Home | History | Annotate | Download | only in debug
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_LINE_WRITER_H_
     18 #define ART_COMPILER_DEBUG_ELF_DEBUG_LINE_WRITER_H_
     19 
     20 #include <unordered_set>
     21 #include <vector>
     22 
     23 #include "debug/elf_compilation_unit.h"
     24 #include "debug/src_map_elem.h"
     25 #include "dex/dex_file-inl.h"
     26 #include "dwarf/debug_line_opcode_writer.h"
     27 #include "dwarf/headers.h"
     28 #include "elf/elf_builder.h"
     29 #include "oat_file.h"
     30 #include "stack_map.h"
     31 
     32 namespace art {
     33 namespace debug {
     34 
     35 typedef std::vector<DexFile::PositionInfo> PositionInfos;
     36 
     37 template<typename ElfTypes>
     38 class ElfDebugLineWriter {
     39   using Elf_Addr = typename ElfTypes::Addr;
     40 
     41  public:
     42   explicit ElfDebugLineWriter(ElfBuilder<ElfTypes>* builder) : builder_(builder) {
     43   }
     44 
     45   void Start() {
     46     builder_->GetDebugLine()->Start();
     47   }
     48 
     49   // Write line table for given set of methods.
     50   // Returns the number of bytes written.
     51   size_t WriteCompilationUnit(ElfCompilationUnit& compilation_unit) {
     52     const InstructionSet isa = builder_->GetIsa();
     53     const bool is64bit = Is64BitInstructionSet(isa);
     54     const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
     55         ? builder_->GetText()->GetAddress()
     56         : 0;
     57 
     58     compilation_unit.debug_line_offset = builder_->GetDebugLine()->GetPosition();
     59 
     60     std::vector<dwarf::FileEntry> files;
     61     std::unordered_map<std::string, size_t> files_map;
     62     std::vector<std::string> directories;
     63     std::unordered_map<std::string, size_t> directories_map;
     64     int code_factor_bits_ = 0;
     65     int dwarf_isa = -1;
     66     switch (isa) {
     67       case InstructionSet::kArm:  // arm actually means thumb2.
     68       case InstructionSet::kThumb2:
     69         code_factor_bits_ = 1;  // 16-bit instuctions
     70         dwarf_isa = 1;  // DW_ISA_ARM_thumb.
     71         break;
     72       case InstructionSet::kArm64:
     73       case InstructionSet::kMips:
     74       case InstructionSet::kMips64:
     75         code_factor_bits_ = 2;  // 32-bit instructions
     76         break;
     77       case InstructionSet::kNone:
     78       case InstructionSet::kX86:
     79       case InstructionSet::kX86_64:
     80         break;
     81     }
     82     std::unordered_set<uint64_t> seen_addresses(compilation_unit.methods.size());
     83     dwarf::DebugLineOpCodeWriter<> opcodes(is64bit, code_factor_bits_);
     84     for (const MethodDebugInfo* mi : compilation_unit.methods) {
     85       // Ignore function if we have already generated line table for the same address.
     86       // It would confuse the debugger and the DWARF specification forbids it.
     87       // We allow the line table for method to be replicated in different compilation unit.
     88       // This ensures that each compilation unit contains line table for all its methods.
     89       if (!seen_addresses.insert(mi->code_address).second) {
     90         continue;
     91       }
     92 
     93       uint32_t prologue_end = std::numeric_limits<uint32_t>::max();
     94       std::vector<SrcMapElem> pc2dex_map;
     95       if (mi->code_info != nullptr) {
     96         // Use stack maps to create mapping table from pc to dex.
     97         const CodeInfo code_info(mi->code_info);
     98         pc2dex_map.reserve(code_info.GetNumberOfStackMaps());
     99         for (StackMap stack_map : code_info.GetStackMaps()) {
    100           const uint32_t pc = stack_map.GetNativePcOffset(isa);
    101           const int32_t dex = stack_map.GetDexPc();
    102           pc2dex_map.push_back({pc, dex});
    103           if (stack_map.HasDexRegisterMap()) {
    104             // Guess that the first map with local variables is the end of prologue.
    105             prologue_end = std::min(prologue_end, pc);
    106           }
    107         }
    108         std::sort(pc2dex_map.begin(), pc2dex_map.end());
    109       }
    110 
    111       if (pc2dex_map.empty()) {
    112         continue;
    113       }
    114 
    115       // Compensate for compiler's off-by-one-instruction error.
    116       //
    117       // The compiler generates stackmap with PC *after* the branch instruction
    118       // (because this is the PC which is easier to obtain when unwinding).
    119       //
    120       // However, the debugger is more clever and it will ask us for line-number
    121       // mapping at the location of the branch instruction (since the following
    122       // instruction could belong to other line, this is the correct thing to do).
    123       //
    124       // So we really want to just decrement the PC by one instruction so that the
    125       // branch instruction is covered as well. However, we do not know the size
    126       // of the previous instruction, and we can not subtract just a fixed amount
    127       // (the debugger would trust us that the PC is valid; it might try to set
    128       // breakpoint there at some point, and setting breakpoint in mid-instruction
    129       // would make the process crash in spectacular way).
    130       //
    131       // Therefore, we say that the PC which the compiler gave us for the stackmap
    132       // is the end of its associated address range, and we use the PC from the
    133       // previous stack map as the start of the range. This ensures that the PC is
    134       // valid and that the branch instruction is covered.
    135       //
    136       // This ensures we have correct line number mapping at call sites (which is
    137       // important for backtraces), but there is nothing we can do for non-call
    138       // sites (so stepping through optimized code in debugger is not possible).
    139       //
    140       // We do not adjust the stackmaps if the code was compiled as debuggable.
    141       // In that case, the stackmaps should accurately cover all instructions.
    142       if (!mi->is_native_debuggable) {
    143         for (size_t i = pc2dex_map.size() - 1; i > 0; --i) {
    144           pc2dex_map[i].from_ = pc2dex_map[i - 1].from_;
    145         }
    146         pc2dex_map[0].from_ = 0;
    147       }
    148 
    149       Elf_Addr method_address = base_address + mi->code_address;
    150 
    151       PositionInfos dex2line_map;
    152       const DexFile* dex = mi->dex_file;
    153       DCHECK(dex != nullptr);
    154       CodeItemDebugInfoAccessor accessor(*dex, mi->code_item, mi->dex_method_index);
    155       if (!accessor.DecodeDebugPositionInfo(
    156           [&](const DexFile::PositionInfo& entry) {
    157             dex2line_map.push_back(entry);
    158             return false;
    159           })) {
    160         continue;
    161       }
    162 
    163       if (dex2line_map.empty()) {
    164         continue;
    165       }
    166 
    167       opcodes.SetAddress(method_address);
    168       if (dwarf_isa != -1) {
    169         opcodes.SetISA(dwarf_isa);
    170       }
    171 
    172       // Get and deduplicate directory and filename.
    173       int file_index = 0;  // 0 - primary source file of the compilation.
    174       auto& dex_class_def = dex->GetClassDef(mi->class_def_index);
    175       const char* source_file = dex->GetSourceFile(dex_class_def);
    176       if (source_file != nullptr) {
    177         std::string file_name(source_file);
    178         size_t file_name_slash = file_name.find_last_of('/');
    179         std::string class_name(dex->GetClassDescriptor(dex_class_def));
    180         size_t class_name_slash = class_name.find_last_of('/');
    181         std::string full_path(file_name);
    182 
    183         // Guess directory from package name.
    184         int directory_index = 0;  // 0 - current directory of the compilation.
    185         if (file_name_slash == std::string::npos &&  // Just filename.
    186             class_name.front() == 'L' &&  // Type descriptor for a class.
    187             class_name_slash != std::string::npos) {  // Has package name.
    188           std::string package_name = class_name.substr(1, class_name_slash - 1);
    189           auto it = directories_map.find(package_name);
    190           if (it == directories_map.end()) {
    191             directory_index = 1 + directories.size();
    192             directories_map.emplace(package_name, directory_index);
    193             directories.push_back(package_name);
    194           } else {
    195             directory_index = it->second;
    196           }
    197           full_path = package_name + "/" + file_name;
    198         }
    199 
    200         // Add file entry.
    201         auto it2 = files_map.find(full_path);
    202         if (it2 == files_map.end()) {
    203           file_index = 1 + files.size();
    204           files_map.emplace(full_path, file_index);
    205           files.push_back(dwarf::FileEntry {
    206             file_name,
    207             directory_index,
    208             0,  // Modification time - NA.
    209             0,  // File size - NA.
    210           });
    211         } else {
    212           file_index = it2->second;
    213         }
    214       }
    215       opcodes.SetFile(file_index);
    216 
    217       // Generate mapping opcodes from PC to Java lines.
    218       if (file_index != 0) {
    219         // If the method was not compiled as native-debuggable, we still generate all available
    220         // lines, but we try to prevent the debugger from stepping and setting breakpoints since
    221         // the information is too inaccurate for that (breakpoints would be set after the calls).
    222         const bool default_is_stmt = mi->is_native_debuggable;
    223         bool first = true;
    224         for (SrcMapElem pc2dex : pc2dex_map) {
    225           uint32_t pc = pc2dex.from_;
    226           int dex_pc = pc2dex.to_;
    227           // Find mapping with address with is greater than our dex pc; then go back one step.
    228           auto dex2line = std::upper_bound(
    229               dex2line_map.begin(),
    230               dex2line_map.end(),
    231               dex_pc,
    232               [](uint32_t address, const DexFile::PositionInfo& entry) {
    233                   return address < entry.address_;
    234               });
    235           // Look for first valid mapping after the prologue.
    236           if (dex2line != dex2line_map.begin() && pc >= prologue_end) {
    237             int line = (--dex2line)->line_;
    238             if (first) {
    239               first = false;
    240               if (pc > 0) {
    241                 // Assume that any preceding code is prologue.
    242                 int first_line = dex2line_map.front().line_;
    243                 // Prologue is not a sensible place for a breakpoint.
    244                 opcodes.SetIsStmt(false);
    245                 opcodes.AddRow(method_address, first_line);
    246                 opcodes.SetPrologueEnd();
    247               }
    248               opcodes.SetIsStmt(default_is_stmt);
    249               opcodes.AddRow(method_address + pc, line);
    250             } else if (line != opcodes.CurrentLine()) {
    251               opcodes.SetIsStmt(default_is_stmt);
    252               opcodes.AddRow(method_address + pc, line);
    253             }
    254           }
    255         }
    256       } else {
    257         // line 0 - instruction cannot be attributed to any source line.
    258         opcodes.AddRow(method_address, 0);
    259       }
    260 
    261       opcodes.AdvancePC(method_address + mi->code_size);
    262       opcodes.EndSequence();
    263     }
    264     std::vector<uint8_t> buffer;
    265     buffer.reserve(opcodes.data()->size() + KB);
    266     WriteDebugLineTable(directories, files, opcodes, &buffer);
    267     builder_->GetDebugLine()->WriteFully(buffer.data(), buffer.size());
    268     return buffer.size();
    269   }
    270 
    271   void End() {
    272     builder_->GetDebugLine()->End();
    273   }
    274 
    275  private:
    276   ElfBuilder<ElfTypes>* builder_;
    277 };
    278 
    279 }  // namespace debug
    280 }  // namespace art
    281 
    282 #endif  // ART_COMPILER_DEBUG_ELF_DEBUG_LINE_WRITER_H_
    283 
    284