Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "inliner.h"
     18 
     19 #include "art_method-inl.h"
     20 #include "base/enums.h"
     21 #include "base/logging.h"
     22 #include "builder.h"
     23 #include "class_linker.h"
     24 #include "class_root.h"
     25 #include "constant_folding.h"
     26 #include "data_type-inl.h"
     27 #include "dead_code_elimination.h"
     28 #include "dex/inline_method_analyser.h"
     29 #include "dex/verification_results.h"
     30 #include "dex/verified_method.h"
     31 #include "driver/compiler_options.h"
     32 #include "driver/dex_compilation_unit.h"
     33 #include "instruction_simplifier.h"
     34 #include "intrinsics.h"
     35 #include "jit/jit.h"
     36 #include "jit/jit_code_cache.h"
     37 #include "mirror/class_loader.h"
     38 #include "mirror/dex_cache.h"
     39 #include "mirror/object_array-alloc-inl.h"
     40 #include "mirror/object_array-inl.h"
     41 #include "nodes.h"
     42 #include "reference_type_propagation.h"
     43 #include "register_allocator_linear_scan.h"
     44 #include "scoped_thread_state_change-inl.h"
     45 #include "sharpening.h"
     46 #include "ssa_builder.h"
     47 #include "ssa_phi_elimination.h"
     48 #include "thread.h"
     49 
     50 namespace art {
     51 
     52 // Instruction limit to control memory.
     53 static constexpr size_t kMaximumNumberOfTotalInstructions = 1024;
     54 
     55 // Maximum number of instructions for considering a method small,
     56 // which we will always try to inline if the other non-instruction limits
     57 // are not reached.
     58 static constexpr size_t kMaximumNumberOfInstructionsForSmallMethod = 3;
     59 
     60 // Limit the number of dex registers that we accumulate while inlining
     61 // to avoid creating large amount of nested environments.
     62 static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 32;
     63 
     64 // Limit recursive call inlining, which do not benefit from too
     65 // much inlining compared to code locality.
     66 static constexpr size_t kMaximumNumberOfRecursiveCalls = 4;
     67 
     68 // Controls the use of inline caches in AOT mode.
     69 static constexpr bool kUseAOTInlineCaches = true;
     70 
     71 // We check for line numbers to make sure the DepthString implementation
     72 // aligns the output nicely.
     73 #define LOG_INTERNAL(msg) \
     74   static_assert(__LINE__ > 10, "Unhandled line number"); \
     75   static_assert(__LINE__ < 10000, "Unhandled line number"); \
     76   VLOG(compiler) << DepthString(__LINE__) << msg
     77 
     78 #define LOG_TRY() LOG_INTERNAL("Try inlinining call: ")
     79 #define LOG_NOTE() LOG_INTERNAL("Note: ")
     80 #define LOG_SUCCESS() LOG_INTERNAL("Success: ")
     81 #define LOG_FAIL(stats_ptr, stat) MaybeRecordStat(stats_ptr, stat); LOG_INTERNAL("Fail: ")
     82 #define LOG_FAIL_NO_STAT() LOG_INTERNAL("Fail: ")
     83 
     84 std::string HInliner::DepthString(int line) const {
     85   std::string value;
     86   // Indent according to the inlining depth.
     87   size_t count = depth_;
     88   // Line numbers get printed in the log, so add a space if the log's line is less
     89   // than 1000, and two if less than 100. 10 cannot be reached as it's the copyright.
     90   if (!kIsTargetBuild) {
     91     if (line < 100) {
     92       value += " ";
     93     }
     94     if (line < 1000) {
     95       value += " ";
     96     }
     97     // Safeguard if this file reaches more than 10000 lines.
     98     DCHECK_LT(line, 10000);
     99   }
    100   for (size_t i = 0; i < count; ++i) {
    101     value += "  ";
    102   }
    103   return value;
    104 }
    105 
    106 static size_t CountNumberOfInstructions(HGraph* graph) {
    107   size_t number_of_instructions = 0;
    108   for (HBasicBlock* block : graph->GetReversePostOrderSkipEntryBlock()) {
    109     for (HInstructionIterator instr_it(block->GetInstructions());
    110          !instr_it.Done();
    111          instr_it.Advance()) {
    112       ++number_of_instructions;
    113     }
    114   }
    115   return number_of_instructions;
    116 }
    117 
    118 void HInliner::UpdateInliningBudget() {
    119   if (total_number_of_instructions_ >= kMaximumNumberOfTotalInstructions) {
    120     // Always try to inline small methods.
    121     inlining_budget_ = kMaximumNumberOfInstructionsForSmallMethod;
    122   } else {
    123     inlining_budget_ = std::max(
    124         kMaximumNumberOfInstructionsForSmallMethod,
    125         kMaximumNumberOfTotalInstructions - total_number_of_instructions_);
    126   }
    127 }
    128 
    129 bool HInliner::Run() {
    130   if (codegen_->GetCompilerOptions().GetInlineMaxCodeUnits() == 0) {
    131     // Inlining effectively disabled.
    132     return false;
    133   } else if (graph_->IsDebuggable()) {
    134     // For simplicity, we currently never inline when the graph is debuggable. This avoids
    135     // doing some logic in the runtime to discover if a method could have been inlined.
    136     return false;
    137   }
    138 
    139   bool didInline = false;
    140 
    141   // Initialize the number of instructions for the method being compiled. Recursive calls
    142   // to HInliner::Run have already updated the instruction count.
    143   if (outermost_graph_ == graph_) {
    144     total_number_of_instructions_ = CountNumberOfInstructions(graph_);
    145   }
    146 
    147   UpdateInliningBudget();
    148   DCHECK_NE(total_number_of_instructions_, 0u);
    149   DCHECK_NE(inlining_budget_, 0u);
    150 
    151   // If we're compiling with a core image (which is only used for
    152   // test purposes), honor inlining directives in method names:
    153   // - if a method's name contains the substring "$noinline$", do not
    154   //   inline that method;
    155   // - if a method's name contains the substring "$inline$", ensure
    156   //   that this method is actually inlined.
    157   // We limit the latter to AOT compilation, as the JIT may or may not inline
    158   // depending on the state of classes at runtime.
    159   const bool honor_noinline_directives = codegen_->GetCompilerOptions().CompilingWithCoreImage();
    160   const bool honor_inline_directives =
    161       honor_noinline_directives && Runtime::Current()->IsAotCompiler();
    162 
    163   // Keep a copy of all blocks when starting the visit.
    164   ArenaVector<HBasicBlock*> blocks = graph_->GetReversePostOrder();
    165   DCHECK(!blocks.empty());
    166   // Because we are changing the graph when inlining,
    167   // we just iterate over the blocks of the outer method.
    168   // This avoids doing the inlining work again on the inlined blocks.
    169   for (HBasicBlock* block : blocks) {
    170     for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
    171       HInstruction* next = instruction->GetNext();
    172       HInvoke* call = instruction->AsInvoke();
    173       // As long as the call is not intrinsified, it is worth trying to inline.
    174       if (call != nullptr && call->GetIntrinsic() == Intrinsics::kNone) {
    175         if (honor_noinline_directives) {
    176           // Debugging case: directives in method names control or assert on inlining.
    177           std::string callee_name = outer_compilation_unit_.GetDexFile()->PrettyMethod(
    178               call->GetDexMethodIndex(), /* with_signature= */ false);
    179           // Tests prevent inlining by having $noinline$ in their method names.
    180           if (callee_name.find("$noinline$") == std::string::npos) {
    181             if (TryInline(call)) {
    182               didInline = true;
    183             } else if (honor_inline_directives) {
    184               bool should_have_inlined = (callee_name.find("$inline$") != std::string::npos);
    185               CHECK(!should_have_inlined) << "Could not inline " << callee_name;
    186             }
    187           }
    188         } else {
    189           DCHECK(!honor_inline_directives);
    190           // Normal case: try to inline.
    191           if (TryInline(call)) {
    192             didInline = true;
    193           }
    194         }
    195       }
    196       instruction = next;
    197     }
    198   }
    199 
    200   return didInline;
    201 }
    202 
    203 static bool IsMethodOrDeclaringClassFinal(ArtMethod* method)
    204     REQUIRES_SHARED(Locks::mutator_lock_) {
    205   return method->IsFinal() || method->GetDeclaringClass()->IsFinal();
    206 }
    207 
    208 /**
    209  * Given the `resolved_method` looked up in the dex cache, try to find
    210  * the actual runtime target of an interface or virtual call.
    211  * Return nullptr if the runtime target cannot be proven.
    212  */
    213 static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke, ArtMethod* resolved_method)
    214     REQUIRES_SHARED(Locks::mutator_lock_) {
    215   if (IsMethodOrDeclaringClassFinal(resolved_method)) {
    216     // No need to lookup further, the resolved method will be the target.
    217     return resolved_method;
    218   }
    219 
    220   HInstruction* receiver = invoke->InputAt(0);
    221   if (receiver->IsNullCheck()) {
    222     // Due to multiple levels of inlining within the same pass, it might be that
    223     // null check does not have the reference type of the actual receiver.
    224     receiver = receiver->InputAt(0);
    225   }
    226   ReferenceTypeInfo info = receiver->GetReferenceTypeInfo();
    227   DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName();
    228   if (!info.IsExact()) {
    229     // We currently only support inlining with known receivers.
    230     // TODO: Remove this check, we should be able to inline final methods
    231     // on unknown receivers.
    232     return nullptr;
    233   } else if (info.GetTypeHandle()->IsInterface()) {
    234     // Statically knowing that the receiver has an interface type cannot
    235     // help us find what is the target method.
    236     return nullptr;
    237   } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) {
    238     // The method that we're trying to call is not in the receiver's class or super classes.
    239     return nullptr;
    240   } else if (info.GetTypeHandle()->IsErroneous()) {
    241     // If the type is erroneous, do not go further, as we are going to query the vtable or
    242     // imt table, that we can only safely do on non-erroneous classes.
    243     return nullptr;
    244   }
    245 
    246   ClassLinker* cl = Runtime::Current()->GetClassLinker();
    247   PointerSize pointer_size = cl->GetImagePointerSize();
    248   if (invoke->IsInvokeInterface()) {
    249     resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface(
    250         resolved_method, pointer_size);
    251   } else {
    252     DCHECK(invoke->IsInvokeVirtual());
    253     resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual(
    254         resolved_method, pointer_size);
    255   }
    256 
    257   if (resolved_method == nullptr) {
    258     // The information we had on the receiver was not enough to find
    259     // the target method. Since we check above the exact type of the receiver,
    260     // the only reason this can happen is an IncompatibleClassChangeError.
    261     return nullptr;
    262   } else if (!resolved_method->IsInvokable()) {
    263     // The information we had on the receiver was not enough to find
    264     // the target method. Since we check above the exact type of the receiver,
    265     // the only reason this can happen is an IncompatibleClassChangeError.
    266     return nullptr;
    267   } else if (IsMethodOrDeclaringClassFinal(resolved_method)) {
    268     // A final method has to be the target method.
    269     return resolved_method;
    270   } else if (info.IsExact()) {
    271     // If we found a method and the receiver's concrete type is statically
    272     // known, we know for sure the target.
    273     return resolved_method;
    274   } else {
    275     // Even if we did find a method, the receiver type was not enough to
    276     // statically find the runtime target.
    277     return nullptr;
    278   }
    279 }
    280 
    281 static uint32_t FindMethodIndexIn(ArtMethod* method,
    282                                   const DexFile& dex_file,
    283                                   uint32_t name_and_signature_index)
    284     REQUIRES_SHARED(Locks::mutator_lock_) {
    285   if (IsSameDexFile(*method->GetDexFile(), dex_file)) {
    286     return method->GetDexMethodIndex();
    287   } else {
    288     return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index);
    289   }
    290 }
    291 
    292 static dex::TypeIndex FindClassIndexIn(ObjPtr<mirror::Class> cls,
    293                                        const DexCompilationUnit& compilation_unit)
    294     REQUIRES_SHARED(Locks::mutator_lock_) {
    295   const DexFile& dex_file = *compilation_unit.GetDexFile();
    296   dex::TypeIndex index;
    297   if (cls->GetDexCache() == nullptr) {
    298     DCHECK(cls->IsArrayClass()) << cls->PrettyClass();
    299     index = cls->FindTypeIndexInOtherDexFile(dex_file);
    300   } else if (!cls->GetDexTypeIndex().IsValid()) {
    301     DCHECK(cls->IsProxyClass()) << cls->PrettyClass();
    302     // TODO: deal with proxy classes.
    303   } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) {
    304     DCHECK_EQ(cls->GetDexCache(), compilation_unit.GetDexCache().Get());
    305     index = cls->GetDexTypeIndex();
    306   } else {
    307     index = cls->FindTypeIndexInOtherDexFile(dex_file);
    308     // We cannot guarantee the entry will resolve to the same class,
    309     // as there may be different class loaders. So only return the index if it's
    310     // the right class already resolved with the class loader.
    311     if (index.IsValid()) {
    312       ObjPtr<mirror::Class> resolved = compilation_unit.GetClassLinker()->LookupResolvedType(
    313           index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
    314       if (resolved != cls) {
    315         index = dex::TypeIndex::Invalid();
    316       }
    317     }
    318   }
    319 
    320   return index;
    321 }
    322 
    323 class ScopedProfilingInfoInlineUse {
    324  public:
    325   explicit ScopedProfilingInfoInlineUse(ArtMethod* method, Thread* self)
    326       : method_(method),
    327         self_(self),
    328         // Fetch the profiling info ahead of using it. If it's null when fetching,
    329         // we should not call JitCodeCache::DoneInlining.
    330         profiling_info_(
    331             Runtime::Current()->GetJit()->GetCodeCache()->NotifyCompilerUse(method, self)) {
    332   }
    333 
    334   ~ScopedProfilingInfoInlineUse() {
    335     if (profiling_info_ != nullptr) {
    336       PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
    337       DCHECK_EQ(profiling_info_, method_->GetProfilingInfo(pointer_size));
    338       Runtime::Current()->GetJit()->GetCodeCache()->DoneCompilerUse(method_, self_);
    339     }
    340   }
    341 
    342   ProfilingInfo* GetProfilingInfo() const { return profiling_info_; }
    343 
    344  private:
    345   ArtMethod* const method_;
    346   Thread* const self_;
    347   ProfilingInfo* const profiling_info_;
    348 };
    349 
    350 HInliner::InlineCacheType HInliner::GetInlineCacheType(
    351     const Handle<mirror::ObjectArray<mirror::Class>>& classes)
    352   REQUIRES_SHARED(Locks::mutator_lock_) {
    353   uint8_t number_of_types = 0;
    354   for (; number_of_types < InlineCache::kIndividualCacheSize; ++number_of_types) {
    355     if (classes->Get(number_of_types) == nullptr) {
    356       break;
    357     }
    358   }
    359 
    360   if (number_of_types == 0) {
    361     return kInlineCacheUninitialized;
    362   } else if (number_of_types == 1) {
    363     return kInlineCacheMonomorphic;
    364   } else if (number_of_types == InlineCache::kIndividualCacheSize) {
    365     return kInlineCacheMegamorphic;
    366   } else {
    367     return kInlineCachePolymorphic;
    368   }
    369 }
    370 
    371 static ObjPtr<mirror::Class> GetMonomorphicType(Handle<mirror::ObjectArray<mirror::Class>> classes)
    372     REQUIRES_SHARED(Locks::mutator_lock_) {
    373   DCHECK(classes->Get(0) != nullptr);
    374   return classes->Get(0);
    375 }
    376 
    377 ArtMethod* HInliner::TryCHADevirtualization(ArtMethod* resolved_method) {
    378   if (!resolved_method->HasSingleImplementation()) {
    379     return nullptr;
    380   }
    381   if (Runtime::Current()->IsAotCompiler()) {
    382     // No CHA-based devirtulization for AOT compiler (yet).
    383     return nullptr;
    384   }
    385   if (Runtime::Current()->IsZygote()) {
    386     // No CHA-based devirtulization for Zygote, as it compiles with
    387     // offline information.
    388     return nullptr;
    389   }
    390   if (outermost_graph_->IsCompilingOsr()) {
    391     // We do not support HDeoptimize in OSR methods.
    392     return nullptr;
    393   }
    394   PointerSize pointer_size = caller_compilation_unit_.GetClassLinker()->GetImagePointerSize();
    395   ArtMethod* single_impl = resolved_method->GetSingleImplementation(pointer_size);
    396   if (single_impl == nullptr) {
    397     return nullptr;
    398   }
    399   if (single_impl->IsProxyMethod()) {
    400     // Proxy method is a generic invoker that's not worth
    401     // devirtualizing/inlining. It also causes issues when the proxy
    402     // method is in another dex file if we try to rewrite invoke-interface to
    403     // invoke-virtual because a proxy method doesn't have a real dex file.
    404     return nullptr;
    405   }
    406   if (!single_impl->GetDeclaringClass()->IsResolved()) {
    407     // There's a race with the class loading, which updates the CHA info
    408     // before setting the class to resolved. So we just bail for this
    409     // rare occurence.
    410     return nullptr;
    411   }
    412   return single_impl;
    413 }
    414 
    415 static bool IsMethodUnverified(const CompilerOptions& compiler_options, ArtMethod* method)
    416     REQUIRES_SHARED(Locks::mutator_lock_) {
    417   if (!method->GetDeclaringClass()->IsVerified()) {
    418     if (Runtime::Current()->UseJitCompilation()) {
    419       // We're at runtime, we know this is cold code if the class
    420       // is not verified, so don't bother analyzing.
    421       return true;
    422     }
    423     uint16_t class_def_idx = method->GetDeclaringClass()->GetDexClassDefIndex();
    424     if (!compiler_options.IsMethodVerifiedWithoutFailures(method->GetDexMethodIndex(),
    425                                                           class_def_idx,
    426                                                           *method->GetDexFile())) {
    427       // Method has soft or hard failures, don't analyze.
    428       return true;
    429     }
    430   }
    431   return false;
    432 }
    433 
    434 static bool AlwaysThrows(const CompilerOptions& compiler_options, ArtMethod* method)
    435     REQUIRES_SHARED(Locks::mutator_lock_) {
    436   DCHECK(method != nullptr);
    437   // Skip non-compilable and unverified methods.
    438   if (!method->IsCompilable() || IsMethodUnverified(compiler_options, method)) {
    439     return false;
    440   }
    441   // Skip native methods, methods with try blocks, and methods that are too large.
    442   CodeItemDataAccessor accessor(method->DexInstructionData());
    443   if (!accessor.HasCodeItem() ||
    444       accessor.TriesSize() != 0 ||
    445       accessor.InsnsSizeInCodeUnits() > kMaximumNumberOfTotalInstructions) {
    446     return false;
    447   }
    448   // Scan for exits.
    449   bool throw_seen = false;
    450   for (const DexInstructionPcPair& pair : accessor) {
    451     switch (pair.Inst().Opcode()) {
    452       case Instruction::RETURN:
    453       case Instruction::RETURN_VOID:
    454       case Instruction::RETURN_WIDE:
    455       case Instruction::RETURN_OBJECT:
    456       case Instruction::RETURN_VOID_NO_BARRIER:
    457         return false;  // found regular control flow back
    458       case Instruction::THROW:
    459         throw_seen = true;
    460         break;
    461       default:
    462         break;
    463     }
    464   }
    465   return throw_seen;
    466 }
    467 
    468 bool HInliner::TryInline(HInvoke* invoke_instruction) {
    469   if (invoke_instruction->IsInvokeUnresolved() ||
    470       invoke_instruction->IsInvokePolymorphic() ||
    471       invoke_instruction->IsInvokeCustom()) {
    472     return false;  // Don't bother to move further if we know the method is unresolved or the
    473                    // invocation is polymorphic (invoke-{polymorphic,custom}).
    474   }
    475 
    476   ScopedObjectAccess soa(Thread::Current());
    477   uint32_t method_index = invoke_instruction->GetDexMethodIndex();
    478   const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
    479   LOG_TRY() << caller_dex_file.PrettyMethod(method_index);
    480 
    481   ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod();
    482   if (resolved_method == nullptr) {
    483     DCHECK(invoke_instruction->IsInvokeStaticOrDirect());
    484     DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit());
    485     LOG_FAIL_NO_STAT() << "Not inlining a String.<init> method";
    486     return false;
    487   }
    488   ArtMethod* actual_method = nullptr;
    489 
    490   if (invoke_instruction->IsInvokeStaticOrDirect()) {
    491     actual_method = resolved_method;
    492   } else {
    493     // Check if we can statically find the method.
    494     actual_method = FindVirtualOrInterfaceTarget(invoke_instruction, resolved_method);
    495   }
    496 
    497   bool cha_devirtualize = false;
    498   if (actual_method == nullptr) {
    499     ArtMethod* method = TryCHADevirtualization(resolved_method);
    500     if (method != nullptr) {
    501       cha_devirtualize = true;
    502       actual_method = method;
    503       LOG_NOTE() << "Try CHA-based inlining of " << actual_method->PrettyMethod();
    504     }
    505   }
    506 
    507   if (actual_method != nullptr) {
    508     // Single target.
    509     bool result = TryInlineAndReplace(invoke_instruction,
    510                                       actual_method,
    511                                       ReferenceTypeInfo::CreateInvalid(),
    512                                       /* do_rtp= */ true,
    513                                       cha_devirtualize);
    514     if (result) {
    515       // Successfully inlined.
    516       if (!invoke_instruction->IsInvokeStaticOrDirect()) {
    517         if (cha_devirtualize) {
    518           // Add dependency due to devirtualization. We've assumed resolved_method
    519           // has single implementation.
    520           outermost_graph_->AddCHASingleImplementationDependency(resolved_method);
    521           MaybeRecordStat(stats_, MethodCompilationStat::kCHAInline);
    522         } else {
    523           MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvokeVirtualOrInterface);
    524         }
    525       }
    526     } else if (!cha_devirtualize && AlwaysThrows(codegen_->GetCompilerOptions(), actual_method)) {
    527       // Set always throws property for non-inlined method call with single target
    528       // (unless it was obtained through CHA, because that would imply we have
    529       // to add the CHA dependency, which seems not worth it).
    530       invoke_instruction->SetAlwaysThrows(true);
    531     }
    532     return result;
    533   }
    534   DCHECK(!invoke_instruction->IsInvokeStaticOrDirect());
    535 
    536   // Try using inline caches.
    537   return TryInlineFromInlineCache(caller_dex_file, invoke_instruction, resolved_method);
    538 }
    539 
    540 static Handle<mirror::ObjectArray<mirror::Class>> AllocateInlineCacheHolder(
    541     const DexCompilationUnit& compilation_unit,
    542     StackHandleScope<1>* hs)
    543     REQUIRES_SHARED(Locks::mutator_lock_) {
    544   Thread* self = Thread::Current();
    545   ClassLinker* class_linker = compilation_unit.GetClassLinker();
    546   Handle<mirror::ObjectArray<mirror::Class>> inline_cache = hs->NewHandle(
    547       mirror::ObjectArray<mirror::Class>::Alloc(
    548           self,
    549           GetClassRoot<mirror::ObjectArray<mirror::Class>>(class_linker),
    550           InlineCache::kIndividualCacheSize));
    551   if (inline_cache == nullptr) {
    552     // We got an OOME. Just clear the exception, and don't inline.
    553     DCHECK(self->IsExceptionPending());
    554     self->ClearException();
    555     VLOG(compiler) << "Out of memory in the compiler when trying to inline";
    556   }
    557   return inline_cache;
    558 }
    559 
    560 bool HInliner::UseOnlyPolymorphicInliningWithNoDeopt() {
    561   // If we are compiling AOT or OSR, pretend the call using inline caches is polymorphic and
    562   // do not generate a deopt.
    563   //
    564   // For AOT:
    565   //    Generating a deopt does not ensure that we will actually capture the new types;
    566   //    and the danger is that we could be stuck in a loop with "forever" deoptimizations.
    567   //    Take for example the following scenario:
    568   //      - we capture the inline cache in one run
    569   //      - the next run, we deoptimize because we miss a type check, but the method
    570   //        never becomes hot again
    571   //    In this case, the inline cache will not be updated in the profile and the AOT code
    572   //    will keep deoptimizing.
    573   //    Another scenario is if we use profile compilation for a process which is not allowed
    574   //    to JIT (e.g. system server). If we deoptimize we will run interpreted code for the
    575   //    rest of the lifetime.
    576   // TODO(calin):
    577   //    This is a compromise because we will most likely never update the inline cache
    578   //    in the profile (unless there's another reason to deopt). So we might be stuck with
    579   //    a sub-optimal inline cache.
    580   //    We could be smarter when capturing inline caches to mitigate this.
    581   //    (e.g. by having different thresholds for new and old methods).
    582   //
    583   // For OSR:
    584   //     We may come from the interpreter and it may have seen different receiver types.
    585   return Runtime::Current()->IsAotCompiler() || outermost_graph_->IsCompilingOsr();
    586 }
    587 bool HInliner::TryInlineFromInlineCache(const DexFile& caller_dex_file,
    588                                         HInvoke* invoke_instruction,
    589                                         ArtMethod* resolved_method)
    590     REQUIRES_SHARED(Locks::mutator_lock_) {
    591   if (Runtime::Current()->IsAotCompiler() && !kUseAOTInlineCaches) {
    592     return false;
    593   }
    594 
    595   StackHandleScope<1> hs(Thread::Current());
    596   Handle<mirror::ObjectArray<mirror::Class>> inline_cache;
    597   // The Zygote JIT compiles based on a profile, so we shouldn't use runtime inline caches
    598   // for it.
    599   InlineCacheType inline_cache_type =
    600       (Runtime::Current()->IsAotCompiler() || Runtime::Current()->IsZygote())
    601           ? GetInlineCacheAOT(caller_dex_file, invoke_instruction, &hs, &inline_cache)
    602           : GetInlineCacheJIT(invoke_instruction, &hs, &inline_cache);
    603 
    604   switch (inline_cache_type) {
    605     case kInlineCacheNoData: {
    606       LOG_FAIL_NO_STAT()
    607           << "Interface or virtual call to "
    608           << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
    609           << " could not be statically determined";
    610       return false;
    611     }
    612 
    613     case kInlineCacheUninitialized: {
    614       LOG_FAIL_NO_STAT()
    615           << "Interface or virtual call to "
    616           << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
    617           << " is not hit and not inlined";
    618       return false;
    619     }
    620 
    621     case kInlineCacheMonomorphic: {
    622       MaybeRecordStat(stats_, MethodCompilationStat::kMonomorphicCall);
    623       if (UseOnlyPolymorphicInliningWithNoDeopt()) {
    624         return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache);
    625       } else {
    626         return TryInlineMonomorphicCall(invoke_instruction, resolved_method, inline_cache);
    627       }
    628     }
    629 
    630     case kInlineCachePolymorphic: {
    631       MaybeRecordStat(stats_, MethodCompilationStat::kPolymorphicCall);
    632       return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache);
    633     }
    634 
    635     case kInlineCacheMegamorphic: {
    636       LOG_FAIL_NO_STAT()
    637           << "Interface or virtual call to "
    638           << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
    639           << " is megamorphic and not inlined";
    640       MaybeRecordStat(stats_, MethodCompilationStat::kMegamorphicCall);
    641       return false;
    642     }
    643 
    644     case kInlineCacheMissingTypes: {
    645       LOG_FAIL_NO_STAT()
    646           << "Interface or virtual call to "
    647           << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex())
    648           << " is missing types and not inlined";
    649       return false;
    650     }
    651   }
    652   UNREACHABLE();
    653 }
    654 
    655 HInliner::InlineCacheType HInliner::GetInlineCacheJIT(
    656     HInvoke* invoke_instruction,
    657     StackHandleScope<1>* hs,
    658     /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache)
    659     REQUIRES_SHARED(Locks::mutator_lock_) {
    660   DCHECK(Runtime::Current()->UseJitCompilation());
    661 
    662   ArtMethod* caller = graph_->GetArtMethod();
    663   // Under JIT, we should always know the caller.
    664   DCHECK(caller != nullptr);
    665   ScopedProfilingInfoInlineUse spiis(caller, Thread::Current());
    666   ProfilingInfo* profiling_info = spiis.GetProfilingInfo();
    667 
    668   if (profiling_info == nullptr) {
    669     return kInlineCacheNoData;
    670   }
    671 
    672   *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs);
    673   if (inline_cache->Get() == nullptr) {
    674     // We can't extract any data if we failed to allocate;
    675     return kInlineCacheNoData;
    676   } else {
    677     Runtime::Current()->GetJit()->GetCodeCache()->CopyInlineCacheInto(
    678         *profiling_info->GetInlineCache(invoke_instruction->GetDexPc()),
    679         *inline_cache);
    680     return GetInlineCacheType(*inline_cache);
    681   }
    682 }
    683 
    684 HInliner::InlineCacheType HInliner::GetInlineCacheAOT(
    685     const DexFile& caller_dex_file,
    686     HInvoke* invoke_instruction,
    687     StackHandleScope<1>* hs,
    688     /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache)
    689     REQUIRES_SHARED(Locks::mutator_lock_) {
    690   const ProfileCompilationInfo* pci = codegen_->GetCompilerOptions().GetProfileCompilationInfo();
    691   if (pci == nullptr) {
    692     return kInlineCacheNoData;
    693   }
    694 
    695   std::unique_ptr<ProfileCompilationInfo::OfflineProfileMethodInfo> offline_profile =
    696       pci->GetMethod(caller_dex_file.GetLocation(),
    697                      caller_dex_file.GetLocationChecksum(),
    698                      caller_compilation_unit_.GetDexMethodIndex());
    699   if (offline_profile == nullptr) {
    700     return kInlineCacheNoData;  // no profile information for this invocation.
    701   }
    702 
    703   *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs);
    704   if (inline_cache == nullptr) {
    705     // We can't extract any data if we failed to allocate;
    706     return kInlineCacheNoData;
    707   } else {
    708     return ExtractClassesFromOfflineProfile(invoke_instruction,
    709                                             *(offline_profile.get()),
    710                                             *inline_cache);
    711   }
    712 }
    713 
    714 HInliner::InlineCacheType HInliner::ExtractClassesFromOfflineProfile(
    715     const HInvoke* invoke_instruction,
    716     const ProfileCompilationInfo::OfflineProfileMethodInfo& offline_profile,
    717     /*out*/Handle<mirror::ObjectArray<mirror::Class>> inline_cache)
    718     REQUIRES_SHARED(Locks::mutator_lock_) {
    719   const auto it = offline_profile.inline_caches->find(invoke_instruction->GetDexPc());
    720   if (it == offline_profile.inline_caches->end()) {
    721     return kInlineCacheUninitialized;
    722   }
    723 
    724   const ProfileCompilationInfo::DexPcData& dex_pc_data = it->second;
    725 
    726   if (dex_pc_data.is_missing_types) {
    727     return kInlineCacheMissingTypes;
    728   }
    729   if (dex_pc_data.is_megamorphic) {
    730     return kInlineCacheMegamorphic;
    731   }
    732 
    733   DCHECK_LE(dex_pc_data.classes.size(), InlineCache::kIndividualCacheSize);
    734   Thread* self = Thread::Current();
    735   // We need to resolve the class relative to the containing dex file.
    736   // So first, build a mapping from the index of dex file in the profile to
    737   // its dex cache. This will avoid repeating the lookup when walking over
    738   // the inline cache types.
    739   std::vector<ObjPtr<mirror::DexCache>> dex_profile_index_to_dex_cache(
    740         offline_profile.dex_references.size());
    741   for (size_t i = 0; i < offline_profile.dex_references.size(); i++) {
    742     bool found = false;
    743     for (const DexFile* dex_file : codegen_->GetCompilerOptions().GetDexFilesForOatFile()) {
    744       if (offline_profile.dex_references[i].MatchesDex(dex_file)) {
    745         dex_profile_index_to_dex_cache[i] =
    746             caller_compilation_unit_.GetClassLinker()->FindDexCache(self, *dex_file);
    747         found = true;
    748       }
    749     }
    750     if (!found) {
    751       VLOG(compiler) << "Could not find profiled dex file: "
    752           << offline_profile.dex_references[i].dex_location;
    753       return kInlineCacheMissingTypes;
    754     }
    755   }
    756 
    757   // Walk over the classes and resolve them. If we cannot find a type we return
    758   // kInlineCacheMissingTypes.
    759   int ic_index = 0;
    760   for (const ProfileCompilationInfo::ClassReference& class_ref : dex_pc_data.classes) {
    761     ObjPtr<mirror::DexCache> dex_cache =
    762         dex_profile_index_to_dex_cache[class_ref.dex_profile_index];
    763     DCHECK(dex_cache != nullptr);
    764 
    765     if (!dex_cache->GetDexFile()->IsTypeIndexValid(class_ref.type_index)) {
    766       VLOG(compiler) << "Profile data corrupt: type index " << class_ref.type_index
    767             << "is invalid in location" << dex_cache->GetDexFile()->GetLocation();
    768       return kInlineCacheNoData;
    769     }
    770     ObjPtr<mirror::Class> clazz = caller_compilation_unit_.GetClassLinker()->LookupResolvedType(
    771           class_ref.type_index,
    772           dex_cache,
    773           caller_compilation_unit_.GetClassLoader().Get());
    774     if (clazz != nullptr) {
    775       inline_cache->Set(ic_index++, clazz);
    776     } else {
    777       VLOG(compiler) << "Could not resolve class from inline cache in AOT mode "
    778           << caller_compilation_unit_.GetDexFile()->PrettyMethod(
    779               invoke_instruction->GetDexMethodIndex()) << " : "
    780           << caller_compilation_unit_
    781               .GetDexFile()->StringByTypeIdx(class_ref.type_index);
    782       return kInlineCacheMissingTypes;
    783     }
    784   }
    785   return GetInlineCacheType(inline_cache);
    786 }
    787 
    788 HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker,
    789                                                    HInstruction* receiver,
    790                                                    uint32_t dex_pc) const {
    791   ArtField* field = GetClassRoot<mirror::Object>(class_linker)->GetInstanceField(0);
    792   DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
    793   HInstanceFieldGet* result = new (graph_->GetAllocator()) HInstanceFieldGet(
    794       receiver,
    795       field,
    796       DataType::Type::kReference,
    797       field->GetOffset(),
    798       field->IsVolatile(),
    799       field->GetDexFieldIndex(),
    800       field->GetDeclaringClass()->GetDexClassDefIndex(),
    801       *field->GetDexFile(),
    802       dex_pc);
    803   // The class of a field is effectively final, and does not have any memory dependencies.
    804   result->SetSideEffects(SideEffects::None());
    805   return result;
    806 }
    807 
    808 static ArtMethod* ResolveMethodFromInlineCache(Handle<mirror::Class> klass,
    809                                                ArtMethod* resolved_method,
    810                                                HInstruction* invoke_instruction,
    811                                                PointerSize pointer_size)
    812     REQUIRES_SHARED(Locks::mutator_lock_) {
    813   if (Runtime::Current()->IsAotCompiler()) {
    814     // We can get unrelated types when working with profiles (corruption,
    815     // systme updates, or anyone can write to it). So first check if the class
    816     // actually implements the declaring class of the method that is being
    817     // called in bytecode.
    818     // Note: the lookup methods used below require to have assignable types.
    819     if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(klass.Get())) {
    820       return nullptr;
    821     }
    822   }
    823 
    824   if (invoke_instruction->IsInvokeInterface()) {
    825     resolved_method = klass->FindVirtualMethodForInterface(resolved_method, pointer_size);
    826   } else {
    827     DCHECK(invoke_instruction->IsInvokeVirtual());
    828     resolved_method = klass->FindVirtualMethodForVirtual(resolved_method, pointer_size);
    829   }
    830   DCHECK(resolved_method != nullptr);
    831   return resolved_method;
    832 }
    833 
    834 bool HInliner::TryInlineMonomorphicCall(HInvoke* invoke_instruction,
    835                                         ArtMethod* resolved_method,
    836                                         Handle<mirror::ObjectArray<mirror::Class>> classes) {
    837   DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
    838       << invoke_instruction->DebugName();
    839 
    840   dex::TypeIndex class_index = FindClassIndexIn(
    841       GetMonomorphicType(classes), caller_compilation_unit_);
    842   if (!class_index.IsValid()) {
    843     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache)
    844         << "Call to " << ArtMethod::PrettyMethod(resolved_method)
    845         << " from inline cache is not inlined because its class is not"
    846         << " accessible to the caller";
    847     return false;
    848   }
    849 
    850   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
    851   PointerSize pointer_size = class_linker->GetImagePointerSize();
    852   Handle<mirror::Class> monomorphic_type = handles_->NewHandle(GetMonomorphicType(classes));
    853   resolved_method = ResolveMethodFromInlineCache(
    854       monomorphic_type, resolved_method, invoke_instruction, pointer_size);
    855 
    856   LOG_NOTE() << "Try inline monomorphic call to " << resolved_method->PrettyMethod();
    857   if (resolved_method == nullptr) {
    858     // Bogus AOT profile, bail.
    859     DCHECK(Runtime::Current()->IsAotCompiler());
    860     return false;
    861   }
    862 
    863   HInstruction* receiver = invoke_instruction->InputAt(0);
    864   HInstruction* cursor = invoke_instruction->GetPrevious();
    865   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
    866   if (!TryInlineAndReplace(invoke_instruction,
    867                            resolved_method,
    868                            ReferenceTypeInfo::Create(monomorphic_type, /* is_exact= */ true),
    869                            /* do_rtp= */ false,
    870                            /* cha_devirtualize= */ false)) {
    871     return false;
    872   }
    873 
    874   // We successfully inlined, now add a guard.
    875   AddTypeGuard(receiver,
    876                cursor,
    877                bb_cursor,
    878                class_index,
    879                monomorphic_type,
    880                invoke_instruction,
    881                /* with_deoptimization= */ true);
    882 
    883   // Run type propagation to get the guard typed, and eventually propagate the
    884   // type of the receiver.
    885   ReferenceTypePropagation rtp_fixup(graph_,
    886                                      outer_compilation_unit_.GetClassLoader(),
    887                                      outer_compilation_unit_.GetDexCache(),
    888                                      handles_,
    889                                      /* is_first_run= */ false);
    890   rtp_fixup.Run();
    891 
    892   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedMonomorphicCall);
    893   return true;
    894 }
    895 
    896 void HInliner::AddCHAGuard(HInstruction* invoke_instruction,
    897                            uint32_t dex_pc,
    898                            HInstruction* cursor,
    899                            HBasicBlock* bb_cursor) {
    900   HShouldDeoptimizeFlag* deopt_flag = new (graph_->GetAllocator())
    901       HShouldDeoptimizeFlag(graph_->GetAllocator(), dex_pc);
    902   HInstruction* compare = new (graph_->GetAllocator()) HNotEqual(
    903       deopt_flag, graph_->GetIntConstant(0, dex_pc));
    904   HInstruction* deopt = new (graph_->GetAllocator()) HDeoptimize(
    905       graph_->GetAllocator(), compare, DeoptimizationKind::kCHA, dex_pc);
    906 
    907   if (cursor != nullptr) {
    908     bb_cursor->InsertInstructionAfter(deopt_flag, cursor);
    909   } else {
    910     bb_cursor->InsertInstructionBefore(deopt_flag, bb_cursor->GetFirstInstruction());
    911   }
    912   bb_cursor->InsertInstructionAfter(compare, deopt_flag);
    913   bb_cursor->InsertInstructionAfter(deopt, compare);
    914 
    915   // Add receiver as input to aid CHA guard optimization later.
    916   deopt_flag->AddInput(invoke_instruction->InputAt(0));
    917   DCHECK_EQ(deopt_flag->InputCount(), 1u);
    918   deopt->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
    919   outermost_graph_->IncrementNumberOfCHAGuards();
    920 }
    921 
    922 HInstruction* HInliner::AddTypeGuard(HInstruction* receiver,
    923                                      HInstruction* cursor,
    924                                      HBasicBlock* bb_cursor,
    925                                      dex::TypeIndex class_index,
    926                                      Handle<mirror::Class> klass,
    927                                      HInstruction* invoke_instruction,
    928                                      bool with_deoptimization) {
    929   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
    930   HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
    931       class_linker, receiver, invoke_instruction->GetDexPc());
    932   if (cursor != nullptr) {
    933     bb_cursor->InsertInstructionAfter(receiver_class, cursor);
    934   } else {
    935     bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
    936   }
    937 
    938   const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
    939   bool is_referrer;
    940   ArtMethod* outermost_art_method = outermost_graph_->GetArtMethod();
    941   if (outermost_art_method == nullptr) {
    942     DCHECK(Runtime::Current()->IsAotCompiler());
    943     // We are in AOT mode and we don't have an ART method to determine
    944     // if the inlined method belongs to the referrer. Assume it doesn't.
    945     is_referrer = false;
    946   } else {
    947     is_referrer = klass.Get() == outermost_art_method->GetDeclaringClass();
    948   }
    949 
    950   // Note that we will just compare the classes, so we don't need Java semantics access checks.
    951   // Note that the type index and the dex file are relative to the method this type guard is
    952   // inlined into.
    953   HLoadClass* load_class = new (graph_->GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
    954                                                                    class_index,
    955                                                                    caller_dex_file,
    956                                                                    klass,
    957                                                                    is_referrer,
    958                                                                    invoke_instruction->GetDexPc(),
    959                                                                    /* needs_access_check= */ false);
    960   HLoadClass::LoadKind kind = HSharpening::ComputeLoadClassKind(
    961       load_class, codegen_, caller_compilation_unit_);
    962   DCHECK(kind != HLoadClass::LoadKind::kInvalid)
    963       << "We should always be able to reference a class for inline caches";
    964   // Load kind must be set before inserting the instruction into the graph.
    965   load_class->SetLoadKind(kind);
    966   bb_cursor->InsertInstructionAfter(load_class, receiver_class);
    967   // In AOT mode, we will most likely load the class from BSS, which will involve a call
    968   // to the runtime. In this case, the load instruction will need an environment so copy
    969   // it from the invoke instruction.
    970   if (load_class->NeedsEnvironment()) {
    971     DCHECK(Runtime::Current()->IsAotCompiler());
    972     load_class->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
    973   }
    974 
    975   HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(load_class, receiver_class);
    976   bb_cursor->InsertInstructionAfter(compare, load_class);
    977   if (with_deoptimization) {
    978     HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
    979         graph_->GetAllocator(),
    980         compare,
    981         receiver,
    982         Runtime::Current()->IsAotCompiler()
    983             ? DeoptimizationKind::kAotInlineCache
    984             : DeoptimizationKind::kJitInlineCache,
    985         invoke_instruction->GetDexPc());
    986     bb_cursor->InsertInstructionAfter(deoptimize, compare);
    987     deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
    988     DCHECK_EQ(invoke_instruction->InputAt(0), receiver);
    989     receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
    990     deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
    991   }
    992   return compare;
    993 }
    994 
    995 bool HInliner::TryInlinePolymorphicCall(HInvoke* invoke_instruction,
    996                                         ArtMethod* resolved_method,
    997                                         Handle<mirror::ObjectArray<mirror::Class>> classes) {
    998   DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
    999       << invoke_instruction->DebugName();
   1000 
   1001   if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, resolved_method, classes)) {
   1002     return true;
   1003   }
   1004 
   1005   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
   1006   PointerSize pointer_size = class_linker->GetImagePointerSize();
   1007 
   1008   bool all_targets_inlined = true;
   1009   bool one_target_inlined = false;
   1010   for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) {
   1011     if (classes->Get(i) == nullptr) {
   1012       break;
   1013     }
   1014     ArtMethod* method = nullptr;
   1015 
   1016     Handle<mirror::Class> handle = handles_->NewHandle(classes->Get(i));
   1017     method = ResolveMethodFromInlineCache(
   1018         handle, resolved_method, invoke_instruction, pointer_size);
   1019     if (method == nullptr) {
   1020       DCHECK(Runtime::Current()->IsAotCompiler());
   1021       // AOT profile is bogus. This loop expects to iterate over all entries,
   1022       // so just just continue.
   1023       all_targets_inlined = false;
   1024       continue;
   1025     }
   1026 
   1027     HInstruction* receiver = invoke_instruction->InputAt(0);
   1028     HInstruction* cursor = invoke_instruction->GetPrevious();
   1029     HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
   1030 
   1031     dex::TypeIndex class_index = FindClassIndexIn(handle.Get(), caller_compilation_unit_);
   1032     HInstruction* return_replacement = nullptr;
   1033     LOG_NOTE() << "Try inline polymorphic call to " << method->PrettyMethod();
   1034     if (!class_index.IsValid() ||
   1035         !TryBuildAndInline(invoke_instruction,
   1036                            method,
   1037                            ReferenceTypeInfo::Create(handle, /* is_exact= */ true),
   1038                            &return_replacement)) {
   1039       all_targets_inlined = false;
   1040     } else {
   1041       one_target_inlined = true;
   1042 
   1043       LOG_SUCCESS() << "Polymorphic call to " << ArtMethod::PrettyMethod(resolved_method)
   1044                     << " has inlined " << ArtMethod::PrettyMethod(method);
   1045 
   1046       // If we have inlined all targets before, and this receiver is the last seen,
   1047       // we deoptimize instead of keeping the original invoke instruction.
   1048       bool deoptimize = !UseOnlyPolymorphicInliningWithNoDeopt() &&
   1049           all_targets_inlined &&
   1050           (i != InlineCache::kIndividualCacheSize - 1) &&
   1051           (classes->Get(i + 1) == nullptr);
   1052 
   1053       HInstruction* compare = AddTypeGuard(receiver,
   1054                                            cursor,
   1055                                            bb_cursor,
   1056                                            class_index,
   1057                                            handle,
   1058                                            invoke_instruction,
   1059                                            deoptimize);
   1060       if (deoptimize) {
   1061         if (return_replacement != nullptr) {
   1062           invoke_instruction->ReplaceWith(return_replacement);
   1063         }
   1064         invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
   1065         // Because the inline cache data can be populated concurrently, we force the end of the
   1066         // iteration. Otherwise, we could see a new receiver type.
   1067         break;
   1068       } else {
   1069         CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
   1070       }
   1071     }
   1072   }
   1073 
   1074   if (!one_target_inlined) {
   1075     LOG_FAIL_NO_STAT()
   1076         << "Call to " << ArtMethod::PrettyMethod(resolved_method)
   1077         << " from inline cache is not inlined because none"
   1078         << " of its targets could be inlined";
   1079     return false;
   1080   }
   1081 
   1082   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);
   1083 
   1084   // Run type propagation to get the guards typed.
   1085   ReferenceTypePropagation rtp_fixup(graph_,
   1086                                      outer_compilation_unit_.GetClassLoader(),
   1087                                      outer_compilation_unit_.GetDexCache(),
   1088                                      handles_,
   1089                                      /* is_first_run= */ false);
   1090   rtp_fixup.Run();
   1091   return true;
   1092 }
   1093 
   1094 void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare,
   1095                                                         HInstruction* return_replacement,
   1096                                                         HInstruction* invoke_instruction) {
   1097   uint32_t dex_pc = invoke_instruction->GetDexPc();
   1098   HBasicBlock* cursor_block = compare->GetBlock();
   1099   HBasicBlock* original_invoke_block = invoke_instruction->GetBlock();
   1100   ArenaAllocator* allocator = graph_->GetAllocator();
   1101 
   1102   // Spit the block after the compare: `cursor_block` will now be the start of the diamond,
   1103   // and the returned block is the start of the then branch (that could contain multiple blocks).
   1104   HBasicBlock* then = cursor_block->SplitAfterForInlining(compare);
   1105 
   1106   // Split the block containing the invoke before and after the invoke. The returned block
   1107   // of the split before will contain the invoke and will be the otherwise branch of
   1108   // the diamond. The returned block of the split after will be the merge block
   1109   // of the diamond.
   1110   HBasicBlock* end_then = invoke_instruction->GetBlock();
   1111   HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction);
   1112   HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction);
   1113 
   1114   // If the methods we are inlining return a value, we create a phi in the merge block
   1115   // that will have the `invoke_instruction and the `return_replacement` as inputs.
   1116   if (return_replacement != nullptr) {
   1117     HPhi* phi = new (allocator) HPhi(
   1118         allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc);
   1119     merge->AddPhi(phi);
   1120     invoke_instruction->ReplaceWith(phi);
   1121     phi->AddInput(return_replacement);
   1122     phi->AddInput(invoke_instruction);
   1123   }
   1124 
   1125   // Add the control flow instructions.
   1126   otherwise->AddInstruction(new (allocator) HGoto(dex_pc));
   1127   end_then->AddInstruction(new (allocator) HGoto(dex_pc));
   1128   cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc));
   1129 
   1130   // Add the newly created blocks to the graph.
   1131   graph_->AddBlock(then);
   1132   graph_->AddBlock(otherwise);
   1133   graph_->AddBlock(merge);
   1134 
   1135   // Set up successor (and implictly predecessor) relations.
   1136   cursor_block->AddSuccessor(otherwise);
   1137   cursor_block->AddSuccessor(then);
   1138   end_then->AddSuccessor(merge);
   1139   otherwise->AddSuccessor(merge);
   1140 
   1141   // Set up dominance information.
   1142   then->SetDominator(cursor_block);
   1143   cursor_block->AddDominatedBlock(then);
   1144   otherwise->SetDominator(cursor_block);
   1145   cursor_block->AddDominatedBlock(otherwise);
   1146   merge->SetDominator(cursor_block);
   1147   cursor_block->AddDominatedBlock(merge);
   1148 
   1149   // Update the revert post order.
   1150   size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block);
   1151   MakeRoomFor(&graph_->reverse_post_order_, 1, index);
   1152   graph_->reverse_post_order_[++index] = then;
   1153   index = IndexOfElement(graph_->reverse_post_order_, end_then);
   1154   MakeRoomFor(&graph_->reverse_post_order_, 2, index);
   1155   graph_->reverse_post_order_[++index] = otherwise;
   1156   graph_->reverse_post_order_[++index] = merge;
   1157 
   1158 
   1159   graph_->UpdateLoopAndTryInformationOfNewBlock(
   1160       then, original_invoke_block, /* replace_if_back_edge= */ false);
   1161   graph_->UpdateLoopAndTryInformationOfNewBlock(
   1162       otherwise, original_invoke_block, /* replace_if_back_edge= */ false);
   1163 
   1164   // In case the original invoke location was a back edge, we need to update
   1165   // the loop to now have the merge block as a back edge.
   1166   graph_->UpdateLoopAndTryInformationOfNewBlock(
   1167       merge, original_invoke_block, /* replace_if_back_edge= */ true);
   1168 }
   1169 
   1170 bool HInliner::TryInlinePolymorphicCallToSameTarget(
   1171     HInvoke* invoke_instruction,
   1172     ArtMethod* resolved_method,
   1173     Handle<mirror::ObjectArray<mirror::Class>> classes) {
   1174   // This optimization only works under JIT for now.
   1175   if (!Runtime::Current()->UseJitCompilation()) {
   1176     return false;
   1177   }
   1178 
   1179   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
   1180   PointerSize pointer_size = class_linker->GetImagePointerSize();
   1181 
   1182   DCHECK(resolved_method != nullptr);
   1183   ArtMethod* actual_method = nullptr;
   1184   size_t method_index = invoke_instruction->IsInvokeVirtual()
   1185       ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex()
   1186       : invoke_instruction->AsInvokeInterface()->GetImtIndex();
   1187 
   1188   // Check whether we are actually calling the same method among
   1189   // the different types seen.
   1190   for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) {
   1191     if (classes->Get(i) == nullptr) {
   1192       break;
   1193     }
   1194     ArtMethod* new_method = nullptr;
   1195     if (invoke_instruction->IsInvokeInterface()) {
   1196       new_method = classes->Get(i)->GetImt(pointer_size)->Get(
   1197           method_index, pointer_size);
   1198       if (new_method->IsRuntimeMethod()) {
   1199         // Bail out as soon as we see a conflict trampoline in one of the target's
   1200         // interface table.
   1201         return false;
   1202       }
   1203     } else {
   1204       DCHECK(invoke_instruction->IsInvokeVirtual());
   1205       new_method = classes->Get(i)->GetEmbeddedVTableEntry(method_index, pointer_size);
   1206     }
   1207     DCHECK(new_method != nullptr);
   1208     if (actual_method == nullptr) {
   1209       actual_method = new_method;
   1210     } else if (actual_method != new_method) {
   1211       // Different methods, bailout.
   1212       return false;
   1213     }
   1214   }
   1215 
   1216   HInstruction* receiver = invoke_instruction->InputAt(0);
   1217   HInstruction* cursor = invoke_instruction->GetPrevious();
   1218   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
   1219 
   1220   HInstruction* return_replacement = nullptr;
   1221   if (!TryBuildAndInline(invoke_instruction,
   1222                          actual_method,
   1223                          ReferenceTypeInfo::CreateInvalid(),
   1224                          &return_replacement)) {
   1225     return false;
   1226   }
   1227 
   1228   // We successfully inlined, now add a guard.
   1229   HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
   1230       class_linker, receiver, invoke_instruction->GetDexPc());
   1231 
   1232   DataType::Type type = Is64BitInstructionSet(graph_->GetInstructionSet())
   1233       ? DataType::Type::kInt64
   1234       : DataType::Type::kInt32;
   1235   HClassTableGet* class_table_get = new (graph_->GetAllocator()) HClassTableGet(
   1236       receiver_class,
   1237       type,
   1238       invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable
   1239                                             : HClassTableGet::TableKind::kIMTable,
   1240       method_index,
   1241       invoke_instruction->GetDexPc());
   1242 
   1243   HConstant* constant;
   1244   if (type == DataType::Type::kInt64) {
   1245     constant = graph_->GetLongConstant(
   1246         reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
   1247   } else {
   1248     constant = graph_->GetIntConstant(
   1249         reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
   1250   }
   1251 
   1252   HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(class_table_get, constant);
   1253   if (cursor != nullptr) {
   1254     bb_cursor->InsertInstructionAfter(receiver_class, cursor);
   1255   } else {
   1256     bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
   1257   }
   1258   bb_cursor->InsertInstructionAfter(class_table_get, receiver_class);
   1259   bb_cursor->InsertInstructionAfter(compare, class_table_get);
   1260 
   1261   if (outermost_graph_->IsCompilingOsr()) {
   1262     CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
   1263   } else {
   1264     HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
   1265         graph_->GetAllocator(),
   1266         compare,
   1267         receiver,
   1268         DeoptimizationKind::kJitSameTarget,
   1269         invoke_instruction->GetDexPc());
   1270     bb_cursor->InsertInstructionAfter(deoptimize, compare);
   1271     deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
   1272     if (return_replacement != nullptr) {
   1273       invoke_instruction->ReplaceWith(return_replacement);
   1274     }
   1275     receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
   1276     invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
   1277     deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
   1278   }
   1279 
   1280   // Run type propagation to get the guard typed.
   1281   ReferenceTypePropagation rtp_fixup(graph_,
   1282                                      outer_compilation_unit_.GetClassLoader(),
   1283                                      outer_compilation_unit_.GetDexCache(),
   1284                                      handles_,
   1285                                      /* is_first_run= */ false);
   1286   rtp_fixup.Run();
   1287 
   1288   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);
   1289 
   1290   LOG_SUCCESS() << "Inlined same polymorphic target " << actual_method->PrettyMethod();
   1291   return true;
   1292 }
   1293 
   1294 bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction,
   1295                                    ArtMethod* method,
   1296                                    ReferenceTypeInfo receiver_type,
   1297                                    bool do_rtp,
   1298                                    bool cha_devirtualize) {
   1299   DCHECK(!invoke_instruction->IsIntrinsic());
   1300   HInstruction* return_replacement = nullptr;
   1301   uint32_t dex_pc = invoke_instruction->GetDexPc();
   1302   HInstruction* cursor = invoke_instruction->GetPrevious();
   1303   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
   1304   bool should_remove_invoke_instruction = false;
   1305 
   1306   // If invoke_instruction is devirtualized to a different method, give intrinsics
   1307   // another chance before we try to inline it.
   1308   if (invoke_instruction->GetResolvedMethod() != method && method->IsIntrinsic()) {
   1309     MaybeRecordStat(stats_, MethodCompilationStat::kIntrinsicRecognized);
   1310     if (invoke_instruction->IsInvokeInterface()) {
   1311       // We don't intrinsify an invoke-interface directly.
   1312       // Replace the invoke-interface with an invoke-virtual.
   1313       HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual(
   1314           graph_->GetAllocator(),
   1315           invoke_instruction->GetNumberOfArguments(),
   1316           invoke_instruction->GetType(),
   1317           invoke_instruction->GetDexPc(),
   1318           invoke_instruction->GetDexMethodIndex(),  // Use interface method's dex method index.
   1319           method,
   1320           method->GetMethodIndex());
   1321       DCHECK_NE(new_invoke->GetIntrinsic(), Intrinsics::kNone);
   1322       HInputsRef inputs = invoke_instruction->GetInputs();
   1323       for (size_t index = 0; index != inputs.size(); ++index) {
   1324         new_invoke->SetArgumentAt(index, inputs[index]);
   1325       }
   1326       invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
   1327       new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
   1328       if (invoke_instruction->GetType() == DataType::Type::kReference) {
   1329         new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo());
   1330       }
   1331       return_replacement = new_invoke;
   1332       // invoke_instruction is replaced with new_invoke.
   1333       should_remove_invoke_instruction = true;
   1334     } else {
   1335       invoke_instruction->SetResolvedMethod(method);
   1336     }
   1337   } else if (!TryBuildAndInline(invoke_instruction, method, receiver_type, &return_replacement)) {
   1338     if (invoke_instruction->IsInvokeInterface()) {
   1339       DCHECK(!method->IsProxyMethod());
   1340       // Turn an invoke-interface into an invoke-virtual. An invoke-virtual is always
   1341       // better than an invoke-interface because:
   1342       // 1) In the best case, the interface call has one more indirection (to fetch the IMT).
   1343       // 2) We will not go to the conflict trampoline with an invoke-virtual.
   1344       // TODO: Consider sharpening once it is not dependent on the compiler driver.
   1345 
   1346       if (method->IsDefault() && !method->IsCopied()) {
   1347         // Changing to invoke-virtual cannot be done on an original default method
   1348         // since it's not in any vtable. Devirtualization by exact type/inline-cache
   1349         // always uses a method in the iftable which is never an original default
   1350         // method.
   1351         // On the other hand, inlining an original default method by CHA is fine.
   1352         DCHECK(cha_devirtualize);
   1353         return false;
   1354       }
   1355 
   1356       const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
   1357       uint32_t dex_method_index = FindMethodIndexIn(
   1358           method, caller_dex_file, invoke_instruction->GetDexMethodIndex());
   1359       if (dex_method_index == dex::kDexNoIndex) {
   1360         return false;
   1361       }
   1362       HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual(
   1363           graph_->GetAllocator(),
   1364           invoke_instruction->GetNumberOfArguments(),
   1365           invoke_instruction->GetType(),
   1366           invoke_instruction->GetDexPc(),
   1367           dex_method_index,
   1368           method,
   1369           method->GetMethodIndex());
   1370       HInputsRef inputs = invoke_instruction->GetInputs();
   1371       for (size_t index = 0; index != inputs.size(); ++index) {
   1372         new_invoke->SetArgumentAt(index, inputs[index]);
   1373       }
   1374       invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
   1375       new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
   1376       if (invoke_instruction->GetType() == DataType::Type::kReference) {
   1377         new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo());
   1378       }
   1379       return_replacement = new_invoke;
   1380       // invoke_instruction is replaced with new_invoke.
   1381       should_remove_invoke_instruction = true;
   1382     } else {
   1383       // TODO: Consider sharpening an invoke virtual once it is not dependent on the
   1384       // compiler driver.
   1385       return false;
   1386     }
   1387   } else {
   1388     // invoke_instruction is inlined.
   1389     should_remove_invoke_instruction = true;
   1390   }
   1391 
   1392   if (cha_devirtualize) {
   1393     AddCHAGuard(invoke_instruction, dex_pc, cursor, bb_cursor);
   1394   }
   1395   if (return_replacement != nullptr) {
   1396     invoke_instruction->ReplaceWith(return_replacement);
   1397   }
   1398   if (should_remove_invoke_instruction) {
   1399     invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
   1400   }
   1401   FixUpReturnReferenceType(method, return_replacement);
   1402   if (do_rtp && ReturnTypeMoreSpecific(invoke_instruction, return_replacement)) {
   1403     // Actual return value has a more specific type than the method's declared
   1404     // return type. Run RTP again on the outer graph to propagate it.
   1405     ReferenceTypePropagation(graph_,
   1406                              outer_compilation_unit_.GetClassLoader(),
   1407                              outer_compilation_unit_.GetDexCache(),
   1408                              handles_,
   1409                              /* is_first_run= */ false).Run();
   1410   }
   1411   return true;
   1412 }
   1413 
   1414 size_t HInliner::CountRecursiveCallsOf(ArtMethod* method) const {
   1415   const HInliner* current = this;
   1416   size_t count = 0;
   1417   do {
   1418     if (current->graph_->GetArtMethod() == method) {
   1419       ++count;
   1420     }
   1421     current = current->parent_;
   1422   } while (current != nullptr);
   1423   return count;
   1424 }
   1425 
   1426 static inline bool MayInline(const CompilerOptions& compiler_options,
   1427                              const DexFile& inlined_from,
   1428                              const DexFile& inlined_into) {
   1429   // We're not allowed to inline across dex files if we're the no-inline-from dex file.
   1430   if (!IsSameDexFile(inlined_from, inlined_into) &&
   1431       ContainsElement(compiler_options.GetNoInlineFromDexFile(), &inlined_from)) {
   1432     return false;
   1433   }
   1434 
   1435   return true;
   1436 }
   1437 
   1438 bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction,
   1439                                  ArtMethod* method,
   1440                                  ReferenceTypeInfo receiver_type,
   1441                                  HInstruction** return_replacement) {
   1442   if (method->IsProxyMethod()) {
   1443     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedProxy)
   1444         << "Method " << method->PrettyMethod()
   1445         << " is not inlined because of unimplemented inline support for proxy methods.";
   1446     return false;
   1447   }
   1448 
   1449   if (CountRecursiveCallsOf(method) > kMaximumNumberOfRecursiveCalls) {
   1450     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRecursiveBudget)
   1451         << "Method "
   1452         << method->PrettyMethod()
   1453         << " is not inlined because it has reached its recursive call budget.";
   1454     return false;
   1455   }
   1456 
   1457   // Check whether we're allowed to inline. The outermost compilation unit is the relevant
   1458   // dex file here (though the transitivity of an inline chain would allow checking the calller).
   1459   if (!MayInline(codegen_->GetCompilerOptions(),
   1460                  *method->GetDexFile(),
   1461                  *outer_compilation_unit_.GetDexFile())) {
   1462     if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) {
   1463       LOG_SUCCESS() << "Successfully replaced pattern of invoke "
   1464                     << method->PrettyMethod();
   1465       MaybeRecordStat(stats_, MethodCompilationStat::kReplacedInvokeWithSimplePattern);
   1466       return true;
   1467     }
   1468     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedWont)
   1469         << "Won't inline " << method->PrettyMethod() << " in "
   1470         << outer_compilation_unit_.GetDexFile()->GetLocation() << " ("
   1471         << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from "
   1472         << method->GetDexFile()->GetLocation();
   1473     return false;
   1474   }
   1475 
   1476   bool same_dex_file = IsSameDexFile(*outer_compilation_unit_.GetDexFile(), *method->GetDexFile());
   1477 
   1478   CodeItemDataAccessor accessor(method->DexInstructionData());
   1479 
   1480   if (!accessor.HasCodeItem()) {
   1481     LOG_FAIL_NO_STAT()
   1482         << "Method " << method->PrettyMethod() << " is not inlined because it is native";
   1483     return false;
   1484   }
   1485 
   1486   size_t inline_max_code_units = codegen_->GetCompilerOptions().GetInlineMaxCodeUnits();
   1487   if (accessor.InsnsSizeInCodeUnits() > inline_max_code_units) {
   1488     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCodeItem)
   1489         << "Method " << method->PrettyMethod()
   1490         << " is not inlined because its code item is too big: "
   1491         << accessor.InsnsSizeInCodeUnits()
   1492         << " > "
   1493         << inline_max_code_units;
   1494     return false;
   1495   }
   1496 
   1497   if (accessor.TriesSize() != 0) {
   1498     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatch)
   1499         << "Method " << method->PrettyMethod() << " is not inlined because of try block";
   1500     return false;
   1501   }
   1502 
   1503   if (!method->IsCompilable()) {
   1504     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified)
   1505         << "Method " << method->PrettyMethod()
   1506         << " has soft failures un-handled by the compiler, so it cannot be inlined";
   1507     return false;
   1508   }
   1509 
   1510   if (IsMethodUnverified(codegen_->GetCompilerOptions(), method)) {
   1511     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified)
   1512         << "Method " << method->PrettyMethod()
   1513         << " couldn't be verified, so it cannot be inlined";
   1514     return false;
   1515   }
   1516 
   1517   if (invoke_instruction->IsInvokeStaticOrDirect() &&
   1518       invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) {
   1519     // Case of a static method that cannot be inlined because it implicitly
   1520     // requires an initialization check of its declaring class.
   1521     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache)
   1522         << "Method " << method->PrettyMethod()
   1523         << " is not inlined because it is static and requires a clinit"
   1524         << " check that cannot be emitted due to Dex cache limitations";
   1525     return false;
   1526   }
   1527 
   1528   if (!TryBuildAndInlineHelper(
   1529           invoke_instruction, method, receiver_type, same_dex_file, return_replacement)) {
   1530     return false;
   1531   }
   1532 
   1533   LOG_SUCCESS() << method->PrettyMethod();
   1534   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvoke);
   1535   return true;
   1536 }
   1537 
   1538 static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction,
   1539                                                    size_t arg_vreg_index)
   1540     REQUIRES_SHARED(Locks::mutator_lock_) {
   1541   size_t input_index = 0;
   1542   for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) {
   1543     DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
   1544     if (DataType::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) {
   1545       ++i;
   1546       DCHECK_NE(i, arg_vreg_index);
   1547     }
   1548   }
   1549   DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
   1550   return invoke_instruction->InputAt(input_index);
   1551 }
   1552 
   1553 // Try to recognize known simple patterns and replace invoke call with appropriate instructions.
   1554 bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction,
   1555                                       ArtMethod* resolved_method,
   1556                                       HInstruction** return_replacement) {
   1557   InlineMethod inline_method;
   1558   if (!InlineMethodAnalyser::AnalyseMethodCode(resolved_method, &inline_method)) {
   1559     return false;
   1560   }
   1561 
   1562   switch (inline_method.opcode) {
   1563     case kInlineOpNop:
   1564       DCHECK_EQ(invoke_instruction->GetType(), DataType::Type::kVoid);
   1565       *return_replacement = nullptr;
   1566       break;
   1567     case kInlineOpReturnArg:
   1568       *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction,
   1569                                                           inline_method.d.return_data.arg);
   1570       break;
   1571     case kInlineOpNonWideConst:
   1572       if (resolved_method->GetShorty()[0] == 'L') {
   1573         DCHECK_EQ(inline_method.d.data, 0u);
   1574         *return_replacement = graph_->GetNullConstant();
   1575       } else {
   1576         *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data));
   1577       }
   1578       break;
   1579     case kInlineOpIGet: {
   1580       const InlineIGetIPutData& data = inline_method.d.ifield_data;
   1581       if (data.method_is_static || data.object_arg != 0u) {
   1582         // TODO: Needs null check.
   1583         return false;
   1584       }
   1585       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
   1586       HInstanceFieldGet* iget = CreateInstanceFieldGet(data.field_idx, resolved_method, obj);
   1587       DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset);
   1588       DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile);
   1589       invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction);
   1590       *return_replacement = iget;
   1591       break;
   1592     }
   1593     case kInlineOpIPut: {
   1594       const InlineIGetIPutData& data = inline_method.d.ifield_data;
   1595       if (data.method_is_static || data.object_arg != 0u) {
   1596         // TODO: Needs null check.
   1597         return false;
   1598       }
   1599       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
   1600       HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg);
   1601       HInstanceFieldSet* iput = CreateInstanceFieldSet(data.field_idx, resolved_method, obj, value);
   1602       DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset);
   1603       DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile);
   1604       invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
   1605       if (data.return_arg_plus1 != 0u) {
   1606         size_t return_arg = data.return_arg_plus1 - 1u;
   1607         *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg);
   1608       }
   1609       break;
   1610     }
   1611     case kInlineOpConstructor: {
   1612       const InlineConstructorData& data = inline_method.d.constructor_data;
   1613       // Get the indexes to arrays for easier processing.
   1614       uint16_t iput_field_indexes[] = {
   1615           data.iput0_field_index, data.iput1_field_index, data.iput2_field_index
   1616       };
   1617       uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg };
   1618       static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch");
   1619       // Count valid field indexes.
   1620       size_t number_of_iputs = 0u;
   1621       while (number_of_iputs != arraysize(iput_field_indexes) &&
   1622           iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) {
   1623         // Check that there are no duplicate valid field indexes.
   1624         DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1,
   1625                                 iput_field_indexes + arraysize(iput_field_indexes),
   1626                                 iput_field_indexes[number_of_iputs]));
   1627         ++number_of_iputs;
   1628       }
   1629       // Check that there are no valid field indexes in the rest of the array.
   1630       DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs,
   1631                                  iput_field_indexes + arraysize(iput_field_indexes),
   1632                                  [](uint16_t index) { return index != DexFile::kDexNoIndex16; }));
   1633 
   1634       // Create HInstanceFieldSet for each IPUT that stores non-zero data.
   1635       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction,
   1636                                                         /* arg_vreg_index= */ 0u);
   1637       bool needs_constructor_barrier = false;
   1638       for (size_t i = 0; i != number_of_iputs; ++i) {
   1639         HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]);
   1640         if (!value->IsConstant() || !value->AsConstant()->IsZeroBitPattern()) {
   1641           uint16_t field_index = iput_field_indexes[i];
   1642           bool is_final;
   1643           HInstanceFieldSet* iput =
   1644               CreateInstanceFieldSet(field_index, resolved_method, obj, value, &is_final);
   1645           invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
   1646 
   1647           // Check whether the field is final. If it is, we need to add a barrier.
   1648           if (is_final) {
   1649             needs_constructor_barrier = true;
   1650           }
   1651         }
   1652       }
   1653       if (needs_constructor_barrier) {
   1654         // See DexCompilationUnit::RequiresConstructorBarrier for more details.
   1655         DCHECK(obj != nullptr) << "only non-static methods can have a constructor fence";
   1656 
   1657         HConstructorFence* constructor_fence =
   1658             new (graph_->GetAllocator()) HConstructorFence(obj, kNoDexPc, graph_->GetAllocator());
   1659         invoke_instruction->GetBlock()->InsertInstructionBefore(constructor_fence,
   1660                                                                 invoke_instruction);
   1661       }
   1662       *return_replacement = nullptr;
   1663       break;
   1664     }
   1665     default:
   1666       LOG(FATAL) << "UNREACHABLE";
   1667       UNREACHABLE();
   1668   }
   1669   return true;
   1670 }
   1671 
   1672 HInstanceFieldGet* HInliner::CreateInstanceFieldGet(uint32_t field_index,
   1673                                                     ArtMethod* referrer,
   1674                                                     HInstruction* obj)
   1675     REQUIRES_SHARED(Locks::mutator_lock_) {
   1676   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1677   ArtField* resolved_field =
   1678       class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false);
   1679   DCHECK(resolved_field != nullptr);
   1680   HInstanceFieldGet* iget = new (graph_->GetAllocator()) HInstanceFieldGet(
   1681       obj,
   1682       resolved_field,
   1683       DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
   1684       resolved_field->GetOffset(),
   1685       resolved_field->IsVolatile(),
   1686       field_index,
   1687       resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
   1688       *referrer->GetDexFile(),
   1689       // Read barrier generates a runtime call in slow path and we need a valid
   1690       // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
   1691       /* dex_pc= */ 0);
   1692   if (iget->GetType() == DataType::Type::kReference) {
   1693     // Use the same dex_cache that we used for field lookup as the hint_dex_cache.
   1694     Handle<mirror::DexCache> dex_cache = handles_->NewHandle(referrer->GetDexCache());
   1695     ReferenceTypePropagation rtp(graph_,
   1696                                  outer_compilation_unit_.GetClassLoader(),
   1697                                  dex_cache,
   1698                                  handles_,
   1699                                  /* is_first_run= */ false);
   1700     rtp.Visit(iget);
   1701   }
   1702   return iget;
   1703 }
   1704 
   1705 HInstanceFieldSet* HInliner::CreateInstanceFieldSet(uint32_t field_index,
   1706                                                     ArtMethod* referrer,
   1707                                                     HInstruction* obj,
   1708                                                     HInstruction* value,
   1709                                                     bool* is_final)
   1710     REQUIRES_SHARED(Locks::mutator_lock_) {
   1711   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   1712   ArtField* resolved_field =
   1713       class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false);
   1714   DCHECK(resolved_field != nullptr);
   1715   if (is_final != nullptr) {
   1716     // This information is needed only for constructors.
   1717     DCHECK(referrer->IsConstructor());
   1718     *is_final = resolved_field->IsFinal();
   1719   }
   1720   HInstanceFieldSet* iput = new (graph_->GetAllocator()) HInstanceFieldSet(
   1721       obj,
   1722       value,
   1723       resolved_field,
   1724       DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
   1725       resolved_field->GetOffset(),
   1726       resolved_field->IsVolatile(),
   1727       field_index,
   1728       resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
   1729       *referrer->GetDexFile(),
   1730       // Read barrier generates a runtime call in slow path and we need a valid
   1731       // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
   1732       /* dex_pc= */ 0);
   1733   return iput;
   1734 }
   1735 
   1736 template <typename T>
   1737 static inline Handle<T> NewHandleIfDifferent(ObjPtr<T> object,
   1738                                              Handle<T> hint,
   1739                                              VariableSizedHandleScope* handles)
   1740     REQUIRES_SHARED(Locks::mutator_lock_) {
   1741   return (object != hint.Get()) ? handles->NewHandle(object) : hint;
   1742 }
   1743 
   1744 static bool CanEncodeInlinedMethodInStackMap(const DexFile& caller_dex_file, ArtMethod* callee)
   1745     REQUIRES_SHARED(Locks::mutator_lock_) {
   1746   if (!Runtime::Current()->IsAotCompiler()) {
   1747     // JIT can always encode methods in stack maps.
   1748     return true;
   1749   }
   1750   if (IsSameDexFile(caller_dex_file, *callee->GetDexFile())) {
   1751     return true;
   1752   }
   1753   // TODO(ngeoffray): Support more AOT cases for inlining:
   1754   // - methods in multidex
   1755   // - methods in boot image for on-device non-PIC compilation.
   1756   return false;
   1757 }
   1758 
   1759 bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction,
   1760                                        ArtMethod* resolved_method,
   1761                                        ReferenceTypeInfo receiver_type,
   1762                                        bool same_dex_file,
   1763                                        HInstruction** return_replacement) {
   1764   DCHECK(!(resolved_method->IsStatic() && receiver_type.IsValid()));
   1765   ScopedObjectAccess soa(Thread::Current());
   1766   const dex::CodeItem* code_item = resolved_method->GetCodeItem();
   1767   const DexFile& callee_dex_file = *resolved_method->GetDexFile();
   1768   uint32_t method_index = resolved_method->GetDexMethodIndex();
   1769   CodeItemDebugInfoAccessor code_item_accessor(resolved_method->DexInstructionDebugInfo());
   1770   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
   1771   Handle<mirror::DexCache> dex_cache = NewHandleIfDifferent(resolved_method->GetDexCache(),
   1772                                                             caller_compilation_unit_.GetDexCache(),
   1773                                                             handles_);
   1774   Handle<mirror::ClassLoader> class_loader =
   1775       NewHandleIfDifferent(resolved_method->GetDeclaringClass()->GetClassLoader(),
   1776                            caller_compilation_unit_.GetClassLoader(),
   1777                            handles_);
   1778 
   1779   Handle<mirror::Class> compiling_class = handles_->NewHandle(resolved_method->GetDeclaringClass());
   1780   DexCompilationUnit dex_compilation_unit(
   1781       class_loader,
   1782       class_linker,
   1783       callee_dex_file,
   1784       code_item,
   1785       resolved_method->GetDeclaringClass()->GetDexClassDefIndex(),
   1786       method_index,
   1787       resolved_method->GetAccessFlags(),
   1788       /* verified_method= */ nullptr,
   1789       dex_cache,
   1790       compiling_class);
   1791 
   1792   InvokeType invoke_type = invoke_instruction->GetInvokeType();
   1793   if (invoke_type == kInterface) {
   1794     // We have statically resolved the dispatch. To please the class linker
   1795     // at runtime, we change this call as if it was a virtual call.
   1796     invoke_type = kVirtual;
   1797   }
   1798 
   1799   bool caller_dead_reference_safe = graph_->IsDeadReferenceSafe();
   1800   const dex::ClassDef& callee_class = resolved_method->GetClassDef();
   1801   // MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation()
   1802   // is currently rarely true.
   1803   bool callee_dead_reference_safe =
   1804       annotations::HasDeadReferenceSafeAnnotation(callee_dex_file, callee_class)
   1805       && !annotations::MethodContainsRSensitiveAccess(callee_dex_file, callee_class, method_index);
   1806 
   1807   const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId();
   1808   HGraph* callee_graph = new (graph_->GetAllocator()) HGraph(
   1809       graph_->GetAllocator(),
   1810       graph_->GetArenaStack(),
   1811       callee_dex_file,
   1812       method_index,
   1813       codegen_->GetCompilerOptions().GetInstructionSet(),
   1814       invoke_type,
   1815       callee_dead_reference_safe,
   1816       graph_->IsDebuggable(),
   1817       /* osr= */ false,
   1818       caller_instruction_counter);
   1819   callee_graph->SetArtMethod(resolved_method);
   1820 
   1821   // When they are needed, allocate `inline_stats_` on the Arena instead
   1822   // of on the stack, as Clang might produce a stack frame too large
   1823   // for this function, that would not fit the requirements of the
   1824   // `-Wframe-larger-than` option.
   1825   if (stats_ != nullptr) {
   1826     // Reuse one object for all inline attempts from this caller to keep Arena memory usage low.
   1827     if (inline_stats_ == nullptr) {
   1828       void* storage = graph_->GetAllocator()->Alloc<OptimizingCompilerStats>(kArenaAllocMisc);
   1829       inline_stats_ = new (storage) OptimizingCompilerStats;
   1830     } else {
   1831       inline_stats_->Reset();
   1832     }
   1833   }
   1834   HGraphBuilder builder(callee_graph,
   1835                         code_item_accessor,
   1836                         &dex_compilation_unit,
   1837                         &outer_compilation_unit_,
   1838                         codegen_,
   1839                         inline_stats_,
   1840                         resolved_method->GetQuickenedInfo(),
   1841                         handles_);
   1842 
   1843   if (builder.BuildGraph() != kAnalysisSuccess) {
   1844     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCannotBuild)
   1845         << "Method " << callee_dex_file.PrettyMethod(method_index)
   1846         << " could not be built, so cannot be inlined";
   1847     return false;
   1848   }
   1849 
   1850   if (!RegisterAllocator::CanAllocateRegistersFor(
   1851           *callee_graph, codegen_->GetCompilerOptions().GetInstructionSet())) {
   1852     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRegisterAllocator)
   1853         << "Method " << callee_dex_file.PrettyMethod(method_index)
   1854         << " cannot be inlined because of the register allocator";
   1855     return false;
   1856   }
   1857 
   1858   size_t parameter_index = 0;
   1859   bool run_rtp = false;
   1860   for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions());
   1861        !instructions.Done();
   1862        instructions.Advance()) {
   1863     HInstruction* current = instructions.Current();
   1864     if (current->IsParameterValue()) {
   1865       HInstruction* argument = invoke_instruction->InputAt(parameter_index);
   1866       if (argument->IsNullConstant()) {
   1867         current->ReplaceWith(callee_graph->GetNullConstant());
   1868       } else if (argument->IsIntConstant()) {
   1869         current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue()));
   1870       } else if (argument->IsLongConstant()) {
   1871         current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue()));
   1872       } else if (argument->IsFloatConstant()) {
   1873         current->ReplaceWith(
   1874             callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue()));
   1875       } else if (argument->IsDoubleConstant()) {
   1876         current->ReplaceWith(
   1877             callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue()));
   1878       } else if (argument->GetType() == DataType::Type::kReference) {
   1879         if (!resolved_method->IsStatic() && parameter_index == 0 && receiver_type.IsValid()) {
   1880           run_rtp = true;
   1881           current->SetReferenceTypeInfo(receiver_type);
   1882         } else {
   1883           current->SetReferenceTypeInfo(argument->GetReferenceTypeInfo());
   1884         }
   1885         current->AsParameterValue()->SetCanBeNull(argument->CanBeNull());
   1886       }
   1887       ++parameter_index;
   1888     }
   1889   }
   1890 
   1891   // We have replaced formal arguments with actual arguments. If actual types
   1892   // are more specific than the declared ones, run RTP again on the inner graph.
   1893   if (run_rtp || ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) {
   1894     ReferenceTypePropagation(callee_graph,
   1895                              outer_compilation_unit_.GetClassLoader(),
   1896                              dex_compilation_unit.GetDexCache(),
   1897                              handles_,
   1898                              /* is_first_run= */ false).Run();
   1899   }
   1900 
   1901   RunOptimizations(callee_graph, code_item, dex_compilation_unit);
   1902 
   1903   HBasicBlock* exit_block = callee_graph->GetExitBlock();
   1904   if (exit_block == nullptr) {
   1905     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
   1906         << "Method " << callee_dex_file.PrettyMethod(method_index)
   1907         << " could not be inlined because it has an infinite loop";
   1908     return false;
   1909   }
   1910 
   1911   bool has_one_return = false;
   1912   for (HBasicBlock* predecessor : exit_block->GetPredecessors()) {
   1913     if (predecessor->GetLastInstruction()->IsThrow()) {
   1914       if (invoke_instruction->GetBlock()->IsTryBlock()) {
   1915         // TODO(ngeoffray): Support adding HTryBoundary in Hgraph::InlineInto.
   1916         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatch)
   1917             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1918             << " could not be inlined because one branch always throws and"
   1919             << " caller is in a try/catch block";
   1920         return false;
   1921       } else if (graph_->GetExitBlock() == nullptr) {
   1922         // TODO(ngeoffray): Support adding HExit in the caller graph.
   1923         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
   1924             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1925             << " could not be inlined because one branch always throws and"
   1926             << " caller does not have an exit block";
   1927         return false;
   1928       } else if (graph_->HasIrreducibleLoops()) {
   1929         // TODO(ngeoffray): Support re-computing loop information to graphs with
   1930         // irreducible loops?
   1931         VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index)
   1932                        << " could not be inlined because one branch always throws and"
   1933                        << " caller has irreducible loops";
   1934         return false;
   1935       }
   1936     } else {
   1937       has_one_return = true;
   1938     }
   1939   }
   1940 
   1941   if (!has_one_return) {
   1942     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedAlwaysThrows)
   1943         << "Method " << callee_dex_file.PrettyMethod(method_index)
   1944         << " could not be inlined because it always throws";
   1945     return false;
   1946   }
   1947 
   1948   size_t number_of_instructions = 0;
   1949   // Skip the entry block, it does not contain instructions that prevent inlining.
   1950   for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) {
   1951     if (block->IsLoopHeader()) {
   1952       if (block->GetLoopInformation()->IsIrreducible()) {
   1953         // Don't inline methods with irreducible loops, they could prevent some
   1954         // optimizations to run.
   1955         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoop)
   1956             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1957             << " could not be inlined because it contains an irreducible loop";
   1958         return false;
   1959       }
   1960       if (!block->GetLoopInformation()->HasExitEdge()) {
   1961         // Don't inline methods with loops without exit, since they cause the
   1962         // loop information to be computed incorrectly when updating after
   1963         // inlining.
   1964         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedLoopWithoutExit)
   1965             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1966             << " could not be inlined because it contains a loop with no exit";
   1967         return false;
   1968       }
   1969     }
   1970 
   1971     for (HInstructionIterator instr_it(block->GetInstructions());
   1972          !instr_it.Done();
   1973          instr_it.Advance()) {
   1974       if (++number_of_instructions >= inlining_budget_) {
   1975         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInstructionBudget)
   1976             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1977             << " is not inlined because the outer method has reached"
   1978             << " its instruction budget limit.";
   1979         return false;
   1980       }
   1981       HInstruction* current = instr_it.Current();
   1982       if (current->NeedsEnvironment() &&
   1983           (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters)) {
   1984         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEnvironmentBudget)
   1985             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1986             << " is not inlined because its caller has reached"
   1987             << " its environment budget limit.";
   1988         return false;
   1989       }
   1990 
   1991       if (current->NeedsEnvironment() &&
   1992           !CanEncodeInlinedMethodInStackMap(*caller_compilation_unit_.GetDexFile(),
   1993                                             resolved_method)) {
   1994         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedStackMaps)
   1995             << "Method " << callee_dex_file.PrettyMethod(method_index)
   1996             << " could not be inlined because " << current->DebugName()
   1997             << " needs an environment, is in a different dex file"
   1998             << ", and cannot be encoded in the stack maps.";
   1999         return false;
   2000       }
   2001 
   2002       if (!same_dex_file && current->NeedsDexCacheOfDeclaringClass()) {
   2003         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache)
   2004             << "Method " << callee_dex_file.PrettyMethod(method_index)
   2005             << " could not be inlined because " << current->DebugName()
   2006             << " it is in a different dex file and requires access to the dex cache";
   2007         return false;
   2008       }
   2009 
   2010       if (current->IsUnresolvedStaticFieldGet() ||
   2011           current->IsUnresolvedInstanceFieldGet() ||
   2012           current->IsUnresolvedStaticFieldSet() ||
   2013           current->IsUnresolvedInstanceFieldSet()) {
   2014         // Entrypoint for unresolved fields does not handle inlined frames.
   2015         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedUnresolvedEntrypoint)
   2016             << "Method " << callee_dex_file.PrettyMethod(method_index)
   2017             << " could not be inlined because it is using an unresolved"
   2018             << " entrypoint";
   2019         return false;
   2020       }
   2021     }
   2022   }
   2023   DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId())
   2024       << "No instructions can be added to the outer graph while inner graph is being built";
   2025 
   2026   // Inline the callee graph inside the caller graph.
   2027   const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId();
   2028   graph_->SetCurrentInstructionId(callee_instruction_counter);
   2029   *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction);
   2030   // Update our budget for other inlining attempts in `caller_graph`.
   2031   total_number_of_instructions_ += number_of_instructions;
   2032   UpdateInliningBudget();
   2033 
   2034   DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId())
   2035       << "No instructions can be added to the inner graph during inlining into the outer graph";
   2036 
   2037   if (stats_ != nullptr) {
   2038     DCHECK(inline_stats_ != nullptr);
   2039     inline_stats_->AddTo(stats_);
   2040   }
   2041 
   2042   if (caller_dead_reference_safe && !callee_dead_reference_safe) {
   2043     // Caller was dead reference safe, but is not anymore, since we inlined dead
   2044     // reference unsafe code. Prior transformations remain valid, since they did not
   2045     // affect the inlined code.
   2046     graph_->MarkDeadReferenceUnsafe();
   2047   }
   2048 
   2049   return true;
   2050 }
   2051 
   2052 void HInliner::RunOptimizations(HGraph* callee_graph,
   2053                                 const dex::CodeItem* code_item,
   2054                                 const DexCompilationUnit& dex_compilation_unit) {
   2055   // Note: if the outermost_graph_ is being compiled OSR, we should not run any
   2056   // optimization that could lead to a HDeoptimize. The following optimizations do not.
   2057   HDeadCodeElimination dce(callee_graph, inline_stats_, "dead_code_elimination$inliner");
   2058   HConstantFolding fold(callee_graph, "constant_folding$inliner");
   2059   InstructionSimplifier simplify(callee_graph, codegen_, inline_stats_);
   2060 
   2061   HOptimization* optimizations[] = {
   2062     &simplify,
   2063     &fold,
   2064     &dce,
   2065   };
   2066 
   2067   for (size_t i = 0; i < arraysize(optimizations); ++i) {
   2068     HOptimization* optimization = optimizations[i];
   2069     optimization->Run();
   2070   }
   2071 
   2072   // Bail early for pathological cases on the environment (for example recursive calls,
   2073   // or too large environment).
   2074   if (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters) {
   2075     LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
   2076              << " will not be inlined because the outer method has reached"
   2077              << " its environment budget limit.";
   2078     return;
   2079   }
   2080 
   2081   // Bail early if we know we already are over the limit.
   2082   size_t number_of_instructions = CountNumberOfInstructions(callee_graph);
   2083   if (number_of_instructions > inlining_budget_) {
   2084     LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
   2085              << " will not be inlined because the outer method has reached"
   2086              << " its instruction budget limit. " << number_of_instructions;
   2087     return;
   2088   }
   2089 
   2090   CodeItemDataAccessor accessor(callee_graph->GetDexFile(), code_item);
   2091   HInliner inliner(callee_graph,
   2092                    outermost_graph_,
   2093                    codegen_,
   2094                    outer_compilation_unit_,
   2095                    dex_compilation_unit,
   2096                    handles_,
   2097                    inline_stats_,
   2098                    total_number_of_dex_registers_ + accessor.RegistersSize(),
   2099                    total_number_of_instructions_ + number_of_instructions,
   2100                    this,
   2101                    depth_ + 1);
   2102   inliner.Run();
   2103 }
   2104 
   2105 static bool IsReferenceTypeRefinement(ReferenceTypeInfo declared_rti,
   2106                                       bool declared_can_be_null,
   2107                                       HInstruction* actual_obj)
   2108     REQUIRES_SHARED(Locks::mutator_lock_) {
   2109   if (declared_can_be_null && !actual_obj->CanBeNull()) {
   2110     return true;
   2111   }
   2112 
   2113   ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo();
   2114   return (actual_rti.IsExact() && !declared_rti.IsExact()) ||
   2115           declared_rti.IsStrictSupertypeOf(actual_rti);
   2116 }
   2117 
   2118 ReferenceTypeInfo HInliner::GetClassRTI(ObjPtr<mirror::Class> klass) {
   2119   return ReferenceTypePropagation::IsAdmissible(klass)
   2120       ? ReferenceTypeInfo::Create(handles_->NewHandle(klass))
   2121       : graph_->GetInexactObjectRti();
   2122 }
   2123 
   2124 bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) {
   2125   // If this is an instance call, test whether the type of the `this` argument
   2126   // is more specific than the class which declares the method.
   2127   if (!resolved_method->IsStatic()) {
   2128     if (IsReferenceTypeRefinement(GetClassRTI(resolved_method->GetDeclaringClass()),
   2129                                   /* declared_can_be_null= */ false,
   2130                                   invoke_instruction->InputAt(0u))) {
   2131       return true;
   2132     }
   2133   }
   2134 
   2135   // Iterate over the list of parameter types and test whether any of the
   2136   // actual inputs has a more specific reference type than the type declared in
   2137   // the signature.
   2138   const dex::TypeList* param_list = resolved_method->GetParameterTypeList();
   2139   for (size_t param_idx = 0,
   2140               input_idx = resolved_method->IsStatic() ? 0 : 1,
   2141               e = (param_list == nullptr ? 0 : param_list->Size());
   2142        param_idx < e;
   2143        ++param_idx, ++input_idx) {
   2144     HInstruction* input = invoke_instruction->InputAt(input_idx);
   2145     if (input->GetType() == DataType::Type::kReference) {
   2146       ObjPtr<mirror::Class> param_cls = resolved_method->LookupResolvedClassFromTypeIndex(
   2147           param_list->GetTypeItem(param_idx).type_idx_);
   2148       if (IsReferenceTypeRefinement(GetClassRTI(param_cls),
   2149                                     /* declared_can_be_null= */ true,
   2150                                     input)) {
   2151         return true;
   2152       }
   2153     }
   2154   }
   2155 
   2156   return false;
   2157 }
   2158 
   2159 bool HInliner::ReturnTypeMoreSpecific(HInvoke* invoke_instruction,
   2160                                       HInstruction* return_replacement) {
   2161   // Check the integrity of reference types and run another type propagation if needed.
   2162   if (return_replacement != nullptr) {
   2163     if (return_replacement->GetType() == DataType::Type::kReference) {
   2164       // Test if the return type is a refinement of the declared return type.
   2165       if (IsReferenceTypeRefinement(invoke_instruction->GetReferenceTypeInfo(),
   2166                                     /* declared_can_be_null= */ true,
   2167                                     return_replacement)) {
   2168         return true;
   2169       } else if (return_replacement->IsInstanceFieldGet()) {
   2170         HInstanceFieldGet* field_get = return_replacement->AsInstanceFieldGet();
   2171         if (field_get->GetFieldInfo().GetField() ==
   2172                 GetClassRoot<mirror::Object>()->GetInstanceField(0)) {
   2173           return true;
   2174         }
   2175       }
   2176     } else if (return_replacement->IsInstanceOf()) {
   2177       // Inlining InstanceOf into an If may put a tighter bound on reference types.
   2178       return true;
   2179     }
   2180   }
   2181 
   2182   return false;
   2183 }
   2184 
   2185 void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method,
   2186                                         HInstruction* return_replacement) {
   2187   if (return_replacement != nullptr) {
   2188     if (return_replacement->GetType() == DataType::Type::kReference) {
   2189       if (!return_replacement->GetReferenceTypeInfo().IsValid()) {
   2190         // Make sure that we have a valid type for the return. We may get an invalid one when
   2191         // we inline invokes with multiple branches and create a Phi for the result.
   2192         // TODO: we could be more precise by merging the phi inputs but that requires
   2193         // some functionality from the reference type propagation.
   2194         DCHECK(return_replacement->IsPhi());
   2195         ObjPtr<mirror::Class> cls = resolved_method->LookupResolvedReturnType();
   2196         return_replacement->SetReferenceTypeInfo(GetClassRTI(cls));
   2197       }
   2198     }
   2199   }
   2200 }
   2201 
   2202 }  // namespace art
   2203