1 /* ----------------------------------------------------------------------------- 2 Software License for The Fraunhofer FDK AAC Codec Library for Android 3 4 Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Frderung der angewandten 5 Forschung e.V. All rights reserved. 6 7 1. INTRODUCTION 8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software 9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding 10 scheme for digital audio. This FDK AAC Codec software is intended to be used on 11 a wide variety of Android devices. 12 13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient 14 general perceptual audio codecs. AAC-ELD is considered the best-performing 15 full-bandwidth communications codec by independent studies and is widely 16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG 17 specifications. 18 19 Patent licenses for necessary patent claims for the FDK AAC Codec (including 20 those of Fraunhofer) may be obtained through Via Licensing 21 (www.vialicensing.com) or through the respective patent owners individually for 22 the purpose of encoding or decoding bit streams in products that are compliant 23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of 24 Android devices already license these patent claims through Via Licensing or 25 directly from the patent owners, and therefore FDK AAC Codec software may 26 already be covered under those patent licenses when it is used for those 27 licensed purposes only. 28 29 Commercially-licensed AAC software libraries, including floating-point versions 30 with enhanced sound quality, are also available from Fraunhofer. Users are 31 encouraged to check the Fraunhofer website for additional applications 32 information and documentation. 33 34 2. COPYRIGHT LICENSE 35 36 Redistribution and use in source and binary forms, with or without modification, 37 are permitted without payment of copyright license fees provided that you 38 satisfy the following conditions: 39 40 You must retain the complete text of this software license in redistributions of 41 the FDK AAC Codec or your modifications thereto in source code form. 42 43 You must retain the complete text of this software license in the documentation 44 and/or other materials provided with redistributions of the FDK AAC Codec or 45 your modifications thereto in binary form. You must make available free of 46 charge copies of the complete source code of the FDK AAC Codec and your 47 modifications thereto to recipients of copies in binary form. 48 49 The name of Fraunhofer may not be used to endorse or promote products derived 50 from this library without prior written permission. 51 52 You may not charge copyright license fees for anyone to use, copy or distribute 53 the FDK AAC Codec software or your modifications thereto. 54 55 Your modified versions of the FDK AAC Codec must carry prominent notices stating 56 that you changed the software and the date of any change. For modified versions 57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" 58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK 59 AAC Codec Library for Android." 60 61 3. NO PATENT LICENSE 62 63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without 64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. 65 Fraunhofer provides no warranty of patent non-infringement with respect to this 66 software. 67 68 You may use this FDK AAC Codec software or modifications thereto only for 69 purposes that are authorized by appropriate patent licenses. 70 71 4. DISCLAIMER 72 73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright 74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, 75 including but not limited to the implied warranties of merchantability and 76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, 78 or consequential damages, including but not limited to procurement of substitute 79 goods or services; loss of use, data, or profits, or business interruption, 80 however caused and on any theory of liability, whether in contract, strict 81 liability, or tort (including negligence), arising in any way out of the use of 82 this software, even if advised of the possibility of such damage. 83 84 5. CONTACT INFORMATION 85 86 Fraunhofer Institute for Integrated Circuits IIS 87 Attention: Audio and Multimedia Departments - FDK AAC LL 88 Am Wolfsmantel 33 89 91058 Erlangen, Germany 90 91 www.iis.fraunhofer.de/amm 92 amm-info (at) iis.fraunhofer.de 93 ----------------------------------------------------------------------------- */ 94 95 /**************************** AAC decoder library ****************************** 96 97 Author(s): 98 99 Description: ACELP 100 101 *******************************************************************************/ 102 103 #include "usacdec_ace_d4t64.h" 104 105 #define L_SUBFR 64 /* Subframe size */ 106 107 /* 108 * D_ACELP_add_pulse 109 * 110 * Parameters: 111 * pos I: position of pulse 112 * nb_pulse I: number of pulses 113 * track I: track 114 * code O: fixed codebook 115 * 116 * Function: 117 * Add pulses to fixed codebook 118 * 119 * Returns: 120 * void 121 */ 122 static void D_ACELP_add_pulse(SHORT pos[], SHORT nb_pulse, SHORT track, 123 FIXP_COD code[]) { 124 SHORT i, k; 125 for (k = 0; k < nb_pulse; k++) { 126 /* i = ((pos[k] & (16-1))*NB_TRACK) + track; */ 127 i = ((pos[k] & (16 - 1)) << 2) + track; 128 if ((pos[k] & 16) == 0) { 129 code[i] = code[i] + (FIXP_COD)(512 << (COD_BITS - FRACT_BITS)); 130 } else { 131 code[i] = code[i] - (FIXP_COD)(512 << (COD_BITS - FRACT_BITS)); 132 } 133 } 134 return; 135 } 136 /* 137 * D_ACELP_decode_1p_N1 138 * 139 * Parameters: 140 * index I: pulse index 141 * N I: number of bits for position 142 * offset I: offset 143 * pos O: position of the pulse 144 * 145 * Function: 146 * Decode 1 pulse with N+1 bits 147 * 148 * Returns: 149 * void 150 */ 151 static void D_ACELP_decode_1p_N1(LONG index, SHORT N, SHORT offset, 152 SHORT pos[]) { 153 SHORT pos1; 154 LONG i, mask; 155 156 mask = ((1 << N) - 1); 157 /* 158 * Decode 1 pulse with N+1 bits 159 */ 160 pos1 = (SHORT)((index & mask) + offset); 161 i = ((index >> N) & 1); 162 if (i == 1) { 163 pos1 += 16; 164 } 165 pos[0] = pos1; 166 return; 167 } 168 /* 169 * D_ACELP_decode_2p_2N1 170 * 171 * Parameters: 172 * index I: pulse index 173 * N I: number of bits for position 174 * offset I: offset 175 * pos O: position of the pulse 176 * 177 * Function: 178 * Decode 2 pulses with 2*N+1 bits 179 * 180 * Returns: 181 * void 182 */ 183 static void D_ACELP_decode_2p_2N1(LONG index, SHORT N, SHORT offset, 184 SHORT pos[]) { 185 SHORT pos1, pos2; 186 LONG mask, i; 187 mask = ((1 << N) - 1); 188 /* 189 * Decode 2 pulses with 2*N+1 bits 190 */ 191 pos1 = (SHORT)(((index >> N) & mask) + offset); 192 i = (index >> (2 * N)) & 1; 193 pos2 = (SHORT)((index & mask) + offset); 194 if ((pos2 - pos1) < 0) { 195 if (i == 1) { 196 pos1 += 16; 197 } else { 198 pos2 += 16; 199 } 200 } else { 201 if (i == 1) { 202 pos1 += 16; 203 pos2 += 16; 204 } 205 } 206 pos[0] = pos1; 207 pos[1] = pos2; 208 return; 209 } 210 /* 211 * D_ACELP_decode_3p_3N1 212 * 213 * Parameters: 214 * index I: pulse index 215 * N I: number of bits for position 216 * offset I: offset 217 * pos O: position of the pulse 218 * 219 * Function: 220 * Decode 3 pulses with 3*N+1 bits 221 * 222 * Returns: 223 * void 224 */ 225 static void D_ACELP_decode_3p_3N1(LONG index, SHORT N, SHORT offset, 226 SHORT pos[]) { 227 SHORT j; 228 LONG mask, idx; 229 230 /* 231 * Decode 3 pulses with 3*N+1 bits 232 */ 233 mask = ((1 << ((2 * N) - 1)) - 1); 234 idx = index & mask; 235 j = offset; 236 if (((index >> ((2 * N) - 1)) & 1) == 1) { 237 j += (1 << (N - 1)); 238 } 239 D_ACELP_decode_2p_2N1(idx, N - 1, j, pos); 240 mask = ((1 << (N + 1)) - 1); 241 idx = (index >> (2 * N)) & mask; 242 D_ACELP_decode_1p_N1(idx, N, offset, pos + 2); 243 return; 244 } 245 /* 246 * D_ACELP_decode_4p_4N1 247 * 248 * Parameters: 249 * index I: pulse index 250 * N I: number of bits for position 251 * offset I: offset 252 * pos O: position of the pulse 253 * 254 * Function: 255 * Decode 4 pulses with 4*N+1 bits 256 * 257 * Returns: 258 * void 259 */ 260 static void D_ACELP_decode_4p_4N1(LONG index, SHORT N, SHORT offset, 261 SHORT pos[]) { 262 SHORT j; 263 LONG mask, idx; 264 /* 265 * Decode 4 pulses with 4*N+1 bits 266 */ 267 mask = ((1 << ((2 * N) - 1)) - 1); 268 idx = index & mask; 269 j = offset; 270 if (((index >> ((2 * N) - 1)) & 1) == 1) { 271 j += (1 << (N - 1)); 272 } 273 D_ACELP_decode_2p_2N1(idx, N - 1, j, pos); 274 mask = ((1 << ((2 * N) + 1)) - 1); 275 idx = (index >> (2 * N)) & mask; 276 D_ACELP_decode_2p_2N1(idx, N, offset, pos + 2); 277 return; 278 } 279 /* 280 * D_ACELP_decode_4p_4N 281 * 282 * Parameters: 283 * index I: pulse index 284 * N I: number of bits for position 285 * offset I: offset 286 * pos O: position of the pulse 287 * 288 * Function: 289 * Decode 4 pulses with 4*N bits 290 * 291 * Returns: 292 * void 293 */ 294 static void D_ACELP_decode_4p_4N(LONG index, SHORT N, SHORT offset, 295 SHORT pos[]) { 296 SHORT j, n_1; 297 /* 298 * Decode 4 pulses with 4*N bits 299 */ 300 n_1 = N - 1; 301 j = offset + (1 << n_1); 302 switch ((index >> ((4 * N) - 2)) & 3) { 303 case 0: 304 if (((index >> ((4 * n_1) + 1)) & 1) == 0) { 305 D_ACELP_decode_4p_4N1(index, n_1, offset, pos); 306 } else { 307 D_ACELP_decode_4p_4N1(index, n_1, j, pos); 308 } 309 break; 310 case 1: 311 D_ACELP_decode_1p_N1((index >> ((3 * n_1) + 1)), n_1, offset, pos); 312 D_ACELP_decode_3p_3N1(index, n_1, j, pos + 1); 313 break; 314 case 2: 315 D_ACELP_decode_2p_2N1((index >> ((2 * n_1) + 1)), n_1, offset, pos); 316 D_ACELP_decode_2p_2N1(index, n_1, j, pos + 2); 317 break; 318 case 3: 319 D_ACELP_decode_3p_3N1((index >> (n_1 + 1)), n_1, offset, pos); 320 D_ACELP_decode_1p_N1(index, n_1, j, pos + 3); 321 break; 322 } 323 return; 324 } 325 326 /* 327 * D_ACELP_decode_4t 328 * 329 * Parameters: 330 * index I: index 331 * mode I: speech mode 332 * code I: (Q9) algebraic (fixed) codebook excitation 333 * 334 * Function: 335 * 20, 36, 44, 52, 64, 72, 88 bits algebraic codebook. 336 * 4 tracks x 16 positions per track = 64 samples. 337 * 338 * 20 bits 5+5+5+5 --> 4 pulses in a frame of 64 samples. 339 * 36 bits 9+9+9+9 --> 8 pulses in a frame of 64 samples. 340 * 44 bits 13+9+13+9 --> 10 pulses in a frame of 64 samples. 341 * 52 bits 13+13+13+13 --> 12 pulses in a frame of 64 samples. 342 * 64 bits 2+2+2+2+14+14+14+14 --> 16 pulses in a frame of 64 samples. 343 * 72 bits 10+2+10+2+10+14+10+14 --> 18 pulses in a frame of 64 samples. 344 * 88 bits 11+11+11+11+11+11+11+11 --> 24 pulses in a frame of 64 samples. 345 * 346 * All pulses can have two (2) possible amplitudes: +1 or -1. 347 * Each pulse can sixteen (16) possible positions. 348 * 349 * codevector length 64 350 * number of track 4 351 * number of position 16 352 * 353 * Returns: 354 * void 355 */ 356 void D_ACELP_decode_4t64(SHORT index[], int nbits, FIXP_COD code[]) { 357 LONG L_index; 358 SHORT k, pos[6]; 359 360 FDKmemclear(code, L_SUBFR * sizeof(FIXP_COD)); 361 362 /* decode the positions and signs of pulses and build the codeword */ 363 switch (nbits) { 364 case 12: 365 for (k = 0; k < 4; k += 2) { 366 L_index = index[2 * (k / 2) + 1]; 367 D_ACELP_decode_1p_N1(L_index, 4, 0, pos); 368 D_ACELP_add_pulse(pos, 1, 2 * (index[2 * (k / 2)]) + k / 2, code); 369 } 370 break; 371 case 16: { 372 int i = 0; 373 int offset = index[i++]; 374 offset = (offset == 0) ? 1 : 3; 375 for (k = 0; k < 4; k++) { 376 if (k != offset) { 377 L_index = index[i++]; 378 D_ACELP_decode_1p_N1(L_index, 4, 0, pos); 379 D_ACELP_add_pulse(pos, 1, k, code); 380 } 381 } 382 } break; 383 case 20: 384 for (k = 0; k < 4; k++) { 385 L_index = (LONG)index[k]; 386 D_ACELP_decode_1p_N1(L_index, 4, 0, pos); 387 D_ACELP_add_pulse(pos, 1, k, code); 388 } 389 break; 390 case 28: 391 for (k = 0; k < 4 - 2; k++) { 392 L_index = (LONG)index[k]; 393 D_ACELP_decode_2p_2N1(L_index, 4, 0, pos); 394 D_ACELP_add_pulse(pos, 2, k, code); 395 } 396 for (k = 2; k < 4; k++) { 397 L_index = (LONG)index[k]; 398 D_ACELP_decode_1p_N1(L_index, 4, 0, pos); 399 D_ACELP_add_pulse(pos, 1, k, code); 400 } 401 break; 402 case 36: 403 for (k = 0; k < 4; k++) { 404 L_index = (LONG)index[k]; 405 D_ACELP_decode_2p_2N1(L_index, 4, 0, pos); 406 D_ACELP_add_pulse(pos, 2, k, code); 407 } 408 break; 409 case 44: 410 for (k = 0; k < 4 - 2; k++) { 411 L_index = (LONG)index[k]; 412 D_ACELP_decode_3p_3N1(L_index, 4, 0, pos); 413 D_ACELP_add_pulse(pos, 3, k, code); 414 } 415 for (k = 2; k < 4; k++) { 416 L_index = (LONG)index[k]; 417 D_ACELP_decode_2p_2N1(L_index, 4, 0, pos); 418 D_ACELP_add_pulse(pos, 2, k, code); 419 } 420 break; 421 case 52: 422 for (k = 0; k < 4; k++) { 423 L_index = (LONG)index[k]; 424 D_ACELP_decode_3p_3N1(L_index, 4, 0, pos); 425 D_ACELP_add_pulse(pos, 3, k, code); 426 } 427 break; 428 case 64: 429 for (k = 0; k < 4; k++) { 430 L_index = (((LONG)index[k] << 14) + (LONG)index[k + 4]); 431 D_ACELP_decode_4p_4N(L_index, 4, 0, pos); 432 D_ACELP_add_pulse(pos, 4, k, code); 433 } 434 break; 435 default: 436 FDK_ASSERT(0); 437 } 438 return; 439 } 440