Home | History | Annotate | Download | only in base
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "mutex.h"
     18 
     19 #include <errno.h>
     20 #include <sys/time.h>
     21 
     22 #include "android-base/stringprintf.h"
     23 
     24 #include "base/atomic.h"
     25 #include "base/logging.h"
     26 #include "base/systrace.h"
     27 #include "base/time_utils.h"
     28 #include "base/value_object.h"
     29 #include "mutex-inl.h"
     30 #include "scoped_thread_state_change-inl.h"
     31 #include "thread-inl.h"
     32 
     33 namespace art {
     34 
     35 using android::base::StringPrintf;
     36 
     37 struct AllMutexData {
     38   // A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait).
     39   Atomic<const BaseMutex*> all_mutexes_guard;
     40   // All created mutexes guarded by all_mutexes_guard_.
     41   std::set<BaseMutex*>* all_mutexes;
     42   AllMutexData() : all_mutexes(nullptr) {}
     43 };
     44 static struct AllMutexData gAllMutexData[kAllMutexDataSize];
     45 
     46 #if ART_USE_FUTEXES
     47 static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) {
     48   const int32_t one_sec = 1000 * 1000 * 1000;  // one second in nanoseconds.
     49   result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec;
     50   result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec;
     51   if (result_ts->tv_nsec < 0) {
     52     result_ts->tv_sec--;
     53     result_ts->tv_nsec += one_sec;
     54   } else if (result_ts->tv_nsec > one_sec) {
     55     result_ts->tv_sec++;
     56     result_ts->tv_nsec -= one_sec;
     57   }
     58   return result_ts->tv_sec < 0;
     59 }
     60 #endif
     61 
     62 // Wait for an amount of time that roughly increases in the argument i.
     63 // Spin for small arguments and yield/sleep for longer ones.
     64 static void BackOff(uint32_t i) {
     65   static constexpr uint32_t kSpinMax = 10;
     66   static constexpr uint32_t kYieldMax = 20;
     67   if (i <= kSpinMax) {
     68     // TODO: Esp. in very latency-sensitive cases, consider replacing this with an explicit
     69     // test-and-test-and-set loop in the caller.  Possibly skip entirely on a uniprocessor.
     70     volatile uint32_t x = 0;
     71     const uint32_t spin_count = 10 * i;
     72     for (uint32_t spin = 0; spin < spin_count; ++spin) {
     73       ++x;  // Volatile; hence should not be optimized away.
     74     }
     75     // TODO: Consider adding x86 PAUSE and/or ARM YIELD here.
     76   } else if (i <= kYieldMax) {
     77     sched_yield();
     78   } else {
     79     NanoSleep(1000ull * (i - kYieldMax));
     80   }
     81 }
     82 
     83 class ScopedAllMutexesLock final {
     84  public:
     85   explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) {
     86     for (uint32_t i = 0;
     87          !gAllMutexData->all_mutexes_guard.CompareAndSetWeakAcquire(nullptr, mutex);
     88          ++i) {
     89       BackOff(i);
     90     }
     91   }
     92 
     93   ~ScopedAllMutexesLock() {
     94     DCHECK_EQ(gAllMutexData->all_mutexes_guard.load(std::memory_order_relaxed), mutex_);
     95     gAllMutexData->all_mutexes_guard.store(nullptr, std::memory_order_release);
     96   }
     97 
     98  private:
     99   const BaseMutex* const mutex_;
    100 };
    101 
    102 // Scoped class that generates events at the beginning and end of lock contention.
    103 class ScopedContentionRecorder final : public ValueObject {
    104  public:
    105   ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid)
    106       : mutex_(kLogLockContentions ? mutex : nullptr),
    107         blocked_tid_(kLogLockContentions ? blocked_tid : 0),
    108         owner_tid_(kLogLockContentions ? owner_tid : 0),
    109         start_nano_time_(kLogLockContentions ? NanoTime() : 0) {
    110     if (ATraceEnabled()) {
    111       std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")",
    112                                      mutex->GetName(), owner_tid);
    113       ATraceBegin(msg.c_str());
    114     }
    115   }
    116 
    117   ~ScopedContentionRecorder() {
    118     ATraceEnd();
    119     if (kLogLockContentions) {
    120       uint64_t end_nano_time = NanoTime();
    121       mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_);
    122     }
    123   }
    124 
    125  private:
    126   BaseMutex* const mutex_;
    127   const uint64_t blocked_tid_;
    128   const uint64_t owner_tid_;
    129   const uint64_t start_nano_time_;
    130 };
    131 
    132 BaseMutex::BaseMutex(const char* name, LockLevel level)
    133     : name_(name),
    134       level_(level),
    135       should_respond_to_empty_checkpoint_request_(false) {
    136   if (kLogLockContentions) {
    137     ScopedAllMutexesLock mu(this);
    138     std::set<BaseMutex*>** all_mutexes_ptr = &gAllMutexData->all_mutexes;
    139     if (*all_mutexes_ptr == nullptr) {
    140       // We leak the global set of all mutexes to avoid ordering issues in global variable
    141       // construction/destruction.
    142       *all_mutexes_ptr = new std::set<BaseMutex*>();
    143     }
    144     (*all_mutexes_ptr)->insert(this);
    145   }
    146 }
    147 
    148 BaseMutex::~BaseMutex() {
    149   if (kLogLockContentions) {
    150     ScopedAllMutexesLock mu(this);
    151     gAllMutexData->all_mutexes->erase(this);
    152   }
    153 }
    154 
    155 void BaseMutex::DumpAll(std::ostream& os) {
    156   if (kLogLockContentions) {
    157     os << "Mutex logging:\n";
    158     ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1));
    159     std::set<BaseMutex*>* all_mutexes = gAllMutexData->all_mutexes;
    160     if (all_mutexes == nullptr) {
    161       // No mutexes have been created yet during at startup.
    162       return;
    163     }
    164     os << "(Contended)\n";
    165     for (const BaseMutex* mutex : *all_mutexes) {
    166       if (mutex->HasEverContended()) {
    167         mutex->Dump(os);
    168         os << "\n";
    169       }
    170     }
    171     os << "(Never contented)\n";
    172     for (const BaseMutex* mutex : *all_mutexes) {
    173       if (!mutex->HasEverContended()) {
    174         mutex->Dump(os);
    175         os << "\n";
    176       }
    177     }
    178   }
    179 }
    180 
    181 void BaseMutex::CheckSafeToWait(Thread* self) {
    182   if (self == nullptr) {
    183     CheckUnattachedThread(level_);
    184     return;
    185   }
    186   if (kDebugLocking) {
    187     CHECK(self->GetHeldMutex(level_) == this || level_ == kMonitorLock)
    188         << "Waiting on unacquired mutex: " << name_;
    189     bool bad_mutexes_held = false;
    190     for (int i = kLockLevelCount - 1; i >= 0; --i) {
    191       if (i != level_) {
    192         BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
    193         // We allow the thread to wait even if the user_code_suspension_lock_ is held so long. This
    194         // just means that gc or some other internal process is suspending the thread while it is
    195         // trying to suspend some other thread. So long as the current thread is not being suspended
    196         // by a SuspendReason::kForUserCode (which needs the user_code_suspension_lock_ to clear)
    197         // this is fine. This is needed due to user_code_suspension_lock_ being the way untrusted
    198         // code interacts with suspension. One holds the lock to prevent user-code-suspension from
    199         // occurring. Since this is only initiated from user-supplied native-code this is safe.
    200         if (held_mutex == Locks::user_code_suspension_lock_) {
    201           // No thread safety analysis is fine since we have both the user_code_suspension_lock_
    202           // from the line above and the ThreadSuspendCountLock since it is our level_. We use this
    203           // lambda to avoid having to annotate the whole function as NO_THREAD_SAFETY_ANALYSIS.
    204           auto is_suspending_for_user_code = [self]() NO_THREAD_SAFETY_ANALYSIS {
    205             return self->GetUserCodeSuspendCount() != 0;
    206           };
    207           if (is_suspending_for_user_code()) {
    208             LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
    209                       << "(level " << LockLevel(i) << ") while performing wait on "
    210                       << "\"" << name_ << "\" (level " << level_ << ") "
    211                       << "with SuspendReason::kForUserCode pending suspensions";
    212             bad_mutexes_held = true;
    213           }
    214         } else if (held_mutex != nullptr) {
    215           LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
    216                      << "(level " << LockLevel(i) << ") while performing wait on "
    217                      << "\"" << name_ << "\" (level " << level_ << ")";
    218           bad_mutexes_held = true;
    219         }
    220       }
    221     }
    222     if (gAborting == 0) {  // Avoid recursive aborts.
    223       CHECK(!bad_mutexes_held) << this;
    224     }
    225   }
    226 }
    227 
    228 void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) {
    229   if (kLogLockContentions) {
    230     // Atomically add value to wait_time.
    231     wait_time.fetch_add(value, std::memory_order_seq_cst);
    232   }
    233 }
    234 
    235 void BaseMutex::RecordContention(uint64_t blocked_tid,
    236                                  uint64_t owner_tid,
    237                                  uint64_t nano_time_blocked) {
    238   if (kLogLockContentions) {
    239     ContentionLogData* data = contention_log_data_;
    240     ++(data->contention_count);
    241     data->AddToWaitTime(nano_time_blocked);
    242     ContentionLogEntry* log = data->contention_log;
    243     // This code is intentionally racy as it is only used for diagnostics.
    244     int32_t slot = data->cur_content_log_entry.load(std::memory_order_relaxed);
    245     if (log[slot].blocked_tid == blocked_tid &&
    246         log[slot].owner_tid == blocked_tid) {
    247       ++log[slot].count;
    248     } else {
    249       uint32_t new_slot;
    250       do {
    251         slot = data->cur_content_log_entry.load(std::memory_order_relaxed);
    252         new_slot = (slot + 1) % kContentionLogSize;
    253       } while (!data->cur_content_log_entry.CompareAndSetWeakRelaxed(slot, new_slot));
    254       log[new_slot].blocked_tid = blocked_tid;
    255       log[new_slot].owner_tid = owner_tid;
    256       log[new_slot].count.store(1, std::memory_order_relaxed);
    257     }
    258   }
    259 }
    260 
    261 void BaseMutex::DumpContention(std::ostream& os) const {
    262   if (kLogLockContentions) {
    263     const ContentionLogData* data = contention_log_data_;
    264     const ContentionLogEntry* log = data->contention_log;
    265     uint64_t wait_time = data->wait_time.load(std::memory_order_relaxed);
    266     uint32_t contention_count = data->contention_count.load(std::memory_order_relaxed);
    267     if (contention_count == 0) {
    268       os << "never contended";
    269     } else {
    270       os << "contended " << contention_count
    271          << " total wait of contender " << PrettyDuration(wait_time)
    272          << " average " << PrettyDuration(wait_time / contention_count);
    273       SafeMap<uint64_t, size_t> most_common_blocker;
    274       SafeMap<uint64_t, size_t> most_common_blocked;
    275       for (size_t i = 0; i < kContentionLogSize; ++i) {
    276         uint64_t blocked_tid = log[i].blocked_tid;
    277         uint64_t owner_tid = log[i].owner_tid;
    278         uint32_t count = log[i].count.load(std::memory_order_relaxed);
    279         if (count > 0) {
    280           auto it = most_common_blocked.find(blocked_tid);
    281           if (it != most_common_blocked.end()) {
    282             most_common_blocked.Overwrite(blocked_tid, it->second + count);
    283           } else {
    284             most_common_blocked.Put(blocked_tid, count);
    285           }
    286           it = most_common_blocker.find(owner_tid);
    287           if (it != most_common_blocker.end()) {
    288             most_common_blocker.Overwrite(owner_tid, it->second + count);
    289           } else {
    290             most_common_blocker.Put(owner_tid, count);
    291           }
    292         }
    293       }
    294       uint64_t max_tid = 0;
    295       size_t max_tid_count = 0;
    296       for (const auto& pair : most_common_blocked) {
    297         if (pair.second > max_tid_count) {
    298           max_tid = pair.first;
    299           max_tid_count = pair.second;
    300         }
    301       }
    302       if (max_tid != 0) {
    303         os << " sample shows most blocked tid=" << max_tid;
    304       }
    305       max_tid = 0;
    306       max_tid_count = 0;
    307       for (const auto& pair : most_common_blocker) {
    308         if (pair.second > max_tid_count) {
    309           max_tid = pair.first;
    310           max_tid_count = pair.second;
    311         }
    312       }
    313       if (max_tid != 0) {
    314         os << " sample shows tid=" << max_tid << " owning during this time";
    315       }
    316     }
    317   }
    318 }
    319 
    320 
    321 Mutex::Mutex(const char* name, LockLevel level, bool recursive)
    322     : BaseMutex(name, level), exclusive_owner_(0), recursion_count_(0), recursive_(recursive) {
    323 #if ART_USE_FUTEXES
    324   DCHECK_EQ(0, state_and_contenders_.load(std::memory_order_relaxed));
    325 #else
    326   CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, nullptr));
    327 #endif
    328 }
    329 
    330 // Helper to allow checking shutdown while locking for thread safety.
    331 static bool IsSafeToCallAbortSafe() {
    332   MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
    333   return Locks::IsSafeToCallAbortRacy();
    334 }
    335 
    336 Mutex::~Mutex() {
    337   bool safe_to_call_abort = Locks::IsSafeToCallAbortRacy();
    338 #if ART_USE_FUTEXES
    339   if (state_and_contenders_.load(std::memory_order_relaxed) != 0) {
    340     LOG(safe_to_call_abort ? FATAL : WARNING)
    341         << "destroying mutex with owner or contenders. Owner:" << GetExclusiveOwnerTid();
    342   } else {
    343     if (GetExclusiveOwnerTid() != 0) {
    344       LOG(safe_to_call_abort ? FATAL : WARNING)
    345           << "unexpectedly found an owner on unlocked mutex " << name_;
    346     }
    347   }
    348 #else
    349   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
    350   // may still be using locks.
    351   int rc = pthread_mutex_destroy(&mutex_);
    352   if (rc != 0) {
    353     errno = rc;
    354     PLOG(safe_to_call_abort ? FATAL : WARNING)
    355         << "pthread_mutex_destroy failed for " << name_;
    356   }
    357 #endif
    358 }
    359 
    360 void Mutex::ExclusiveLock(Thread* self) {
    361   DCHECK(self == nullptr || self == Thread::Current());
    362   if (kDebugLocking && !recursive_) {
    363     AssertNotHeld(self);
    364   }
    365   if (!recursive_ || !IsExclusiveHeld(self)) {
    366 #if ART_USE_FUTEXES
    367     bool done = false;
    368     do {
    369       int32_t cur_state = state_and_contenders_.load(std::memory_order_relaxed);
    370       if (LIKELY((cur_state & kHeldMask) == 0) /* lock not held */) {
    371         done = state_and_contenders_.CompareAndSetWeakAcquire(cur_state, cur_state | kHeldMask);
    372       } else {
    373         // Failed to acquire, hang up.
    374         ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    375         // Increment contender count. We can't create enough threads for this to overflow.
    376         increment_contenders();
    377         // Make cur_state again reflect the expected value of state_and_contenders.
    378         cur_state += kContenderIncrement;
    379         if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    380           self->CheckEmptyCheckpointFromMutex();
    381         }
    382         if (futex(state_and_contenders_.Address(), FUTEX_WAIT_PRIVATE, cur_state,
    383                   nullptr, nullptr, 0) != 0) {
    384           // We only went to sleep after incrementing and contenders and checking that the lock
    385           // is still held by someone else.
    386           // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
    387           // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
    388           if ((errno != EAGAIN) && (errno != EINTR)) {
    389             PLOG(FATAL) << "futex wait failed for " << name_;
    390           }
    391         }
    392         decrement_contenders();
    393       }
    394     } while (!done);
    395     // Confirm that lock is now held.
    396     DCHECK_NE(state_and_contenders_.load(std::memory_order_relaxed) & kHeldMask, 0);
    397 #else
    398     CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_));
    399 #endif
    400     DCHECK_EQ(GetExclusiveOwnerTid(), 0);
    401     exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
    402     RegisterAsLocked(self);
    403   }
    404   recursion_count_++;
    405   if (kDebugLocking) {
    406     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
    407         << name_ << " " << recursion_count_;
    408     AssertHeld(self);
    409   }
    410 }
    411 
    412 bool Mutex::ExclusiveTryLock(Thread* self) {
    413   DCHECK(self == nullptr || self == Thread::Current());
    414   if (kDebugLocking && !recursive_) {
    415     AssertNotHeld(self);
    416   }
    417   if (!recursive_ || !IsExclusiveHeld(self)) {
    418 #if ART_USE_FUTEXES
    419     bool done = false;
    420     do {
    421       int32_t cur_state = state_and_contenders_.load(std::memory_order_relaxed);
    422       if ((cur_state & kHeldMask) == 0) {
    423         // Change state to held and impose load/store ordering appropriate for lock acquisition.
    424         done = state_and_contenders_.CompareAndSetWeakAcquire(cur_state, cur_state | kHeldMask);
    425       } else {
    426         return false;
    427       }
    428     } while (!done);
    429     DCHECK_NE(state_and_contenders_.load(std::memory_order_relaxed) & kHeldMask, 0);
    430 #else
    431     int result = pthread_mutex_trylock(&mutex_);
    432     if (result == EBUSY) {
    433       return false;
    434     }
    435     if (result != 0) {
    436       errno = result;
    437       PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
    438     }
    439 #endif
    440     DCHECK_EQ(GetExclusiveOwnerTid(), 0);
    441     exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
    442     RegisterAsLocked(self);
    443   }
    444   recursion_count_++;
    445   if (kDebugLocking) {
    446     CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
    447         << name_ << " " << recursion_count_;
    448     AssertHeld(self);
    449   }
    450   return true;
    451 }
    452 
    453 void Mutex::ExclusiveUnlock(Thread* self) {
    454   if (kIsDebugBuild && self != nullptr && self != Thread::Current()) {
    455     std::string name1 = "<null>";
    456     std::string name2 = "<null>";
    457     if (self != nullptr) {
    458       self->GetThreadName(name1);
    459     }
    460     if (Thread::Current() != nullptr) {
    461       Thread::Current()->GetThreadName(name2);
    462     }
    463     LOG(FATAL) << GetName() << " level=" << level_ << " self=" << name1
    464                << " Thread::Current()=" << name2;
    465   }
    466   AssertHeld(self);
    467   DCHECK_NE(GetExclusiveOwnerTid(), 0);
    468   recursion_count_--;
    469   if (!recursive_ || recursion_count_ == 0) {
    470     if (kDebugLocking) {
    471       CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: "
    472           << name_ << " " << recursion_count_;
    473     }
    474     RegisterAsUnlocked(self);
    475 #if ART_USE_FUTEXES
    476     bool done = false;
    477     do {
    478       int32_t cur_state = state_and_contenders_.load(std::memory_order_relaxed);
    479       if (LIKELY((cur_state & kHeldMask) != 0)) {
    480         // We're no longer the owner.
    481         exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
    482         // Change state to not held and impose load/store ordering appropriate for lock release.
    483         uint32_t new_state = cur_state & ~kHeldMask;  // Same number of contenders.
    484         done = state_and_contenders_.CompareAndSetWeakRelease(cur_state, new_state);
    485         if (LIKELY(done)) {  // Spurious fail or waiters changed ?
    486           if (UNLIKELY(new_state != 0) /* have contenders */) {
    487             futex(state_and_contenders_.Address(), FUTEX_WAKE_PRIVATE, kWakeOne,
    488                   nullptr, nullptr, 0);
    489           }
    490           // We only do a futex wait after incrementing contenders and verifying the lock was
    491           // still held. If we didn't see waiters, then there couldn't have been any futexes
    492           // waiting on this lock when we did the CAS. New arrivals after that cannot wait for us,
    493           // since the futex wait call would see the lock available and immediately return.
    494         }
    495       } else {
    496         // Logging acquires the logging lock, avoid infinite recursion in that case.
    497         if (this != Locks::logging_lock_) {
    498           LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_;
    499         } else {
    500           LogHelper::LogLineLowStack(__FILE__,
    501                                      __LINE__,
    502                                      ::android::base::FATAL_WITHOUT_ABORT,
    503                                      StringPrintf("Unexpected state_ %d in unlock for %s",
    504                                                   cur_state, name_).c_str());
    505           _exit(1);
    506         }
    507       }
    508     } while (!done);
    509 #else
    510     exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
    511     CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_));
    512 #endif
    513   }
    514 }
    515 
    516 void Mutex::Dump(std::ostream& os) const {
    517   os << (recursive_ ? "recursive " : "non-recursive ")
    518       << name_
    519       << " level=" << static_cast<int>(level_)
    520       << " rec=" << recursion_count_
    521       << " owner=" << GetExclusiveOwnerTid() << " ";
    522   DumpContention(os);
    523 }
    524 
    525 std::ostream& operator<<(std::ostream& os, const Mutex& mu) {
    526   mu.Dump(os);
    527   return os;
    528 }
    529 
    530 void Mutex::WakeupToRespondToEmptyCheckpoint() {
    531 #if ART_USE_FUTEXES
    532   // Wake up all the waiters so they will respond to the emtpy checkpoint.
    533   DCHECK(should_respond_to_empty_checkpoint_request_);
    534   if (UNLIKELY(get_contenders() != 0)) {
    535     futex(state_and_contenders_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
    536   }
    537 #else
    538   LOG(FATAL) << "Non futex case isn't supported.";
    539 #endif
    540 }
    541 
    542 ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level)
    543     : BaseMutex(name, level)
    544 #if ART_USE_FUTEXES
    545     , state_(0), num_pending_readers_(0), num_pending_writers_(0)
    546 #endif
    547 {
    548 #if !ART_USE_FUTEXES
    549   CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, nullptr));
    550 #endif
    551   exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
    552 }
    553 
    554 ReaderWriterMutex::~ReaderWriterMutex() {
    555 #if ART_USE_FUTEXES
    556   CHECK_EQ(state_.load(std::memory_order_relaxed), 0);
    557   CHECK_EQ(GetExclusiveOwnerTid(), 0);
    558   CHECK_EQ(num_pending_readers_.load(std::memory_order_relaxed), 0);
    559   CHECK_EQ(num_pending_writers_.load(std::memory_order_relaxed), 0);
    560 #else
    561   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
    562   // may still be using locks.
    563   int rc = pthread_rwlock_destroy(&rwlock_);
    564   if (rc != 0) {
    565     errno = rc;
    566     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
    567     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_rwlock_destroy failed for " << name_;
    568   }
    569 #endif
    570 }
    571 
    572 void ReaderWriterMutex::ExclusiveLock(Thread* self) {
    573   DCHECK(self == nullptr || self == Thread::Current());
    574   AssertNotExclusiveHeld(self);
    575 #if ART_USE_FUTEXES
    576   bool done = false;
    577   do {
    578     int32_t cur_state = state_.load(std::memory_order_relaxed);
    579     if (LIKELY(cur_state == 0)) {
    580       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
    581       done = state_.CompareAndSetWeakAcquire(0 /* cur_state*/, -1 /* new state */);
    582     } else {
    583       // Failed to acquire, hang up.
    584       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    585       ++num_pending_writers_;
    586       if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    587         self->CheckEmptyCheckpointFromMutex();
    588       }
    589       if (futex(state_.Address(), FUTEX_WAIT_PRIVATE, cur_state, nullptr, nullptr, 0) != 0) {
    590         // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
    591         // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
    592         if ((errno != EAGAIN) && (errno != EINTR)) {
    593           PLOG(FATAL) << "futex wait failed for " << name_;
    594         }
    595       }
    596       --num_pending_writers_;
    597     }
    598   } while (!done);
    599   DCHECK_EQ(state_.load(std::memory_order_relaxed), -1);
    600 #else
    601   CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_));
    602 #endif
    603   DCHECK_EQ(GetExclusiveOwnerTid(), 0);
    604   exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
    605   RegisterAsLocked(self);
    606   AssertExclusiveHeld(self);
    607 }
    608 
    609 void ReaderWriterMutex::ExclusiveUnlock(Thread* self) {
    610   DCHECK(self == nullptr || self == Thread::Current());
    611   AssertExclusiveHeld(self);
    612   RegisterAsUnlocked(self);
    613   DCHECK_NE(GetExclusiveOwnerTid(), 0);
    614 #if ART_USE_FUTEXES
    615   bool done = false;
    616   do {
    617     int32_t cur_state = state_.load(std::memory_order_relaxed);
    618     if (LIKELY(cur_state == -1)) {
    619       // We're no longer the owner.
    620       exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
    621       // Change state from -1 to 0 and impose load/store ordering appropriate for lock release.
    622       // Note, the relaxed loads below musn't reorder before the CompareAndSet.
    623       // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
    624       // a status bit into the state on contention.
    625       done = state_.CompareAndSetWeakSequentiallyConsistent(-1 /* cur_state*/, 0 /* new state */);
    626       if (LIKELY(done)) {  // Weak CAS may fail spuriously.
    627         // Wake any waiters.
    628         if (UNLIKELY(num_pending_readers_.load(std::memory_order_seq_cst) > 0 ||
    629                      num_pending_writers_.load(std::memory_order_seq_cst) > 0)) {
    630           futex(state_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
    631         }
    632       }
    633     } else {
    634       LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
    635     }
    636   } while (!done);
    637 #else
    638   exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
    639   CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
    640 #endif
    641 }
    642 
    643 #if HAVE_TIMED_RWLOCK
    644 bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) {
    645   DCHECK(self == nullptr || self == Thread::Current());
    646 #if ART_USE_FUTEXES
    647   bool done = false;
    648   timespec end_abs_ts;
    649   InitTimeSpec(true, CLOCK_MONOTONIC, ms, ns, &end_abs_ts);
    650   do {
    651     int32_t cur_state = state_.load(std::memory_order_relaxed);
    652     if (cur_state == 0) {
    653       // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
    654       done = state_.CompareAndSetWeakAcquire(0 /* cur_state */, -1 /* new state */);
    655     } else {
    656       // Failed to acquire, hang up.
    657       timespec now_abs_ts;
    658       InitTimeSpec(true, CLOCK_MONOTONIC, 0, 0, &now_abs_ts);
    659       timespec rel_ts;
    660       if (ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) {
    661         return false;  // Timed out.
    662       }
    663       ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    664       ++num_pending_writers_;
    665       if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    666         self->CheckEmptyCheckpointFromMutex();
    667       }
    668       if (futex(state_.Address(), FUTEX_WAIT_PRIVATE, cur_state, &rel_ts, nullptr, 0) != 0) {
    669         if (errno == ETIMEDOUT) {
    670           --num_pending_writers_;
    671           return false;  // Timed out.
    672         } else if ((errno != EAGAIN) && (errno != EINTR)) {
    673           // EAGAIN and EINTR both indicate a spurious failure,
    674           // recompute the relative time out from now and try again.
    675           // We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts;
    676           PLOG(FATAL) << "timed futex wait failed for " << name_;
    677         }
    678       }
    679       --num_pending_writers_;
    680     }
    681   } while (!done);
    682 #else
    683   timespec ts;
    684   InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts);
    685   int result = pthread_rwlock_timedwrlock(&rwlock_, &ts);
    686   if (result == ETIMEDOUT) {
    687     return false;
    688   }
    689   if (result != 0) {
    690     errno = result;
    691     PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_;
    692   }
    693 #endif
    694   exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
    695   RegisterAsLocked(self);
    696   AssertSharedHeld(self);
    697   return true;
    698 }
    699 #endif
    700 
    701 #if ART_USE_FUTEXES
    702 void ReaderWriterMutex::HandleSharedLockContention(Thread* self, int32_t cur_state) {
    703   // Owner holds it exclusively, hang up.
    704   ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
    705   ++num_pending_readers_;
    706   if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
    707     self->CheckEmptyCheckpointFromMutex();
    708   }
    709   if (futex(state_.Address(), FUTEX_WAIT_PRIVATE, cur_state, nullptr, nullptr, 0) != 0) {
    710     if (errno != EAGAIN && errno != EINTR) {
    711       PLOG(FATAL) << "futex wait failed for " << name_;
    712     }
    713   }
    714   --num_pending_readers_;
    715 }
    716 #endif
    717 
    718 bool ReaderWriterMutex::SharedTryLock(Thread* self) {
    719   DCHECK(self == nullptr || self == Thread::Current());
    720 #if ART_USE_FUTEXES
    721   bool done = false;
    722   do {
    723     int32_t cur_state = state_.load(std::memory_order_relaxed);
    724     if (cur_state >= 0) {
    725       // Add as an extra reader and impose load/store ordering appropriate for lock acquisition.
    726       done = state_.CompareAndSetWeakAcquire(cur_state, cur_state + 1);
    727     } else {
    728       // Owner holds it exclusively.
    729       return false;
    730     }
    731   } while (!done);
    732 #else
    733   int result = pthread_rwlock_tryrdlock(&rwlock_);
    734   if (result == EBUSY) {
    735     return false;
    736   }
    737   if (result != 0) {
    738     errno = result;
    739     PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
    740   }
    741 #endif
    742   RegisterAsLocked(self);
    743   AssertSharedHeld(self);
    744   return true;
    745 }
    746 
    747 bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const {
    748   DCHECK(self == nullptr || self == Thread::Current());
    749   bool result;
    750   if (UNLIKELY(self == nullptr)) {  // Handle unattached threads.
    751     result = IsExclusiveHeld(self);  // TODO: a better best effort here.
    752   } else {
    753     result = (self->GetHeldMutex(level_) == this);
    754   }
    755   return result;
    756 }
    757 
    758 void ReaderWriterMutex::Dump(std::ostream& os) const {
    759   os << name_
    760       << " level=" << static_cast<int>(level_)
    761       << " owner=" << GetExclusiveOwnerTid()
    762 #if ART_USE_FUTEXES
    763       << " state=" << state_.load(std::memory_order_seq_cst)
    764       << " num_pending_writers=" << num_pending_writers_.load(std::memory_order_seq_cst)
    765       << " num_pending_readers=" << num_pending_readers_.load(std::memory_order_seq_cst)
    766 #endif
    767       << " ";
    768   DumpContention(os);
    769 }
    770 
    771 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) {
    772   mu.Dump(os);
    773   return os;
    774 }
    775 
    776 std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu) {
    777   mu.Dump(os);
    778   return os;
    779 }
    780 
    781 void ReaderWriterMutex::WakeupToRespondToEmptyCheckpoint() {
    782 #if ART_USE_FUTEXES
    783   // Wake up all the waiters so they will respond to the emtpy checkpoint.
    784   DCHECK(should_respond_to_empty_checkpoint_request_);
    785   if (UNLIKELY(num_pending_readers_.load(std::memory_order_relaxed) > 0 ||
    786                num_pending_writers_.load(std::memory_order_relaxed) > 0)) {
    787     futex(state_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
    788   }
    789 #else
    790   LOG(FATAL) << "Non futex case isn't supported.";
    791 #endif
    792 }
    793 
    794 ConditionVariable::ConditionVariable(const char* name, Mutex& guard)
    795     : name_(name), guard_(guard) {
    796 #if ART_USE_FUTEXES
    797   DCHECK_EQ(0, sequence_.load(std::memory_order_relaxed));
    798   num_waiters_ = 0;
    799 #else
    800   pthread_condattr_t cond_attrs;
    801   CHECK_MUTEX_CALL(pthread_condattr_init, (&cond_attrs));
    802 #if !defined(__APPLE__)
    803   // Apple doesn't have CLOCK_MONOTONIC or pthread_condattr_setclock.
    804   CHECK_MUTEX_CALL(pthread_condattr_setclock, (&cond_attrs, CLOCK_MONOTONIC));
    805 #endif
    806   CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, &cond_attrs));
    807 #endif
    808 }
    809 
    810 ConditionVariable::~ConditionVariable() {
    811 #if ART_USE_FUTEXES
    812   if (num_waiters_!= 0) {
    813     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
    814     LOG(is_safe_to_call_abort ? FATAL : WARNING)
    815         << "ConditionVariable::~ConditionVariable for " << name_
    816         << " called with " << num_waiters_ << " waiters.";
    817   }
    818 #else
    819   // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
    820   // may still be using condition variables.
    821   int rc = pthread_cond_destroy(&cond_);
    822   if (rc != 0) {
    823     errno = rc;
    824     bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
    825     PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_cond_destroy failed for " << name_;
    826   }
    827 #endif
    828 }
    829 
    830 void ConditionVariable::Broadcast(Thread* self) {
    831   DCHECK(self == nullptr || self == Thread::Current());
    832   // TODO: enable below, there's a race in thread creation that causes false failures currently.
    833   // guard_.AssertExclusiveHeld(self);
    834   DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self));
    835 #if ART_USE_FUTEXES
    836   RequeueWaiters(std::numeric_limits<int32_t>::max());
    837 #else
    838   CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_));
    839 #endif
    840 }
    841 
    842 #if ART_USE_FUTEXES
    843 void ConditionVariable::RequeueWaiters(int32_t count) {
    844   if (num_waiters_ > 0) {
    845     sequence_++;  // Indicate a signal occurred.
    846     // Move waiters from the condition variable's futex to the guard's futex,
    847     // so that they will be woken up when the mutex is released.
    848     bool done = futex(sequence_.Address(),
    849                       FUTEX_REQUEUE_PRIVATE,
    850                       /* Threads to wake */ 0,
    851                       /* Threads to requeue*/ reinterpret_cast<const timespec*>(count),
    852                       guard_.state_and_contenders_.Address(),
    853                       0) != -1;
    854     if (!done && errno != EAGAIN && errno != EINTR) {
    855       PLOG(FATAL) << "futex requeue failed for " << name_;
    856     }
    857   }
    858 }
    859 #endif
    860 
    861 
    862 void ConditionVariable::Signal(Thread* self) {
    863   DCHECK(self == nullptr || self == Thread::Current());
    864   guard_.AssertExclusiveHeld(self);
    865 #if ART_USE_FUTEXES
    866   RequeueWaiters(1);
    867 #else
    868   CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_));
    869 #endif
    870 }
    871 
    872 void ConditionVariable::Wait(Thread* self) {
    873   guard_.CheckSafeToWait(self);
    874   WaitHoldingLocks(self);
    875 }
    876 
    877 void ConditionVariable::WaitHoldingLocks(Thread* self) {
    878   DCHECK(self == nullptr || self == Thread::Current());
    879   guard_.AssertExclusiveHeld(self);
    880   unsigned int old_recursion_count = guard_.recursion_count_;
    881 #if ART_USE_FUTEXES
    882   num_waiters_++;
    883   // Ensure the Mutex is contended so that requeued threads are awoken.
    884   guard_.increment_contenders();
    885   guard_.recursion_count_ = 1;
    886   int32_t cur_sequence = sequence_.load(std::memory_order_relaxed);
    887   guard_.ExclusiveUnlock(self);
    888   if (futex(sequence_.Address(), FUTEX_WAIT_PRIVATE, cur_sequence, nullptr, nullptr, 0) != 0) {
    889     // Futex failed, check it is an expected error.
    890     // EAGAIN == EWOULDBLK, so we let the caller try again.
    891     // EINTR implies a signal was sent to this thread.
    892     if ((errno != EINTR) && (errno != EAGAIN)) {
    893       PLOG(FATAL) << "futex wait failed for " << name_;
    894     }
    895   }
    896   if (self != nullptr) {
    897     JNIEnvExt* const env = self->GetJniEnv();
    898     if (UNLIKELY(env != nullptr && env->IsRuntimeDeleted())) {
    899       CHECK(self->IsDaemon());
    900       // If the runtime has been deleted, then we cannot proceed. Just sleep forever. This may
    901       // occur for user daemon threads that get a spurious wakeup. This occurs for test 132 with
    902       // --host and --gdb.
    903       // After we wake up, the runtime may have been shutdown, which means that this condition may
    904       // have been deleted. It is not safe to retry the wait.
    905       SleepForever();
    906     }
    907   }
    908   guard_.ExclusiveLock(self);
    909   CHECK_GT(num_waiters_, 0);
    910   num_waiters_--;
    911   // We awoke and so no longer require awakes from the guard_'s unlock.
    912   CHECK_GT(guard_.get_contenders(), 0);
    913   guard_.decrement_contenders();
    914 #else
    915   pid_t old_owner = guard_.GetExclusiveOwnerTid();
    916   guard_.exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
    917   guard_.recursion_count_ = 0;
    918   CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_));
    919   guard_.exclusive_owner_.store(old_owner, std::memory_order_relaxed);
    920 #endif
    921   guard_.recursion_count_ = old_recursion_count;
    922 }
    923 
    924 bool ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) {
    925   DCHECK(self == nullptr || self == Thread::Current());
    926   bool timed_out = false;
    927   guard_.AssertExclusiveHeld(self);
    928   guard_.CheckSafeToWait(self);
    929   unsigned int old_recursion_count = guard_.recursion_count_;
    930 #if ART_USE_FUTEXES
    931   timespec rel_ts;
    932   InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts);
    933   num_waiters_++;
    934   // Ensure the Mutex is contended so that requeued threads are awoken.
    935   guard_.increment_contenders();
    936   guard_.recursion_count_ = 1;
    937   int32_t cur_sequence = sequence_.load(std::memory_order_relaxed);
    938   guard_.ExclusiveUnlock(self);
    939   if (futex(sequence_.Address(), FUTEX_WAIT_PRIVATE, cur_sequence, &rel_ts, nullptr, 0) != 0) {
    940     if (errno == ETIMEDOUT) {
    941       // Timed out we're done.
    942       timed_out = true;
    943     } else if ((errno == EAGAIN) || (errno == EINTR)) {
    944       // A signal or ConditionVariable::Signal/Broadcast has come in.
    945     } else {
    946       PLOG(FATAL) << "timed futex wait failed for " << name_;
    947     }
    948   }
    949   guard_.ExclusiveLock(self);
    950   CHECK_GT(num_waiters_, 0);
    951   num_waiters_--;
    952   // We awoke and so no longer require awakes from the guard_'s unlock.
    953   CHECK_GT(guard_.get_contenders(), 0);
    954   guard_.decrement_contenders();
    955 #else
    956 #if !defined(__APPLE__)
    957   int clock = CLOCK_MONOTONIC;
    958 #else
    959   int clock = CLOCK_REALTIME;
    960 #endif
    961   pid_t old_owner = guard_.GetExclusiveOwnerTid();
    962   guard_.exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
    963   guard_.recursion_count_ = 0;
    964   timespec ts;
    965   InitTimeSpec(true, clock, ms, ns, &ts);
    966   int rc;
    967   while ((rc = pthread_cond_timedwait(&cond_, &guard_.mutex_, &ts)) == EINTR) {
    968     continue;
    969   }
    970 
    971   if (rc == ETIMEDOUT) {
    972     timed_out = true;
    973   } else if (rc != 0) {
    974     errno = rc;
    975     PLOG(FATAL) << "TimedWait failed for " << name_;
    976   }
    977   guard_.exclusive_owner_.store(old_owner, std::memory_order_relaxed);
    978 #endif
    979   guard_.recursion_count_ = old_recursion_count;
    980   return timed_out;
    981 }
    982 
    983 }  // namespace art
    984