Home | History | Annotate | Download | only in xlat_tables
      1 /*
      2  * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
      3  *
      4  * SPDX-License-Identifier: BSD-3-Clause
      5  */
      6 
      7 #ifndef __XLAT_TABLES_V2_H__
      8 #define __XLAT_TABLES_V2_H__
      9 
     10 #include <xlat_tables_defs.h>
     11 
     12 #ifndef __ASSEMBLY__
     13 #include <stddef.h>
     14 #include <stdint.h>
     15 #include <xlat_mmu_helpers.h>
     16 #include <xlat_tables_v2_helpers.h>
     17 
     18 /*
     19  * Default granularity size for an mmap_region_t.
     20  * Useful when no specific granularity is required.
     21  *
     22  * By default, choose the biggest possible block size allowed by the
     23  * architectural state and granule size in order to minimize the number of page
     24  * tables required for the mapping.
     25  */
     26 #define REGION_DEFAULT_GRANULARITY	XLAT_BLOCK_SIZE(MIN_LVL_BLOCK_DESC)
     27 
     28 /* Helper macro to define an mmap_region_t. */
     29 #define MAP_REGION(_pa, _va, _sz, _attr)	\
     30 	_MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, REGION_DEFAULT_GRANULARITY)
     31 
     32 /* Helper macro to define an mmap_region_t with an identity mapping. */
     33 #define MAP_REGION_FLAT(_adr, _sz, _attr)			\
     34 	MAP_REGION(_adr, _adr, _sz, _attr)
     35 
     36 /*
     37  * Helper macro to define an mmap_region_t to map with the desired granularity
     38  * of translation tables.
     39  *
     40  * The granularity value passed to this macro must be a valid block or page
     41  * size. When using a 4KB translation granule, this might be 4KB, 2MB or 1GB.
     42  * Passing REGION_DEFAULT_GRANULARITY is also allowed and means that the library
     43  * is free to choose the granularity for this region. In this case, it is
     44  * equivalent to the MAP_REGION() macro.
     45  */
     46 #define MAP_REGION2(_pa, _va, _sz, _attr, _gr)			\
     47 	_MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, _gr)
     48 
     49 /*
     50  * Shifts and masks to access fields of an mmap_attr_t
     51  */
     52 #define MT_TYPE_MASK		U(0x7)
     53 #define MT_TYPE(_attr)		((_attr) & MT_TYPE_MASK)
     54 /* Access permissions (RO/RW) */
     55 #define MT_PERM_SHIFT		U(3)
     56 /* Security state (SECURE/NS) */
     57 #define MT_SEC_SHIFT		U(4)
     58 /* Access permissions for instruction execution (EXECUTE/EXECUTE_NEVER) */
     59 #define MT_EXECUTE_SHIFT	U(5)
     60 /*
     61  * In the EL1&0 translation regime, mark the region as User (EL0) or
     62  * Privileged (EL1). In the EL3 translation regime this has no effect.
     63  */
     64 #define MT_USER_SHIFT		U(6)
     65 /* All other bits are reserved */
     66 
     67 /*
     68  * Memory mapping attributes
     69  */
     70 typedef enum  {
     71 	/*
     72 	 * Memory types supported.
     73 	 * These are organised so that, going down the list, the memory types
     74 	 * are getting weaker; conversely going up the list the memory types are
     75 	 * getting stronger.
     76 	 */
     77 	MT_DEVICE,
     78 	MT_NON_CACHEABLE,
     79 	MT_MEMORY,
     80 	/* Values up to 7 are reserved to add new memory types in the future */
     81 
     82 	MT_RO		= U(0) << MT_PERM_SHIFT,
     83 	MT_RW		= U(1) << MT_PERM_SHIFT,
     84 
     85 	MT_SECURE	= U(0) << MT_SEC_SHIFT,
     86 	MT_NS		= U(1) << MT_SEC_SHIFT,
     87 
     88 	/*
     89 	 * Access permissions for instruction execution are only relevant for
     90 	 * normal read-only memory, i.e. MT_MEMORY | MT_RO. They are ignored
     91 	 * (and potentially overridden) otherwise:
     92 	 *  - Device memory is always marked as execute-never.
     93 	 *  - Read-write normal memory is always marked as execute-never.
     94 	 */
     95 	MT_EXECUTE		= U(0) << MT_EXECUTE_SHIFT,
     96 	MT_EXECUTE_NEVER	= U(1) << MT_EXECUTE_SHIFT,
     97 
     98 	/*
     99 	 * When mapping a region at EL0 or EL1, this attribute will be used to
    100 	 * determine if a User mapping (EL0) will be created or a Privileged
    101 	 * mapping (EL1).
    102 	 */
    103 	MT_USER				= U(1) << MT_USER_SHIFT,
    104 	MT_PRIVILEGED			= U(0) << MT_USER_SHIFT,
    105 } mmap_attr_t;
    106 
    107 /* Compound attributes for most common usages */
    108 #define MT_CODE		(MT_MEMORY | MT_RO | MT_EXECUTE)
    109 #define MT_RO_DATA	(MT_MEMORY | MT_RO | MT_EXECUTE_NEVER)
    110 #define MT_RW_DATA	(MT_MEMORY | MT_RW | MT_EXECUTE_NEVER)
    111 
    112 /*
    113  * Structure for specifying a single region of memory.
    114  */
    115 typedef struct mmap_region {
    116 	unsigned long long	base_pa;
    117 	uintptr_t		base_va;
    118 	size_t			size;
    119 	mmap_attr_t		attr;
    120 	/* Desired granularity. See the MAP_REGION2() macro for more details. */
    121 	size_t			granularity;
    122 } mmap_region_t;
    123 
    124 /*
    125  * Translation regimes supported by this library.
    126  */
    127 typedef enum xlat_regime {
    128 	EL1_EL0_REGIME,
    129 	EL3_REGIME,
    130 } xlat_regime_t;
    131 
    132 /*
    133  * Declare the translation context type.
    134  * Its definition is private.
    135  */
    136 typedef struct xlat_ctx xlat_ctx_t;
    137 
    138 /*
    139  * Statically allocate a translation context and associated structures. Also
    140  * initialize them.
    141  *
    142  * _ctx_name:
    143  *   Prefix for the translation context variable.
    144  *   E.g. If _ctx_name is 'foo', the variable will be called 'foo_xlat_ctx'.
    145  *   Useful to distinguish multiple contexts from one another.
    146  *
    147  * _mmap_count:
    148  *   Number of mmap_region_t to allocate.
    149  *   Would typically be MAX_MMAP_REGIONS for the translation context describing
    150  *   the BL image currently executing.
    151  *
    152  * _xlat_tables_count:
    153  *   Number of sub-translation tables to allocate.
    154  *   Would typically be MAX_XLAT_TABLES for the translation context describing
    155  *   the BL image currently executing.
    156  *   Note that this is only for sub-tables ; at the initial lookup level, there
    157  *   is always a single table.
    158  *
    159  * _virt_addr_space_size, _phy_addr_space_size:
    160  *   Size (in bytes) of the virtual (resp. physical) address space.
    161  *   Would typically be PLAT_VIRT_ADDR_SPACE_SIZE
    162  *   (resp. PLAT_PHY_ADDR_SPACE_SIZE) for the translation context describing the
    163  *   BL image currently executing.
    164  */
    165 #define REGISTER_XLAT_CONTEXT(_ctx_name, _mmap_count, _xlat_tables_count,	\
    166 			_virt_addr_space_size, _phy_addr_space_size)		\
    167 	_REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, _mmap_count,	\
    168 					 _xlat_tables_count,		\
    169 					 _virt_addr_space_size,		\
    170 					 _phy_addr_space_size,		\
    171 					 IMAGE_XLAT_DEFAULT_REGIME)
    172 
    173 /*
    174  * Same as REGISTER_XLAT_CONTEXT plus the additional parameter _xlat_regime to
    175  * specify the translation regime managed by this xlat_ctx_t instance. The
    176  * values are the one from xlat_regime_t enumeration.
    177  */
    178 #define REGISTER_XLAT_CONTEXT2(_ctx_name, _mmap_count, _xlat_tables_count,	\
    179 			_virt_addr_space_size, _phy_addr_space_size,		\
    180 			_xlat_regime)					\
    181 	_REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, _mmap_count,	\
    182 					 _xlat_tables_count,		\
    183 					 _virt_addr_space_size,		\
    184 					 _phy_addr_space_size,		\
    185 					 _xlat_regime)
    186 
    187 /******************************************************************************
    188  * Generic translation table APIs.
    189  * Each API comes in 2 variants:
    190  * - one that acts on the current translation context for this BL image
    191  * - another that acts on the given translation context instead. This variant
    192  *   is named after the 1st version, with an additional '_ctx' suffix.
    193  *****************************************************************************/
    194 
    195 /*
    196  * Initialize translation tables from the current list of mmap regions. Calling
    197  * this function marks the transition point after which static regions can no
    198  * longer be added.
    199  */
    200 void init_xlat_tables(void);
    201 void init_xlat_tables_ctx(xlat_ctx_t *ctx);
    202 
    203 /*
    204  * Add a static region with defined base PA and base VA. This function can only
    205  * be used before initializing the translation tables. The region cannot be
    206  * removed afterwards.
    207  */
    208 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va,
    209 				size_t size, mmap_attr_t attr);
    210 void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm);
    211 
    212 /*
    213  * Add an array of static regions with defined base PA and base VA. This
    214  * function can only be used before initializing the translation tables. The
    215  * regions cannot be removed afterwards.
    216  */
    217 void mmap_add(const mmap_region_t *mm);
    218 void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm);
    219 
    220 
    221 #if PLAT_XLAT_TABLES_DYNAMIC
    222 /*
    223  * Add a dynamic region with defined base PA and base VA. This type of region
    224  * can be added and removed even after the translation tables are initialized.
    225  *
    226  * Returns:
    227  *        0: Success.
    228  *   EINVAL: Invalid values were used as arguments.
    229  *   ERANGE: Memory limits were surpassed.
    230  *   ENOMEM: Not enough space in the mmap array or not enough free xlat tables.
    231  *    EPERM: It overlaps another region in an invalid way.
    232  */
    233 int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va,
    234 				size_t size, mmap_attr_t attr);
    235 int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm);
    236 
    237 /*
    238  * Remove a region with the specified base VA and size. Only dynamic regions can
    239  * be removed, and they can be removed even if the translation tables are
    240  * initialized.
    241  *
    242  * Returns:
    243  *        0: Success.
    244  *   EINVAL: The specified region wasn't found.
    245  *    EPERM: Trying to remove a static region.
    246  */
    247 int mmap_remove_dynamic_region(uintptr_t base_va, size_t size);
    248 int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx,
    249 				uintptr_t base_va,
    250 				size_t size);
    251 
    252 #endif /* PLAT_XLAT_TABLES_DYNAMIC */
    253 
    254 /*
    255  * Change the memory attributes of the memory region starting from a given
    256  * virtual address in a set of translation tables.
    257  *
    258  * This function can only be used after the translation tables have been
    259  * initialized.
    260  *
    261  * The base address of the memory region must be aligned on a page boundary.
    262  * The size of this memory region must be a multiple of a page size.
    263  * The memory region must be already mapped by the given translation tables
    264  * and it must be mapped at the granularity of a page.
    265  *
    266  * Return 0 on success, a negative value on error.
    267  *
    268  * In case of error, the memory attributes remain unchanged and this function
    269  * has no effect.
    270  *
    271  * ctx
    272  *   Translation context to work on.
    273  * base_va:
    274  *   Virtual address of the 1st page to change the attributes of.
    275  * size:
    276  *   Size in bytes of the memory region.
    277  * attr:
    278  *   New attributes of the page tables. The attributes that can be changed are
    279  *   data access (MT_RO/MT_RW), instruction access (MT_EXECUTE_NEVER/MT_EXECUTE)
    280  *   and user/privileged access (MT_USER/MT_PRIVILEGED) in the case of contexts
    281  *   that are used in the EL1&0 translation regime. Also, note that this
    282  *   function doesn't allow to remap a region as RW and executable, or to remap
    283  *   device memory as executable.
    284  *
    285  * NOTE: The caller of this function must be able to write to the translation
    286  * tables, i.e. the memory where they are stored must be mapped with read-write
    287  * access permissions. This function assumes it is the case. If this is not
    288  * the case then this function might trigger a data abort exception.
    289  *
    290  * NOTE2: The caller is responsible for making sure that the targeted
    291  * translation tables are not modified by any other code while this function is
    292  * executing.
    293  */
    294 int change_mem_attributes(xlat_ctx_t *ctx, uintptr_t base_va, size_t size,
    295 			mmap_attr_t attr);
    296 
    297 /*
    298  * Query the memory attributes of a memory page in a set of translation tables.
    299  *
    300  * Return 0 on success, a negative error code on error.
    301  * On success, the attributes are stored into *attributes.
    302  *
    303  * ctx
    304  *   Translation context to work on.
    305  * base_va
    306  *   Virtual address of the page to get the attributes of.
    307  *   There are no alignment restrictions on this address. The attributes of the
    308  *   memory page it lies within are returned.
    309  * attributes
    310  *   Output parameter where to store the attributes of the targeted memory page.
    311  */
    312 int get_mem_attributes(const xlat_ctx_t *ctx, uintptr_t base_va,
    313 		mmap_attr_t *attributes);
    314 
    315 #endif /*__ASSEMBLY__*/
    316 #endif /* __XLAT_TABLES_V2_H__ */
    317