Home | History | Annotate | Download | only in aarch64
      1 // Copyright 2015, VIXL authors
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are met:
      6 //
      7 //   * Redistributions of source code must retain the above copyright notice,
      8 //     this list of conditions and the following disclaimer.
      9 //   * Redistributions in binary form must reproduce the above copyright notice,
     10 //     this list of conditions and the following disclaimer in the documentation
     11 //     and/or other materials provided with the distribution.
     12 //   * Neither the name of ARM Limited nor the names of its contributors may be
     13 //     used to endorse or promote products derived from this software without
     14 //     specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
     17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
     20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26 
     27 #include "instructions-aarch64.h"
     28 #include "assembler-aarch64.h"
     29 
     30 namespace vixl {
     31 namespace aarch64 {
     32 
     33 static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
     34                                     uint64_t value,
     35                                     unsigned width) {
     36   VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
     37               (width == 32));
     38   VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
     39   uint64_t result = value & ((UINT64_C(1) << width) - 1);
     40   for (unsigned i = width; i < reg_size; i *= 2) {
     41     result |= (result << i);
     42   }
     43   return result;
     44 }
     45 
     46 
     47 bool Instruction::IsLoad() const {
     48   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
     49     return false;
     50   }
     51 
     52   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
     53     return Mask(LoadStorePairLBit) != 0;
     54   } else {
     55     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
     56     switch (op) {
     57       case LDRB_w:
     58       case LDRH_w:
     59       case LDR_w:
     60       case LDR_x:
     61       case LDRSB_w:
     62       case LDRSB_x:
     63       case LDRSH_w:
     64       case LDRSH_x:
     65       case LDRSW_x:
     66       case LDR_b:
     67       case LDR_h:
     68       case LDR_s:
     69       case LDR_d:
     70       case LDR_q:
     71         return true;
     72       default:
     73         return false;
     74     }
     75   }
     76 }
     77 
     78 
     79 bool Instruction::IsStore() const {
     80   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
     81     return false;
     82   }
     83 
     84   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
     85     return Mask(LoadStorePairLBit) == 0;
     86   } else {
     87     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
     88     switch (op) {
     89       case STRB_w:
     90       case STRH_w:
     91       case STR_w:
     92       case STR_x:
     93       case STR_b:
     94       case STR_h:
     95       case STR_s:
     96       case STR_d:
     97       case STR_q:
     98         return true;
     99       default:
    100         return false;
    101     }
    102   }
    103 }
    104 
    105 
    106 // Logical immediates can't encode zero, so a return value of zero is used to
    107 // indicate a failure case. Specifically, where the constraints on imm_s are
    108 // not met.
    109 uint64_t Instruction::GetImmLogical() const {
    110   unsigned reg_size = GetSixtyFourBits() ? kXRegSize : kWRegSize;
    111   int32_t n = GetBitN();
    112   int32_t imm_s = GetImmSetBits();
    113   int32_t imm_r = GetImmRotate();
    114 
    115   // An integer is constructed from the n, imm_s and imm_r bits according to
    116   // the following table:
    117   //
    118   //  N   imms    immr    size        S             R
    119   //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
    120   //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
    121   //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
    122   //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
    123   //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
    124   //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
    125   // (s bits must not be all set)
    126   //
    127   // A pattern is constructed of size bits, where the least significant S+1
    128   // bits are set. The pattern is rotated right by R, and repeated across a
    129   // 32 or 64-bit value, depending on destination register width.
    130   //
    131 
    132   if (n == 1) {
    133     if (imm_s == 0x3f) {
    134       return 0;
    135     }
    136     uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
    137     return RotateRight(bits, imm_r, 64);
    138   } else {
    139     if ((imm_s >> 1) == 0x1f) {
    140       return 0;
    141     }
    142     for (int width = 0x20; width >= 0x2; width >>= 1) {
    143       if ((imm_s & width) == 0) {
    144         int mask = width - 1;
    145         if ((imm_s & mask) == mask) {
    146           return 0;
    147         }
    148         uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
    149         return RepeatBitsAcrossReg(reg_size,
    150                                    RotateRight(bits, imm_r & mask, width),
    151                                    width);
    152       }
    153     }
    154   }
    155   VIXL_UNREACHABLE();
    156   return 0;
    157 }
    158 
    159 
    160 uint32_t Instruction::GetImmNEONabcdefgh() const {
    161   return GetImmNEONabc() << 5 | GetImmNEONdefgh();
    162 }
    163 
    164 
    165 Float16 Instruction::Imm8ToFloat16(uint32_t imm8) {
    166   // Imm8: abcdefgh (8 bits)
    167   // Half: aBbb.cdef.gh00.0000 (16 bits)
    168   // where B is b ^ 1
    169   uint32_t bits = imm8;
    170   uint16_t bit7 = (bits >> 7) & 0x1;
    171   uint16_t bit6 = (bits >> 6) & 0x1;
    172   uint16_t bit5_to_0 = bits & 0x3f;
    173   uint16_t result = (bit7 << 15) | ((4 - bit6) << 12) | (bit5_to_0 << 6);
    174   return RawbitsToFloat16(result);
    175 }
    176 
    177 
    178 float Instruction::Imm8ToFP32(uint32_t imm8) {
    179   // Imm8: abcdefgh (8 bits)
    180   // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
    181   // where B is b ^ 1
    182   uint32_t bits = imm8;
    183   uint32_t bit7 = (bits >> 7) & 0x1;
    184   uint32_t bit6 = (bits >> 6) & 0x1;
    185   uint32_t bit5_to_0 = bits & 0x3f;
    186   uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
    187 
    188   return RawbitsToFloat(result);
    189 }
    190 
    191 
    192 Float16 Instruction::GetImmFP16() const { return Imm8ToFloat16(GetImmFP()); }
    193 
    194 
    195 float Instruction::GetImmFP32() const { return Imm8ToFP32(GetImmFP()); }
    196 
    197 
    198 double Instruction::Imm8ToFP64(uint32_t imm8) {
    199   // Imm8: abcdefgh (8 bits)
    200   // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
    201   //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
    202   // where B is b ^ 1
    203   uint32_t bits = imm8;
    204   uint64_t bit7 = (bits >> 7) & 0x1;
    205   uint64_t bit6 = (bits >> 6) & 0x1;
    206   uint64_t bit5_to_0 = bits & 0x3f;
    207   uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
    208 
    209   return RawbitsToDouble(result);
    210 }
    211 
    212 
    213 double Instruction::GetImmFP64() const { return Imm8ToFP64(GetImmFP()); }
    214 
    215 
    216 Float16 Instruction::GetImmNEONFP16() const {
    217   return Imm8ToFloat16(GetImmNEONabcdefgh());
    218 }
    219 
    220 
    221 float Instruction::GetImmNEONFP32() const {
    222   return Imm8ToFP32(GetImmNEONabcdefgh());
    223 }
    224 
    225 
    226 double Instruction::GetImmNEONFP64() const {
    227   return Imm8ToFP64(GetImmNEONabcdefgh());
    228 }
    229 
    230 
    231 unsigned CalcLSDataSize(LoadStoreOp op) {
    232   VIXL_ASSERT((LSSize_offset + LSSize_width) == (kInstructionSize * 8));
    233   unsigned size = static_cast<Instr>(op) >> LSSize_offset;
    234   if ((op & LSVector_mask) != 0) {
    235     // Vector register memory operations encode the access size in the "size"
    236     // and "opc" fields.
    237     if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
    238       size = kQRegSizeInBytesLog2;
    239     }
    240   }
    241   return size;
    242 }
    243 
    244 
    245 unsigned CalcLSPairDataSize(LoadStorePairOp op) {
    246   VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes);
    247   VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes);
    248   switch (op) {
    249     case STP_q:
    250     case LDP_q:
    251       return kQRegSizeInBytesLog2;
    252     case STP_x:
    253     case LDP_x:
    254     case STP_d:
    255     case LDP_d:
    256       return kXRegSizeInBytesLog2;
    257     default:
    258       return kWRegSizeInBytesLog2;
    259   }
    260 }
    261 
    262 
    263 int Instruction::GetImmBranchRangeBitwidth(ImmBranchType branch_type) {
    264   switch (branch_type) {
    265     case UncondBranchType:
    266       return ImmUncondBranch_width;
    267     case CondBranchType:
    268       return ImmCondBranch_width;
    269     case CompareBranchType:
    270       return ImmCmpBranch_width;
    271     case TestBranchType:
    272       return ImmTestBranch_width;
    273     default:
    274       VIXL_UNREACHABLE();
    275       return 0;
    276   }
    277 }
    278 
    279 
    280 int32_t Instruction::GetImmBranchForwardRange(ImmBranchType branch_type) {
    281   int32_t encoded_max = 1 << (GetImmBranchRangeBitwidth(branch_type) - 1);
    282   return encoded_max * kInstructionSize;
    283 }
    284 
    285 
    286 bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
    287                                      int64_t offset) {
    288   return IsIntN(GetImmBranchRangeBitwidth(branch_type), offset);
    289 }
    290 
    291 
    292 const Instruction* Instruction::GetImmPCOffsetTarget() const {
    293   const Instruction* base = this;
    294   ptrdiff_t offset;
    295   if (IsPCRelAddressing()) {
    296     // ADR and ADRP.
    297     offset = GetImmPCRel();
    298     if (Mask(PCRelAddressingMask) == ADRP) {
    299       base = AlignDown(base, kPageSize);
    300       offset *= kPageSize;
    301     } else {
    302       VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
    303     }
    304   } else {
    305     // All PC-relative branches.
    306     VIXL_ASSERT(GetBranchType() != UnknownBranchType);
    307     // Relative branch offsets are instruction-size-aligned.
    308     offset = GetImmBranch() * static_cast<int>(kInstructionSize);
    309   }
    310   return base + offset;
    311 }
    312 
    313 
    314 int Instruction::GetImmBranch() const {
    315   switch (GetBranchType()) {
    316     case CondBranchType:
    317       return GetImmCondBranch();
    318     case UncondBranchType:
    319       return GetImmUncondBranch();
    320     case CompareBranchType:
    321       return GetImmCmpBranch();
    322     case TestBranchType:
    323       return GetImmTestBranch();
    324     default:
    325       VIXL_UNREACHABLE();
    326   }
    327   return 0;
    328 }
    329 
    330 
    331 void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
    332   if (IsPCRelAddressing()) {
    333     SetPCRelImmTarget(target);
    334   } else {
    335     SetBranchImmTarget(target);
    336   }
    337 }
    338 
    339 
    340 void Instruction::SetPCRelImmTarget(const Instruction* target) {
    341   ptrdiff_t imm21;
    342   if ((Mask(PCRelAddressingMask) == ADR)) {
    343     imm21 = target - this;
    344   } else {
    345     VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
    346     uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
    347     uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
    348     imm21 = target_page - this_page;
    349   }
    350   Instr imm = Assembler::ImmPCRelAddress(static_cast<int32_t>(imm21));
    351 
    352   SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
    353 }
    354 
    355 
    356 void Instruction::SetBranchImmTarget(const Instruction* target) {
    357   VIXL_ASSERT(((target - this) & 3) == 0);
    358   Instr branch_imm = 0;
    359   uint32_t imm_mask = 0;
    360   int offset = static_cast<int>((target - this) >> kInstructionSizeLog2);
    361   switch (GetBranchType()) {
    362     case CondBranchType: {
    363       branch_imm = Assembler::ImmCondBranch(offset);
    364       imm_mask = ImmCondBranch_mask;
    365       break;
    366     }
    367     case UncondBranchType: {
    368       branch_imm = Assembler::ImmUncondBranch(offset);
    369       imm_mask = ImmUncondBranch_mask;
    370       break;
    371     }
    372     case CompareBranchType: {
    373       branch_imm = Assembler::ImmCmpBranch(offset);
    374       imm_mask = ImmCmpBranch_mask;
    375       break;
    376     }
    377     case TestBranchType: {
    378       branch_imm = Assembler::ImmTestBranch(offset);
    379       imm_mask = ImmTestBranch_mask;
    380       break;
    381     }
    382     default:
    383       VIXL_UNREACHABLE();
    384   }
    385   SetInstructionBits(Mask(~imm_mask) | branch_imm);
    386 }
    387 
    388 
    389 void Instruction::SetImmLLiteral(const Instruction* source) {
    390   VIXL_ASSERT(IsWordAligned(source));
    391   ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
    392   Instr imm = Assembler::ImmLLiteral(static_cast<int>(offset));
    393   Instr mask = ImmLLiteral_mask;
    394 
    395   SetInstructionBits(Mask(~mask) | imm);
    396 }
    397 
    398 
    399 VectorFormat VectorFormatHalfWidth(VectorFormat vform) {
    400   VIXL_ASSERT(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
    401               vform == kFormatH || vform == kFormatS || vform == kFormatD);
    402   switch (vform) {
    403     case kFormat8H:
    404       return kFormat8B;
    405     case kFormat4S:
    406       return kFormat4H;
    407     case kFormat2D:
    408       return kFormat2S;
    409     case kFormatH:
    410       return kFormatB;
    411     case kFormatS:
    412       return kFormatH;
    413     case kFormatD:
    414       return kFormatS;
    415     default:
    416       VIXL_UNREACHABLE();
    417       return kFormatUndefined;
    418   }
    419 }
    420 
    421 
    422 VectorFormat VectorFormatDoubleWidth(VectorFormat vform) {
    423   VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
    424               vform == kFormatB || vform == kFormatH || vform == kFormatS);
    425   switch (vform) {
    426     case kFormat8B:
    427       return kFormat8H;
    428     case kFormat4H:
    429       return kFormat4S;
    430     case kFormat2S:
    431       return kFormat2D;
    432     case kFormatB:
    433       return kFormatH;
    434     case kFormatH:
    435       return kFormatS;
    436     case kFormatS:
    437       return kFormatD;
    438     default:
    439       VIXL_UNREACHABLE();
    440       return kFormatUndefined;
    441   }
    442 }
    443 
    444 
    445 VectorFormat VectorFormatFillQ(VectorFormat vform) {
    446   switch (vform) {
    447     case kFormatB:
    448     case kFormat8B:
    449     case kFormat16B:
    450       return kFormat16B;
    451     case kFormatH:
    452     case kFormat4H:
    453     case kFormat8H:
    454       return kFormat8H;
    455     case kFormatS:
    456     case kFormat2S:
    457     case kFormat4S:
    458       return kFormat4S;
    459     case kFormatD:
    460     case kFormat1D:
    461     case kFormat2D:
    462       return kFormat2D;
    463     default:
    464       VIXL_UNREACHABLE();
    465       return kFormatUndefined;
    466   }
    467 }
    468 
    469 VectorFormat VectorFormatHalfWidthDoubleLanes(VectorFormat vform) {
    470   switch (vform) {
    471     case kFormat4H:
    472       return kFormat8B;
    473     case kFormat8H:
    474       return kFormat16B;
    475     case kFormat2S:
    476       return kFormat4H;
    477     case kFormat4S:
    478       return kFormat8H;
    479     case kFormat1D:
    480       return kFormat2S;
    481     case kFormat2D:
    482       return kFormat4S;
    483     default:
    484       VIXL_UNREACHABLE();
    485       return kFormatUndefined;
    486   }
    487 }
    488 
    489 VectorFormat VectorFormatDoubleLanes(VectorFormat vform) {
    490   VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
    491   switch (vform) {
    492     case kFormat8B:
    493       return kFormat16B;
    494     case kFormat4H:
    495       return kFormat8H;
    496     case kFormat2S:
    497       return kFormat4S;
    498     default:
    499       VIXL_UNREACHABLE();
    500       return kFormatUndefined;
    501   }
    502 }
    503 
    504 
    505 VectorFormat VectorFormatHalfLanes(VectorFormat vform) {
    506   VIXL_ASSERT(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
    507   switch (vform) {
    508     case kFormat16B:
    509       return kFormat8B;
    510     case kFormat8H:
    511       return kFormat4H;
    512     case kFormat4S:
    513       return kFormat2S;
    514     default:
    515       VIXL_UNREACHABLE();
    516       return kFormatUndefined;
    517   }
    518 }
    519 
    520 
    521 VectorFormat ScalarFormatFromLaneSize(int laneSize) {
    522   switch (laneSize) {
    523     case 8:
    524       return kFormatB;
    525     case 16:
    526       return kFormatH;
    527     case 32:
    528       return kFormatS;
    529     case 64:
    530       return kFormatD;
    531     default:
    532       VIXL_UNREACHABLE();
    533       return kFormatUndefined;
    534   }
    535 }
    536 
    537 
    538 VectorFormat ScalarFormatFromFormat(VectorFormat vform) {
    539   return ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
    540 }
    541 
    542 
    543 unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
    544   VIXL_ASSERT(vform != kFormatUndefined);
    545   switch (vform) {
    546     case kFormatB:
    547       return kBRegSize;
    548     case kFormatH:
    549       return kHRegSize;
    550     case kFormatS:
    551     case kFormat2H:
    552       return kSRegSize;
    553     case kFormatD:
    554       return kDRegSize;
    555     case kFormat8B:
    556     case kFormat4H:
    557     case kFormat2S:
    558     case kFormat1D:
    559       return kDRegSize;
    560     default:
    561       return kQRegSize;
    562   }
    563 }
    564 
    565 
    566 unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
    567   return RegisterSizeInBitsFromFormat(vform) / 8;
    568 }
    569 
    570 
    571 unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
    572   VIXL_ASSERT(vform != kFormatUndefined);
    573   switch (vform) {
    574     case kFormatB:
    575     case kFormat8B:
    576     case kFormat16B:
    577       return 8;
    578     case kFormatH:
    579     case kFormat2H:
    580     case kFormat4H:
    581     case kFormat8H:
    582       return 16;
    583     case kFormatS:
    584     case kFormat2S:
    585     case kFormat4S:
    586       return 32;
    587     case kFormatD:
    588     case kFormat1D:
    589     case kFormat2D:
    590       return 64;
    591     default:
    592       VIXL_UNREACHABLE();
    593       return 0;
    594   }
    595 }
    596 
    597 
    598 int LaneSizeInBytesFromFormat(VectorFormat vform) {
    599   return LaneSizeInBitsFromFormat(vform) / 8;
    600 }
    601 
    602 
    603 int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
    604   VIXL_ASSERT(vform != kFormatUndefined);
    605   switch (vform) {
    606     case kFormatB:
    607     case kFormat8B:
    608     case kFormat16B:
    609       return 0;
    610     case kFormatH:
    611     case kFormat2H:
    612     case kFormat4H:
    613     case kFormat8H:
    614       return 1;
    615     case kFormatS:
    616     case kFormat2S:
    617     case kFormat4S:
    618       return 2;
    619     case kFormatD:
    620     case kFormat1D:
    621     case kFormat2D:
    622       return 3;
    623     default:
    624       VIXL_UNREACHABLE();
    625       return 0;
    626   }
    627 }
    628 
    629 
    630 int LaneCountFromFormat(VectorFormat vform) {
    631   VIXL_ASSERT(vform != kFormatUndefined);
    632   switch (vform) {
    633     case kFormat16B:
    634       return 16;
    635     case kFormat8B:
    636     case kFormat8H:
    637       return 8;
    638     case kFormat4H:
    639     case kFormat4S:
    640       return 4;
    641     case kFormat2H:
    642     case kFormat2S:
    643     case kFormat2D:
    644       return 2;
    645     case kFormat1D:
    646     case kFormatB:
    647     case kFormatH:
    648     case kFormatS:
    649     case kFormatD:
    650       return 1;
    651     default:
    652       VIXL_UNREACHABLE();
    653       return 0;
    654   }
    655 }
    656 
    657 
    658 int MaxLaneCountFromFormat(VectorFormat vform) {
    659   VIXL_ASSERT(vform != kFormatUndefined);
    660   switch (vform) {
    661     case kFormatB:
    662     case kFormat8B:
    663     case kFormat16B:
    664       return 16;
    665     case kFormatH:
    666     case kFormat4H:
    667     case kFormat8H:
    668       return 8;
    669     case kFormatS:
    670     case kFormat2S:
    671     case kFormat4S:
    672       return 4;
    673     case kFormatD:
    674     case kFormat1D:
    675     case kFormat2D:
    676       return 2;
    677     default:
    678       VIXL_UNREACHABLE();
    679       return 0;
    680   }
    681 }
    682 
    683 
    684 // Does 'vform' indicate a vector format or a scalar format?
    685 bool IsVectorFormat(VectorFormat vform) {
    686   VIXL_ASSERT(vform != kFormatUndefined);
    687   switch (vform) {
    688     case kFormatB:
    689     case kFormatH:
    690     case kFormatS:
    691     case kFormatD:
    692       return false;
    693     default:
    694       return true;
    695   }
    696 }
    697 
    698 
    699 int64_t MaxIntFromFormat(VectorFormat vform) {
    700   return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
    701 }
    702 
    703 
    704 int64_t MinIntFromFormat(VectorFormat vform) {
    705   return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
    706 }
    707 
    708 
    709 uint64_t MaxUintFromFormat(VectorFormat vform) {
    710   return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
    711 }
    712 }  // namespace aarch64
    713 }  // namespace vixl
    714