Home | History | Annotate | Download | only in Analysis
      1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the MemorySSA class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Analysis/MemorySSA.h"
     15 #include "llvm/ADT/DenseMap.h"
     16 #include "llvm/ADT/DenseMapInfo.h"
     17 #include "llvm/ADT/DenseSet.h"
     18 #include "llvm/ADT/DepthFirstIterator.h"
     19 #include "llvm/ADT/Hashing.h"
     20 #include "llvm/ADT/None.h"
     21 #include "llvm/ADT/Optional.h"
     22 #include "llvm/ADT/STLExtras.h"
     23 #include "llvm/ADT/SmallPtrSet.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/ADT/iterator.h"
     26 #include "llvm/ADT/iterator_range.h"
     27 #include "llvm/Analysis/AliasAnalysis.h"
     28 #include "llvm/Analysis/IteratedDominanceFrontier.h"
     29 #include "llvm/Analysis/MemoryLocation.h"
     30 #include "llvm/Config/llvm-config.h"
     31 #include "llvm/IR/AssemblyAnnotationWriter.h"
     32 #include "llvm/IR/BasicBlock.h"
     33 #include "llvm/IR/CallSite.h"
     34 #include "llvm/IR/Dominators.h"
     35 #include "llvm/IR/Function.h"
     36 #include "llvm/IR/Instruction.h"
     37 #include "llvm/IR/Instructions.h"
     38 #include "llvm/IR/IntrinsicInst.h"
     39 #include "llvm/IR/Intrinsics.h"
     40 #include "llvm/IR/LLVMContext.h"
     41 #include "llvm/IR/PassManager.h"
     42 #include "llvm/IR/Use.h"
     43 #include "llvm/Pass.h"
     44 #include "llvm/Support/AtomicOrdering.h"
     45 #include "llvm/Support/Casting.h"
     46 #include "llvm/Support/CommandLine.h"
     47 #include "llvm/Support/Compiler.h"
     48 #include "llvm/Support/Debug.h"
     49 #include "llvm/Support/ErrorHandling.h"
     50 #include "llvm/Support/FormattedStream.h"
     51 #include "llvm/Support/raw_ostream.h"
     52 #include <algorithm>
     53 #include <cassert>
     54 #include <iterator>
     55 #include <memory>
     56 #include <utility>
     57 
     58 using namespace llvm;
     59 
     60 #define DEBUG_TYPE "memoryssa"
     61 
     62 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
     63                       true)
     64 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
     65 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
     66 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
     67                     true)
     68 
     69 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
     70                       "Memory SSA Printer", false, false)
     71 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
     72 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
     73                     "Memory SSA Printer", false, false)
     74 
     75 static cl::opt<unsigned> MaxCheckLimit(
     76     "memssa-check-limit", cl::Hidden, cl::init(100),
     77     cl::desc("The maximum number of stores/phis MemorySSA"
     78              "will consider trying to walk past (default = 100)"));
     79 
     80 static cl::opt<bool>
     81     VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
     82                     cl::desc("Verify MemorySSA in legacy printer pass."));
     83 
     84 namespace llvm {
     85 
     86 /// An assembly annotator class to print Memory SSA information in
     87 /// comments.
     88 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
     89   friend class MemorySSA;
     90 
     91   const MemorySSA *MSSA;
     92 
     93 public:
     94   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
     95 
     96   void emitBasicBlockStartAnnot(const BasicBlock *BB,
     97                                 formatted_raw_ostream &OS) override {
     98     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
     99       OS << "; " << *MA << "\n";
    100   }
    101 
    102   void emitInstructionAnnot(const Instruction *I,
    103                             formatted_raw_ostream &OS) override {
    104     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
    105       OS << "; " << *MA << "\n";
    106   }
    107 };
    108 
    109 } // end namespace llvm
    110 
    111 namespace {
    112 
    113 /// Our current alias analysis API differentiates heavily between calls and
    114 /// non-calls, and functions called on one usually assert on the other.
    115 /// This class encapsulates the distinction to simplify other code that wants
    116 /// "Memory affecting instructions and related data" to use as a key.
    117 /// For example, this class is used as a densemap key in the use optimizer.
    118 class MemoryLocOrCall {
    119 public:
    120   bool IsCall = false;
    121 
    122   MemoryLocOrCall(MemoryUseOrDef *MUD)
    123       : MemoryLocOrCall(MUD->getMemoryInst()) {}
    124   MemoryLocOrCall(const MemoryUseOrDef *MUD)
    125       : MemoryLocOrCall(MUD->getMemoryInst()) {}
    126 
    127   MemoryLocOrCall(Instruction *Inst) {
    128     if (ImmutableCallSite(Inst)) {
    129       IsCall = true;
    130       CS = ImmutableCallSite(Inst);
    131     } else {
    132       IsCall = false;
    133       // There is no such thing as a memorylocation for a fence inst, and it is
    134       // unique in that regard.
    135       if (!isa<FenceInst>(Inst))
    136         Loc = MemoryLocation::get(Inst);
    137     }
    138   }
    139 
    140   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
    141 
    142   ImmutableCallSite getCS() const {
    143     assert(IsCall);
    144     return CS;
    145   }
    146 
    147   MemoryLocation getLoc() const {
    148     assert(!IsCall);
    149     return Loc;
    150   }
    151 
    152   bool operator==(const MemoryLocOrCall &Other) const {
    153     if (IsCall != Other.IsCall)
    154       return false;
    155 
    156     if (!IsCall)
    157       return Loc == Other.Loc;
    158 
    159     if (CS.getCalledValue() != Other.CS.getCalledValue())
    160       return false;
    161 
    162     return CS.arg_size() == Other.CS.arg_size() &&
    163            std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin());
    164   }
    165 
    166 private:
    167   union {
    168     ImmutableCallSite CS;
    169     MemoryLocation Loc;
    170   };
    171 };
    172 
    173 } // end anonymous namespace
    174 
    175 namespace llvm {
    176 
    177 template <> struct DenseMapInfo<MemoryLocOrCall> {
    178   static inline MemoryLocOrCall getEmptyKey() {
    179     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
    180   }
    181 
    182   static inline MemoryLocOrCall getTombstoneKey() {
    183     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
    184   }
    185 
    186   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
    187     if (!MLOC.IsCall)
    188       return hash_combine(
    189           MLOC.IsCall,
    190           DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
    191 
    192     hash_code hash =
    193         hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
    194                                       MLOC.getCS().getCalledValue()));
    195 
    196     for (const Value *Arg : MLOC.getCS().args())
    197       hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
    198     return hash;
    199   }
    200 
    201   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
    202     return LHS == RHS;
    203   }
    204 };
    205 
    206 } // end namespace llvm
    207 
    208 /// This does one-way checks to see if Use could theoretically be hoisted above
    209 /// MayClobber. This will not check the other way around.
    210 ///
    211 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
    212 /// MayClobber, with no potentially clobbering operations in between them.
    213 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
    214 static bool areLoadsReorderable(const LoadInst *Use,
    215                                 const LoadInst *MayClobber) {
    216   bool VolatileUse = Use->isVolatile();
    217   bool VolatileClobber = MayClobber->isVolatile();
    218   // Volatile operations may never be reordered with other volatile operations.
    219   if (VolatileUse && VolatileClobber)
    220     return false;
    221   // Otherwise, volatile doesn't matter here. From the language reference:
    222   // 'optimizers may change the order of volatile operations relative to
    223   // non-volatile operations.'"
    224 
    225   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
    226   // is weaker, it can be moved above other loads. We just need to be sure that
    227   // MayClobber isn't an acquire load, because loads can't be moved above
    228   // acquire loads.
    229   //
    230   // Note that this explicitly *does* allow the free reordering of monotonic (or
    231   // weaker) loads of the same address.
    232   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
    233   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
    234                                                      AtomicOrdering::Acquire);
    235   return !(SeqCstUse || MayClobberIsAcquire);
    236 }
    237 
    238 namespace {
    239 
    240 struct ClobberAlias {
    241   bool IsClobber;
    242   Optional<AliasResult> AR;
    243 };
    244 
    245 } // end anonymous namespace
    246 
    247 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
    248 // ignored if IsClobber = false.
    249 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
    250                                              const MemoryLocation &UseLoc,
    251                                              const Instruction *UseInst,
    252                                              AliasAnalysis &AA) {
    253   Instruction *DefInst = MD->getMemoryInst();
    254   assert(DefInst && "Defining instruction not actually an instruction");
    255   ImmutableCallSite UseCS(UseInst);
    256   Optional<AliasResult> AR;
    257 
    258   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
    259     // These intrinsics will show up as affecting memory, but they are just
    260     // markers, mostly.
    261     //
    262     // FIXME: We probably don't actually want MemorySSA to model these at all
    263     // (including creating MemoryAccesses for them): we just end up inventing
    264     // clobbers where they don't really exist at all. Please see D43269 for
    265     // context.
    266     switch (II->getIntrinsicID()) {
    267     case Intrinsic::lifetime_start:
    268       if (UseCS)
    269         return {false, NoAlias};
    270       AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
    271       return {AR != NoAlias, AR};
    272     case Intrinsic::lifetime_end:
    273     case Intrinsic::invariant_start:
    274     case Intrinsic::invariant_end:
    275     case Intrinsic::assume:
    276       return {false, NoAlias};
    277     default:
    278       break;
    279     }
    280   }
    281 
    282   if (UseCS) {
    283     ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
    284     AR = isMustSet(I) ? MustAlias : MayAlias;
    285     return {isModOrRefSet(I), AR};
    286   }
    287 
    288   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
    289     if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
    290       return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
    291 
    292   ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
    293   AR = isMustSet(I) ? MustAlias : MayAlias;
    294   return {isModSet(I), AR};
    295 }
    296 
    297 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
    298                                              const MemoryUseOrDef *MU,
    299                                              const MemoryLocOrCall &UseMLOC,
    300                                              AliasAnalysis &AA) {
    301   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
    302   // to exist while MemoryLocOrCall is pushed through places.
    303   if (UseMLOC.IsCall)
    304     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
    305                                     AA);
    306   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
    307                                   AA);
    308 }
    309 
    310 // Return true when MD may alias MU, return false otherwise.
    311 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
    312                                         AliasAnalysis &AA) {
    313   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
    314 }
    315 
    316 namespace {
    317 
    318 struct UpwardsMemoryQuery {
    319   // True if our original query started off as a call
    320   bool IsCall = false;
    321   // The pointer location we started the query with. This will be empty if
    322   // IsCall is true.
    323   MemoryLocation StartingLoc;
    324   // This is the instruction we were querying about.
    325   const Instruction *Inst = nullptr;
    326   // The MemoryAccess we actually got called with, used to test local domination
    327   const MemoryAccess *OriginalAccess = nullptr;
    328   Optional<AliasResult> AR = MayAlias;
    329 
    330   UpwardsMemoryQuery() = default;
    331 
    332   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
    333       : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
    334     if (!IsCall)
    335       StartingLoc = MemoryLocation::get(Inst);
    336   }
    337 };
    338 
    339 } // end anonymous namespace
    340 
    341 static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
    342                            AliasAnalysis &AA) {
    343   Instruction *Inst = MD->getMemoryInst();
    344   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    345     switch (II->getIntrinsicID()) {
    346     case Intrinsic::lifetime_end:
    347       return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
    348     default:
    349       return false;
    350     }
    351   }
    352   return false;
    353 }
    354 
    355 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
    356                                                    const Instruction *I) {
    357   // If the memory can't be changed, then loads of the memory can't be
    358   // clobbered.
    359   return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
    360                               AA.pointsToConstantMemory(cast<LoadInst>(I)->
    361                                                           getPointerOperand()));
    362 }
    363 
    364 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
    365 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
    366 ///
    367 /// This is meant to be as simple and self-contained as possible. Because it
    368 /// uses no cache, etc., it can be relatively expensive.
    369 ///
    370 /// \param Start     The MemoryAccess that we want to walk from.
    371 /// \param ClobberAt A clobber for Start.
    372 /// \param StartLoc  The MemoryLocation for Start.
    373 /// \param MSSA      The MemorySSA isntance that Start and ClobberAt belong to.
    374 /// \param Query     The UpwardsMemoryQuery we used for our search.
    375 /// \param AA        The AliasAnalysis we used for our search.
    376 static void LLVM_ATTRIBUTE_UNUSED
    377 checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
    378                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
    379                    const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
    380   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
    381 
    382   if (MSSA.isLiveOnEntryDef(Start)) {
    383     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
    384            "liveOnEntry must clobber itself");
    385     return;
    386   }
    387 
    388   bool FoundClobber = false;
    389   DenseSet<MemoryAccessPair> VisitedPhis;
    390   SmallVector<MemoryAccessPair, 8> Worklist;
    391   Worklist.emplace_back(Start, StartLoc);
    392   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
    393   // is found, complain.
    394   while (!Worklist.empty()) {
    395     MemoryAccessPair MAP = Worklist.pop_back_val();
    396     // All we care about is that nothing from Start to ClobberAt clobbers Start.
    397     // We learn nothing from revisiting nodes.
    398     if (!VisitedPhis.insert(MAP).second)
    399       continue;
    400 
    401     for (MemoryAccess *MA : def_chain(MAP.first)) {
    402       if (MA == ClobberAt) {
    403         if (auto *MD = dyn_cast<MemoryDef>(MA)) {
    404           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
    405           // since it won't let us short-circuit.
    406           //
    407           // Also, note that this can't be hoisted out of the `Worklist` loop,
    408           // since MD may only act as a clobber for 1 of N MemoryLocations.
    409           FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
    410           if (!FoundClobber) {
    411             ClobberAlias CA =
    412                 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
    413             if (CA.IsClobber) {
    414               FoundClobber = true;
    415               // Not used: CA.AR;
    416             }
    417           }
    418         }
    419         break;
    420       }
    421 
    422       // We should never hit liveOnEntry, unless it's the clobber.
    423       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
    424 
    425       if (auto *MD = dyn_cast<MemoryDef>(MA)) {
    426         (void)MD;
    427         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
    428                     .IsClobber &&
    429                "Found clobber before reaching ClobberAt!");
    430         continue;
    431       }
    432 
    433       assert(isa<MemoryPhi>(MA));
    434       Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
    435     }
    436   }
    437 
    438   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
    439   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
    440   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
    441          "ClobberAt never acted as a clobber");
    442 }
    443 
    444 namespace {
    445 
    446 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
    447 /// in one class.
    448 class ClobberWalker {
    449   /// Save a few bytes by using unsigned instead of size_t.
    450   using ListIndex = unsigned;
    451 
    452   /// Represents a span of contiguous MemoryDefs, potentially ending in a
    453   /// MemoryPhi.
    454   struct DefPath {
    455     MemoryLocation Loc;
    456     // Note that, because we always walk in reverse, Last will always dominate
    457     // First. Also note that First and Last are inclusive.
    458     MemoryAccess *First;
    459     MemoryAccess *Last;
    460     Optional<ListIndex> Previous;
    461 
    462     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
    463             Optional<ListIndex> Previous)
    464         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
    465 
    466     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
    467             Optional<ListIndex> Previous)
    468         : DefPath(Loc, Init, Init, Previous) {}
    469   };
    470 
    471   const MemorySSA &MSSA;
    472   AliasAnalysis &AA;
    473   DominatorTree &DT;
    474   UpwardsMemoryQuery *Query;
    475 
    476   // Phi optimization bookkeeping
    477   SmallVector<DefPath, 32> Paths;
    478   DenseSet<ConstMemoryAccessPair> VisitedPhis;
    479 
    480   /// Find the nearest def or phi that `From` can legally be optimized to.
    481   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
    482     assert(From->getNumOperands() && "Phi with no operands?");
    483 
    484     BasicBlock *BB = From->getBlock();
    485     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
    486     DomTreeNode *Node = DT.getNode(BB);
    487     while ((Node = Node->getIDom())) {
    488       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
    489       if (Defs)
    490         return &*Defs->rbegin();
    491     }
    492     return Result;
    493   }
    494 
    495   /// Result of calling walkToPhiOrClobber.
    496   struct UpwardsWalkResult {
    497     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
    498     /// both. Include alias info when clobber found.
    499     MemoryAccess *Result;
    500     bool IsKnownClobber;
    501     Optional<AliasResult> AR;
    502   };
    503 
    504   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
    505   /// This will update Desc.Last as it walks. It will (optionally) also stop at
    506   /// StopAt.
    507   ///
    508   /// This does not test for whether StopAt is a clobber
    509   UpwardsWalkResult
    510   walkToPhiOrClobber(DefPath &Desc,
    511                      const MemoryAccess *StopAt = nullptr) const {
    512     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
    513 
    514     for (MemoryAccess *Current : def_chain(Desc.Last)) {
    515       Desc.Last = Current;
    516       if (Current == StopAt)
    517         return {Current, false, MayAlias};
    518 
    519       if (auto *MD = dyn_cast<MemoryDef>(Current)) {
    520         if (MSSA.isLiveOnEntryDef(MD))
    521           return {MD, true, MustAlias};
    522         ClobberAlias CA =
    523             instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
    524         if (CA.IsClobber)
    525           return {MD, true, CA.AR};
    526       }
    527     }
    528 
    529     assert(isa<MemoryPhi>(Desc.Last) &&
    530            "Ended at a non-clobber that's not a phi?");
    531     return {Desc.Last, false, MayAlias};
    532   }
    533 
    534   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
    535                    ListIndex PriorNode) {
    536     auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
    537                                  upward_defs_end());
    538     for (const MemoryAccessPair &P : UpwardDefs) {
    539       PausedSearches.push_back(Paths.size());
    540       Paths.emplace_back(P.second, P.first, PriorNode);
    541     }
    542   }
    543 
    544   /// Represents a search that terminated after finding a clobber. This clobber
    545   /// may or may not be present in the path of defs from LastNode..SearchStart,
    546   /// since it may have been retrieved from cache.
    547   struct TerminatedPath {
    548     MemoryAccess *Clobber;
    549     ListIndex LastNode;
    550   };
    551 
    552   /// Get an access that keeps us from optimizing to the given phi.
    553   ///
    554   /// PausedSearches is an array of indices into the Paths array. Its incoming
    555   /// value is the indices of searches that stopped at the last phi optimization
    556   /// target. It's left in an unspecified state.
    557   ///
    558   /// If this returns None, NewPaused is a vector of searches that terminated
    559   /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
    560   Optional<TerminatedPath>
    561   getBlockingAccess(const MemoryAccess *StopWhere,
    562                     SmallVectorImpl<ListIndex> &PausedSearches,
    563                     SmallVectorImpl<ListIndex> &NewPaused,
    564                     SmallVectorImpl<TerminatedPath> &Terminated) {
    565     assert(!PausedSearches.empty() && "No searches to continue?");
    566 
    567     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
    568     // PausedSearches as our stack.
    569     while (!PausedSearches.empty()) {
    570       ListIndex PathIndex = PausedSearches.pop_back_val();
    571       DefPath &Node = Paths[PathIndex];
    572 
    573       // If we've already visited this path with this MemoryLocation, we don't
    574       // need to do so again.
    575       //
    576       // NOTE: That we just drop these paths on the ground makes caching
    577       // behavior sporadic. e.g. given a diamond:
    578       //  A
    579       // B C
    580       //  D
    581       //
    582       // ...If we walk D, B, A, C, we'll only cache the result of phi
    583       // optimization for A, B, and D; C will be skipped because it dies here.
    584       // This arguably isn't the worst thing ever, since:
    585       //   - We generally query things in a top-down order, so if we got below D
    586       //     without needing cache entries for {C, MemLoc}, then chances are
    587       //     that those cache entries would end up ultimately unused.
    588       //   - We still cache things for A, so C only needs to walk up a bit.
    589       // If this behavior becomes problematic, we can fix without a ton of extra
    590       // work.
    591       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
    592         continue;
    593 
    594       UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
    595       if (Res.IsKnownClobber) {
    596         assert(Res.Result != StopWhere);
    597         // If this wasn't a cache hit, we hit a clobber when walking. That's a
    598         // failure.
    599         TerminatedPath Term{Res.Result, PathIndex};
    600         if (!MSSA.dominates(Res.Result, StopWhere))
    601           return Term;
    602 
    603         // Otherwise, it's a valid thing to potentially optimize to.
    604         Terminated.push_back(Term);
    605         continue;
    606       }
    607 
    608       if (Res.Result == StopWhere) {
    609         // We've hit our target. Save this path off for if we want to continue
    610         // walking.
    611         NewPaused.push_back(PathIndex);
    612         continue;
    613       }
    614 
    615       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
    616       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
    617     }
    618 
    619     return None;
    620   }
    621 
    622   template <typename T, typename Walker>
    623   struct generic_def_path_iterator
    624       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
    625                                     std::forward_iterator_tag, T *> {
    626     generic_def_path_iterator() = default;
    627     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
    628 
    629     T &operator*() const { return curNode(); }
    630 
    631     generic_def_path_iterator &operator++() {
    632       N = curNode().Previous;
    633       return *this;
    634     }
    635 
    636     bool operator==(const generic_def_path_iterator &O) const {
    637       if (N.hasValue() != O.N.hasValue())
    638         return false;
    639       return !N.hasValue() || *N == *O.N;
    640     }
    641 
    642   private:
    643     T &curNode() const { return W->Paths[*N]; }
    644 
    645     Walker *W = nullptr;
    646     Optional<ListIndex> N = None;
    647   };
    648 
    649   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
    650   using const_def_path_iterator =
    651       generic_def_path_iterator<const DefPath, const ClobberWalker>;
    652 
    653   iterator_range<def_path_iterator> def_path(ListIndex From) {
    654     return make_range(def_path_iterator(this, From), def_path_iterator());
    655   }
    656 
    657   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
    658     return make_range(const_def_path_iterator(this, From),
    659                       const_def_path_iterator());
    660   }
    661 
    662   struct OptznResult {
    663     /// The path that contains our result.
    664     TerminatedPath PrimaryClobber;
    665     /// The paths that we can legally cache back from, but that aren't
    666     /// necessarily the result of the Phi optimization.
    667     SmallVector<TerminatedPath, 4> OtherClobbers;
    668   };
    669 
    670   ListIndex defPathIndex(const DefPath &N) const {
    671     // The assert looks nicer if we don't need to do &N
    672     const DefPath *NP = &N;
    673     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
    674            "Out of bounds DefPath!");
    675     return NP - &Paths.front();
    676   }
    677 
    678   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
    679   /// that act as legal clobbers. Note that this won't return *all* clobbers.
    680   ///
    681   /// Phi optimization algorithm tl;dr:
    682   ///   - Find the earliest def/phi, A, we can optimize to
    683   ///   - Find if all paths from the starting memory access ultimately reach A
    684   ///     - If not, optimization isn't possible.
    685   ///     - Otherwise, walk from A to another clobber or phi, A'.
    686   ///       - If A' is a def, we're done.
    687   ///       - If A' is a phi, try to optimize it.
    688   ///
    689   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
    690   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
    691   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
    692                              const MemoryLocation &Loc) {
    693     assert(Paths.empty() && VisitedPhis.empty() &&
    694            "Reset the optimization state.");
    695 
    696     Paths.emplace_back(Loc, Start, Phi, None);
    697     // Stores how many "valid" optimization nodes we had prior to calling
    698     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
    699     auto PriorPathsSize = Paths.size();
    700 
    701     SmallVector<ListIndex, 16> PausedSearches;
    702     SmallVector<ListIndex, 8> NewPaused;
    703     SmallVector<TerminatedPath, 4> TerminatedPaths;
    704 
    705     addSearches(Phi, PausedSearches, 0);
    706 
    707     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
    708     // Paths.
    709     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
    710       assert(!Paths.empty() && "Need a path to move");
    711       auto Dom = Paths.begin();
    712       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
    713         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
    714           Dom = I;
    715       auto Last = Paths.end() - 1;
    716       if (Last != Dom)
    717         std::iter_swap(Last, Dom);
    718     };
    719 
    720     MemoryPhi *Current = Phi;
    721     while (true) {
    722       assert(!MSSA.isLiveOnEntryDef(Current) &&
    723              "liveOnEntry wasn't treated as a clobber?");
    724 
    725       const auto *Target = getWalkTarget(Current);
    726       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
    727       // optimization for the prior phi.
    728       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
    729         return MSSA.dominates(P.Clobber, Target);
    730       }));
    731 
    732       // FIXME: This is broken, because the Blocker may be reported to be
    733       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
    734       // For the moment, this is fine, since we do nothing with blocker info.
    735       if (Optional<TerminatedPath> Blocker = getBlockingAccess(
    736               Target, PausedSearches, NewPaused, TerminatedPaths)) {
    737 
    738         // Find the node we started at. We can't search based on N->Last, since
    739         // we may have gone around a loop with a different MemoryLocation.
    740         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
    741           return defPathIndex(N) < PriorPathsSize;
    742         });
    743         assert(Iter != def_path_iterator());
    744 
    745         DefPath &CurNode = *Iter;
    746         assert(CurNode.Last == Current);
    747 
    748         // Two things:
    749         // A. We can't reliably cache all of NewPaused back. Consider a case
    750         //    where we have two paths in NewPaused; one of which can't optimize
    751         //    above this phi, whereas the other can. If we cache the second path
    752         //    back, we'll end up with suboptimal cache entries. We can handle
    753         //    cases like this a bit better when we either try to find all
    754         //    clobbers that block phi optimization, or when our cache starts
    755         //    supporting unfinished searches.
    756         // B. We can't reliably cache TerminatedPaths back here without doing
    757         //    extra checks; consider a case like:
    758         //       T
    759         //      / \
    760         //     D   C
    761         //      \ /
    762         //       S
    763         //    Where T is our target, C is a node with a clobber on it, D is a
    764         //    diamond (with a clobber *only* on the left or right node, N), and
    765         //    S is our start. Say we walk to D, through the node opposite N
    766         //    (read: ignoring the clobber), and see a cache entry in the top
    767         //    node of D. That cache entry gets put into TerminatedPaths. We then
    768         //    walk up to C (N is later in our worklist), find the clobber, and
    769         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
    770         //    the bottom part of D to the cached clobber, ignoring the clobber
    771         //    in N. Again, this problem goes away if we start tracking all
    772         //    blockers for a given phi optimization.
    773         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
    774         return {Result, {}};
    775       }
    776 
    777       // If there's nothing left to search, then all paths led to valid clobbers
    778       // that we got from our cache; pick the nearest to the start, and allow
    779       // the rest to be cached back.
    780       if (NewPaused.empty()) {
    781         MoveDominatedPathToEnd(TerminatedPaths);
    782         TerminatedPath Result = TerminatedPaths.pop_back_val();
    783         return {Result, std::move(TerminatedPaths)};
    784       }
    785 
    786       MemoryAccess *DefChainEnd = nullptr;
    787       SmallVector<TerminatedPath, 4> Clobbers;
    788       for (ListIndex Paused : NewPaused) {
    789         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
    790         if (WR.IsKnownClobber)
    791           Clobbers.push_back({WR.Result, Paused});
    792         else
    793           // Micro-opt: If we hit the end of the chain, save it.
    794           DefChainEnd = WR.Result;
    795       }
    796 
    797       if (!TerminatedPaths.empty()) {
    798         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
    799         // do it now.
    800         if (!DefChainEnd)
    801           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
    802             DefChainEnd = MA;
    803 
    804         // If any of the terminated paths don't dominate the phi we'll try to
    805         // optimize, we need to figure out what they are and quit.
    806         const BasicBlock *ChainBB = DefChainEnd->getBlock();
    807         for (const TerminatedPath &TP : TerminatedPaths) {
    808           // Because we know that DefChainEnd is as "high" as we can go, we
    809           // don't need local dominance checks; BB dominance is sufficient.
    810           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
    811             Clobbers.push_back(TP);
    812         }
    813       }
    814 
    815       // If we have clobbers in the def chain, find the one closest to Current
    816       // and quit.
    817       if (!Clobbers.empty()) {
    818         MoveDominatedPathToEnd(Clobbers);
    819         TerminatedPath Result = Clobbers.pop_back_val();
    820         return {Result, std::move(Clobbers)};
    821       }
    822 
    823       assert(all_of(NewPaused,
    824                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
    825 
    826       // Because liveOnEntry is a clobber, this must be a phi.
    827       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
    828 
    829       PriorPathsSize = Paths.size();
    830       PausedSearches.clear();
    831       for (ListIndex I : NewPaused)
    832         addSearches(DefChainPhi, PausedSearches, I);
    833       NewPaused.clear();
    834 
    835       Current = DefChainPhi;
    836     }
    837   }
    838 
    839   void verifyOptResult(const OptznResult &R) const {
    840     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
    841       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
    842     }));
    843   }
    844 
    845   void resetPhiOptznState() {
    846     Paths.clear();
    847     VisitedPhis.clear();
    848   }
    849 
    850 public:
    851   ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
    852       : MSSA(MSSA), AA(AA), DT(DT) {}
    853 
    854   /// Finds the nearest clobber for the given query, optimizing phis if
    855   /// possible.
    856   MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
    857     Query = &Q;
    858 
    859     MemoryAccess *Current = Start;
    860     // This walker pretends uses don't exist. If we're handed one, silently grab
    861     // its def. (This has the nice side-effect of ensuring we never cache uses)
    862     if (auto *MU = dyn_cast<MemoryUse>(Start))
    863       Current = MU->getDefiningAccess();
    864 
    865     DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
    866     // Fast path for the overly-common case (no crazy phi optimization
    867     // necessary)
    868     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
    869     MemoryAccess *Result;
    870     if (WalkResult.IsKnownClobber) {
    871       Result = WalkResult.Result;
    872       Q.AR = WalkResult.AR;
    873     } else {
    874       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
    875                                           Current, Q.StartingLoc);
    876       verifyOptResult(OptRes);
    877       resetPhiOptznState();
    878       Result = OptRes.PrimaryClobber.Clobber;
    879     }
    880 
    881 #ifdef EXPENSIVE_CHECKS
    882     checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
    883 #endif
    884     return Result;
    885   }
    886 
    887   void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
    888 };
    889 
    890 struct RenamePassData {
    891   DomTreeNode *DTN;
    892   DomTreeNode::const_iterator ChildIt;
    893   MemoryAccess *IncomingVal;
    894 
    895   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
    896                  MemoryAccess *M)
    897       : DTN(D), ChildIt(It), IncomingVal(M) {}
    898 
    899   void swap(RenamePassData &RHS) {
    900     std::swap(DTN, RHS.DTN);
    901     std::swap(ChildIt, RHS.ChildIt);
    902     std::swap(IncomingVal, RHS.IncomingVal);
    903   }
    904 };
    905 
    906 } // end anonymous namespace
    907 
    908 namespace llvm {
    909 
    910 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
    911 /// longer does caching on its own, but the name has been retained for the
    912 /// moment.
    913 class MemorySSA::CachingWalker final : public MemorySSAWalker {
    914   ClobberWalker Walker;
    915 
    916   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
    917 
    918 public:
    919   CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
    920   ~CachingWalker() override = default;
    921 
    922   using MemorySSAWalker::getClobberingMemoryAccess;
    923 
    924   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
    925   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
    926                                           const MemoryLocation &) override;
    927   void invalidateInfo(MemoryAccess *) override;
    928 
    929   void verify(const MemorySSA *MSSA) override {
    930     MemorySSAWalker::verify(MSSA);
    931     Walker.verify(MSSA);
    932   }
    933 };
    934 
    935 } // end namespace llvm
    936 
    937 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
    938                                     bool RenameAllUses) {
    939   // Pass through values to our successors
    940   for (const BasicBlock *S : successors(BB)) {
    941     auto It = PerBlockAccesses.find(S);
    942     // Rename the phi nodes in our successor block
    943     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
    944       continue;
    945     AccessList *Accesses = It->second.get();
    946     auto *Phi = cast<MemoryPhi>(&Accesses->front());
    947     if (RenameAllUses) {
    948       int PhiIndex = Phi->getBasicBlockIndex(BB);
    949       assert(PhiIndex != -1 && "Incomplete phi during partial rename");
    950       Phi->setIncomingValue(PhiIndex, IncomingVal);
    951     } else
    952       Phi->addIncoming(IncomingVal, BB);
    953   }
    954 }
    955 
    956 /// Rename a single basic block into MemorySSA form.
    957 /// Uses the standard SSA renaming algorithm.
    958 /// \returns The new incoming value.
    959 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
    960                                      bool RenameAllUses) {
    961   auto It = PerBlockAccesses.find(BB);
    962   // Skip most processing if the list is empty.
    963   if (It != PerBlockAccesses.end()) {
    964     AccessList *Accesses = It->second.get();
    965     for (MemoryAccess &L : *Accesses) {
    966       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
    967         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
    968           MUD->setDefiningAccess(IncomingVal);
    969         if (isa<MemoryDef>(&L))
    970           IncomingVal = &L;
    971       } else {
    972         IncomingVal = &L;
    973       }
    974     }
    975   }
    976   return IncomingVal;
    977 }
    978 
    979 /// This is the standard SSA renaming algorithm.
    980 ///
    981 /// We walk the dominator tree in preorder, renaming accesses, and then filling
    982 /// in phi nodes in our successors.
    983 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
    984                            SmallPtrSetImpl<BasicBlock *> &Visited,
    985                            bool SkipVisited, bool RenameAllUses) {
    986   SmallVector<RenamePassData, 32> WorkStack;
    987   // Skip everything if we already renamed this block and we are skipping.
    988   // Note: You can't sink this into the if, because we need it to occur
    989   // regardless of whether we skip blocks or not.
    990   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
    991   if (SkipVisited && AlreadyVisited)
    992     return;
    993 
    994   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
    995   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
    996   WorkStack.push_back({Root, Root->begin(), IncomingVal});
    997 
    998   while (!WorkStack.empty()) {
    999     DomTreeNode *Node = WorkStack.back().DTN;
   1000     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
   1001     IncomingVal = WorkStack.back().IncomingVal;
   1002 
   1003     if (ChildIt == Node->end()) {
   1004       WorkStack.pop_back();
   1005     } else {
   1006       DomTreeNode *Child = *ChildIt;
   1007       ++WorkStack.back().ChildIt;
   1008       BasicBlock *BB = Child->getBlock();
   1009       // Note: You can't sink this into the if, because we need it to occur
   1010       // regardless of whether we skip blocks or not.
   1011       AlreadyVisited = !Visited.insert(BB).second;
   1012       if (SkipVisited && AlreadyVisited) {
   1013         // We already visited this during our renaming, which can happen when
   1014         // being asked to rename multiple blocks. Figure out the incoming val,
   1015         // which is the last def.
   1016         // Incoming value can only change if there is a block def, and in that
   1017         // case, it's the last block def in the list.
   1018         if (auto *BlockDefs = getWritableBlockDefs(BB))
   1019           IncomingVal = &*BlockDefs->rbegin();
   1020       } else
   1021         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
   1022       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
   1023       WorkStack.push_back({Child, Child->begin(), IncomingVal});
   1024     }
   1025   }
   1026 }
   1027 
   1028 /// This handles unreachable block accesses by deleting phi nodes in
   1029 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
   1030 /// being uses of the live on entry definition.
   1031 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
   1032   assert(!DT->isReachableFromEntry(BB) &&
   1033          "Reachable block found while handling unreachable blocks");
   1034 
   1035   // Make sure phi nodes in our reachable successors end up with a
   1036   // LiveOnEntryDef for our incoming edge, even though our block is forward
   1037   // unreachable.  We could just disconnect these blocks from the CFG fully,
   1038   // but we do not right now.
   1039   for (const BasicBlock *S : successors(BB)) {
   1040     if (!DT->isReachableFromEntry(S))
   1041       continue;
   1042     auto It = PerBlockAccesses.find(S);
   1043     // Rename the phi nodes in our successor block
   1044     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
   1045       continue;
   1046     AccessList *Accesses = It->second.get();
   1047     auto *Phi = cast<MemoryPhi>(&Accesses->front());
   1048     Phi->addIncoming(LiveOnEntryDef.get(), BB);
   1049   }
   1050 
   1051   auto It = PerBlockAccesses.find(BB);
   1052   if (It == PerBlockAccesses.end())
   1053     return;
   1054 
   1055   auto &Accesses = It->second;
   1056   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
   1057     auto Next = std::next(AI);
   1058     // If we have a phi, just remove it. We are going to replace all
   1059     // users with live on entry.
   1060     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
   1061       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
   1062     else
   1063       Accesses->erase(AI);
   1064     AI = Next;
   1065   }
   1066 }
   1067 
   1068 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
   1069     : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
   1070       NextID(0) {
   1071   buildMemorySSA();
   1072 }
   1073 
   1074 MemorySSA::~MemorySSA() {
   1075   // Drop all our references
   1076   for (const auto &Pair : PerBlockAccesses)
   1077     for (MemoryAccess &MA : *Pair.second)
   1078       MA.dropAllReferences();
   1079 }
   1080 
   1081 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
   1082   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
   1083 
   1084   if (Res.second)
   1085     Res.first->second = llvm::make_unique<AccessList>();
   1086   return Res.first->second.get();
   1087 }
   1088 
   1089 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
   1090   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
   1091 
   1092   if (Res.second)
   1093     Res.first->second = llvm::make_unique<DefsList>();
   1094   return Res.first->second.get();
   1095 }
   1096 
   1097 namespace llvm {
   1098 
   1099 /// This class is a batch walker of all MemoryUse's in the program, and points
   1100 /// their defining access at the thing that actually clobbers them.  Because it
   1101 /// is a batch walker that touches everything, it does not operate like the
   1102 /// other walkers.  This walker is basically performing a top-down SSA renaming
   1103 /// pass, where the version stack is used as the cache.  This enables it to be
   1104 /// significantly more time and memory efficient than using the regular walker,
   1105 /// which is walking bottom-up.
   1106 class MemorySSA::OptimizeUses {
   1107 public:
   1108   OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
   1109                DominatorTree *DT)
   1110       : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
   1111     Walker = MSSA->getWalker();
   1112   }
   1113 
   1114   void optimizeUses();
   1115 
   1116 private:
   1117   /// This represents where a given memorylocation is in the stack.
   1118   struct MemlocStackInfo {
   1119     // This essentially is keeping track of versions of the stack. Whenever
   1120     // the stack changes due to pushes or pops, these versions increase.
   1121     unsigned long StackEpoch;
   1122     unsigned long PopEpoch;
   1123     // This is the lower bound of places on the stack to check. It is equal to
   1124     // the place the last stack walk ended.
   1125     // Note: Correctness depends on this being initialized to 0, which densemap
   1126     // does
   1127     unsigned long LowerBound;
   1128     const BasicBlock *LowerBoundBlock;
   1129     // This is where the last walk for this memory location ended.
   1130     unsigned long LastKill;
   1131     bool LastKillValid;
   1132     Optional<AliasResult> AR;
   1133   };
   1134 
   1135   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
   1136                            SmallVectorImpl<MemoryAccess *> &,
   1137                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
   1138 
   1139   MemorySSA *MSSA;
   1140   MemorySSAWalker *Walker;
   1141   AliasAnalysis *AA;
   1142   DominatorTree *DT;
   1143 };
   1144 
   1145 } // end namespace llvm
   1146 
   1147 /// Optimize the uses in a given block This is basically the SSA renaming
   1148 /// algorithm, with one caveat: We are able to use a single stack for all
   1149 /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
   1150 /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
   1151 /// going to be some position in that stack of possible ones.
   1152 ///
   1153 /// We track the stack positions that each MemoryLocation needs
   1154 /// to check, and last ended at.  This is because we only want to check the
   1155 /// things that changed since last time.  The same MemoryLocation should
   1156 /// get clobbered by the same store (getModRefInfo does not use invariantness or
   1157 /// things like this, and if they start, we can modify MemoryLocOrCall to
   1158 /// include relevant data)
   1159 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
   1160     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
   1161     SmallVectorImpl<MemoryAccess *> &VersionStack,
   1162     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
   1163 
   1164   /// If no accesses, nothing to do.
   1165   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
   1166   if (Accesses == nullptr)
   1167     return;
   1168 
   1169   // Pop everything that doesn't dominate the current block off the stack,
   1170   // increment the PopEpoch to account for this.
   1171   while (true) {
   1172     assert(
   1173         !VersionStack.empty() &&
   1174         "Version stack should have liveOnEntry sentinel dominating everything");
   1175     BasicBlock *BackBlock = VersionStack.back()->getBlock();
   1176     if (DT->dominates(BackBlock, BB))
   1177       break;
   1178     while (VersionStack.back()->getBlock() == BackBlock)
   1179       VersionStack.pop_back();
   1180     ++PopEpoch;
   1181   }
   1182 
   1183   for (MemoryAccess &MA : *Accesses) {
   1184     auto *MU = dyn_cast<MemoryUse>(&MA);
   1185     if (!MU) {
   1186       VersionStack.push_back(&MA);
   1187       ++StackEpoch;
   1188       continue;
   1189     }
   1190 
   1191     if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
   1192       MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
   1193       continue;
   1194     }
   1195 
   1196     MemoryLocOrCall UseMLOC(MU);
   1197     auto &LocInfo = LocStackInfo[UseMLOC];
   1198     // If the pop epoch changed, it means we've removed stuff from top of
   1199     // stack due to changing blocks. We may have to reset the lower bound or
   1200     // last kill info.
   1201     if (LocInfo.PopEpoch != PopEpoch) {
   1202       LocInfo.PopEpoch = PopEpoch;
   1203       LocInfo.StackEpoch = StackEpoch;
   1204       // If the lower bound was in something that no longer dominates us, we
   1205       // have to reset it.
   1206       // We can't simply track stack size, because the stack may have had
   1207       // pushes/pops in the meantime.
   1208       // XXX: This is non-optimal, but only is slower cases with heavily
   1209       // branching dominator trees.  To get the optimal number of queries would
   1210       // be to make lowerbound and lastkill a per-loc stack, and pop it until
   1211       // the top of that stack dominates us.  This does not seem worth it ATM.
   1212       // A much cheaper optimization would be to always explore the deepest
   1213       // branch of the dominator tree first. This will guarantee this resets on
   1214       // the smallest set of blocks.
   1215       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
   1216           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
   1217         // Reset the lower bound of things to check.
   1218         // TODO: Some day we should be able to reset to last kill, rather than
   1219         // 0.
   1220         LocInfo.LowerBound = 0;
   1221         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
   1222         LocInfo.LastKillValid = false;
   1223       }
   1224     } else if (LocInfo.StackEpoch != StackEpoch) {
   1225       // If all that has changed is the StackEpoch, we only have to check the
   1226       // new things on the stack, because we've checked everything before.  In
   1227       // this case, the lower bound of things to check remains the same.
   1228       LocInfo.PopEpoch = PopEpoch;
   1229       LocInfo.StackEpoch = StackEpoch;
   1230     }
   1231     if (!LocInfo.LastKillValid) {
   1232       LocInfo.LastKill = VersionStack.size() - 1;
   1233       LocInfo.LastKillValid = true;
   1234       LocInfo.AR = MayAlias;
   1235     }
   1236 
   1237     // At this point, we should have corrected last kill and LowerBound to be
   1238     // in bounds.
   1239     assert(LocInfo.LowerBound < VersionStack.size() &&
   1240            "Lower bound out of range");
   1241     assert(LocInfo.LastKill < VersionStack.size() &&
   1242            "Last kill info out of range");
   1243     // In any case, the new upper bound is the top of the stack.
   1244     unsigned long UpperBound = VersionStack.size() - 1;
   1245 
   1246     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
   1247       LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
   1248                         << *(MU->getMemoryInst()) << ")"
   1249                         << " because there are "
   1250                         << UpperBound - LocInfo.LowerBound
   1251                         << " stores to disambiguate\n");
   1252       // Because we did not walk, LastKill is no longer valid, as this may
   1253       // have been a kill.
   1254       LocInfo.LastKillValid = false;
   1255       continue;
   1256     }
   1257     bool FoundClobberResult = false;
   1258     while (UpperBound > LocInfo.LowerBound) {
   1259       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
   1260         // For phis, use the walker, see where we ended up, go there
   1261         Instruction *UseInst = MU->getMemoryInst();
   1262         MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
   1263         // We are guaranteed to find it or something is wrong
   1264         while (VersionStack[UpperBound] != Result) {
   1265           assert(UpperBound != 0);
   1266           --UpperBound;
   1267         }
   1268         FoundClobberResult = true;
   1269         break;
   1270       }
   1271 
   1272       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
   1273       // If the lifetime of the pointer ends at this instruction, it's live on
   1274       // entry.
   1275       if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
   1276         // Reset UpperBound to liveOnEntryDef's place in the stack
   1277         UpperBound = 0;
   1278         FoundClobberResult = true;
   1279         LocInfo.AR = MustAlias;
   1280         break;
   1281       }
   1282       ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
   1283       if (CA.IsClobber) {
   1284         FoundClobberResult = true;
   1285         LocInfo.AR = CA.AR;
   1286         break;
   1287       }
   1288       --UpperBound;
   1289     }
   1290 
   1291     // Note: Phis always have AliasResult AR set to MayAlias ATM.
   1292 
   1293     // At the end of this loop, UpperBound is either a clobber, or lower bound
   1294     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
   1295     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
   1296       // We were last killed now by where we got to
   1297       if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
   1298         LocInfo.AR = None;
   1299       MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
   1300       LocInfo.LastKill = UpperBound;
   1301     } else {
   1302       // Otherwise, we checked all the new ones, and now we know we can get to
   1303       // LastKill.
   1304       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
   1305     }
   1306     LocInfo.LowerBound = VersionStack.size() - 1;
   1307     LocInfo.LowerBoundBlock = BB;
   1308   }
   1309 }
   1310 
   1311 /// Optimize uses to point to their actual clobbering definitions.
   1312 void MemorySSA::OptimizeUses::optimizeUses() {
   1313   SmallVector<MemoryAccess *, 16> VersionStack;
   1314   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
   1315   VersionStack.push_back(MSSA->getLiveOnEntryDef());
   1316 
   1317   unsigned long StackEpoch = 1;
   1318   unsigned long PopEpoch = 1;
   1319   // We perform a non-recursive top-down dominator tree walk.
   1320   for (const auto *DomNode : depth_first(DT->getRootNode()))
   1321     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
   1322                         LocStackInfo);
   1323 }
   1324 
   1325 void MemorySSA::placePHINodes(
   1326     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
   1327   // Determine where our MemoryPhi's should go
   1328   ForwardIDFCalculator IDFs(*DT);
   1329   IDFs.setDefiningBlocks(DefiningBlocks);
   1330   SmallVector<BasicBlock *, 32> IDFBlocks;
   1331   IDFs.calculate(IDFBlocks);
   1332 
   1333   // Now place MemoryPhi nodes.
   1334   for (auto &BB : IDFBlocks)
   1335     createMemoryPhi(BB);
   1336 }
   1337 
   1338 void MemorySSA::buildMemorySSA() {
   1339   // We create an access to represent "live on entry", for things like
   1340   // arguments or users of globals, where the memory they use is defined before
   1341   // the beginning of the function. We do not actually insert it into the IR.
   1342   // We do not define a live on exit for the immediate uses, and thus our
   1343   // semantics do *not* imply that something with no immediate uses can simply
   1344   // be removed.
   1345   BasicBlock &StartingPoint = F.getEntryBlock();
   1346   LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
   1347                                      &StartingPoint, NextID++));
   1348 
   1349   // We maintain lists of memory accesses per-block, trading memory for time. We
   1350   // could just look up the memory access for every possible instruction in the
   1351   // stream.
   1352   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
   1353   // Go through each block, figure out where defs occur, and chain together all
   1354   // the accesses.
   1355   for (BasicBlock &B : F) {
   1356     bool InsertIntoDef = false;
   1357     AccessList *Accesses = nullptr;
   1358     DefsList *Defs = nullptr;
   1359     for (Instruction &I : B) {
   1360       MemoryUseOrDef *MUD = createNewAccess(&I);
   1361       if (!MUD)
   1362         continue;
   1363 
   1364       if (!Accesses)
   1365         Accesses = getOrCreateAccessList(&B);
   1366       Accesses->push_back(MUD);
   1367       if (isa<MemoryDef>(MUD)) {
   1368         InsertIntoDef = true;
   1369         if (!Defs)
   1370           Defs = getOrCreateDefsList(&B);
   1371         Defs->push_back(*MUD);
   1372       }
   1373     }
   1374     if (InsertIntoDef)
   1375       DefiningBlocks.insert(&B);
   1376   }
   1377   placePHINodes(DefiningBlocks);
   1378 
   1379   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
   1380   // filled in with all blocks.
   1381   SmallPtrSet<BasicBlock *, 16> Visited;
   1382   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
   1383 
   1384   CachingWalker *Walker = getWalkerImpl();
   1385 
   1386   OptimizeUses(this, Walker, AA, DT).optimizeUses();
   1387 
   1388   // Mark the uses in unreachable blocks as live on entry, so that they go
   1389   // somewhere.
   1390   for (auto &BB : F)
   1391     if (!Visited.count(&BB))
   1392       markUnreachableAsLiveOnEntry(&BB);
   1393 }
   1394 
   1395 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
   1396 
   1397 MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
   1398   if (Walker)
   1399     return Walker.get();
   1400 
   1401   Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
   1402   return Walker.get();
   1403 }
   1404 
   1405 // This is a helper function used by the creation routines. It places NewAccess
   1406 // into the access and defs lists for a given basic block, at the given
   1407 // insertion point.
   1408 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
   1409                                         const BasicBlock *BB,
   1410                                         InsertionPlace Point) {
   1411   auto *Accesses = getOrCreateAccessList(BB);
   1412   if (Point == Beginning) {
   1413     // If it's a phi node, it goes first, otherwise, it goes after any phi
   1414     // nodes.
   1415     if (isa<MemoryPhi>(NewAccess)) {
   1416       Accesses->push_front(NewAccess);
   1417       auto *Defs = getOrCreateDefsList(BB);
   1418       Defs->push_front(*NewAccess);
   1419     } else {
   1420       auto AI = find_if_not(
   1421           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
   1422       Accesses->insert(AI, NewAccess);
   1423       if (!isa<MemoryUse>(NewAccess)) {
   1424         auto *Defs = getOrCreateDefsList(BB);
   1425         auto DI = find_if_not(
   1426             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
   1427         Defs->insert(DI, *NewAccess);
   1428       }
   1429     }
   1430   } else {
   1431     Accesses->push_back(NewAccess);
   1432     if (!isa<MemoryUse>(NewAccess)) {
   1433       auto *Defs = getOrCreateDefsList(BB);
   1434       Defs->push_back(*NewAccess);
   1435     }
   1436   }
   1437   BlockNumberingValid.erase(BB);
   1438 }
   1439 
   1440 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
   1441                                       AccessList::iterator InsertPt) {
   1442   auto *Accesses = getWritableBlockAccesses(BB);
   1443   bool WasEnd = InsertPt == Accesses->end();
   1444   Accesses->insert(AccessList::iterator(InsertPt), What);
   1445   if (!isa<MemoryUse>(What)) {
   1446     auto *Defs = getOrCreateDefsList(BB);
   1447     // If we got asked to insert at the end, we have an easy job, just shove it
   1448     // at the end. If we got asked to insert before an existing def, we also get
   1449     // an iterator. If we got asked to insert before a use, we have to hunt for
   1450     // the next def.
   1451     if (WasEnd) {
   1452       Defs->push_back(*What);
   1453     } else if (isa<MemoryDef>(InsertPt)) {
   1454       Defs->insert(InsertPt->getDefsIterator(), *What);
   1455     } else {
   1456       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
   1457         ++InsertPt;
   1458       // Either we found a def, or we are inserting at the end
   1459       if (InsertPt == Accesses->end())
   1460         Defs->push_back(*What);
   1461       else
   1462         Defs->insert(InsertPt->getDefsIterator(), *What);
   1463     }
   1464   }
   1465   BlockNumberingValid.erase(BB);
   1466 }
   1467 
   1468 // Move What before Where in the IR.  The end result is that What will belong to
   1469 // the right lists and have the right Block set, but will not otherwise be
   1470 // correct. It will not have the right defining access, and if it is a def,
   1471 // things below it will not properly be updated.
   1472 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
   1473                        AccessList::iterator Where) {
   1474   // Keep it in the lookup tables, remove from the lists
   1475   removeFromLists(What, false);
   1476   What->setBlock(BB);
   1477   insertIntoListsBefore(What, BB, Where);
   1478 }
   1479 
   1480 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
   1481                        InsertionPlace Point) {
   1482   if (isa<MemoryPhi>(What)) {
   1483     assert(Point == Beginning &&
   1484            "Can only move a Phi at the beginning of the block");
   1485     // Update lookup table entry
   1486     ValueToMemoryAccess.erase(What->getBlock());
   1487     bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
   1488     (void)Inserted;
   1489     assert(Inserted && "Cannot move a Phi to a block that already has one");
   1490   }
   1491 
   1492   removeFromLists(What, false);
   1493   What->setBlock(BB);
   1494   insertIntoListsForBlock(What, BB, Point);
   1495 }
   1496 
   1497 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
   1498   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
   1499   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
   1500   // Phi's always are placed at the front of the block.
   1501   insertIntoListsForBlock(Phi, BB, Beginning);
   1502   ValueToMemoryAccess[BB] = Phi;
   1503   return Phi;
   1504 }
   1505 
   1506 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
   1507                                                MemoryAccess *Definition) {
   1508   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
   1509   MemoryUseOrDef *NewAccess = createNewAccess(I);
   1510   assert(
   1511       NewAccess != nullptr &&
   1512       "Tried to create a memory access for a non-memory touching instruction");
   1513   NewAccess->setDefiningAccess(Definition);
   1514   return NewAccess;
   1515 }
   1516 
   1517 // Return true if the instruction has ordering constraints.
   1518 // Note specifically that this only considers stores and loads
   1519 // because others are still considered ModRef by getModRefInfo.
   1520 static inline bool isOrdered(const Instruction *I) {
   1521   if (auto *SI = dyn_cast<StoreInst>(I)) {
   1522     if (!SI->isUnordered())
   1523       return true;
   1524   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
   1525     if (!LI->isUnordered())
   1526       return true;
   1527   }
   1528   return false;
   1529 }
   1530 
   1531 /// Helper function to create new memory accesses
   1532 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
   1533   // The assume intrinsic has a control dependency which we model by claiming
   1534   // that it writes arbitrarily. Ignore that fake memory dependency here.
   1535   // FIXME: Replace this special casing with a more accurate modelling of
   1536   // assume's control dependency.
   1537   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
   1538     if (II->getIntrinsicID() == Intrinsic::assume)
   1539       return nullptr;
   1540 
   1541   // Find out what affect this instruction has on memory.
   1542   ModRefInfo ModRef = AA->getModRefInfo(I, None);
   1543   // The isOrdered check is used to ensure that volatiles end up as defs
   1544   // (atomics end up as ModRef right now anyway).  Until we separate the
   1545   // ordering chain from the memory chain, this enables people to see at least
   1546   // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
   1547   // will still give an answer that bypasses other volatile loads.  TODO:
   1548   // Separate memory aliasing and ordering into two different chains so that we
   1549   // can precisely represent both "what memory will this read/write/is clobbered
   1550   // by" and "what instructions can I move this past".
   1551   bool Def = isModSet(ModRef) || isOrdered(I);
   1552   bool Use = isRefSet(ModRef);
   1553 
   1554   // It's possible for an instruction to not modify memory at all. During
   1555   // construction, we ignore them.
   1556   if (!Def && !Use)
   1557     return nullptr;
   1558 
   1559   MemoryUseOrDef *MUD;
   1560   if (Def)
   1561     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
   1562   else
   1563     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
   1564   ValueToMemoryAccess[I] = MUD;
   1565   return MUD;
   1566 }
   1567 
   1568 /// Returns true if \p Replacer dominates \p Replacee .
   1569 bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
   1570                              const MemoryAccess *Replacee) const {
   1571   if (isa<MemoryUseOrDef>(Replacee))
   1572     return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
   1573   const auto *MP = cast<MemoryPhi>(Replacee);
   1574   // For a phi node, the use occurs in the predecessor block of the phi node.
   1575   // Since we may occur multiple times in the phi node, we have to check each
   1576   // operand to ensure Replacer dominates each operand where Replacee occurs.
   1577   for (const Use &Arg : MP->operands()) {
   1578     if (Arg.get() != Replacee &&
   1579         !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
   1580       return false;
   1581   }
   1582   return true;
   1583 }
   1584 
   1585 /// Properly remove \p MA from all of MemorySSA's lookup tables.
   1586 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
   1587   assert(MA->use_empty() &&
   1588          "Trying to remove memory access that still has uses");
   1589   BlockNumbering.erase(MA);
   1590   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
   1591     MUD->setDefiningAccess(nullptr);
   1592   // Invalidate our walker's cache if necessary
   1593   if (!isa<MemoryUse>(MA))
   1594     Walker->invalidateInfo(MA);
   1595 
   1596   Value *MemoryInst;
   1597   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
   1598     MemoryInst = MUD->getMemoryInst();
   1599   else
   1600     MemoryInst = MA->getBlock();
   1601 
   1602   auto VMA = ValueToMemoryAccess.find(MemoryInst);
   1603   if (VMA->second == MA)
   1604     ValueToMemoryAccess.erase(VMA);
   1605 }
   1606 
   1607 /// Properly remove \p MA from all of MemorySSA's lists.
   1608 ///
   1609 /// Because of the way the intrusive list and use lists work, it is important to
   1610 /// do removal in the right order.
   1611 /// ShouldDelete defaults to true, and will cause the memory access to also be
   1612 /// deleted, not just removed.
   1613 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
   1614   BasicBlock *BB = MA->getBlock();
   1615   // The access list owns the reference, so we erase it from the non-owning list
   1616   // first.
   1617   if (!isa<MemoryUse>(MA)) {
   1618     auto DefsIt = PerBlockDefs.find(BB);
   1619     std::unique_ptr<DefsList> &Defs = DefsIt->second;
   1620     Defs->remove(*MA);
   1621     if (Defs->empty())
   1622       PerBlockDefs.erase(DefsIt);
   1623   }
   1624 
   1625   // The erase call here will delete it. If we don't want it deleted, we call
   1626   // remove instead.
   1627   auto AccessIt = PerBlockAccesses.find(BB);
   1628   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
   1629   if (ShouldDelete)
   1630     Accesses->erase(MA);
   1631   else
   1632     Accesses->remove(MA);
   1633 
   1634   if (Accesses->empty()) {
   1635     PerBlockAccesses.erase(AccessIt);
   1636     BlockNumberingValid.erase(BB);
   1637   }
   1638 }
   1639 
   1640 void MemorySSA::print(raw_ostream &OS) const {
   1641   MemorySSAAnnotatedWriter Writer(this);
   1642   F.print(OS, &Writer);
   1643 }
   1644 
   1645 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1646 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
   1647 #endif
   1648 
   1649 void MemorySSA::verifyMemorySSA() const {
   1650   verifyDefUses(F);
   1651   verifyDomination(F);
   1652   verifyOrdering(F);
   1653   verifyDominationNumbers(F);
   1654   Walker->verify(this);
   1655 }
   1656 
   1657 /// Verify that all of the blocks we believe to have valid domination numbers
   1658 /// actually have valid domination numbers.
   1659 void MemorySSA::verifyDominationNumbers(const Function &F) const {
   1660 #ifndef NDEBUG
   1661   if (BlockNumberingValid.empty())
   1662     return;
   1663 
   1664   SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
   1665   for (const BasicBlock &BB : F) {
   1666     if (!ValidBlocks.count(&BB))
   1667       continue;
   1668 
   1669     ValidBlocks.erase(&BB);
   1670 
   1671     const AccessList *Accesses = getBlockAccesses(&BB);
   1672     // It's correct to say an empty block has valid numbering.
   1673     if (!Accesses)
   1674       continue;
   1675 
   1676     // Block numbering starts at 1.
   1677     unsigned long LastNumber = 0;
   1678     for (const MemoryAccess &MA : *Accesses) {
   1679       auto ThisNumberIter = BlockNumbering.find(&MA);
   1680       assert(ThisNumberIter != BlockNumbering.end() &&
   1681              "MemoryAccess has no domination number in a valid block!");
   1682 
   1683       unsigned long ThisNumber = ThisNumberIter->second;
   1684       assert(ThisNumber > LastNumber &&
   1685              "Domination numbers should be strictly increasing!");
   1686       LastNumber = ThisNumber;
   1687     }
   1688   }
   1689 
   1690   assert(ValidBlocks.empty() &&
   1691          "All valid BasicBlocks should exist in F -- dangling pointers?");
   1692 #endif
   1693 }
   1694 
   1695 /// Verify that the order and existence of MemoryAccesses matches the
   1696 /// order and existence of memory affecting instructions.
   1697 void MemorySSA::verifyOrdering(Function &F) const {
   1698   // Walk all the blocks, comparing what the lookups think and what the access
   1699   // lists think, as well as the order in the blocks vs the order in the access
   1700   // lists.
   1701   SmallVector<MemoryAccess *, 32> ActualAccesses;
   1702   SmallVector<MemoryAccess *, 32> ActualDefs;
   1703   for (BasicBlock &B : F) {
   1704     const AccessList *AL = getBlockAccesses(&B);
   1705     const auto *DL = getBlockDefs(&B);
   1706     MemoryAccess *Phi = getMemoryAccess(&B);
   1707     if (Phi) {
   1708       ActualAccesses.push_back(Phi);
   1709       ActualDefs.push_back(Phi);
   1710     }
   1711 
   1712     for (Instruction &I : B) {
   1713       MemoryAccess *MA = getMemoryAccess(&I);
   1714       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
   1715              "We have memory affecting instructions "
   1716              "in this block but they are not in the "
   1717              "access list or defs list");
   1718       if (MA) {
   1719         ActualAccesses.push_back(MA);
   1720         if (isa<MemoryDef>(MA))
   1721           ActualDefs.push_back(MA);
   1722       }
   1723     }
   1724     // Either we hit the assert, really have no accesses, or we have both
   1725     // accesses and an access list.
   1726     // Same with defs.
   1727     if (!AL && !DL)
   1728       continue;
   1729     assert(AL->size() == ActualAccesses.size() &&
   1730            "We don't have the same number of accesses in the block as on the "
   1731            "access list");
   1732     assert((DL || ActualDefs.size() == 0) &&
   1733            "Either we should have a defs list, or we should have no defs");
   1734     assert((!DL || DL->size() == ActualDefs.size()) &&
   1735            "We don't have the same number of defs in the block as on the "
   1736            "def list");
   1737     auto ALI = AL->begin();
   1738     auto AAI = ActualAccesses.begin();
   1739     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
   1740       assert(&*ALI == *AAI && "Not the same accesses in the same order");
   1741       ++ALI;
   1742       ++AAI;
   1743     }
   1744     ActualAccesses.clear();
   1745     if (DL) {
   1746       auto DLI = DL->begin();
   1747       auto ADI = ActualDefs.begin();
   1748       while (DLI != DL->end() && ADI != ActualDefs.end()) {
   1749         assert(&*DLI == *ADI && "Not the same defs in the same order");
   1750         ++DLI;
   1751         ++ADI;
   1752       }
   1753     }
   1754     ActualDefs.clear();
   1755   }
   1756 }
   1757 
   1758 /// Verify the domination properties of MemorySSA by checking that each
   1759 /// definition dominates all of its uses.
   1760 void MemorySSA::verifyDomination(Function &F) const {
   1761 #ifndef NDEBUG
   1762   for (BasicBlock &B : F) {
   1763     // Phi nodes are attached to basic blocks
   1764     if (MemoryPhi *MP = getMemoryAccess(&B))
   1765       for (const Use &U : MP->uses())
   1766         assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
   1767 
   1768     for (Instruction &I : B) {
   1769       MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
   1770       if (!MD)
   1771         continue;
   1772 
   1773       for (const Use &U : MD->uses())
   1774         assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
   1775     }
   1776   }
   1777 #endif
   1778 }
   1779 
   1780 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
   1781 /// appears in the use list of \p Def.
   1782 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
   1783 #ifndef NDEBUG
   1784   // The live on entry use may cause us to get a NULL def here
   1785   if (!Def)
   1786     assert(isLiveOnEntryDef(Use) &&
   1787            "Null def but use not point to live on entry def");
   1788   else
   1789     assert(is_contained(Def->users(), Use) &&
   1790            "Did not find use in def's use list");
   1791 #endif
   1792 }
   1793 
   1794 /// Verify the immediate use information, by walking all the memory
   1795 /// accesses and verifying that, for each use, it appears in the
   1796 /// appropriate def's use list
   1797 void MemorySSA::verifyDefUses(Function &F) const {
   1798   for (BasicBlock &B : F) {
   1799     // Phi nodes are attached to basic blocks
   1800     if (MemoryPhi *Phi = getMemoryAccess(&B)) {
   1801       assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
   1802                                           pred_begin(&B), pred_end(&B))) &&
   1803              "Incomplete MemoryPhi Node");
   1804       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
   1805         verifyUseInDefs(Phi->getIncomingValue(I), Phi);
   1806         assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
   1807                    pred_end(&B) &&
   1808                "Incoming phi block not a block predecessor");
   1809       }
   1810     }
   1811 
   1812     for (Instruction &I : B) {
   1813       if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
   1814         verifyUseInDefs(MA->getDefiningAccess(), MA);
   1815       }
   1816     }
   1817   }
   1818 }
   1819 
   1820 MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const {
   1821   return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
   1822 }
   1823 
   1824 MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
   1825   return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
   1826 }
   1827 
   1828 /// Perform a local numbering on blocks so that instruction ordering can be
   1829 /// determined in constant time.
   1830 /// TODO: We currently just number in order.  If we numbered by N, we could
   1831 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
   1832 /// log2(N) sequences of mixed before and after) without needing to invalidate
   1833 /// the numbering.
   1834 void MemorySSA::renumberBlock(const BasicBlock *B) const {
   1835   // The pre-increment ensures the numbers really start at 1.
   1836   unsigned long CurrentNumber = 0;
   1837   const AccessList *AL = getBlockAccesses(B);
   1838   assert(AL != nullptr && "Asking to renumber an empty block");
   1839   for (const auto &I : *AL)
   1840     BlockNumbering[&I] = ++CurrentNumber;
   1841   BlockNumberingValid.insert(B);
   1842 }
   1843 
   1844 /// Determine, for two memory accesses in the same block,
   1845 /// whether \p Dominator dominates \p Dominatee.
   1846 /// \returns True if \p Dominator dominates \p Dominatee.
   1847 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
   1848                                  const MemoryAccess *Dominatee) const {
   1849   const BasicBlock *DominatorBlock = Dominator->getBlock();
   1850 
   1851   assert((DominatorBlock == Dominatee->getBlock()) &&
   1852          "Asking for local domination when accesses are in different blocks!");
   1853   // A node dominates itself.
   1854   if (Dominatee == Dominator)
   1855     return true;
   1856 
   1857   // When Dominatee is defined on function entry, it is not dominated by another
   1858   // memory access.
   1859   if (isLiveOnEntryDef(Dominatee))
   1860     return false;
   1861 
   1862   // When Dominator is defined on function entry, it dominates the other memory
   1863   // access.
   1864   if (isLiveOnEntryDef(Dominator))
   1865     return true;
   1866 
   1867   if (!BlockNumberingValid.count(DominatorBlock))
   1868     renumberBlock(DominatorBlock);
   1869 
   1870   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
   1871   // All numbers start with 1
   1872   assert(DominatorNum != 0 && "Block was not numbered properly");
   1873   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
   1874   assert(DominateeNum != 0 && "Block was not numbered properly");
   1875   return DominatorNum < DominateeNum;
   1876 }
   1877 
   1878 bool MemorySSA::dominates(const MemoryAccess *Dominator,
   1879                           const MemoryAccess *Dominatee) const {
   1880   if (Dominator == Dominatee)
   1881     return true;
   1882 
   1883   if (isLiveOnEntryDef(Dominatee))
   1884     return false;
   1885 
   1886   if (Dominator->getBlock() != Dominatee->getBlock())
   1887     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
   1888   return locallyDominates(Dominator, Dominatee);
   1889 }
   1890 
   1891 bool MemorySSA::dominates(const MemoryAccess *Dominator,
   1892                           const Use &Dominatee) const {
   1893   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
   1894     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
   1895     // The def must dominate the incoming block of the phi.
   1896     if (UseBB != Dominator->getBlock())
   1897       return DT->dominates(Dominator->getBlock(), UseBB);
   1898     // If the UseBB and the DefBB are the same, compare locally.
   1899     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
   1900   }
   1901   // If it's not a PHI node use, the normal dominates can already handle it.
   1902   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
   1903 }
   1904 
   1905 const static char LiveOnEntryStr[] = "liveOnEntry";
   1906 
   1907 void MemoryAccess::print(raw_ostream &OS) const {
   1908   switch (getValueID()) {
   1909   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
   1910   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
   1911   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
   1912   }
   1913   llvm_unreachable("invalid value id");
   1914 }
   1915 
   1916 void MemoryDef::print(raw_ostream &OS) const {
   1917   MemoryAccess *UO = getDefiningAccess();
   1918 
   1919   auto printID = [&OS](MemoryAccess *A) {
   1920     if (A && A->getID())
   1921       OS << A->getID();
   1922     else
   1923       OS << LiveOnEntryStr;
   1924   };
   1925 
   1926   OS << getID() << " = MemoryDef(";
   1927   printID(UO);
   1928   OS << ")";
   1929 
   1930   if (isOptimized()) {
   1931     OS << "->";
   1932     printID(getOptimized());
   1933 
   1934     if (Optional<AliasResult> AR = getOptimizedAccessType())
   1935       OS << " " << *AR;
   1936   }
   1937 }
   1938 
   1939 void MemoryPhi::print(raw_ostream &OS) const {
   1940   bool First = true;
   1941   OS << getID() << " = MemoryPhi(";
   1942   for (const auto &Op : operands()) {
   1943     BasicBlock *BB = getIncomingBlock(Op);
   1944     MemoryAccess *MA = cast<MemoryAccess>(Op);
   1945     if (!First)
   1946       OS << ',';
   1947     else
   1948       First = false;
   1949 
   1950     OS << '{';
   1951     if (BB->hasName())
   1952       OS << BB->getName();
   1953     else
   1954       BB->printAsOperand(OS, false);
   1955     OS << ',';
   1956     if (unsigned ID = MA->getID())
   1957       OS << ID;
   1958     else
   1959       OS << LiveOnEntryStr;
   1960     OS << '}';
   1961   }
   1962   OS << ')';
   1963 }
   1964 
   1965 void MemoryUse::print(raw_ostream &OS) const {
   1966   MemoryAccess *UO = getDefiningAccess();
   1967   OS << "MemoryUse(";
   1968   if (UO && UO->getID())
   1969     OS << UO->getID();
   1970   else
   1971     OS << LiveOnEntryStr;
   1972   OS << ')';
   1973 
   1974   if (Optional<AliasResult> AR = getOptimizedAccessType())
   1975     OS << " " << *AR;
   1976 }
   1977 
   1978 void MemoryAccess::dump() const {
   1979 // Cannot completely remove virtual function even in release mode.
   1980 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
   1981   print(dbgs());
   1982   dbgs() << "\n";
   1983 #endif
   1984 }
   1985 
   1986 char MemorySSAPrinterLegacyPass::ID = 0;
   1987 
   1988 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
   1989   initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
   1990 }
   1991 
   1992 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
   1993   AU.setPreservesAll();
   1994   AU.addRequired<MemorySSAWrapperPass>();
   1995 }
   1996 
   1997 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
   1998   auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
   1999   MSSA.print(dbgs());
   2000   if (VerifyMemorySSA)
   2001     MSSA.verifyMemorySSA();
   2002   return false;
   2003 }
   2004 
   2005 AnalysisKey MemorySSAAnalysis::Key;
   2006 
   2007 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
   2008                                                  FunctionAnalysisManager &AM) {
   2009   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
   2010   auto &AA = AM.getResult<AAManager>(F);
   2011   return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
   2012 }
   2013 
   2014 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
   2015                                             FunctionAnalysisManager &AM) {
   2016   OS << "MemorySSA for function: " << F.getName() << "\n";
   2017   AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
   2018 
   2019   return PreservedAnalyses::all();
   2020 }
   2021 
   2022 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
   2023                                              FunctionAnalysisManager &AM) {
   2024   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
   2025 
   2026   return PreservedAnalyses::all();
   2027 }
   2028 
   2029 char MemorySSAWrapperPass::ID = 0;
   2030 
   2031 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
   2032   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
   2033 }
   2034 
   2035 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
   2036 
   2037 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
   2038   AU.setPreservesAll();
   2039   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
   2040   AU.addRequiredTransitive<AAResultsWrapperPass>();
   2041 }
   2042 
   2043 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
   2044   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   2045   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
   2046   MSSA.reset(new MemorySSA(F, &AA, &DT));
   2047   return false;
   2048 }
   2049 
   2050 void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
   2051 
   2052 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
   2053   MSSA->print(OS);
   2054 }
   2055 
   2056 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
   2057 
   2058 MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
   2059                                         DominatorTree *D)
   2060     : MemorySSAWalker(M), Walker(*M, *A, *D) {}
   2061 
   2062 void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
   2063   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
   2064     MUD->resetOptimized();
   2065 }
   2066 
   2067 /// Walk the use-def chains starting at \p MA and find
   2068 /// the MemoryAccess that actually clobbers Loc.
   2069 ///
   2070 /// \returns our clobbering memory access
   2071 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
   2072     MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
   2073   return Walker.findClobber(StartingAccess, Q);
   2074 }
   2075 
   2076 MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
   2077     MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
   2078   if (isa<MemoryPhi>(StartingAccess))
   2079     return StartingAccess;
   2080 
   2081   auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
   2082   if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
   2083     return StartingUseOrDef;
   2084 
   2085   Instruction *I = StartingUseOrDef->getMemoryInst();
   2086 
   2087   // Conservatively, fences are always clobbers, so don't perform the walk if we
   2088   // hit a fence.
   2089   if (!ImmutableCallSite(I) && I->isFenceLike())
   2090     return StartingUseOrDef;
   2091 
   2092   UpwardsMemoryQuery Q;
   2093   Q.OriginalAccess = StartingUseOrDef;
   2094   Q.StartingLoc = Loc;
   2095   Q.Inst = I;
   2096   Q.IsCall = false;
   2097 
   2098   // Unlike the other function, do not walk to the def of a def, because we are
   2099   // handed something we already believe is the clobbering access.
   2100   MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
   2101                                      ? StartingUseOrDef->getDefiningAccess()
   2102                                      : StartingUseOrDef;
   2103 
   2104   MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
   2105   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
   2106   LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
   2107   LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
   2108   LLVM_DEBUG(dbgs() << *Clobber << "\n");
   2109   return Clobber;
   2110 }
   2111 
   2112 MemoryAccess *
   2113 MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
   2114   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
   2115   // If this is a MemoryPhi, we can't do anything.
   2116   if (!StartingAccess)
   2117     return MA;
   2118 
   2119   // If this is an already optimized use or def, return the optimized result.
   2120   // Note: Currently, we store the optimized def result in a separate field,
   2121   // since we can't use the defining access.
   2122   if (StartingAccess->isOptimized())
   2123     return StartingAccess->getOptimized();
   2124 
   2125   const Instruction *I = StartingAccess->getMemoryInst();
   2126   UpwardsMemoryQuery Q(I, StartingAccess);
   2127   // We can't sanely do anything with a fence, since they conservatively clobber
   2128   // all memory, and have no locations to get pointers from to try to
   2129   // disambiguate.
   2130   if (!Q.IsCall && I->isFenceLike())
   2131     return StartingAccess;
   2132 
   2133   if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
   2134     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
   2135     StartingAccess->setOptimized(LiveOnEntry);
   2136     StartingAccess->setOptimizedAccessType(None);
   2137     return LiveOnEntry;
   2138   }
   2139 
   2140   // Start with the thing we already think clobbers this location
   2141   MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
   2142 
   2143   // At this point, DefiningAccess may be the live on entry def.
   2144   // If it is, we will not get a better result.
   2145   if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
   2146     StartingAccess->setOptimized(DefiningAccess);
   2147     StartingAccess->setOptimizedAccessType(None);
   2148     return DefiningAccess;
   2149   }
   2150 
   2151   MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
   2152   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
   2153   LLVM_DEBUG(dbgs() << *DefiningAccess << "\n");
   2154   LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
   2155   LLVM_DEBUG(dbgs() << *Result << "\n");
   2156 
   2157   StartingAccess->setOptimized(Result);
   2158   if (MSSA->isLiveOnEntryDef(Result))
   2159     StartingAccess->setOptimizedAccessType(None);
   2160   else if (Q.AR == MustAlias)
   2161     StartingAccess->setOptimizedAccessType(MustAlias);
   2162 
   2163   return Result;
   2164 }
   2165 
   2166 MemoryAccess *
   2167 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
   2168   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
   2169     return Use->getDefiningAccess();
   2170   return MA;
   2171 }
   2172 
   2173 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
   2174     MemoryAccess *StartingAccess, const MemoryLocation &) {
   2175   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
   2176     return Use->getDefiningAccess();
   2177   return StartingAccess;
   2178 }
   2179 
   2180 void MemoryPhi::deleteMe(DerivedUser *Self) {
   2181   delete static_cast<MemoryPhi *>(Self);
   2182 }
   2183 
   2184 void MemoryDef::deleteMe(DerivedUser *Self) {
   2185   delete static_cast<MemoryDef *>(Self);
   2186 }
   2187 
   2188 void MemoryUse::deleteMe(DerivedUser *Self) {
   2189   delete static_cast<MemoryUse *>(Self);
   2190 }
   2191