1 /******************************************************************************* 2 * Copyright 2010-2018 Intel Corporation 3 * All Rights Reserved. 4 * 5 * If this software was obtained under the Intel Simplified Software License, 6 * the following terms apply: 7 * 8 * The source code, information and material ("Material") contained herein is 9 * owned by Intel Corporation or its suppliers or licensors, and title to such 10 * Material remains with Intel Corporation or its suppliers or licensors. The 11 * Material contains proprietary information of Intel or its suppliers and 12 * licensors. The Material is protected by worldwide copyright laws and treaty 13 * provisions. No part of the Material may be used, copied, reproduced, 14 * modified, published, uploaded, posted, transmitted, distributed or disclosed 15 * in any way without Intel's prior express written permission. No license under 16 * any patent, copyright or other intellectual property rights in the Material 17 * is granted to or conferred upon you, either expressly, by implication, 18 * inducement, estoppel or otherwise. Any license under such intellectual 19 * property rights must be express and approved by Intel in writing. 20 * 21 * Unless otherwise agreed by Intel in writing, you may not remove or alter this 22 * notice or any other notice embedded in Materials by Intel or Intel's 23 * suppliers or licensors in any way. 24 * 25 * 26 * If this software was obtained under the Apache License, Version 2.0 (the 27 * "License"), the following terms apply: 28 * 29 * You may not use this file except in compliance with the License. You may 30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 31 * 32 * 33 * Unless required by applicable law or agreed to in writing, software 34 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT 35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 36 * 37 * See the License for the specific language governing permissions and 38 * limitations under the License. 39 *******************************************************************************/ 40 41 /* 42 // Purpose: 43 // Intel(R) Integrated Performance Primitives 44 // Cryptographic Primitives 45 // Internal GF(p) basic Definitions & Function Prototypes 46 // 47 */ 48 49 #if !defined(_PCP_GFP_H_) 50 #define _PCP_GFP_H_ 51 52 #include "owncp.h" 53 #include "pcpgfpmethod.h" 54 #include "pcpmontgomery.h" 55 56 /* GF element */ 57 typedef struct _cpGFpElement { 58 IppCtxId idCtx; /* GF() element ident */ 59 int length; /* length of element (in BNU_CHUNK_T) */ 60 BNU_CHUNK_T* pData; 61 } cpGFpElement; 62 63 #define GFPE_ID(pCtx) ((pCtx)->idCtx) 64 #define GFPE_ROOM(pCtx) ((pCtx)->length) 65 #define GFPE_DATA(pCtx) ((pCtx)->pData) 66 67 #define GFPE_TEST_ID(pCtx) (GFPE_ID((pCtx))==idCtxGFPE) 68 69 70 /* GF(p) context */ 71 typedef struct _cpGFp { 72 IppCtxId idCtx; /* GFp spec ident */ 73 gsModEngine* pGFE; /* arithmethic engine */ 74 } cpGFp; 75 76 #define GFP_ALIGNMENT ((int)(sizeof(void*))) 77 78 /* Local definitions */ 79 #define GFP_MAX_BITSIZE (IPP_MAX_GF_BITSIZE) /* max bitsize for GF element */ 80 #define GFP_POOL_SIZE (16)//(IPP_MAX_EXPONENT_NUM+3) /* num of elements into the pool */ 81 #define GFP_RAND_ADD_BITS (128) /* parameter of random element generation ?? == febits/2 */ 82 83 #define GFP_ID(pCtx) ((pCtx)->idCtx) 84 #define GFP_PMA(pCtx) ((pCtx)->pGFE) 85 86 #define GFP_PARENT(pCtx) MOD_PARENT((pCtx)) 87 #define GFP_EXTDEGREE(pCtx) MOD_EXTDEG((pCtx)) 88 #define GFP_FEBITLEN(pCtx) MOD_BITSIZE((pCtx)) 89 #define GFP_FELEN(pCtx) MOD_LEN((pCtx)) 90 #define GFP_FELEN32(pCtx) MOD_LEN32((pCtx)) 91 #define GFP_PELEN(pCtx) MOD_PELEN((pCtx)) 92 #define GFP_METHOD(pCtx) MOD_METHOD((pCtx)) 93 #define GFP_MODULUS(pCtx) MOD_MODULUS((pCtx)) 94 #define GFP_MNT_FACTOR(pCtx) MOD_MNT_FACTOR((pCtx)) 95 #define GFP_MNT_R(pCtx) MOD_MNT_R((pCtx)) 96 #define GFP_MNT_RR(pCtx) MOD_MNT_R2((pCtx)) 97 #define GFP_HMODULUS(pCtx) MOD_HMODULUS((pCtx)) 98 #define GFP_QNR(pCtx) MOD_QNR((pCtx)) 99 #define GFP_POOL(pCtx) MOD_POOL_BUF((pCtx)) 100 #define GFP_MAXPOOL(pCtx) MOD_MAXPOOL((pCtx)) 101 #define GFP_USEDPOOL(pCtx) MOD_USEDPOOL((pCtx)) 102 103 #define GFP_IS_BASIC(pCtx) (GFP_PARENT((pCtx))==NULL) 104 #define GFP_TEST_ID(pCtx) (GFP_ID((pCtx))==idCtxGFP) 105 106 /* 107 // get/release n element from/to the pool 108 */ 109 #define cpGFpGetPool(n, gfe) gsModPoolAlloc((gfe), (n)) 110 #define cpGFpReleasePool(n, gfe) gsModPoolFree((gfe), (n)) 111 112 113 __INLINE int cpGFpElementLen(const BNU_CHUNK_T* pE, int nsE) 114 { 115 for(; nsE>1 && 0==pE[nsE-1]; nsE--) ; 116 return nsE; 117 } 118 __INLINE BNU_CHUNK_T* cpGFpElementCopy(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pE, int nsE) 119 { 120 int n; 121 for(n=0; n<nsE; n++) pR[n] = pE[n]; 122 return pR; 123 } 124 __INLINE BNU_CHUNK_T* cpGFpElementPadd(BNU_CHUNK_T* pE, int nsE, BNU_CHUNK_T filler) 125 { 126 int n; 127 for(n=0; n<nsE; n++) pE[n] = filler; 128 return pE; 129 } 130 __INLINE BNU_CHUNK_T* cpGFpElementCopyPadd(BNU_CHUNK_T* pR, int nsR, const BNU_CHUNK_T* pE, int nsE) 131 { 132 int n; 133 for(n=0; n<nsE; n++) pR[n] = pE[n]; 134 for(; n<nsR; n++) pR[n] = 0; 135 return pR; 136 } 137 __INLINE int cpGFpElementCmp(const BNU_CHUNK_T* pE, const BNU_CHUNK_T* pX, int nsE) 138 { 139 for(; nsE>1 && pE[nsE-1]==pX[nsE-1]; nsE--) 140 ; 141 return pE[nsE-1]==pX[nsE-1]? 0 : pE[nsE-1]>pX[nsE-1]? 1:-1; 142 } 143 144 __INLINE int cpGFpElementIsEquChunk(const BNU_CHUNK_T* pE, int nsE, BNU_CHUNK_T x) 145 { 146 int isEqu = (pE[0] == x); 147 return isEqu && (1==cpGFpElementLen(pE, nsE)); 148 } 149 150 __INLINE BNU_CHUNK_T* cpGFpElementSetChunk(BNU_CHUNK_T* pR, int nsR, BNU_CHUNK_T x) 151 { 152 return cpGFpElementCopyPadd(pR, nsR, &x, 1); 153 } 154 155 __INLINE BNU_CHUNK_T* cpGFpAdd(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsModEngine* pGFE) 156 { 157 return GFP_METHOD(pGFE)->add(pR, pA, pB, pGFE); 158 } 159 160 __INLINE BNU_CHUNK_T* cpGFpSub(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsModEngine* pGFE) 161 { 162 return GFP_METHOD(pGFE)->sub(pR, pA, pB, pGFE); 163 } 164 165 __INLINE BNU_CHUNK_T* cpGFpNeg(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsModEngine* pGFE) 166 { 167 return GFP_METHOD(pGFE)->neg(pR, pA, pGFE); 168 } 169 170 __INLINE BNU_CHUNK_T* cpGFpMul(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pB, gsModEngine* pGFE) 171 { 172 return GFP_METHOD(pGFE)->mul(pR, pA, pB, pGFE); 173 } 174 175 __INLINE BNU_CHUNK_T* cpGFpSqr(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsModEngine* pGFE) 176 { 177 return GFP_METHOD(pGFE)->sqr(pR, pA, pGFE); 178 } 179 180 __INLINE BNU_CHUNK_T* cpGFpHalve(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsModEngine* pGFE) 181 { 182 return GFP_METHOD(pGFE)->div2(pR, pA, pGFE); 183 } 184 185 186 #define GFP_LT(a,b,size) (-1==cpGFpElementCmp((a),(b),(size))) 187 #define GFP_EQ(a,b,size) ( 0==cpGFpElementCmp((a),(b),(size))) 188 #define GFP_GT(a,b,size) ( 1==cpGFpElementCmp((a),(b),(size))) 189 190 #define GFP_IS_ZERO(a,size) cpGFpElementIsEquChunk((a),(size), 0) 191 #define GFP_IS_ONE(a,size) cpGFpElementIsEquChunk((a),(size), 1) 192 193 #define GFP_ZERO(a,size) cpGFpElementSetChunk((a),(size), 0) 194 #define GFP_ONE(a,size) cpGFpElementSetChunk((a),(size), 1) 195 196 #define GFP_IS_EVEN(a) (0==((a)[0]&1)) 197 #define GFP_IS_ODD(a) (1==((a)[0]&1)) 198 199 200 /* construct GF element */ 201 __INLINE IppsGFpElement* cpGFpElementConstruct(IppsGFpElement* pR, BNU_CHUNK_T* pDataBufer, int ns) 202 { 203 GFPE_ID(pR) = idCtxGFPE; 204 GFPE_ROOM(pR) = ns; 205 GFPE_DATA(pR) = pDataBufer; 206 return pR; 207 } 208 209 210 /* size of GFp context, init and setup */ 211 #define cpGFpGetSize OWNAPI(cpGFpGetSize) 212 int cpGFpGetSize(int feBitSize, int peBitSize, int numpe); 213 214 #define cpGFpInitGFp OWNAPI(cpGFpInitGFp) 215 IppStatus cpGFpInitGFp(int primeBitSize, IppsGFpState* pGF); 216 217 #define cpGFpSetGFp OWNAPI(cpGFpSetGFp) 218 IppStatus cpGFpSetGFp(const BNU_CHUNK_T* pPrime, int primeBitSize, const IppsGFpMethod* method, IppsGFpState* pGF); 219 220 /* operations */ 221 #define cpGFpRand OWNAPI(cpGFpRand) 222 BNU_CHUNK_T* cpGFpRand(BNU_CHUNK_T* pR, gsModEngine* pGFE, IppBitSupplier rndFunc, void* pRndParam); 223 224 #define cpGFpSet OWNAPI(cpGFpSet) 225 BNU_CHUNK_T* cpGFpSet (BNU_CHUNK_T* pR, const BNU_CHUNK_T* pDataA, int nsA, gsModEngine* pGFE); 226 227 #define cpGFpGet OWNAPI(cpGFpGet) 228 BNU_CHUNK_T* cpGFpGet (BNU_CHUNK_T* pDataA, int nsA, const BNU_CHUNK_T* pR, gsModEngine* pGFE); 229 230 #define cpGFpSetOctString OWNAPI(cpGFpSetOctString) 231 BNU_CHUNK_T* cpGFpSetOctString(BNU_CHUNK_T* pR, const Ipp8u* pStr, int strSize, gsModEngine* pGFE); 232 233 #define cpGFpGetOctString OWNAPI(cpGFpGetOctString) 234 Ipp8u* cpGFpGetOctString(Ipp8u* pStr, int strSize, const BNU_CHUNK_T* pA, gsModEngine* pGFE); 235 236 #define cpGFpInv OWNAPI(cpGFpInv) 237 BNU_CHUNK_T* cpGFpInv (BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsModEngine* pGFE); 238 239 #define cpGFpExp OWNAPI(cpGFpExp) 240 BNU_CHUNK_T* cpGFpExp (BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, const BNU_CHUNK_T* pE, int nsE, gsModEngine* pGFE); 241 242 #define cpGFpSqrt OWNAPI(cpGFpSqrt) 243 int cpGFpSqrt(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsModEngine* pGFE); 244 245 #define cpGFEqnr OWNAPI(cpGFEqnr) 246 void cpGFEqnr(gsModEngine* pGFE); 247 248 #endif /* _PCP_GFP_H_ */ 249