler) << "Could not resolve class from inline cache in AOT mode " 778 << caller_compilation_unit_.GetDexFile()->PrettyMethod( 779 invoke_instruction->GetDexMethodIndex()) << " : " 780 << caller_compilation_unit_ 781 .GetDexFile()->StringByTypeIdx(class_ref.type_index); 782 return kInlineCacheMissingTypes; 783 } 784 } 785 return GetInlineCacheType(inline_cache); 786 } 787 788 HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker, 789 HInstruction* receiver, 790 uint32_t dex_pc) const { 791 ArtField* field = GetClassRoot<mirror::Object>(class_linker)->GetInstanceField(0); 792 DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_"); 793 HInstanceFieldGet* result = new (graph_->GetAllocator()) HInstanceFieldGet( 794 receiver, 795 field, 796 DataType::Type::kReference, 797 field->GetOffset(), 798 field->IsVolatile(), 799 field->GetDexFieldIndex(), 800 field->GetDeclaringClass()->GetDexClassDefIndex(), 801 *field->GetDexFile(), 802 dex_pc); 803 // The class of a field is effectively final, and does not have any memory dependencies. 804 result->SetSideEffects(SideEffects::None()); 805 return result; 806 } 807 808 static ArtMethod* ResolveMethodFromInlineCache(Handle<mirror::Class> klass, 809 ArtMethod* resolved_method, 810 HInstruction* invoke_instruction, 811 PointerSize pointer_size) 812 REQUIRES_SHARED(Locks::mutator_lock_) { 813 if (Runtime::Current()->IsAotCompiler()) { 814 // We can get unrelated types when working with profiles (corruption, 815 // systme updates, or anyone can write to it). So first check if the class 816 // actually implements the declaring class of the method that is being 817 // called in bytecode. 818 // Note: the lookup methods used below require to have assignable types. 819 if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(klass.Get())) { 820 return nullptr; 821 } 822 } 823 824 if (invoke_instruction->IsInvokeInterface()) { 825 resolved_method = klass->FindVirtualMethodForInterface(resolved_method, pointer_size); 826 } else { 827 DCHECK(invoke_instruction->IsInvokeVirtual()); 828 resolved_method = klass->FindVirtualMethodForVirtual(resolved_method, pointer_size); 829 } 830 DCHECK(resolved_method != nullptr); 831 return resolved_method; 832 } 833 834 bool HInliner::TryInlineMonomorphicCall(HInvoke* invoke_instruction, 835 ArtMethod* resolved_method, 836 Handle<mirror::ObjectArray<mirror::Class>> classes) { 837 DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) 838 << invoke_instruction->DebugName(); 839 840 dex::TypeIndex class_index = FindClassIndexIn( 841 GetMonomorphicType(classes), caller_compilation_unit_); 842 if (!class_index.IsValid()) { 843 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache) 844 << "Call to " << ArtMethod::PrettyMethod(resolved_method) 845 << " from inline cache is not inlined because its class is not" 846 << " accessible to the caller"; 847 return false; 848 } 849 850 ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); 851 PointerSize pointer_size = class_linker->GetImagePointerSize(); 852 Handle<mirror::Class> monomorphic_type = handles_->NewHandle(GetMonomorphicType(classes)); 853 resolved_method = ResolveMethodFromInlineCache( 854 monomorphic_type, resolved_method, invoke_instruction, pointer_size); 855 856 LOG_NOTE() << "Try inline monomorphic call to " << resolved_method->PrettyMethod(); 857 if (resolved_method == nullptr) { 858 // Bogus AOT profile, bail. 859 DCHECK(Runtime::Current()->IsAotCompiler()); 860 return false; 861 } 862 863 HInstruction* receiver = invoke_instruction->InputAt(0); 864 HInstruction* cursor = invoke_instruction->GetPrevious(); 865 HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); 866 if (!TryInlineAndReplace(invoke_instruction, 867 resolved_method, 868 ReferenceTypeInfo::Create(monomorphic_type, /* is_exact= */ true), 869 /* do_rtp= */ false, 870 /* cha_devirtualize= */ false)) { 871 return false; 872 } 873 874 // We successfully inlined, now add a guard. 875 AddTypeGuard(receiver, 876 cursor, 877 bb_cursor, 878 class_index, 879 monomorphic_type, 880 invoke_instruction, 881 /* with_deoptimization= */ true); 882 883 // Run type propagation to get the guard typed, and eventually propagate the 884 // type of the receiver. 885 ReferenceTypePropagation rtp_fixup(graph_, 886 outer_compilation_unit_.GetClassLoader(), 887 outer_compilation_unit_.GetDexCache(), 888 handles_, 889 /* is_first_run= */ false); 890 rtp_fixup.Run(); 891 892 MaybeRecordStat(stats_, MethodCompilationStat::kInlinedMonomorphicCall); 893 return true; 894 } 895 896 void HInliner::AddCHAGuard(HInstruction* invoke_instruction, 897 uint32_t dex_pc, 898 HInstruction* cursor, 899 HBasicBlock* bb_cursor) { 900 HShouldDeoptimizeFlag* deopt_flag = new (graph_->GetAllocator()) 901 HShouldDeoptimizeFlag(graph_->GetAllocator(), dex_pc); 902 HInstruction* compare = new (graph_->GetAllocator()) HNotEqual( 903 deopt_flag, graph_->GetIntConstant(0, dex_pc)); 904 HInstruction* deopt = new (graph_->GetAllocator()) HDeoptimize( 905 graph_->GetAllocator(), compare, DeoptimizationKind::kCHA, dex_pc); 906 907 if (cursor != nullptr) { 908 bb_cursor->InsertInstructionAfter(deopt_flag, cursor); 909 } else { 910 bb_cursor->InsertInstructionBefore(deopt_flag, bb_cursor->GetFirstInstruction()); 911 } 912 bb_cursor->InsertInstructionAfter(compare, deopt_flag); 913 bb_cursor->InsertInstructionAfter(deopt, compare); 914 915 // Add receiver as input to aid CHA guard optimization later. 916 deopt_flag->AddInput(invoke_instruction->InputAt(0)); 917 DCHECK_EQ(deopt_flag->InputCount(), 1u); 918 deopt->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); 919 outermost_graph_->IncrementNumberOfCHAGuards(); 920 } 921 922 HInstruction* HInliner::AddTypeGuard(HInstruction* receiver, 923 HInstruction* cursor, 924 HBasicBlock* bb_cursor, 925 dex::TypeIndex class_index, 926 Handle<mirror::Class> klass, 927 HInstruction* invoke_instruction, 928 bool with_deoptimization) { 929 ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); 930 HInstanceFieldGet* receiver_class = BuildGetReceiverClass( 931 class_linker, receiver, invoke_instruction->GetDexPc()); 932 if (cursor != nullptr) { 933 bb_cursor->InsertInstructionAfter(receiver_class, cursor); 934 } else { 935 bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); 936 } 937 938 const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); 939 bool is_referrer; 940 ArtMethod* outermost_art_method = outermost_graph_->GetArtMethod(); 941 if (outermost_art_method == nullptr) { 942 DCHECK(Runtime::Current()->IsAotCompiler()); 943 // We are in AOT mode and we don't have an ART method to determine 944 // if the inlined method belongs to the referrer. Assume it doesn't. 945 is_referrer = false; 946 } else { 947 is_referrer = klass.Get() == outermost_art_method->GetDeclaringClass(); 948 } 949 950 // Note that we will just compare the classes, so we don't need Java semantics access checks. 951 // Note that the type index and the dex file are relative to the method this type guard is 952 // inlined into. 953 HLoadClass* load_class = new (graph_->GetAllocator()) HLoadClass(graph_->GetCurrentMethod(), 954 class_index, 955 caller_dex_file, 956 klass, 957 is_referrer, 958 invoke_instruction->GetDexPc(), 959 /* needs_access_check= */ false); 960 HLoadClass::LoadKind kind = HSharpening::ComputeLoadClassKind( 961 load_class, codegen_, caller_compilation_unit_); 962 DCHECK(kind != HLoadClass::LoadKind::kInvalid) 963 << "We should always be able to reference a class for inline caches"; 964 // Load kind must be set before inserting the instruction into the graph. 965 load_class->SetLoadKind(kind); 966 bb_cursor->InsertInstructionAfter(load_class, receiver_class); 967 // In AOT mode, we will most likely load the class from BSS, which will involve a call 968 // to the runtime. In this case, the load instruction will need an environment so copy 969 // it from the invoke instruction. 970 if (load_class->NeedsEnvironment()) { 971 DCHECK(Runtime::Current()->IsAotCompiler()); 972 load_class->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); 973 } 974 975 HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(load_class, receiver_class); 976 bb_cursor->InsertInstructionAfter(compare, load_class); 977 if (with_deoptimization) { 978 HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize( 979 graph_->GetAllocator(), 980 compare, 981 receiver, 982 Runtime::Current()->IsAotCompiler() 983 ? DeoptimizationKind::kAotInlineCache 984 : DeoptimizationKind::kJitInlineCache, 985 invoke_instruction->GetDexPc()); 986 bb_cursor->InsertInstructionAfter(deoptimize, compare); 987 deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); 988 DCHECK_EQ(invoke_instruction->InputAt(0), receiver); 989 receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize); 990 deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo()); 991 } 992 return compare; 993 } 994 995 bool HInliner::TryInlinePolymorphicCall(HInvoke* invoke_instruction, 996 ArtMethod* resolved_method, 997 Handle<mirror::ObjectArray<mirror::Class>> classes) { 998 DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) 999 << invoke_instruction->DebugName(); 1000 1001 if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, resolved_method, classes)) { 1002 return true; 1003 } 1004 1005 ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); 1006 PointerSize pointer_size = class_linker->GetImagePointerSize(); 1007 1008 bool all_targets_inlined = true; 1009 bool one_target_inlined = false; 1010 for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) { 1011 if (classes->Get(i) == nullptr) { 1012 break; 1013 } 1014 ArtMethod* method = nullptr; 1015 1016 Handle<mirror::Class> handle = handles_->NewHandle(classes->Get(i)); 1017 method = ResolveMethodFromInlineCache( 1018 handle, resolved_method, invoke_instruction, pointer_size); 1019 if (method == nullptr) { 1020 DCHECK(Runtime::Current()->IsAotCompiler()); 1021 // AOT profile is bogus. This loop expects to iterate over all entries, 1022 // so just just continue. 1023 all_targets_inlined = false; 1024 continue; 1025 } 1026 1027 HInstruction* receiver = invoke_instruction->InputAt(0); 1028 HInstruction* cursor = invoke_instruction->GetPrevious(); 1029 HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); 1030 1031 dex::TypeIndex class_index = FindClassIndexIn(handle.Get(), caller_compilation_unit_); 1032 HInstruction* return_replacement = nullptr; 1033 LOG_NOTE() << "Try inline polymorphic call to " << method->PrettyMethod(); 1034 if (!class_index.IsValid() || 1035 !TryBuildAndInline(invoke_instruction, 1036 method, 1037 ReferenceTypeInfo::Create(handle, /* is_exact= */ true), 1038 &return_replacement)) { 1039 all_targets_inlined = false; 1040 } else { 1041 one_target_inlined = true; 1042 1043 LOG_SUCCESS() << "Polymorphic call to " << ArtMethod::PrettyMethod(resolved_method) 1044 << " has inlined " << ArtMethod::PrettyMethod(method); 1045 1046 // If we have inlined all targets before, and this receiver is the last seen, 1047 // we deoptimize instead of keeping the original invoke instruction. 1048 bool deoptimize = !UseOnlyPolymorphicInliningWithNoDeopt() && 1049 all_targets_inlined && 1050 (i != InlineCache::kIndividualCacheSize - 1) && 1051 (classes->Get(i + 1) == nullptr); 1052 1053 HInstruction* compare = AddTypeGuard(receiver, 1054 cursor, 1055 bb_cursor, 1056 class_index, 1057 handle, 1058 invoke_instruction, 1059 deoptimize); 1060 if (deoptimize) { 1061 if (return_replacement != nullptr) { 1062 invoke_instruction->ReplaceWith(return_replacement); 1063 } 1064 invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction); 1065 // Because the inline cache data can be populated concurrently, we force the end of the 1066 // iteration. Otherwise, we could see a new receiver type. 1067 break; 1068 } else { 1069 CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); 1070 } 1071 } 1072 } 1073 1074 if (!one_target_inlined) { 1075 LOG_FAIL_NO_STAT() 1076 << "Call to " << ArtMethod::PrettyMethod(resolved_method) 1077 << " from inline cache is not inlined because none" 1078 << " of its targets could be inlined"; 1079 return false; 1080 } 1081 1082 MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall); 1083 1084 // Run type propagation to get the guards typed. 1085 ReferenceTypePropagation rtp_fixup(graph_, 1086 outer_compilation_unit_.GetClassLoader(), 1087 outer_compilation_unit_.GetDexCache(), 1088 handles_, 1089 /* is_first_run= */ false); 1090 rtp_fixup.Run(); 1091 return true; 1092 } 1093 1094 void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare, 1095 HInstruction* return_replacement, 1096 HInstruction* invoke_instruction) { 1097 uint32_t dex_pc = invoke_instruction->GetDexPc(); 1098 HBasicBlock* cursor_block = compare->GetBlock(); 1099 HBasicBlock* original_invoke_block = invoke_instruction->GetBlock(); 1100 ArenaAllocator* allocator = graph_->GetAllocator(); 1101 1102 // Spit the block after the compare: `cursor_block` will now be the start of the diamond, 1103 // and the returned block is the start of the then branch (that could contain multiple blocks). 1104 HBasicBlock* then = cursor_block->SplitAfterForInlining(compare); 1105 1106 // Split the block containing the invoke before and after the invoke. The returned block 1107 // of the split before will contain the invoke and will be the otherwise branch of 1108 // the diamond. The returned block of the split after will be the merge block 1109 // of the diamond. 1110 HBasicBlock* end_then = invoke_instruction->GetBlock(); 1111 HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction); 1112 HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction); 1113 1114 // If the methods we are inlining return a value, we create a phi in the merge block 1115 // that will have the `invoke_instruction and the `return_replacement` as inputs. 1116 if (return_replacement != nullptr) { 1117 HPhi* phi = new (allocator) HPhi( 1118 allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc); 1119 merge->AddPhi(phi); 1120 invoke_instruction->ReplaceWith(phi); 1121 phi->AddInput(return_replacement); 1122 phi->AddInput(invoke_instruction); 1123 } 1124 1125 // Add the control flow instructions. 1126 otherwise->AddInstruction(new (allocator) HGoto(dex_pc)); 1127 end_then->AddInstruction(new (allocator) HGoto(dex_pc)); 1128 cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc)); 1129 1130 // Add the newly created blocks to the graph. 1131 graph_->AddBlock(then); 1132 graph_->AddBlock(otherwise); 1133 graph_->AddBlock(merge); 1134 1135 // Set up successor (and implictly predecessor) relations. 1136 cursor_block->AddSuccessor(otherwise); 1137 cursor_block->AddSuccessor(then); 1138 end_then->AddSuccessor(merge); 1139 otherwise->AddSuccessor(merge); 1140 1141 // Set up dominance information. 1142 then->SetDominator(cursor_block); 1143 cursor_block->AddDominatedBlock(then); 1144 otherwise->SetDominator(cursor_block); 1145 cursor_block->AddDominatedBlock(otherwise); 1146 merge->SetDominator(cursor_block); 1147 cursor_block->AddDominatedBlock(merge); 1148 1149 // Update the revert post order. 1150 size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block); 1151 MakeRoomFor(&graph_->reverse_post_order_, 1, index); 1152 graph_->reverse_post_order_[++index] = then; 1153 index = IndexOfElement(graph_->reverse_post_order_, end_then); 1154 MakeRoomFor(&graph_->reverse_post_order_, 2, index); 1155 graph_->reverse_post_order_[++index] = otherwise; 1156 graph_->reverse_post_order_[++index] = merge; 1157 1158 1159 graph_->UpdateLoopAndTryInformationOfNewBlock( 1160 then, original_invoke_block, /* replace_if_back_edge= */ false); 1161 graph_->UpdateLoopAndTryInformationOfNewBlock( 1162 otherwise, original_invoke_block, /* replace_if_back_edge= */ false); 1163 1164 // In case the original invoke location was a back edge, we need to update 1165 // the loop to now have the merge block as a back edge. 1166 graph_->UpdateLoopAndTryInformationOfNewBlock( 1167 merge, original_invoke_block, /* replace_if_back_edge= */ true); 1168 } 1169 1170 bool HInliner::TryInlinePolymorphicCallToSameTarget( 1171 HInvoke* invoke_instruction, 1172 ArtMethod* resolved_method, 1173 Handle<mirror::ObjectArray<mirror::Class>> classes) { 1174 // This optimization only works under JIT for now. 1175 if (!Runtime::Current()->UseJitCompilation()) { 1176 return false; 1177 } 1178 1179 ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); 1180 PointerSize pointer_size = class_linker->GetImagePointerSize(); 1181 1182 DCHECK(resolved_method != nullptr); 1183 ArtMethod* actual_method = nullptr; 1184 size_t method_index = invoke_instruction->IsInvokeVirtual() 1185 ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex() 1186 : invoke_instruction->AsInvokeInterface()->GetImtIndex(); 1187 1188 // Check whether we are actually calling the same method among 1189 // the different types seen. 1190 for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) { 1191 if (classes->Get(i) == nullptr) { 1192 break; 1193 } 1194 ArtMethod* new_method = nullptr; 1195 if (invoke_instruction->IsInvokeInterface()) { 1196 new_method = classes->Get(i)->GetImt(pointer_size)->Get( 1197 method_index, pointer_size); 1198 if (new_method->IsRuntimeMethod()) { 1199 // Bail out as soon as we see a conflict trampoline in one of the target's 1200 // interface table. 1201 return false; 1202 } 1203 } else { 1204 DCHECK(invoke_instruction->IsInvokeVirtual()); 1205 new_method = classes->Get(i)->GetEmbeddedVTableEntry(method_index, pointer_size); 1206 } 1207 DCHECK(new_method != nullptr); 1208 if (actual_method == nullptr) { 1209 actual_method = new_method; 1210 } else if (actual_method != new_method) { 1211 // Different methods, bailout. 1212 return false; 1213 } 1214 } 1215 1216 HInstruction* receiver = invoke_instruction->InputAt(0); 1217 HInstruction* cursor = invoke_instruction->GetPrevious(); 1218 HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); 1219 1220 HInstruction* return_replacement = nullptr; 1221 if (!TryBuildAndInline(invoke_instruction, 1222 actual_method, 1223 ReferenceTypeInfo::CreateInvalid(), 1224 &return_replacement)) { 1225 return false; 1226 } 1227 1228 // We successfully inlined, now add a guard. 1229 HInstanceFieldGet* receiver_class = BuildGetReceiverClass( 1230 class_linker, receiver, invoke_instruction->GetDexPc()); 1231 1232 DataType::Type type = Is64BitInstructionSet(graph_->GetInstructionSet()) 1233 ? DataType::Type::kInt64 1234 : DataType::Type::kInt32; 1235 HClassTableGet* class_table_get = new (graph_->GetAllocator()) HClassTableGet( 1236 receiver_class, 1237 type, 1238 invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable 1239 : HClassTableGet::TableKind::kIMTable, 1240 method_index, 1241 invoke_instruction->GetDexPc()); 1242 1243 HConstant* constant; 1244 if (type == DataType::Type::kInt64) { 1245 constant = graph_->GetLongConstant( 1246 reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc()); 1247 } else { 1248 constant = graph_->GetIntConstant( 1249 reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc()); 1250 } 1251 1252 HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(class_table_get, constant); 1253 if (cursor != nullptr) { 1254 bb_cursor->InsertInstructionAfter(receiver_class, cursor); 1255 } else { 1256 bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); 1257 } 1258 bb_cursor->InsertInstructionAfter(class_table_get, receiver_class); 1259 bb_cursor->InsertInstructionAfter(compare, class_table_get); 1260 1261 if (outermost_graph_->IsCompilingOsr()) { 1262 CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); 1263 } else { 1264 HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize( 1265 graph_->GetAllocator(), 1266 compare, 1267 receiver, 1268 DeoptimizationKind::kJitSameTarget, 1269 invoke_instruction->GetDexPc()); 1270 bb_cursor->InsertInstructionAfter(deoptimize, compare); 1271 deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); 1272 if (return_replacement != nullptr) { 1273 invoke_instruction->ReplaceWith(return_replacement); 1274 } 1275 receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize); 1276 invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction); 1277 deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo()); 1278 } 1279 1280 // Run type propagation to get the guard typed. 1281 ReferenceTypePropagation rtp_fixup(graph_, 1282 outer_compilation_unit_.GetClassLoader(), 1283 outer_compilation_unit_.GetDexCache(), 1284 handles_, 1285 /* is_first_run= */ false); 1286 rtp_fixup.Run(); 1287 1288 MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall); 1289 1290 LOG_SUCCESS() << "Inlined same polymorphic target " << actual_method->PrettyMethod(); 1291 return true; 1292 } 1293 1294 bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction, 1295 ArtMethod* method, 1296 ReferenceTypeInfo receiver_type, 1297 bool do_rtp, 1298 bool cha_devirtualize) { 1299 DCHECK(!invoke_instruction->IsIntrinsic()); 1300 HInstruction* return_replacement = nullptr; 1301 uint32_t dex_pc = invoke_instruction->GetDexPc(); 1302 HInstruction* cursor = invoke_instruction->GetPrevious(); 1303 HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); 1304 bool should_remove_invoke_instruction = false; 1305 1306 // If invoke_instruction is devirtualized to a different method, give intrinsics 1307 // another chance before we try to inline it. 1308 if (invoke_instruction->GetResolvedMethod() != method && method->IsIntrinsic()) { 1309 MaybeRecordStat(stats_, MethodCompilationStat::kIntrinsicRecognized); 1310 if (invoke_instruction->IsInvokeInterface()) { 1311 // We don't intrinsify an invoke-interface directly. 1312 // Replace the invoke-interface with an invoke-virtual. 1313 HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual( 1314 graph_->GetAllocator(), 1315 invoke_instruction->GetNumberOfArguments(), 1316 invoke_instruction->GetType(), 1317 invoke_instruction->GetDexPc(), 1318 invoke_instruction->GetDexMethodIndex(), // Use interface method's dex method index. 1319 method, 1320 method->GetMethodIndex()); 1321 DCHECK_NE(new_invoke->GetIntrinsic(), Intrinsics::kNone); 1322 HInputsRef inputs = invoke_instruction->GetInputs(); 1323 for (size_t index = 0; index != inputs.size(); ++index) { 1324 new_invoke->SetArgumentAt(index, inputs[index]); 1325 } 1326 invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction); 1327 new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); 1328 if (invoke_instruction->GetType() == DataType::Type::kReference) { 1329 new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo()); 1330 } 1331 return_replacement = new_invoke; 1332 // invoke_instruction is replaced with new_invoke. 1333 should_remove_invoke_instruction = true; 1334 } else { 1335 invoke_instruction->SetResolvedMethod(method); 1336 } 1337 } else if (!TryBuildAndInline(invoke_instruction, method, receiver_type, &return_replacement)) { 1338 if (invoke_instruction->IsInvokeInterface()) { 1339 DCHECK(!method->IsProxyMethod()); 1340 // Turn an invoke-interface into an invoke-virtual. An invoke-virtual is always 1341 // better than an invoke-interface because: 1342 // 1) In the best case, the interface call has one more indirection (to fetch the IMT). 1343 // 2) We will not go to the conflict trampoline with an invoke-virtual. 1344 // TODO: Consider sharpening once it is not dependent on the compiler driver. 1345 1346 if (method->IsDefault() && !method->IsCopied()) { 1347 // Changing to invoke-virtual cannot be done on an original default method 1348 // since it's not in any vtable. Devirtualization by exact type/inline-cache 1349 // always uses a method in the iftable which is never an original default 1350 // method. 1351 // On the other hand, inlining an original default method by CHA is fine. 1352 DCHECK(cha_devirtualize); 1353 return false; 1354 } 1355 1356 const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); 1357 uint32_t dex_method_index = FindMethodIndexIn( 1358 method, caller_dex_file, invoke_instruction->GetDexMethodIndex()); 1359 if (dex_method_index == dex::kDexNoIndex) { 1360 return false; 1361 } 1362 HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual( 1363 graph_->GetAllocator(), 1364 invoke_instruction->GetNumberOfArguments(), 1365 invoke_instruction->GetType(), 1366 invoke_instruction->GetDexPc(), 1367 dex_method_index, 1368 method, 1369 method->GetMethodIndex()); 1370 HInputsRef inputs = invoke_instruction->GetInputs(); 1371 for (size_t index = 0; index != inputs.size(); ++index) { 1372 new_invoke->SetArgumentAt(index, inputs[index]); 1373 } 1374 invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction); 1375 new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); 1376 if (invoke_instruction->GetType() == DataType::Type::kReference) { 1377 new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo()); 1378 } 1379 return_replacement = new_invoke; 1380 // invoke_instruction is replaced with new_invoke. 1381 should_remove_invoke_instruction = true; 1382 } else { 1383 // TODO: Consider sharpening an invoke virtual once it is not dependent on the 1384 // compiler driver. 1385 return false; 1386 } 1387 } else { 1388 // invoke_instruction is inlined. 1389 should_remove_invoke_instruction = true; 1390 } 1391 1392 if (cha_devirtualize) { 1393 AddCHAGuard(invoke_instruction, dex_pc, cursor, bb_cursor); 1394 } 1395 if (return_replacement != nullptr) { 1396 invoke_instruction->ReplaceWith(return_replacement); 1397 } 1398 if (should_remove_invoke_instruction) { 1399 invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction); 1400 } 1401 FixUpReturnReferenceType(method, return_replacement); 1402 if (do_rtp && ReturnTypeMoreSpecific(invoke_instruction, return_replacement)) { 1403 // Actual return value has a more specific type than the method's declared 1404 // return type. Run RTP again on the outer graph to propagate it. 1405 ReferenceTypePropagation(graph_, 1406 outer_compilation_unit_.GetClassLoader(), 1407 outer_compilation_unit_.GetDexCache(), 1408 handles_, 1409 /* is_first_run= */ false).Run(); 1410 } 1411 return true; 1412 } 1413 1414 size_t HInliner::CountRecursiveCallsOf(ArtMethod* method) const { 1415 const HInliner* current = this; 1416 size_t count = 0; 1417 do { 1418 if (current->graph_->GetArtMethod() == method) { 1419 ++count; 1420 } 1421 current = current->parent_; 1422 } while (current != nullptr); 1423 return count; 1424 } 1425 1426 static inline bool MayInline(const CompilerOptions& compiler_options, 1427 const DexFile& inlined_from, 1428 const DexFile& inlined_into) { 1429 // We're not allowed to inline across dex files if we're the no-inline-from dex file. 1430 if (!IsSameDexFile(inlined_from, inlined_into) && 1431 ContainsElement(compiler_options.GetNoInlineFromDexFile(), &inlined_from)) { 1432 return false; 1433 } 1434 1435 return true; 1436 } 1437 1438 bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction, 1439 ArtMethod* method, 1440 ReferenceTypeInfo receiver_type, 1441 HInstruction** return_replacement) { 1442 if (method->IsProxyMethod()) { 1443 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedProxy) 1444 << "Method " << method->PrettyMethod() 1445 << " is not inlined because of unimplemented inline support for proxy methods."; 1446 return false; 1447 } 1448 1449 if (CountRecursiveCallsOf(method) > kMaximumNumberOfRecursiveCalls) { 1450 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRecursiveBudget) 1451 << "Method " 1452 << method->PrettyMethod() 1453 << " is not inlined because it has reached its recursive call budget."; 1454 return false; 1455 } 1456 1457 // Check whether we're allowed to inline. The outermost compilation unit is the relevant 1458 // dex file here (though the transitivity of an inline chain would allow checking the calller). 1459 if (!MayInline(codegen_->GetCompilerOptions(), 1460 *method->GetDexFile(), 1461 *outer_compilation_unit_.GetDexFile())) { 1462 if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) { 1463 LOG_SUCCESS() << "Successfully replaced pattern of invoke " 1464 << method->PrettyMethod(); 1465 MaybeRecordStat(stats_, MethodCompilationStat::kReplacedInvokeWithSimplePattern); 1466 return true; 1467 } 1468 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedWont) 1469 << "Won't inline " << method->PrettyMethod() << " in " 1470 << outer_compilation_unit_.GetDexFile()->GetLocation() << " (" 1471 << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from " 1472 << method->GetDexFile()->GetLocation(); 1473 return false; 1474 } 1475 1476 bool same_dex_file = IsSameDexFile(*outer_compilation_unit_.GetDexFile(), *method->GetDexFile()); 1477 1478 CodeItemDataAccessor accessor(method->DexInstructionData()); 1479 1480 if (!accessor.HasCodeItem()) { 1481 LOG_FAIL_NO_STAT() 1482 << "Method " << method->PrettyMethod() << " is not inlined because it is native"; 1483 return false; 1484 } 1485 1486 size_t inline_max_code_units = codegen_->GetCompilerOptions().GetInlineMaxCodeUnits(); 1487 if (accessor.InsnsSizeInCodeUnits() > inline_max_code_units) { 1488 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCodeItem) 1489 << "Method " << method->PrettyMethod() 1490 << " is not inlined because its code item is too big: " 1491 << accessor.InsnsSizeInCodeUnits() 1492 << " > " 1493 << inline_max_code_units; 1494 return false; 1495 } 1496 1497 if (accessor.TriesSize() != 0) { 1498 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatch) 1499 << "Method " << method->PrettyMethod() << " is not inlined because of try block"; 1500 return false; 1501 } 1502 1503 if (!method->IsCompilable()) { 1504 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified) 1505 << "Method " << method->PrettyMethod() 1506 << " has soft failures un-handled by the compiler, so it cannot be inlined"; 1507 return false; 1508 } 1509 1510 if (IsMethodUnverified(codegen_->GetCompilerOptions(), method)) { 1511 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified) 1512 << "Method " << method->PrettyMethod() 1513 << " couldn't be verified, so it cannot be inlined"; 1514 return false; 1515 } 1516 1517 if (invoke_instruction->IsInvokeStaticOrDirect() && 1518 invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) { 1519 // Case of a static method that cannot be inlined because it implicitly 1520 // requires an initialization check of its declaring class. 1521 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache) 1522 << "Method " << method->PrettyMethod() 1523 << " is not inlined because it is static and requires a clinit" 1524 << " check that cannot be emitted due to Dex cache limitations"; 1525 return false; 1526 } 1527 1528 if (!TryBuildAndInlineHelper( 1529 invoke_instruction, method, receiver_type, same_dex_file, return_replacement)) { 1530 return false; 1531 } 1532 1533 LOG_SUCCESS() << method->PrettyMethod(); 1534 MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvoke); 1535 return true; 1536 } 1537 1538 static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction, 1539 size_t arg_vreg_index) 1540 REQUIRES_SHARED(Locks::mutator_lock_) { 1541 size_t input_index = 0; 1542 for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) { 1543 DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); 1544 if (DataType::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) { 1545 ++i; 1546 DCHECK_NE(i, arg_vreg_index); 1547 } 1548 } 1549 DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); 1550 return invoke_instruction->InputAt(input_index); 1551 } 1552 1553 // Try to recognize known simple patterns and replace invoke call with appropriate instructions. 1554 bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction, 1555 ArtMethod* resolved_method, 1556 HInstruction** return_replacement) { 1557 InlineMethod inline_method; 1558 if (!InlineMethodAnalyser::AnalyseMethodCode(resolved_method, &inline_method)) { 1559 return false; 1560 } 1561 1562 switch (inline_method.opcode) { 1563 case kInlineOpNop: 1564 DCHECK_EQ(invoke_instruction->GetType(), DataType::Type::kVoid); 1565 *return_replacement = nullptr; 1566 break; 1567 case kInlineOpReturnArg: 1568 *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, 1569 inline_method.d.return_data.arg); 1570 break; 1571 case kInlineOpNonWideConst: 1572 if (resolved_method->GetShorty()[0] == 'L') { 1573 DCHECK_EQ(inline_method.d.data, 0u); 1574 *return_replacement = graph_->GetNullConstant(); 1575 } else { 1576 *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data)); 1577 } 1578 break; 1579 case kInlineOpIGet: { 1580 const InlineIGetIPutData& data = inline_method.d.ifield_data; 1581 if (data.method_is_static || data.object_arg != 0u) { 1582 // TODO: Needs null check. 1583 return false; 1584 } 1585 HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); 1586 HInstanceFieldGet* iget = CreateInstanceFieldGet(data.field_idx, resolved_method, obj); 1587 DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset); 1588 DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile); 1589 invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction); 1590 *return_replacement = iget; 1591 break; 1592 } 1593 case kInlineOpIPut: { 1594 const InlineIGetIPutData& data = inline_method.d.ifield_data; 1595 if (data.method_is_static || data.object_arg != 0u) { 1596 // TODO: Needs null check. 1597 return false; 1598 } 1599 HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); 1600 HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg); 1601 HInstanceFieldSet* iput = CreateInstanceFieldSet(data.field_idx, resolved_method, obj, value); 1602 DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset); 1603 DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile); 1604 invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); 1605 if (data.return_arg_plus1 != 0u) { 1606 size_t return_arg = data.return_arg_plus1 - 1u; 1607 *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg); 1608 } 1609 break; 1610 } 1611 case kInlineOpConstructor: { 1612 const InlineConstructorData& data = inline_method.d.constructor_data; 1613 // Get the indexes to arrays for easier processing. 1614 uint16_t iput_field_indexes[] = { 1615 data.iput0_field_index, data.iput1_field_index, data.iput2_field_index 1616 }; 1617 uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg }; 1618 static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch"); 1619 // Count valid field indexes. 1620 size_t number_of_iputs = 0u; 1621 while (number_of_iputs != arraysize(iput_field_indexes) && 1622 iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) { 1623 // Check that there are no duplicate valid field indexes. 1624 DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1, 1625 iput_field_indexes + arraysize(iput_field_indexes), 1626 iput_field_indexes[number_of_iputs])); 1627 ++number_of_iputs; 1628 } 1629 // Check that there are no valid field indexes in the rest of the array. 1630 DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs, 1631 iput_field_indexes + arraysize(iput_field_indexes), 1632 [](uint16_t index) { return index != DexFile::kDexNoIndex16; })); 1633 1634 // Create HInstanceFieldSet for each IPUT that stores non-zero data. 1635 HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, 1636 /* arg_vreg_index= */ 0u); 1637 bool needs_constructor_barrier = false; 1638 for (size_t i = 0; i != number_of_iputs; ++i) { 1639 HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]); 1640 if (!value->IsConstant() || !value->AsConstant()->IsZeroBitPattern()) { 1641 uint16_t field_index = iput_field_indexes[i]; 1642 bool is_final; 1643 HInstanceFieldSet* iput = 1644 CreateInstanceFieldSet(field_index, resolved_method, obj, value, &is_final); 1645 invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); 1646 1647 // Check whether the field is final. If it is, we need to add a barrier. 1648 if (is_final) { 1649 needs_constructor_barrier = true; 1650 } 1651 } 1652 } 1653 if (needs_constructor_barrier) { 1654 // See DexCompilationUnit::RequiresConstructorBarrier for more details. 1655 DCHECK(obj != nullptr) << "only non-static methods can have a constructor fence"; 1656 1657 HConstructorFence* constructor_fence = 1658 new (graph_->GetAllocator()) HConstructorFence(obj, kNoDexPc, graph_->GetAllocator()); 1659 invoke_instruction->GetBlock()->InsertInstructionBefore(constructor_fence, 1660 invoke_instruction); 1661 } 1662 *return_replacement = nullptr; 1663 break; 1664 } 1665 default: 1666 LOG(FATAL) << "UNREACHABLE"; 1667 UNREACHABLE(); 1668 } 1669 return true; 1670 } 1671 1672 HInstanceFieldGet* HInliner::CreateInstanceFieldGet(uint32_t field_index, 1673 ArtMethod* referrer, 1674 HInstruction* obj) 1675 REQUIRES_SHARED(Locks::mutator_lock_) { 1676 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 1677 ArtField* resolved_field = 1678 class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false); 1679 DCHECK(resolved_field != nullptr); 1680 HInstanceFieldGet* iget = new (graph_->GetAllocator()) HInstanceFieldGet( 1681 obj, 1682 resolved_field, 1683 DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]), 1684 resolved_field->GetOffset(), 1685 resolved_field->IsVolatile(), 1686 field_index, 1687 resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), 1688 *referrer->GetDexFile(), 1689 // Read barrier generates a runtime call in slow path and we need a valid 1690 // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. 1691 /* dex_pc= */ 0); 1692 if (iget->GetType() == DataType::Type::kReference) { 1693 // Use the same dex_cache that we used for field lookup as the hint_dex_cache. 1694 Handle<mirror::DexCache> dex_cache = handles_->NewHandle(referrer->GetDexCache()); 1695 ReferenceTypePropagation rtp(graph_, 1696 outer_compilation_unit_.GetClassLoader(), 1697 dex_cache, 1698 handles_, 1699 /* is_first_run= */ false); 1700 rtp.Visit(iget); 1701 } 1702 return iget; 1703 } 1704 1705 HInstanceFieldSet* HInliner::CreateInstanceFieldSet(uint32_t field_index, 1706 ArtMethod* referrer, 1707 HInstruction* obj, 1708 HInstruction* value, 1709 bool* is_final) 1710 REQUIRES_SHARED(Locks::mutator_lock_) { 1711 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 1712 ArtField* resolved_field = 1713 class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false); 1714 DCHECK(resolved_field != nullptr); 1715 if (is_final != nullptr) { 1716 // This information is needed only for constructors. 1717 DCHECK(referrer->IsConstructor()); 1718 *is_final = resolved_field->IsFinal(); 1719 } 1720 HInstanceFieldSet* iput = new (graph_->GetAllocator()) HInstanceFieldSet( 1721 obj, 1722 value, 1723 resolved_field, 1724 DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]), 1725 resolved_field->GetOffset(), 1726 resolved_field->IsVolatile(), 1727 field_index, 1728 resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), 1729 *referrer->GetDexFile(), 1730 // Read barrier generates a runtime call in slow path and we need a valid 1731 // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. 1732 /* dex_pc= */ 0); 1733 return iput; 1734 } 1735 1736 template <typename T> 1737 static inline Handle<T> NewHandleIfDifferent(ObjPtr<T> object, 1738 Handle<T> hint, 1739 VariableSizedHandleScope* handles) 1740 REQUIRES_SHARED(Locks::mutator_lock_) { 1741 return (object != hint.Get()) ? handles->NewHandle(object) : hint; 1742 } 1743 1744 static bool CanEncodeInlinedMethodInStackMap(const DexFile& caller_dex_file, ArtMethod* callee) 1745 REQUIRES_SHARED(Locks::mutator_lock_) { 1746 if (!Runtime::Current()->IsAotCompiler()) { 1747 // JIT can always encode methods in stack maps. 1748 return true; 1749 } 1750 if (IsSameDexFile(caller_dex_file, *callee->GetDexFile())) { 1751 return true; 1752 } 1753 // TODO(ngeoffray): Support more AOT cases for inlining: 1754 // - methods in multidex 1755 // - methods in boot image for on-device non-PIC compilation. 1756 return false; 1757 } 1758 1759 bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction, 1760 ArtMethod* resolved_method, 1761 ReferenceTypeInfo receiver_type, 1762 bool same_dex_file, 1763 HInstruction** return_replacement) { 1764 DCHECK(!(resolved_method->IsStatic() && receiver_type.IsValid())); 1765 ScopedObjectAccess soa(Thread::Current()); 1766 const dex::CodeItem* code_item = resolved_method->GetCodeItem(); 1767 const DexFile& callee_dex_file = *resolved_method->GetDexFile(); 1768 uint32_t method_index = resolved_method->GetDexMethodIndex(); 1769 CodeItemDebugInfoAccessor code_item_accessor(resolved_method->DexInstructionDebugInfo()); 1770 ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); 1771 Handle<mirror::DexCache> dex_cache = NewHandleIfDifferent(resolved_method->GetDexCache(), 1772 caller_compilation_unit_.GetDexCache(), 1773 handles_); 1774 Handle<mirror::ClassLoader> class_loader = 1775 NewHandleIfDifferent(resolved_method->GetDeclaringClass()->GetClassLoader(), 1776 caller_compilation_unit_.GetClassLoader(), 1777 handles_); 1778 1779 Handle<mirror::Class> compiling_class = handles_->NewHandle(resolved_method->GetDeclaringClass()); 1780 DexCompilationUnit dex_compilation_unit( 1781 class_loader, 1782 class_linker, 1783 callee_dex_file, 1784 code_item, 1785 resolved_method->GetDeclaringClass()->GetDexClassDefIndex(), 1786 method_index, 1787 resolved_method->GetAccessFlags(), 1788 /* verified_method= */ nullptr, 1789 dex_cache, 1790 compiling_class); 1791 1792 InvokeType invoke_type = invoke_instruction->GetInvokeType(); 1793 if (invoke_type == kInterface) { 1794 // We have statically resolved the dispatch. To please the class linker 1795 // at runtime, we change this call as if it was a virtual call. 1796 invoke_type = kVirtual; 1797 } 1798 1799 bool caller_dead_reference_safe = graph_->IsDeadReferenceSafe(); 1800 const dex::ClassDef& callee_class = resolved_method->GetClassDef(); 1801 // MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation() 1802 // is currently rarely true. 1803 bool callee_dead_reference_safe = 1804 annotations::HasDeadReferenceSafeAnnotation(callee_dex_file, callee_class) 1805 && !annotations::MethodContainsRSensitiveAccess(callee_dex_file, callee_class, method_index); 1806 1807 const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId(); 1808 HGraph* callee_graph = new (graph_->GetAllocator()) HGraph( 1809 graph_->GetAllocator(), 1810 graph_->GetArenaStack(), 1811 callee_dex_file, 1812 method_index, 1813 codegen_->GetCompilerOptions().GetInstructionSet(), 1814 invoke_type, 1815 callee_dead_reference_safe, 1816 graph_->IsDebuggable(), 1817 /* osr= */ false, 1818 caller_instruction_counter); 1819 callee_graph->SetArtMethod(resolved_method); 1820 1821 // When they are needed, allocate `inline_stats_` on the Arena instead 1822 // of on the stack, as Clang might produce a stack frame too large 1823 // for this function, that would not fit the requirements of the 1824 // `-Wframe-larger-than` option. 1825 if (stats_ != nullptr) { 1826 // Reuse one object for all inline attempts from this caller to keep Arena memory usage low. 1827 if (inline_stats_ == nullptr) { 1828 void* storage = graph_->GetAllocator()->Alloc<OptimizingCompilerStats>(kArenaAllocMisc); 1829 inline_stats_ = new (storage) OptimizingCompilerStats; 1830 } else { 1831 inline_stats_->Reset(); 1832 } 1833 } 1834 HGraphBuilder builder(callee_graph, 1835 code_item_accessor, 1836 &dex_compilation_unit, 1837 &outer_compilation_unit_, 1838 codegen_, 1839 inline_stats_, 1840 resolved_method->GetQuickenedInfo(), 1841 handles_); 1842 1843 if (builder.BuildGraph() != kAnalysisSuccess) { 1844 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCannotBuild) 1845 << "Method " << callee_dex_file.PrettyMethod(method_index) 1846 << " could not be built, so cannot be inlined"; 1847 return false; 1848 } 1849 1850 if (!RegisterAllocator::CanAllocateRegistersFor( 1851 *callee_graph, codegen_->GetCompilerOptions().GetInstructionSet())) { 1852 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRegisterAllocator) 1853 << "Method " << callee_dex_file.PrettyMethod(method_index) 1854 << " cannot be inlined because of the register allocator"; 1855 return false; 1856 } 1857 1858 size_t parameter_index = 0; 1859 bool run_rtp = false; 1860 for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions()); 1861 !instructions.Done(); 1862 instructions.Advance()) { 1863 HInstruction* current = instructions.Current(); 1864 if (current->IsParameterValue()) { 1865 HInstruction* argument = invoke_instruction->InputAt(parameter_index); 1866 if (argument->IsNullConstant()) { 1867 current->ReplaceWith(callee_graph->GetNullConstant()); 1868 } else if (argument->IsIntConstant()) { 1869 current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue())); 1870 } else if (argument->IsLongConstant()) { 1871 current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue())); 1872 } else if (argument->IsFloatConstant()) { 1873 current->ReplaceWith( 1874 callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue())); 1875 } else if (argument->IsDoubleConstant()) { 1876 current->ReplaceWith( 1877 callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue())); 1878 } else if (argument->GetType() == DataType::Type::kReference) { 1879 if (!resolved_method->IsStatic() && parameter_index == 0 && receiver_type.IsValid()) { 1880 run_rtp = true; 1881 current->SetReferenceTypeInfo(receiver_type); 1882 } else { 1883 current->SetReferenceTypeInfo(argument->GetReferenceTypeInfo()); 1884 } 1885 current->AsParameterValue()->SetCanBeNull(argument->CanBeNull()); 1886 } 1887 ++parameter_index; 1888 } 1889 } 1890 1891 // We have replaced formal arguments with actual arguments. If actual types 1892 // are more specific than the declared ones, run RTP again on the inner graph. 1893 if (run_rtp || ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) { 1894 ReferenceTypePropagation(callee_graph, 1895 outer_compilation_unit_.GetClassLoader(), 1896 dex_compilation_unit.GetDexCache(), 1897 handles_, 1898 /* is_first_run= */ false).Run(); 1899 } 1900 1901 RunOptimizations(callee_graph, code_item, dex_compilation_unit); 1902 1903 HBasicBlock* exit_block = callee_graph->GetExitBlock(); 1904 if (exit_block == nullptr) { 1905 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop) 1906 << "Method " << callee_dex_file.PrettyMethod(method_index) 1907 << " could not be inlined because it has an infinite loop"; 1908 return false; 1909 } 1910 1911 bool has_one_return = false; 1912 for (HBasicBlock* predecessor : exit_block->GetPredecessors()) { 1913 if (predecessor->GetLastInstruction()->IsThrow()) { 1914 if (invoke_instruction->GetBlock()->IsTryBlock()) { 1915 // TODO(ngeoffray): Support adding HTryBoundary in Hgraph::InlineInto. 1916 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatch) 1917 << "Method " << callee_dex_file.PrettyMethod(method_index) 1918 << " could not be inlined because one branch always throws and" 1919 << " caller is in a try/catch block"; 1920 return false; 1921 } else if (graph_->GetExitBlock() == nullptr) { 1922 // TODO(ngeoffray): Support adding HExit in the caller graph. 1923 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop) 1924 << "Method " << callee_dex_file.PrettyMethod(method_index) 1925 << " could not be inlined because one branch always throws and" 1926 << " caller does not have an exit block"; 1927 return false; 1928 } else if (graph_->HasIrreducibleLoops()) { 1929 // TODO(ngeoffray): Support re-computing loop information to graphs with 1930 // irreducible loops? 1931 VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) 1932 << " could not be inlined because one branch always throws and" 1933 << " caller has irreducible loops"; 1934 return false; 1935 } 1936 } else { 1937 has_one_return = true; 1938 } 1939 } 1940 1941 if (!has_one_return) { 1942 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedAlwaysThrows) 1943 << "Method " << callee_dex_file.PrettyMethod(method_index) 1944 << " could not be inlined because it always throws"; 1945 return false; 1946 } 1947 1948 size_t number_of_instructions = 0; 1949 // Skip the entry block, it does not contain instructions that prevent inlining. 1950 for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) { 1951 if (block->IsLoopHeader()) { 1952 if (block->GetLoopInformation()->IsIrreducible()) { 1953 // Don't inline methods with irreducible loops, they could prevent some 1954 // optimizations to run. 1955 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoop) 1956 << "Method " << callee_dex_file.PrettyMethod(method_index) 1957 << " could not be inlined because it contains an irreducible loop"; 1958 return false; 1959 } 1960 if (!block->GetLoopInformation()->HasExitEdge()) { 1961 // Don't inline methods with loops without exit, since they cause the 1962 // loop information to be computed incorrectly when updating after 1963 // inlining. 1964 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedLoopWithoutExit) 1965 << "Method " << callee_dex_file.PrettyMethod(method_index) 1966 << " could not be inlined because it contains a loop with no exit"; 1967 return false; 1968 } 1969 } 1970 1971 for (HInstructionIterator instr_it(block->GetInstructions()); 1972 !instr_it.Done(); 1973 instr_it.Advance()) { 1974 if (++number_of_instructions >= inlining_budget_) { 1975 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInstructionBudget) 1976 << "Method " << callee_dex_file.PrettyMethod(method_index) 1977 << " is not inlined because the outer method has reached" 1978 << " its instruction budget limit."; 1979 return false; 1980 } 1981 HInstruction* current = instr_it.Current(); 1982 if (current->NeedsEnvironment() && 1983 (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters)) { 1984 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEnvironmentBudget) 1985 << "Method " << callee_dex_file.PrettyMethod(method_index) 1986 << " is not inlined because its caller has reached" 1987 << " its environment budget limit."; 1988 return false; 1989 } 1990 1991 if (current->NeedsEnvironment() && 1992 !CanEncodeInlinedMethodInStackMap(*caller_compilation_unit_.GetDexFile(), 1993 resolved_method)) { 1994 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedStackMaps) 1995 << "Method " << callee_dex_file.PrettyMethod(method_index) 1996 << " could not be inlined because " << current->DebugName() 1997 << " needs an environment, is in a different dex file" 1998 << ", and cannot be encoded in the stack maps."; 1999 return false; 2000 } 2001 2002 if (!same_dex_file && current->NeedsDexCacheOfDeclaringClass()) { 2003 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache) 2004 << "Method " << callee_dex_file.PrettyMethod(method_index) 2005 << " could not be inlined because " << current->DebugName() 2006 << " it is in a different dex file and requires access to the dex cache"; 2007 return false; 2008 } 2009 2010 if (current->IsUnresolvedStaticFieldGet() || 2011 current->IsUnresolvedInstanceFieldGet() || 2012 current->IsUnresolvedStaticFieldSet() || 2013 current->IsUnresolvedInstanceFieldSet()) { 2014 // Entrypoint for unresolved fields does not handle inlined frames. 2015 LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedUnresolvedEntrypoint) 2016 << "Method " << callee_dex_file.PrettyMethod(method_index) 2017 << " could not be inlined because it is using an unresolved" 2018 << " entrypoint"; 2019 return false; 2020 } 2021 } 2022 } 2023 DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId()) 2024 << "No instructions can be added to the outer graph while inner graph is being built"; 2025 2026 // Inline the callee graph inside the caller graph. 2027 const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId(); 2028 graph_->SetCurrentInstructionId(callee_instruction_counter); 2029 *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction); 2030 // Update our budget for other inlining attempts in `caller_graph`. 2031 total_number_of_instructions_ += number_of_instructions; 2032 UpdateInliningBudget(); 2033 2034 DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId()) 2035 << "No instructions can be added to the inner graph during inlining into the outer graph"; 2036 2037 if (stats_ != nullptr) { 2038 DCHECK(inline_stats_ != nullptr); 2039 inline_stats_->AddTo(stats_); 2040 } 2041 2042 if (caller_dead_reference_safe && !callee_dead_reference_safe) { 2043 // Caller was dead reference safe, but is not anymore, since we inlined dead 2044 // reference unsafe code. Prior transformations remain valid, since they did not 2045 // affect the inlined code. 2046 graph_->MarkDeadReferenceUnsafe(); 2047 } 2048 2049 return true; 2050 } 2051 2052 void HInliner::RunOptimizations(HGraph* callee_graph, 2053 const dex::CodeItem* code_item, 2054 const DexCompilationUnit& dex_compilation_unit) { 2055 // Note: if the outermost_graph_ is being compiled OSR, we should not run any 2056 // optimization that could lead to a HDeoptimize. The following optimizations do not. 2057 HDeadCodeElimination dce(callee_graph, inline_stats_, "dead_code_elimination$inliner"); 2058 HConstantFolding fold(callee_graph, "constant_folding$inliner"); 2059 InstructionSimplifier simplify(callee_graph, codegen_, inline_stats_); 2060 2061 HOptimization* optimizations[] = { 2062 &simplify, 2063 &fold, 2064 &dce, 2065 }; 2066 2067 for (size_t i = 0; i < arraysize(optimizations); ++i) { 2068 HOptimization* optimization = optimizations[i]; 2069 optimization->Run(); 2070 } 2071 2072 // Bail early for pathological cases on the environment (for example recursive calls, 2073 // or too large environment). 2074 if (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters) { 2075 LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod() 2076 << " will not be inlined because the outer method has reached" 2077 << " its environment budget limit."; 2078 return; 2079 } 2080 2081 // Bail early if we know we already are over the limit. 2082 size_t number_of_instructions = CountNumberOfInstructions(callee_graph); 2083 if (number_of_instructions > inlining_budget_) { 2084 LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod() 2085 << " will not be inlined because the outer method has reached" 2086 << " its instruction budget limit. " << number_of_instructions; 2087 return; 2088 } 2089 2090 CodeItemDataAccessor accessor(callee_graph->GetDexFile(), code_item); 2091 HInliner inliner(callee_graph, 2092 outermost_graph_, 2093 codegen_, 2094 outer_compilation_unit_, 2095 dex_compilation_unit, 2096 handles_, 2097 inline_stats_, 2098 total_number_of_dex_registers_ + accessor.RegistersSize(), 2099 total_number_of_instructions_ + number_of_instructions, 2100 this, 2101 depth_ + 1); 2102 inliner.Run(); 2103 } 2104 2105 static bool IsReferenceTypeRefinement(ReferenceTypeInfo declared_rti, 2106 bool declared_can_be_null, 2107 HInstruction* actual_obj) 2108 REQUIRES_SHARED(Locks::mutator_lock_) { 2109 if (declared_can_be_null && !actual_obj->CanBeNull()) { 2110 return true; 2111 } 2112 2113 ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo(); 2114 return (actual_rti.IsExact() && !declared_rti.IsExact()) || 2115 declared_rti.IsStrictSupertypeOf(actual_rti); 2116 } 2117 2118 ReferenceTypeInfo HInliner::GetClassRTI(ObjPtr<mirror::Class> klass) { 2119 return ReferenceTypePropagation::IsAdmissible(klass) 2120 ? ReferenceTypeInfo::Create(handles_->NewHandle(klass)) 2121 : graph_->GetInexactObjectRti(); 2122 } 2123 2124 bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) { 2125 // If this is an instance call, test whether the type of the `this` argument 2126 // is more specific than the class which declares the method. 2127 if (!resolved_method->IsStatic()) { 2128 if (IsReferenceTypeRefinement(GetClassRTI(resolved_method->GetDeclaringClass()), 2129 /* declared_can_be_null= */ false, 2130 invoke_instruction->InputAt(0u))) { 2131 return true; 2132 } 2133 } 2134 2135 // Iterate over the list of parameter types and test whether any of the 2136 // actual inputs has a more specific reference type than the type declared in 2137 // the signature. 2138 const dex::TypeList* param_list = resolved_method->GetParameterTypeList(); 2139 for (size_t param_idx = 0, 2140 input_idx = resolved_method->IsStatic() ? 0 : 1, 2141 e = (param_list == nullptr ? 0 : param_list->Size()); 2142 param_idx < e; 2143 ++param_idx, ++input_idx) { 2144 HInstruction* input = invoke_instruction->InputAt(input_idx); 2145 if (input->GetType() == DataType::Type::kReference) { 2146 ObjPtr<mirror::Class> param_cls = resolved_method->LookupResolvedClassFromTypeIndex( 2147 param_list->GetTypeItem(param_idx).type_idx_); 2148 if (IsReferenceTypeRefinement(GetClassRTI(param_cls), 2149 /* declared_can_be_null= */ true, 2150 input)) { 2151 return true; 2152 } 2153 } 2154 } 2155 2156 return false; 2157 } 2158 2159 bool HInliner::ReturnTypeMoreSpecific(HInvoke* invoke_instruction, 2160 HInstruction* return_replacement) { 2161 // Check the integrity of reference types and run another type propagation if needed. 2162 if (return_replacement != nullptr) { 2163 if (return_replacement->GetType() == DataType::Type::kReference) { 2164 // Test if the return type is a refinement of the declared return type. 2165 if (IsReferenceTypeRefinement(invoke_instruction->GetReferenceTypeInfo(), 2166 /* declared_can_be_null= */ true, 2167 return_replacement)) { 2168 return true; 2169 } else if (return_replacement->IsInstanceFieldGet()) { 2170 HInstanceFieldGet* field_get = return_replacement->AsInstanceFieldGet(); 2171 if (field_get->GetFieldInfo().GetField() == 2172 GetClassRoot<mirror::Object>()->GetInstanceField(0)) { 2173 return true; 2174 } 2175 } 2176 } else if (return_replacement->IsInstanceOf()) { 2177 // Inlining InstanceOf into an If may put a tighter bound on reference types. 2178 return true; 2179 } 2180 } 2181 2182 return false; 2183 } 2184 2185 void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method, 2186 HInstruction* return_replacement) { 2187 if (return_replacement != nullptr) { 2188 if (return_replacement->GetType() == DataType::Type::kReference) { 2189 if (!return_replacement->GetReferenceTypeInfo().IsValid()) { 2190 // Make sure that we have a valid type for the return. We may get an invalid one when 2191 // we inline invokes with multiple branches and create a Phi for the result. 2192 // TODO: we could be more precise by merging the phi inputs but that requires 2193 // some functionality from the reference type propagation. 2194 DCHECK(return_replacement->IsPhi()); 2195 ObjPtr<mirror::Class> cls = resolved_method->LookupResolvedReturnType(); 2196 return_replacement->SetReferenceTypeInfo(GetClassRTI(cls)); 2197 } 2198 } 2199 } 2200 } 2201 2202 } // namespace art 2203