Home | History | Annotate | Download | only in debug
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
     18 #define ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
     19 
     20 #include <map>
     21 #include <unordered_set>
     22 #include <vector>
     23 
     24 #include "art_field-inl.h"
     25 #include "debug/elf_compilation_unit.h"
     26 #include "debug/elf_debug_loc_writer.h"
     27 #include "debug/method_debug_info.h"
     28 #include "dex/code_item_accessors-inl.h"
     29 #include "dex/dex_file-inl.h"
     30 #include "dex/dex_file.h"
     31 #include "dwarf/debug_abbrev_writer.h"
     32 #include "dwarf/debug_info_entry_writer.h"
     33 #include "elf/elf_builder.h"
     34 #include "heap_poisoning.h"
     35 #include "linear_alloc.h"
     36 #include "mirror/array.h"
     37 #include "mirror/class-inl.h"
     38 #include "mirror/class.h"
     39 #include "oat_file.h"
     40 #include "obj_ptr-inl.h"
     41 
     42 namespace art {
     43 namespace debug {
     44 
     45 static std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) {
     46   std::vector<const char*> names;
     47   DCHECK(mi->dex_file != nullptr);
     48   CodeItemDebugInfoAccessor accessor(*mi->dex_file, mi->code_item, mi->dex_method_index);
     49   if (accessor.HasCodeItem()) {
     50     accessor.VisitParameterNames([&](const dex::StringIndex& id) {
     51       names.push_back(mi->dex_file->StringDataByIdx(id));
     52     });
     53   }
     54   return names;
     55 }
     56 
     57 // Helper class to write .debug_info and its supporting sections.
     58 template<typename ElfTypes>
     59 class ElfDebugInfoWriter {
     60   using Elf_Addr = typename ElfTypes::Addr;
     61 
     62  public:
     63   explicit ElfDebugInfoWriter(ElfBuilder<ElfTypes>* builder)
     64       : builder_(builder),
     65         debug_abbrev_(&debug_abbrev_buffer_) {
     66   }
     67 
     68   void Start() {
     69     builder_->GetDebugInfo()->Start();
     70   }
     71 
     72   void End() {
     73     builder_->GetDebugInfo()->End();
     74     builder_->WriteSection(".debug_abbrev", &debug_abbrev_buffer_);
     75     if (!debug_loc_.empty()) {
     76       builder_->WriteSection(".debug_loc", &debug_loc_);
     77     }
     78     if (!debug_ranges_.empty()) {
     79       builder_->WriteSection(".debug_ranges", &debug_ranges_);
     80     }
     81   }
     82 
     83  private:
     84   ElfBuilder<ElfTypes>* builder_;
     85   std::vector<uint8_t> debug_abbrev_buffer_;
     86   dwarf::DebugAbbrevWriter<> debug_abbrev_;
     87   std::vector<uint8_t> debug_loc_;
     88   std::vector<uint8_t> debug_ranges_;
     89 
     90   std::unordered_set<const char*> defined_dex_classes_;  // For CHECKs only.
     91 
     92   template<typename ElfTypes2>
     93   friend class ElfCompilationUnitWriter;
     94 };
     95 
     96 // Helper class to write one compilation unit.
     97 // It holds helper methods and temporary state.
     98 template<typename ElfTypes>
     99 class ElfCompilationUnitWriter {
    100   using Elf_Addr = typename ElfTypes::Addr;
    101 
    102  public:
    103   explicit ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes>* owner)
    104     : owner_(owner),
    105       info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &owner->debug_abbrev_) {
    106   }
    107 
    108   void Write(const ElfCompilationUnit& compilation_unit) {
    109     CHECK(!compilation_unit.methods.empty());
    110     const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
    111         ? owner_->builder_->GetText()->GetAddress()
    112         : 0;
    113     const bool is64bit = Is64BitInstructionSet(owner_->builder_->GetIsa());
    114     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
    115 
    116     info_.StartTag(DW_TAG_compile_unit);
    117     info_.WriteString(DW_AT_producer, "Android dex2oat");
    118     info_.WriteData1(DW_AT_language, DW_LANG_Java);
    119     info_.WriteString(DW_AT_comp_dir, "$JAVA_SRC_ROOT");
    120     // The low_pc acts as base address for several other addresses/ranges.
    121     info_.WriteAddr(DW_AT_low_pc, base_address + compilation_unit.code_address);
    122     info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset);
    123 
    124     // Write .debug_ranges entries covering code ranges of the whole compilation unit.
    125     dwarf::Writer<> debug_ranges(&owner_->debug_ranges_);
    126     info_.WriteSecOffset(DW_AT_ranges, owner_->debug_ranges_.size());
    127     for (auto mi : compilation_unit.methods) {
    128       uint64_t low_pc = mi->code_address - compilation_unit.code_address;
    129       uint64_t high_pc = low_pc + mi->code_size;
    130       if (is64bit) {
    131         debug_ranges.PushUint64(low_pc);
    132         debug_ranges.PushUint64(high_pc);
    133       } else {
    134         debug_ranges.PushUint32(low_pc);
    135         debug_ranges.PushUint32(high_pc);
    136       }
    137     }
    138     if (is64bit) {
    139       debug_ranges.PushUint64(0);  // End of list.
    140       debug_ranges.PushUint64(0);
    141     } else {
    142       debug_ranges.PushUint32(0);  // End of list.
    143       debug_ranges.PushUint32(0);
    144     }
    145 
    146     const char* last_dex_class_desc = nullptr;
    147     for (auto mi : compilation_unit.methods) {
    148       DCHECK(mi->dex_file != nullptr);
    149       const DexFile* dex = mi->dex_file;
    150       CodeItemDebugInfoAccessor accessor(*dex, mi->code_item, mi->dex_method_index);
    151       const dex::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index);
    152       const dex::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method);
    153       const dex::TypeList* dex_params = dex->GetProtoParameters(dex_proto);
    154       const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method);
    155       const bool is_static = (mi->access_flags & kAccStatic) != 0;
    156 
    157       // Enclose the method in correct class definition.
    158       if (last_dex_class_desc != dex_class_desc) {
    159         if (last_dex_class_desc != nullptr) {
    160           EndClassTag();
    161         }
    162         // Write reference tag for the class we are about to declare.
    163         size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type);
    164         type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset);
    165         size_t type_attrib_offset = info_.size();
    166         info_.WriteRef4(DW_AT_type, 0);
    167         info_.EndTag();
    168         // Declare the class that owns this method.
    169         size_t class_offset = StartClassTag(dex_class_desc);
    170         info_.UpdateUint32(type_attrib_offset, class_offset);
    171         info_.WriteFlagPresent(DW_AT_declaration);
    172         // Check that each class is defined only once.
    173         bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second;
    174         CHECK(unique) << "Redefinition of " << dex_class_desc;
    175         last_dex_class_desc = dex_class_desc;
    176       }
    177 
    178       int start_depth = info_.Depth();
    179       info_.StartTag(DW_TAG_subprogram);
    180       WriteName(dex->GetMethodName(dex_method));
    181       info_.WriteAddr(DW_AT_low_pc, base_address + mi->code_address);
    182       info_.WriteUdata(DW_AT_high_pc, mi->code_size);
    183       std::vector<uint8_t> expr_buffer;
    184       Expression expr(&expr_buffer);
    185       expr.WriteOpCallFrameCfa();
    186       info_.WriteExprLoc(DW_AT_frame_base, expr);
    187       WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto));
    188 
    189       // Decode dex register locations for all stack maps.
    190       // It might be expensive, so do it just once and reuse the result.
    191       std::unique_ptr<const CodeInfo> code_info;
    192       std::vector<DexRegisterMap> dex_reg_maps;
    193       if (accessor.HasCodeItem() && mi->code_info != nullptr) {
    194         code_info.reset(new CodeInfo(mi->code_info));
    195         for (StackMap stack_map : code_info->GetStackMaps()) {
    196           dex_reg_maps.push_back(code_info->GetDexRegisterMapOf(stack_map));
    197         }
    198       }
    199 
    200       // Write parameters. DecodeDebugLocalInfo returns them as well, but it does not
    201       // guarantee order or uniqueness so it is safer to iterate over them manually.
    202       // DecodeDebugLocalInfo might not also be available if there is no debug info.
    203       std::vector<const char*> param_names = GetParamNames(mi);
    204       uint32_t arg_reg = 0;
    205       if (!is_static) {
    206         info_.StartTag(DW_TAG_formal_parameter);
    207         WriteName("this");
    208         info_.WriteFlagPresent(DW_AT_artificial);
    209         WriteLazyType(dex_class_desc);
    210         if (accessor.HasCodeItem()) {
    211           // Write the stack location of the parameter.
    212           const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
    213           const bool is64bitValue = false;
    214           WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
    215         }
    216         arg_reg++;
    217         info_.EndTag();
    218       }
    219       if (dex_params != nullptr) {
    220         for (uint32_t i = 0; i < dex_params->Size(); ++i) {
    221           info_.StartTag(DW_TAG_formal_parameter);
    222           // Parameter names may not be always available.
    223           if (i < param_names.size()) {
    224             WriteName(param_names[i]);
    225           }
    226           // Write the type.
    227           const char* type_desc = dex->StringByTypeIdx(dex_params->GetTypeItem(i).type_idx_);
    228           WriteLazyType(type_desc);
    229           const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J';
    230           if (accessor.HasCodeItem()) {
    231             // Write the stack location of the parameter.
    232             const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg;
    233             WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
    234           }
    235           arg_reg += is64bitValue ? 2 : 1;
    236           info_.EndTag();
    237         }
    238         if (accessor.HasCodeItem()) {
    239           DCHECK_EQ(arg_reg, accessor.InsSize());
    240         }
    241       }
    242 
    243       // Write local variables.
    244       std::vector<DexFile::LocalInfo> local_infos;
    245       if (accessor.DecodeDebugLocalInfo(is_static,
    246                                         mi->dex_method_index,
    247                                         [&](const DexFile::LocalInfo& entry) {
    248                                           local_infos.push_back(entry);
    249                                         })) {
    250         for (const DexFile::LocalInfo& var : local_infos) {
    251           if (var.reg_ < accessor.RegistersSize() - accessor.InsSize()) {
    252             info_.StartTag(DW_TAG_variable);
    253             WriteName(var.name_);
    254             WriteLazyType(var.descriptor_);
    255             bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J';
    256             WriteRegLocation(mi,
    257                              dex_reg_maps,
    258                              var.reg_,
    259                              is64bitValue,
    260                              compilation_unit.code_address,
    261                              var.start_address_,
    262                              var.end_address_);
    263             info_.EndTag();
    264           }
    265         }
    266       }
    267 
    268       info_.EndTag();
    269       CHECK_EQ(info_.Depth(), start_depth);  // Balanced start/end.
    270     }
    271     if (last_dex_class_desc != nullptr) {
    272       EndClassTag();
    273     }
    274     FinishLazyTypes();
    275     CloseNamespacesAboveDepth(0);
    276     info_.EndTag();  // DW_TAG_compile_unit
    277     CHECK_EQ(info_.Depth(), 0);
    278     std::vector<uint8_t> buffer;
    279     buffer.reserve(info_.data()->size() + KB);
    280     // All compilation units share single table which is at the start of .debug_abbrev.
    281     const size_t debug_abbrev_offset = 0;
    282     WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer);
    283     owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
    284   }
    285 
    286   void Write(const ArrayRef<mirror::Class*>& types) REQUIRES_SHARED(Locks::mutator_lock_) {
    287     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
    288 
    289     info_.StartTag(DW_TAG_compile_unit);
    290     info_.WriteString(DW_AT_producer, "Android dex2oat");
    291     info_.WriteData1(DW_AT_language, DW_LANG_Java);
    292 
    293     // Base class references to be patched at the end.
    294     std::map<size_t, mirror::Class*> base_class_references;
    295 
    296     // Already written declarations or definitions.
    297     std::map<mirror::Class*, size_t> class_declarations;
    298 
    299     std::vector<uint8_t> expr_buffer;
    300     for (mirror::Class* type : types) {
    301       if (type->IsPrimitive()) {
    302         // For primitive types the definition and the declaration is the same.
    303         if (type->GetPrimitiveType() != Primitive::kPrimVoid) {
    304           WriteTypeDeclaration(type->GetDescriptor(nullptr));
    305         }
    306       } else if (type->IsArrayClass()) {
    307         ObjPtr<mirror::Class> element_type = type->GetComponentType();
    308         uint32_t component_size = type->GetComponentSize();
    309         uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value();
    310         uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
    311 
    312         CloseNamespacesAboveDepth(0);  // Declare in root namespace.
    313         info_.StartTag(DW_TAG_array_type);
    314         std::string descriptor_string;
    315         WriteLazyType(element_type->GetDescriptor(&descriptor_string));
    316         WriteLinkageName(type);
    317         info_.WriteUdata(DW_AT_data_member_location, data_offset);
    318         info_.StartTag(DW_TAG_subrange_type);
    319         Expression count_expr(&expr_buffer);
    320         count_expr.WriteOpPushObjectAddress();
    321         count_expr.WriteOpPlusUconst(length_offset);
    322         count_expr.WriteOpDerefSize(4);  // Array length is always 32-bit wide.
    323         info_.WriteExprLoc(DW_AT_count, count_expr);
    324         info_.EndTag();  // DW_TAG_subrange_type.
    325         info_.EndTag();  // DW_TAG_array_type.
    326       } else if (type->IsInterface()) {
    327         // Skip.  Variables cannot have an interface as a dynamic type.
    328         // We do not expose the interface information to the debugger in any way.
    329       } else {
    330         std::string descriptor_string;
    331         const char* desc = type->GetDescriptor(&descriptor_string);
    332         size_t class_offset = StartClassTag(desc);
    333         class_declarations.emplace(type, class_offset);
    334 
    335         if (!type->IsVariableSize()) {
    336           info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize());
    337         }
    338 
    339         WriteLinkageName(type);
    340 
    341         if (type->IsObjectClass()) {
    342           // Generate artificial member which is used to get the dynamic type of variable.
    343           // The run-time value of this field will correspond to linkage name of some type.
    344           // We need to do it only once in j.l.Object since all other types inherit it.
    345           info_.StartTag(DW_TAG_member);
    346           WriteName(".dynamic_type");
    347           WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I");
    348           info_.WriteFlagPresent(DW_AT_artificial);
    349           // Create DWARF expression to get the value of the methods_ field.
    350           Expression expr(&expr_buffer);
    351           // The address of the object has been implicitly pushed on the stack.
    352           // Dereference the klass_ field of Object (32-bit; possibly poisoned).
    353           DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u);
    354           DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u);
    355           expr.WriteOpDerefSize(4);
    356           if (kPoisonHeapReferences) {
    357             expr.WriteOpNeg();
    358             // DWARF stack is pointer sized. Ensure that the high bits are clear.
    359             expr.WriteOpConstu(0xFFFFFFFF);
    360             expr.WriteOpAnd();
    361           }
    362           // Add offset to the methods_ field.
    363           expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value());
    364           // Top of stack holds the location of the field now.
    365           info_.WriteExprLoc(DW_AT_data_member_location, expr);
    366           info_.EndTag();  // DW_TAG_member.
    367         }
    368 
    369         // Base class.
    370         ObjPtr<mirror::Class> base_class = type->GetSuperClass();
    371         if (base_class != nullptr) {
    372           info_.StartTag(DW_TAG_inheritance);
    373           base_class_references.emplace(info_.size(), base_class.Ptr());
    374           info_.WriteRef4(DW_AT_type, 0);
    375           info_.WriteUdata(DW_AT_data_member_location, 0);
    376           info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
    377           info_.EndTag();  // DW_TAG_inheritance.
    378         }
    379 
    380         // Member variables.
    381         for (uint32_t i = 0, count = type->NumInstanceFields(); i < count; ++i) {
    382           ArtField* field = type->GetInstanceField(i);
    383           info_.StartTag(DW_TAG_member);
    384           WriteName(field->GetName());
    385           WriteLazyType(field->GetTypeDescriptor());
    386           info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value());
    387           uint32_t access_flags = field->GetAccessFlags();
    388           if (access_flags & kAccPublic) {
    389             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
    390           } else if (access_flags & kAccProtected) {
    391             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected);
    392           } else if (access_flags & kAccPrivate) {
    393             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
    394           }
    395           info_.EndTag();  // DW_TAG_member.
    396         }
    397 
    398         if (type->IsStringClass()) {
    399           // Emit debug info about an artifical class member for java.lang.String which represents
    400           // the first element of the data stored in a string instance. Consumers of the debug
    401           // info will be able to read the content of java.lang.String based on the count (real
    402           // field) and based on the location of this data member.
    403           info_.StartTag(DW_TAG_member);
    404           WriteName("value");
    405           // We don't support fields with C like array types so we just say its type is java char.
    406           WriteLazyType("C");  // char.
    407           info_.WriteUdata(DW_AT_data_member_location,
    408                            mirror::String::ValueOffset().Uint32Value());
    409           info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
    410           info_.EndTag();  // DW_TAG_member.
    411         }
    412 
    413         EndClassTag();
    414       }
    415     }
    416 
    417     // Write base class declarations.
    418     for (const auto& base_class_reference : base_class_references) {
    419       size_t reference_offset = base_class_reference.first;
    420       mirror::Class* base_class = base_class_reference.second;
    421       const auto it = class_declarations.find(base_class);
    422       if (it != class_declarations.end()) {
    423         info_.UpdateUint32(reference_offset, it->second);
    424       } else {
    425         // Declare base class.  We can not use the standard WriteLazyType
    426         // since we want to avoid the DW_TAG_reference_tag wrapping.
    427         std::string tmp_storage;
    428         const char* base_class_desc = base_class->GetDescriptor(&tmp_storage);
    429         size_t base_class_declaration_offset = StartClassTag(base_class_desc);
    430         info_.WriteFlagPresent(DW_AT_declaration);
    431         WriteLinkageName(base_class);
    432         EndClassTag();
    433         class_declarations.emplace(base_class, base_class_declaration_offset);
    434         info_.UpdateUint32(reference_offset, base_class_declaration_offset);
    435       }
    436     }
    437 
    438     FinishLazyTypes();
    439     CloseNamespacesAboveDepth(0);
    440     info_.EndTag();  // DW_TAG_compile_unit.
    441     CHECK_EQ(info_.Depth(), 0);
    442     std::vector<uint8_t> buffer;
    443     buffer.reserve(info_.data()->size() + KB);
    444     // All compilation units share single table which is at the start of .debug_abbrev.
    445     const size_t debug_abbrev_offset = 0;
    446     WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer);
    447     owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
    448   }
    449 
    450   // Write table into .debug_loc which describes location of dex register.
    451   // The dex register might be valid only at some points and it might
    452   // move between machine registers and stack.
    453   void WriteRegLocation(const MethodDebugInfo* method_info,
    454                         const std::vector<DexRegisterMap>& dex_register_maps,
    455                         uint16_t vreg,
    456                         bool is64bitValue,
    457                         uint64_t compilation_unit_code_address,
    458                         uint32_t dex_pc_low = 0,
    459                         uint32_t dex_pc_high = 0xFFFFFFFF) {
    460     WriteDebugLocEntry(method_info,
    461                        dex_register_maps,
    462                        vreg,
    463                        is64bitValue,
    464                        compilation_unit_code_address,
    465                        dex_pc_low,
    466                        dex_pc_high,
    467                        owner_->builder_->GetIsa(),
    468                        &info_,
    469                        &owner_->debug_loc_,
    470                        &owner_->debug_ranges_);
    471   }
    472 
    473   // Linkage name uniquely identifies type.
    474   // It is used to determine the dynamic type of objects.
    475   // We use the methods_ field of class since it is unique and it is not moved by the GC.
    476   void WriteLinkageName(mirror::Class* type) REQUIRES_SHARED(Locks::mutator_lock_) {
    477     auto* methods_ptr = type->GetMethodsPtr();
    478     if (methods_ptr == nullptr) {
    479       // Some types might have no methods.  Allocate empty array instead.
    480       LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc();
    481       void* storage = allocator->Alloc(Thread::Current(), sizeof(LengthPrefixedArray<ArtMethod>));
    482       methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0);
    483       type->SetMethodsPtr(methods_ptr, 0, 0);
    484       DCHECK(type->GetMethodsPtr() != nullptr);
    485     }
    486     char name[32];
    487     snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr));
    488     info_.WriteString(dwarf::DW_AT_linkage_name, name);
    489   }
    490 
    491   // Some types are difficult to define as we go since they need
    492   // to be enclosed in the right set of namespaces. Therefore we
    493   // just define all types lazily at the end of compilation unit.
    494   void WriteLazyType(const char* type_descriptor) {
    495     if (type_descriptor != nullptr && type_descriptor[0] != 'V') {
    496       lazy_types_.emplace(std::string(type_descriptor), info_.size());
    497       info_.WriteRef4(dwarf::DW_AT_type, 0);
    498     }
    499   }
    500 
    501   void FinishLazyTypes() {
    502     for (const auto& lazy_type : lazy_types_) {
    503       info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first));
    504     }
    505     lazy_types_.clear();
    506   }
    507 
    508  private:
    509   void WriteName(const char* name) {
    510     if (name != nullptr) {
    511       info_.WriteString(dwarf::DW_AT_name, name);
    512     }
    513   }
    514 
    515   // Convert dex type descriptor to DWARF.
    516   // Returns offset in the compilation unit.
    517   size_t WriteTypeDeclaration(const std::string& desc) {
    518     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
    519 
    520     DCHECK(!desc.empty());
    521     const auto it = type_cache_.find(desc);
    522     if (it != type_cache_.end()) {
    523       return it->second;
    524     }
    525 
    526     size_t offset;
    527     if (desc[0] == 'L') {
    528       // Class type. For example: Lpackage/name;
    529       size_t class_offset = StartClassTag(desc.c_str());
    530       info_.WriteFlagPresent(DW_AT_declaration);
    531       EndClassTag();
    532       // Reference to the class type.
    533       offset = info_.StartTag(DW_TAG_reference_type);
    534       info_.WriteRef(DW_AT_type, class_offset);
    535       info_.EndTag();
    536     } else if (desc[0] == '[') {
    537       // Array type.
    538       size_t element_type = WriteTypeDeclaration(desc.substr(1));
    539       CloseNamespacesAboveDepth(0);  // Declare in root namespace.
    540       size_t array_type = info_.StartTag(DW_TAG_array_type);
    541       info_.WriteFlagPresent(DW_AT_declaration);
    542       info_.WriteRef(DW_AT_type, element_type);
    543       info_.EndTag();
    544       offset = info_.StartTag(DW_TAG_reference_type);
    545       info_.WriteRef4(DW_AT_type, array_type);
    546       info_.EndTag();
    547     } else {
    548       // Primitive types.
    549       DCHECK_EQ(desc.size(), 1u);
    550 
    551       const char* name;
    552       uint32_t encoding;
    553       uint32_t byte_size;
    554       switch (desc[0]) {
    555       case 'B':
    556         name = "byte";
    557         encoding = DW_ATE_signed;
    558         byte_size = 1;
    559         break;
    560       case 'C':
    561         name = "char";
    562         encoding = DW_ATE_UTF;
    563         byte_size = 2;
    564         break;
    565       case 'D':
    566         name = "double";
    567         encoding = DW_ATE_float;
    568         byte_size = 8;
    569         break;
    570       case 'F':
    571         name = "float";
    572         encoding = DW_ATE_float;
    573         byte_size = 4;
    574         break;
    575       case 'I':
    576         name = "int";
    577         encoding = DW_ATE_signed;
    578         byte_size = 4;
    579         break;
    580       case 'J':
    581         name = "long";
    582         encoding = DW_ATE_signed;
    583         byte_size = 8;
    584         break;
    585       case 'S':
    586         name = "short";
    587         encoding = DW_ATE_signed;
    588         byte_size = 2;
    589         break;
    590       case 'Z':
    591         name = "boolean";
    592         encoding = DW_ATE_boolean;
    593         byte_size = 1;
    594         break;
    595       case 'V':
    596         LOG(FATAL) << "Void type should not be encoded";
    597         UNREACHABLE();
    598       default:
    599         LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\"";
    600         UNREACHABLE();
    601       }
    602       CloseNamespacesAboveDepth(0);  // Declare in root namespace.
    603       offset = info_.StartTag(DW_TAG_base_type);
    604       WriteName(name);
    605       info_.WriteData1(DW_AT_encoding, encoding);
    606       info_.WriteData1(DW_AT_byte_size, byte_size);
    607       info_.EndTag();
    608     }
    609 
    610     type_cache_.emplace(desc, offset);
    611     return offset;
    612   }
    613 
    614   // Start DW_TAG_class_type tag nested in DW_TAG_namespace tags.
    615   // Returns offset of the class tag in the compilation unit.
    616   size_t StartClassTag(const char* desc) {
    617     std::string name = SetNamespaceForClass(desc);
    618     size_t offset = info_.StartTag(dwarf::DW_TAG_class_type);
    619     WriteName(name.c_str());
    620     return offset;
    621   }
    622 
    623   void EndClassTag() {
    624     info_.EndTag();
    625   }
    626 
    627   // Set the current namespace nesting to one required by the given class.
    628   // Returns the class name with namespaces, 'L', and ';' stripped.
    629   std::string SetNamespaceForClass(const char* desc) {
    630     DCHECK(desc != nullptr && desc[0] == 'L');
    631     desc++;  // Skip the initial 'L'.
    632     size_t depth = 0;
    633     for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) {
    634       // Check whether the name at this depth is already what we need.
    635       if (depth < current_namespace_.size()) {
    636         const std::string& name = current_namespace_[depth];
    637         if (name.compare(0, name.size(), desc, end - desc) == 0) {
    638           continue;
    639         }
    640       }
    641       // Otherwise we need to open a new namespace tag at this depth.
    642       CloseNamespacesAboveDepth(depth);
    643       info_.StartTag(dwarf::DW_TAG_namespace);
    644       std::string name(desc, end - desc);
    645       WriteName(name.c_str());
    646       current_namespace_.push_back(std::move(name));
    647     }
    648     CloseNamespacesAboveDepth(depth);
    649     return std::string(desc, strchr(desc, ';') - desc);
    650   }
    651 
    652   // Close namespace tags to reach the given nesting depth.
    653   void CloseNamespacesAboveDepth(size_t depth) {
    654     DCHECK_LE(depth, current_namespace_.size());
    655     while (current_namespace_.size() > depth) {
    656       info_.EndTag();
    657       current_namespace_.pop_back();
    658     }
    659   }
    660 
    661   // For access to the ELF sections.
    662   ElfDebugInfoWriter<ElfTypes>* owner_;
    663   // Temporary buffer to create and store the entries.
    664   dwarf::DebugInfoEntryWriter<> info_;
    665   // Cache of already translated type descriptors.
    666   std::map<std::string, size_t> type_cache_;  // type_desc -> definition_offset.
    667   // 32-bit references which need to be resolved to a type later.
    668   // Given type may be used multiple times.  Therefore we need a multimap.
    669   std::multimap<std::string, size_t> lazy_types_;  // type_desc -> patch_offset.
    670   // The current set of open namespace tags which are active and not closed yet.
    671   std::vector<std::string> current_namespace_;
    672 };
    673 
    674 }  // namespace debug
    675 }  // namespace art
    676 
    677 #endif  // ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
    678 
    679