Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_COMPILER_OPTIMIZING_NODES_H_
     18 #define ART_COMPILER_OPTIMIZING_NODES_H_
     19 
     20 #include <algorithm>
     21 #include <array>
     22 #include <type_traits>
     23 
     24 #include "base/arena_bit_vector.h"
     25 #include "base/arena_containers.h"
     26 #include "base/arena_object.h"
     27 #include "base/array_ref.h"
     28 #include "base/iteration_range.h"
     29 #include "base/mutex.h"
     30 #include "base/quasi_atomic.h"
     31 #include "base/stl_util.h"
     32 #include "base/transform_array_ref.h"
     33 #include "art_method.h"
     34 #include "data_type.h"
     35 #include "deoptimization_kind.h"
     36 #include "dex/dex_file.h"
     37 #include "dex/dex_file_types.h"
     38 #include "dex/invoke_type.h"
     39 #include "dex/method_reference.h"
     40 #include "entrypoints/quick/quick_entrypoints_enum.h"
     41 #include "handle.h"
     42 #include "handle_scope.h"
     43 #include "intrinsics_enum.h"
     44 #include "locations.h"
     45 #include "mirror/class.h"
     46 #include "mirror/method_type.h"
     47 #include "offsets.h"
     48 #include "utils/intrusive_forward_list.h"
     49 
     50 namespace art {
     51 
     52 class ArenaStack;
     53 class GraphChecker;
     54 class HBasicBlock;
     55 class HConstructorFence;
     56 class HCurrentMethod;
     57 class HDoubleConstant;
     58 class HEnvironment;
     59 class HFloatConstant;
     60 class HGraphBuilder;
     61 class HGraphVisitor;
     62 class HInstruction;
     63 class HIntConstant;
     64 class HInvoke;
     65 class HLongConstant;
     66 class HNullConstant;
     67 class HParameterValue;
     68 class HPhi;
     69 class HSuspendCheck;
     70 class HTryBoundary;
     71 class LiveInterval;
     72 class LocationSummary;
     73 class SlowPathCode;
     74 class SsaBuilder;
     75 
     76 namespace mirror {
     77 class DexCache;
     78 }  // namespace mirror
     79 
     80 static const int kDefaultNumberOfBlocks = 8;
     81 static const int kDefaultNumberOfSuccessors = 2;
     82 static const int kDefaultNumberOfPredecessors = 2;
     83 static const int kDefaultNumberOfExceptionalPredecessors = 0;
     84 static const int kDefaultNumberOfDominatedBlocks = 1;
     85 static const int kDefaultNumberOfBackEdges = 1;
     86 
     87 // The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation.
     88 static constexpr int32_t kMaxIntShiftDistance = 0x1f;
     89 // The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation.
     90 static constexpr int32_t kMaxLongShiftDistance = 0x3f;
     91 
     92 static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
     93 static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
     94 
     95 static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
     96 
     97 static constexpr uint32_t kNoDexPc = -1;
     98 
     99 inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
    100   // For the purposes of the compiler, the dex files must actually be the same object
    101   // if we want to safely treat them as the same. This is especially important for JIT
    102   // as custom class loaders can open the same underlying file (or memory) multiple
    103   // times and provide different class resolution but no two class loaders should ever
    104   // use the same DexFile object - doing so is an unsupported hack that can lead to
    105   // all sorts of weird failures.
    106   return &lhs == &rhs;
    107 }
    108 
    109 enum IfCondition {
    110   // All types.
    111   kCondEQ,  // ==
    112   kCondNE,  // !=
    113   // Signed integers and floating-point numbers.
    114   kCondLT,  // <
    115   kCondLE,  // <=
    116   kCondGT,  // >
    117   kCondGE,  // >=
    118   // Unsigned integers.
    119   kCondB,   // <
    120   kCondBE,  // <=
    121   kCondA,   // >
    122   kCondAE,  // >=
    123   // First and last aliases.
    124   kCondFirst = kCondEQ,
    125   kCondLast = kCondAE,
    126 };
    127 
    128 enum GraphAnalysisResult {
    129   kAnalysisSkipped,
    130   kAnalysisInvalidBytecode,
    131   kAnalysisFailThrowCatchLoop,
    132   kAnalysisFailAmbiguousArrayOp,
    133   kAnalysisFailIrreducibleLoopAndStringInit,
    134   kAnalysisSuccess,
    135 };
    136 
    137 template <typename T>
    138 static inline typename std::make_unsigned<T>::type MakeUnsigned(T x) {
    139   return static_cast<typename std::make_unsigned<T>::type>(x);
    140 }
    141 
    142 class HInstructionList : public ValueObject {
    143  public:
    144   HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
    145 
    146   void AddInstruction(HInstruction* instruction);
    147   void RemoveInstruction(HInstruction* instruction);
    148 
    149   // Insert `instruction` before/after an existing instruction `cursor`.
    150   void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
    151   void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
    152 
    153   // Return true if this list contains `instruction`.
    154   bool Contains(HInstruction* instruction) const;
    155 
    156   // Return true if `instruction1` is found before `instruction2` in
    157   // this instruction list and false otherwise.  Abort if none
    158   // of these instructions is found.
    159   bool FoundBefore(const HInstruction* instruction1,
    160                    const HInstruction* instruction2) const;
    161 
    162   bool IsEmpty() const { return first_instruction_ == nullptr; }
    163   void Clear() { first_instruction_ = last_instruction_ = nullptr; }
    164 
    165   // Update the block of all instructions to be `block`.
    166   void SetBlockOfInstructions(HBasicBlock* block) const;
    167 
    168   void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
    169   void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list);
    170   void Add(const HInstructionList& instruction_list);
    171 
    172   // Return the number of instructions in the list. This is an expensive operation.
    173   size_t CountSize() const;
    174 
    175  private:
    176   HInstruction* first_instruction_;
    177   HInstruction* last_instruction_;
    178 
    179   friend class HBasicBlock;
    180   friend class HGraph;
    181   friend class HInstruction;
    182   friend class HInstructionIterator;
    183   friend class HInstructionIteratorHandleChanges;
    184   friend class HBackwardInstructionIterator;
    185 
    186   DISALLOW_COPY_AND_ASSIGN(HInstructionList);
    187 };
    188 
    189 class ReferenceTypeInfo : ValueObject {
    190  public:
    191   typedef Handle<mirror::Class> TypeHandle;
    192 
    193   static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact);
    194 
    195   static ReferenceTypeInfo Create(TypeHandle type_handle) REQUIRES_SHARED(Locks::mutator_lock_) {
    196     return Create(type_handle, type_handle->CannotBeAssignedFromOtherTypes());
    197   }
    198 
    199   static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) {
    200     return ReferenceTypeInfo(type_handle, is_exact);
    201   }
    202 
    203   static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
    204 
    205   static bool IsValidHandle(TypeHandle handle) {
    206     return handle.GetReference() != nullptr;
    207   }
    208 
    209   bool IsValid() const {
    210     return IsValidHandle(type_handle_);
    211   }
    212 
    213   bool IsExact() const { return is_exact_; }
    214 
    215   bool IsObjectClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
    216     DCHECK(IsValid());
    217     return GetTypeHandle()->IsObjectClass();
    218   }
    219 
    220   bool IsStringClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
    221     DCHECK(IsValid());
    222     return GetTypeHandle()->IsStringClass();
    223   }
    224 
    225   bool IsObjectArray() const REQUIRES_SHARED(Locks::mutator_lock_) {
    226     DCHECK(IsValid());
    227     return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
    228   }
    229 
    230   bool IsInterface() const REQUIRES_SHARED(Locks::mutator_lock_) {
    231     DCHECK(IsValid());
    232     return GetTypeHandle()->IsInterface();
    233   }
    234 
    235   bool IsArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
    236     DCHECK(IsValid());
    237     return GetTypeHandle()->IsArrayClass();
    238   }
    239 
    240   bool IsPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
    241     DCHECK(IsValid());
    242     return GetTypeHandle()->IsPrimitiveArray();
    243   }
    244 
    245   bool IsNonPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
    246     DCHECK(IsValid());
    247     return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
    248   }
    249 
    250   bool CanArrayHold(ReferenceTypeInfo rti)  const REQUIRES_SHARED(Locks::mutator_lock_) {
    251     DCHECK(IsValid());
    252     if (!IsExact()) return false;
    253     if (!IsArrayClass()) return false;
    254     return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
    255   }
    256 
    257   bool CanArrayHoldValuesOf(ReferenceTypeInfo rti)  const REQUIRES_SHARED(Locks::mutator_lock_) {
    258     DCHECK(IsValid());
    259     if (!IsExact()) return false;
    260     if (!IsArrayClass()) return false;
    261     if (!rti.IsArrayClass()) return false;
    262     return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
    263         rti.GetTypeHandle()->GetComponentType());
    264   }
    265 
    266   Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
    267 
    268   bool IsSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
    269     DCHECK(IsValid());
    270     DCHECK(rti.IsValid());
    271     return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
    272   }
    273 
    274   bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
    275     DCHECK(IsValid());
    276     DCHECK(rti.IsValid());
    277     return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
    278         GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
    279   }
    280 
    281   // Returns true if the type information provide the same amount of details.
    282   // Note that it does not mean that the instructions have the same actual type
    283   // (because the type can be the result of a merge).
    284   bool IsEqual(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
    285     if (!IsValid() && !rti.IsValid()) {
    286       // Invalid types are equal.
    287       return true;
    288     }
    289     if (!IsValid() || !rti.IsValid()) {
    290       // One is valid, the other not.
    291       return false;
    292     }
    293     return IsExact() == rti.IsExact()
    294         && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
    295   }
    296 
    297  private:
    298   ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {}
    299   ReferenceTypeInfo(TypeHandle type_handle, bool is_exact)
    300       : type_handle_(type_handle), is_exact_(is_exact) { }
    301 
    302   // The class of the object.
    303   TypeHandle type_handle_;
    304   // Whether or not the type is exact or a superclass of the actual type.
    305   // Whether or not we have any information about this type.
    306   bool is_exact_;
    307 };
    308 
    309 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
    310 
    311 // Control-flow graph of a method. Contains a list of basic blocks.
    312 class HGraph : public ArenaObject<kArenaAllocGraph> {
    313  public:
    314   HGraph(ArenaAllocator* allocator,
    315          ArenaStack* arena_stack,
    316          const DexFile& dex_file,
    317          uint32_t method_idx,
    318          InstructionSet instruction_set,
    319          InvokeType invoke_type = kInvalidInvokeType,
    320          bool dead_reference_safe = false,
    321          bool debuggable = false,
    322          bool osr = false,
    323          int start_instruction_id = 0)
    324       : allocator_(allocator),
    325         arena_stack_(arena_stack),
    326         blocks_(allocator->Adapter(kArenaAllocBlockList)),
    327         reverse_post_order_(allocator->Adapter(kArenaAllocReversePostOrder)),
    328         linear_order_(allocator->Adapter(kArenaAllocLinearOrder)),
    329         entry_block_(nullptr),
    330         exit_block_(nullptr),
    331         maximum_number_of_out_vregs_(0),
    332         number_of_vregs_(0),
    333         number_of_in_vregs_(0),
    334         temporaries_vreg_slots_(0),
    335         has_bounds_checks_(false),
    336         has_try_catch_(false),
    337         has_simd_(false),
    338         has_loops_(false),
    339         has_irreducible_loops_(false),
    340         dead_reference_safe_(dead_reference_safe),
    341         debuggable_(debuggable),
    342         current_instruction_id_(start_instruction_id),
    343         dex_file_(dex_file),
    344         method_idx_(method_idx),
    345         invoke_type_(invoke_type),
    346         in_ssa_form_(false),
    347         number_of_cha_guards_(0),
    348         instruction_set_(instruction_set),
    349         cached_null_constant_(nullptr),
    350         cached_int_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
    351         cached_float_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
    352         cached_long_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
    353         cached_double_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
    354         cached_current_method_(nullptr),
    355         art_method_(nullptr),
    356         inexact_object_rti_(ReferenceTypeInfo::CreateInvalid()),
    357         osr_(osr),
    358         cha_single_implementation_list_(allocator->Adapter(kArenaAllocCHA)) {
    359     blocks_.reserve(kDefaultNumberOfBlocks);
    360   }
    361 
    362   // Acquires and stores RTI of inexact Object to be used when creating HNullConstant.
    363   void InitializeInexactObjectRTI(VariableSizedHandleScope* handles);
    364 
    365   ArenaAllocator* GetAllocator() const { return allocator_; }
    366   ArenaStack* GetArenaStack() const { return arena_stack_; }
    367   const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
    368 
    369   bool IsInSsaForm() const { return in_ssa_form_; }
    370   void SetInSsaForm() { in_ssa_form_ = true; }
    371 
    372   HBasicBlock* GetEntryBlock() const { return entry_block_; }
    373   HBasicBlock* GetExitBlock() const { return exit_block_; }
    374   bool HasExitBlock() const { return exit_block_ != nullptr; }
    375 
    376   void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
    377   void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
    378 
    379   void AddBlock(HBasicBlock* block);
    380 
    381   void ComputeDominanceInformation();
    382   void ClearDominanceInformation();
    383   void ClearLoopInformation();
    384   void FindBackEdges(ArenaBitVector* visited);
    385   GraphAnalysisResult BuildDominatorTree();
    386   void SimplifyCFG();
    387   void SimplifyCatchBlocks();
    388 
    389   // Analyze all natural loops in this graph. Returns a code specifying that it
    390   // was successful or the reason for failure. The method will fail if a loop
    391   // is a throw-catch loop, i.e. the header is a catch block.
    392   GraphAnalysisResult AnalyzeLoops() const;
    393 
    394   // Iterate over blocks to compute try block membership. Needs reverse post
    395   // order and loop information.
    396   void ComputeTryBlockInformation();
    397 
    398   // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
    399   // Returns the instruction to replace the invoke expression or null if the
    400   // invoke is for a void method. Note that the caller is responsible for replacing
    401   // and removing the invoke instruction.
    402   HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
    403 
    404   // Update the loop and try membership of `block`, which was spawned from `reference`.
    405   // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block`
    406   // should be the new back edge.
    407   void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
    408                                              HBasicBlock* reference,
    409                                              bool replace_if_back_edge);
    410 
    411   // Need to add a couple of blocks to test if the loop body is entered and
    412   // put deoptimization instructions, etc.
    413   void TransformLoopHeaderForBCE(HBasicBlock* header);
    414 
    415   // Adds a new loop directly after the loop with the given header and exit.
    416   // Returns the new preheader.
    417   HBasicBlock* TransformLoopForVectorization(HBasicBlock* header,
    418                                              HBasicBlock* body,
    419                                              HBasicBlock* exit);
    420 
    421   // Removes `block` from the graph. Assumes `block` has been disconnected from
    422   // other blocks and has no instructions or phis.
    423   void DeleteDeadEmptyBlock(HBasicBlock* block);
    424 
    425   // Splits the edge between `block` and `successor` while preserving the
    426   // indices in the predecessor/successor lists. If there are multiple edges
    427   // between the blocks, the lowest indices are used.
    428   // Returns the new block which is empty and has the same dex pc as `successor`.
    429   HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
    430 
    431   void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
    432   void OrderLoopHeaderPredecessors(HBasicBlock* header);
    433 
    434   // Transform a loop into a format with a single preheader.
    435   //
    436   // Each phi in the header should be split: original one in the header should only hold
    437   // inputs reachable from the back edges and a single input from the preheader. The newly created
    438   // phi in the preheader should collate the inputs from the original multiple incoming blocks.
    439   //
    440   // Loops in the graph typically have a single preheader, so this method is used to "repair" loops
    441   // that no longer have this property.
    442   void TransformLoopToSinglePreheaderFormat(HBasicBlock* header);
    443 
    444   void SimplifyLoop(HBasicBlock* header);
    445 
    446   int32_t GetNextInstructionId() {
    447     CHECK_NE(current_instruction_id_, INT32_MAX);
    448     return current_instruction_id_++;
    449   }
    450 
    451   int32_t GetCurrentInstructionId() const {
    452     return current_instruction_id_;
    453   }
    454 
    455   void SetCurrentInstructionId(int32_t id) {
    456     CHECK_GE(id, current_instruction_id_);
    457     current_instruction_id_ = id;
    458   }
    459 
    460   uint16_t GetMaximumNumberOfOutVRegs() const {
    461     return maximum_number_of_out_vregs_;
    462   }
    463 
    464   void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
    465     maximum_number_of_out_vregs_ = new_value;
    466   }
    467 
    468   void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
    469     maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
    470   }
    471 
    472   void UpdateTemporariesVRegSlots(size_t slots) {
    473     temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
    474   }
    475 
    476   size_t GetTemporariesVRegSlots() const {
    477     DCHECK(!in_ssa_form_);
    478     return temporaries_vreg_slots_;
    479   }
    480 
    481   void SetNumberOfVRegs(uint16_t number_of_vregs) {
    482     number_of_vregs_ = number_of_vregs;
    483   }
    484 
    485   uint16_t GetNumberOfVRegs() const {
    486     return number_of_vregs_;
    487   }
    488 
    489   void SetNumberOfInVRegs(uint16_t value) {
    490     number_of_in_vregs_ = value;
    491   }
    492 
    493   uint16_t GetNumberOfInVRegs() const {
    494     return number_of_in_vregs_;
    495   }
    496 
    497   uint16_t GetNumberOfLocalVRegs() const {
    498     DCHECK(!in_ssa_form_);
    499     return number_of_vregs_ - number_of_in_vregs_;
    500   }
    501 
    502   const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
    503     return reverse_post_order_;
    504   }
    505 
    506   ArrayRef<HBasicBlock* const> GetReversePostOrderSkipEntryBlock() {
    507     DCHECK(GetReversePostOrder()[0] == entry_block_);
    508     return ArrayRef<HBasicBlock* const>(GetReversePostOrder()).SubArray(1);
    509   }
    510 
    511   IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetPostOrder() const {
    512     return ReverseRange(GetReversePostOrder());
    513   }
    514 
    515   const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
    516     return linear_order_;
    517   }
    518 
    519   IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetLinearPostOrder() const {
    520     return ReverseRange(GetLinearOrder());
    521   }
    522 
    523   bool HasBoundsChecks() const {
    524     return has_bounds_checks_;
    525   }
    526 
    527   void SetHasBoundsChecks(bool value) {
    528     has_bounds_checks_ = value;
    529   }
    530 
    531   // Is the code known to be robust against eliminating dead references
    532   // and the effects of early finalization?
    533   bool IsDeadReferenceSafe() const { return dead_reference_safe_; }
    534 
    535   void MarkDeadReferenceUnsafe() { dead_reference_safe_ = false; }
    536 
    537   bool IsDebuggable() const { return debuggable_; }
    538 
    539   // Returns a constant of the given type and value. If it does not exist
    540   // already, it is created and inserted into the graph. This method is only for
    541   // integral types.
    542   HConstant* GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
    543 
    544   // TODO: This is problematic for the consistency of reference type propagation
    545   // because it can be created anytime after the pass and thus it will be left
    546   // with an invalid type.
    547   HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
    548 
    549   HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
    550     return CreateConstant(value, &cached_int_constants_, dex_pc);
    551   }
    552   HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
    553     return CreateConstant(value, &cached_long_constants_, dex_pc);
    554   }
    555   HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
    556     return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
    557   }
    558   HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
    559     return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
    560   }
    561 
    562   HCurrentMethod* GetCurrentMethod();
    563 
    564   const DexFile& GetDexFile() const {
    565     return dex_file_;
    566   }
    567 
    568   uint32_t GetMethodIdx() const {
    569     return method_idx_;
    570   }
    571 
    572   // Get the method name (without the signature), e.g. "<init>"
    573   const char* GetMethodName() const;
    574 
    575   // Get the pretty method name (class + name + optionally signature).
    576   std::string PrettyMethod(bool with_signature = true) const;
    577 
    578   InvokeType GetInvokeType() const {
    579     return invoke_type_;
    580   }
    581 
    582   InstructionSet GetInstructionSet() const {
    583     return instruction_set_;
    584   }
    585 
    586   bool IsCompilingOsr() const { return osr_; }
    587 
    588   ArenaSet<ArtMethod*>& GetCHASingleImplementationList() {
    589     return cha_single_implementation_list_;
    590   }
    591 
    592   void AddCHASingleImplementationDependency(ArtMethod* method) {
    593     cha_single_implementation_list_.insert(method);
    594   }
    595 
    596   bool HasShouldDeoptimizeFlag() const {
    597     return number_of_cha_guards_ != 0;
    598   }
    599 
    600   bool HasTryCatch() const { return has_try_catch_; }
    601   void SetHasTryCatch(bool value) { has_try_catch_ = value; }
    602 
    603   bool HasSIMD() const { return has_simd_; }
    604   void SetHasSIMD(bool value) { has_simd_ = value; }
    605 
    606   bool HasLoops() const { return has_loops_; }
    607   void SetHasLoops(bool value) { has_loops_ = value; }
    608 
    609   bool HasIrreducibleLoops() const { return has_irreducible_loops_; }
    610   void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; }
    611 
    612   ArtMethod* GetArtMethod() const { return art_method_; }
    613   void SetArtMethod(ArtMethod* method) { art_method_ = method; }
    614 
    615   // Returns an instruction with the opposite Boolean value from 'cond'.
    616   // The instruction has been inserted into the graph, either as a constant, or
    617   // before cursor.
    618   HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
    619 
    620   ReferenceTypeInfo GetInexactObjectRti() const { return inexact_object_rti_; }
    621 
    622   uint32_t GetNumberOfCHAGuards() { return number_of_cha_guards_; }
    623   void SetNumberOfCHAGuards(uint32_t num) { number_of_cha_guards_ = num; }
    624   void IncrementNumberOfCHAGuards() { number_of_cha_guards_++; }
    625 
    626  private:
    627   void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
    628   void RemoveDeadBlocks(const ArenaBitVector& visited);
    629 
    630   template <class InstructionType, typename ValueType>
    631   InstructionType* CreateConstant(ValueType value,
    632                                   ArenaSafeMap<ValueType, InstructionType*>* cache,
    633                                   uint32_t dex_pc = kNoDexPc) {
    634     // Try to find an existing constant of the given value.
    635     InstructionType* constant = nullptr;
    636     auto cached_constant = cache->find(value);
    637     if (cached_constant != cache->end()) {
    638       constant = cached_constant->second;
    639     }
    640 
    641     // If not found or previously deleted, create and cache a new instruction.
    642     // Don't bother reviving a previously deleted instruction, for simplicity.
    643     if (constant == nullptr || constant->GetBlock() == nullptr) {
    644       constant = new (allocator_) InstructionType(value, dex_pc);
    645       cache->Overwrite(value, constant);
    646       InsertConstant(constant);
    647     }
    648     return constant;
    649   }
    650 
    651   void InsertConstant(HConstant* instruction);
    652 
    653   // Cache a float constant into the graph. This method should only be
    654   // called by the SsaBuilder when creating "equivalent" instructions.
    655   void CacheFloatConstant(HFloatConstant* constant);
    656 
    657   // See CacheFloatConstant comment.
    658   void CacheDoubleConstant(HDoubleConstant* constant);
    659 
    660   ArenaAllocator* const allocator_;
    661   ArenaStack* const arena_stack_;
    662 
    663   // List of blocks in insertion order.
    664   ArenaVector<HBasicBlock*> blocks_;
    665 
    666   // List of blocks to perform a reverse post order tree traversal.
    667   ArenaVector<HBasicBlock*> reverse_post_order_;
    668 
    669   // List of blocks to perform a linear order tree traversal. Unlike the reverse
    670   // post order, this order is not incrementally kept up-to-date.
    671   ArenaVector<HBasicBlock*> linear_order_;
    672 
    673   HBasicBlock* entry_block_;
    674   HBasicBlock* exit_block_;
    675 
    676   // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
    677   uint16_t maximum_number_of_out_vregs_;
    678 
    679   // The number of virtual registers in this method. Contains the parameters.
    680   uint16_t number_of_vregs_;
    681 
    682   // The number of virtual registers used by parameters of this method.
    683   uint16_t number_of_in_vregs_;
    684 
    685   // Number of vreg size slots that the temporaries use (used in baseline compiler).
    686   size_t temporaries_vreg_slots_;
    687 
    688   // Flag whether there are bounds checks in the graph. We can skip
    689   // BCE if it's false. It's only best effort to keep it up to date in
    690   // the presence of code elimination so there might be false positives.
    691   bool has_bounds_checks_;
    692 
    693   // Flag whether there are try/catch blocks in the graph. We will skip
    694   // try/catch-related passes if it's false. It's only best effort to keep
    695   // it up to date in the presence of code elimination so there might be
    696   // false positives.
    697   bool has_try_catch_;
    698 
    699   // Flag whether SIMD instructions appear in the graph. If true, the
    700   // code generators may have to be more careful spilling the wider
    701   // contents of SIMD registers.
    702   bool has_simd_;
    703 
    704   // Flag whether there are any loops in the graph. We can skip loop
    705   // optimization if it's false. It's only best effort to keep it up
    706   // to date in the presence of code elimination so there might be false
    707   // positives.
    708   bool has_loops_;
    709 
    710   // Flag whether there are any irreducible loops in the graph. It's only
    711   // best effort to keep it up to date in the presence of code elimination
    712   // so there might be false positives.
    713   bool has_irreducible_loops_;
    714 
    715   // Is the code known to be robust against eliminating dead references
    716   // and the effects of early finalization? If false, dead reference variables
    717   // are kept if they might be visible to the garbage collector.
    718   // Currently this means that the class was declared to be dead-reference-safe,
    719   // the method accesses no reachability-sensitive fields or data, and the same
    720   // is true for any methods that were inlined into the current one.
    721   bool dead_reference_safe_;
    722 
    723   // Indicates whether the graph should be compiled in a way that
    724   // ensures full debuggability. If false, we can apply more
    725   // aggressive optimizations that may limit the level of debugging.
    726   const bool debuggable_;
    727 
    728   // The current id to assign to a newly added instruction. See HInstruction.id_.
    729   int32_t current_instruction_id_;
    730 
    731   // The dex file from which the method is from.
    732   const DexFile& dex_file_;
    733 
    734   // The method index in the dex file.
    735   const uint32_t method_idx_;
    736 
    737   // If inlined, this encodes how the callee is being invoked.
    738   const InvokeType invoke_type_;
    739 
    740   // Whether the graph has been transformed to SSA form. Only used
    741   // in debug mode to ensure we are not using properties only valid
    742   // for non-SSA form (like the number of temporaries).
    743   bool in_ssa_form_;
    744 
    745   // Number of CHA guards in the graph. Used to short-circuit the
    746   // CHA guard optimization pass when there is no CHA guard left.
    747   uint32_t number_of_cha_guards_;
    748 
    749   const InstructionSet instruction_set_;
    750 
    751   // Cached constants.
    752   HNullConstant* cached_null_constant_;
    753   ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
    754   ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
    755   ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
    756   ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
    757 
    758   HCurrentMethod* cached_current_method_;
    759 
    760   // The ArtMethod this graph is for. Note that for AOT, it may be null,
    761   // for example for methods whose declaring class could not be resolved
    762   // (such as when the superclass could not be found).
    763   ArtMethod* art_method_;
    764 
    765   // Keep the RTI of inexact Object to avoid having to pass stack handle
    766   // collection pointer to passes which may create NullConstant.
    767   ReferenceTypeInfo inexact_object_rti_;
    768 
    769   // Whether we are compiling this graph for on stack replacement: this will
    770   // make all loops seen as irreducible and emit special stack maps to mark
    771   // compiled code entries which the interpreter can directly jump to.
    772   const bool osr_;
    773 
    774   // List of methods that are assumed to have single implementation.
    775   ArenaSet<ArtMethod*> cha_single_implementation_list_;
    776 
    777   friend class SsaBuilder;           // For caching constants.
    778   friend class SsaLivenessAnalysis;  // For the linear order.
    779   friend class HInliner;             // For the reverse post order.
    780   ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
    781   DISALLOW_COPY_AND_ASSIGN(HGraph);
    782 };
    783 
    784 class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
    785  public:
    786   HLoopInformation(HBasicBlock* header, HGraph* graph)
    787       : header_(header),
    788         suspend_check_(nullptr),
    789         irreducible_(false),
    790         contains_irreducible_loop_(false),
    791         back_edges_(graph->GetAllocator()->Adapter(kArenaAllocLoopInfoBackEdges)),
    792         // Make bit vector growable, as the number of blocks may change.
    793         blocks_(graph->GetAllocator(),
    794                 graph->GetBlocks().size(),
    795                 true,
    796                 kArenaAllocLoopInfoBackEdges) {
    797     back_edges_.reserve(kDefaultNumberOfBackEdges);
    798   }
    799 
    800   bool IsIrreducible() const { return irreducible_; }
    801   bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; }
    802 
    803   void Dump(std::ostream& os);
    804 
    805   HBasicBlock* GetHeader() const {
    806     return header_;
    807   }
    808 
    809   void SetHeader(HBasicBlock* block) {
    810     header_ = block;
    811   }
    812 
    813   HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
    814   void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
    815   bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
    816 
    817   void AddBackEdge(HBasicBlock* back_edge) {
    818     back_edges_.push_back(back_edge);
    819   }
    820 
    821   void RemoveBackEdge(HBasicBlock* back_edge) {
    822     RemoveElement(back_edges_, back_edge);
    823   }
    824 
    825   bool IsBackEdge(const HBasicBlock& block) const {
    826     return ContainsElement(back_edges_, &block);
    827   }
    828 
    829   size_t NumberOfBackEdges() const {
    830     return back_edges_.size();
    831   }
    832 
    833   HBasicBlock* GetPreHeader() const;
    834 
    835   const ArenaVector<HBasicBlock*>& GetBackEdges() const {
    836     return back_edges_;
    837   }
    838 
    839   // Returns the lifetime position of the back edge that has the
    840   // greatest lifetime position.
    841   size_t GetLifetimeEnd() const;
    842 
    843   void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
    844     ReplaceElement(back_edges_, existing, new_back_edge);
    845   }
    846 
    847   // Finds blocks that are part of this loop.
    848   void Populate();
    849 
    850   // Updates blocks population of the loop and all of its outer' ones recursively after the
    851   // population of the inner loop is updated.
    852   void PopulateInnerLoopUpwards(HLoopInformation* inner_loop);
    853 
    854   // Returns whether this loop information contains `block`.
    855   // Note that this loop information *must* be populated before entering this function.
    856   bool Contains(const HBasicBlock& block) const;
    857 
    858   // Returns whether this loop information is an inner loop of `other`.
    859   // Note that `other` *must* be populated before entering this function.
    860   bool IsIn(const HLoopInformation& other) const;
    861 
    862   // Returns true if instruction is not defined within this loop.
    863   bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
    864 
    865   const ArenaBitVector& GetBlocks() const { return blocks_; }
    866 
    867   void Add(HBasicBlock* block);
    868   void Remove(HBasicBlock* block);
    869 
    870   void ClearAllBlocks() {
    871     blocks_.ClearAllBits();
    872   }
    873 
    874   bool HasBackEdgeNotDominatedByHeader() const;
    875 
    876   bool IsPopulated() const {
    877     return blocks_.GetHighestBitSet() != -1;
    878   }
    879 
    880   bool DominatesAllBackEdges(HBasicBlock* block);
    881 
    882   bool HasExitEdge() const;
    883 
    884   // Resets back edge and blocks-in-loop data.
    885   void ResetBasicBlockData() {
    886     back_edges_.clear();
    887     ClearAllBlocks();
    888   }
    889 
    890  private:
    891   // Internal recursive implementation of `Populate`.
    892   void PopulateRecursive(HBasicBlock* block);
    893   void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized);
    894 
    895   HBasicBlock* header_;
    896   HSuspendCheck* suspend_check_;
    897   bool irreducible_;
    898   bool contains_irreducible_loop_;
    899   ArenaVector<HBasicBlock*> back_edges_;
    900   ArenaBitVector blocks_;
    901 
    902   DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
    903 };
    904 
    905 // Stores try/catch information for basic blocks.
    906 // Note that HGraph is constructed so that catch blocks cannot simultaneously
    907 // be try blocks.
    908 class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
    909  public:
    910   // Try block information constructor.
    911   explicit TryCatchInformation(const HTryBoundary& try_entry)
    912       : try_entry_(&try_entry),
    913         catch_dex_file_(nullptr),
    914         catch_type_index_(dex::TypeIndex::Invalid()) {
    915     DCHECK(try_entry_ != nullptr);
    916   }
    917 
    918   // Catch block information constructor.
    919   TryCatchInformation(dex::TypeIndex catch_type_index, const DexFile& dex_file)
    920       : try_entry_(nullptr),
    921         catch_dex_file_(&dex_file),
    922         catch_type_index_(catch_type_index) {}
    923 
    924   bool IsTryBlock() const { return try_entry_ != nullptr; }
    925 
    926   const HTryBoundary& GetTryEntry() const {
    927     DCHECK(IsTryBlock());
    928     return *try_entry_;
    929   }
    930 
    931   bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
    932 
    933   bool IsValidTypeIndex() const {
    934     DCHECK(IsCatchBlock());
    935     return catch_type_index_.IsValid();
    936   }
    937 
    938   dex::TypeIndex GetCatchTypeIndex() const {
    939     DCHECK(IsCatchBlock());
    940     return catch_type_index_;
    941   }
    942 
    943   const DexFile& GetCatchDexFile() const {
    944     DCHECK(IsCatchBlock());
    945     return *catch_dex_file_;
    946   }
    947 
    948   void SetInvalidTypeIndex() {
    949     catch_type_index_ = dex::TypeIndex::Invalid();
    950   }
    951 
    952  private:
    953   // One of possibly several TryBoundary instructions entering the block's try.
    954   // Only set for try blocks.
    955   const HTryBoundary* try_entry_;
    956 
    957   // Exception type information. Only set for catch blocks.
    958   const DexFile* catch_dex_file_;
    959   dex::TypeIndex catch_type_index_;
    960 };
    961 
    962 static constexpr size_t kNoLifetime = -1;
    963 static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
    964 
    965 // A block in a method. Contains the list of instructions represented
    966 // as a double linked list. Each block knows its predecessors and
    967 // successors.
    968 
    969 class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
    970  public:
    971   explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
    972       : graph_(graph),
    973         predecessors_(graph->GetAllocator()->Adapter(kArenaAllocPredecessors)),
    974         successors_(graph->GetAllocator()->Adapter(kArenaAllocSuccessors)),
    975         loop_information_(nullptr),
    976         dominator_(nullptr),
    977         dominated_blocks_(graph->GetAllocator()->Adapter(kArenaAllocDominated)),
    978         block_id_(kInvalidBlockId),
    979         dex_pc_(dex_pc),
    980         lifetime_start_(kNoLifetime),
    981         lifetime_end_(kNoLifetime),
    982         try_catch_information_(nullptr) {
    983     predecessors_.reserve(kDefaultNumberOfPredecessors);
    984     successors_.reserve(kDefaultNumberOfSuccessors);
    985     dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
    986   }
    987 
    988   const ArenaVector<HBasicBlock*>& GetPredecessors() const {
    989     return predecessors_;
    990   }
    991 
    992   const ArenaVector<HBasicBlock*>& GetSuccessors() const {
    993     return successors_;
    994   }
    995 
    996   ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
    997   ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
    998 
    999   bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
   1000     return ContainsElement(successors_, block, start_from);
   1001   }
   1002 
   1003   const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
   1004     return dominated_blocks_;
   1005   }
   1006 
   1007   bool IsEntryBlock() const {
   1008     return graph_->GetEntryBlock() == this;
   1009   }
   1010 
   1011   bool IsExitBlock() const {
   1012     return graph_->GetExitBlock() == this;
   1013   }
   1014 
   1015   bool IsSingleGoto() const;
   1016   bool IsSingleReturn() const;
   1017   bool IsSingleReturnOrReturnVoidAllowingPhis() const;
   1018   bool IsSingleTryBoundary() const;
   1019 
   1020   // Returns true if this block emits nothing but a jump.
   1021   bool IsSingleJump() const {
   1022     HLoopInformation* loop_info = GetLoopInformation();
   1023     return (IsSingleGoto() || IsSingleTryBoundary())
   1024            // Back edges generate a suspend check.
   1025            && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
   1026   }
   1027 
   1028   void AddBackEdge(HBasicBlock* back_edge) {
   1029     if (loop_information_ == nullptr) {
   1030       loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
   1031     }
   1032     DCHECK_EQ(loop_information_->GetHeader(), this);
   1033     loop_information_->AddBackEdge(back_edge);
   1034   }
   1035 
   1036   // Registers a back edge; if the block was not a loop header before the call associates a newly
   1037   // created loop info with it.
   1038   //
   1039   // Used in SuperblockCloner to preserve LoopInformation object instead of reseting loop
   1040   // info for all blocks during back edges recalculation.
   1041   void AddBackEdgeWhileUpdating(HBasicBlock* back_edge) {
   1042     if (loop_information_ == nullptr || loop_information_->GetHeader() != this) {
   1043       loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
   1044     }
   1045     loop_information_->AddBackEdge(back_edge);
   1046   }
   1047 
   1048   HGraph* GetGraph() const { return graph_; }
   1049   void SetGraph(HGraph* graph) { graph_ = graph; }
   1050 
   1051   uint32_t GetBlockId() const { return block_id_; }
   1052   void SetBlockId(int id) { block_id_ = id; }
   1053   uint32_t GetDexPc() const { return dex_pc_; }
   1054 
   1055   HBasicBlock* GetDominator() const { return dominator_; }
   1056   void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
   1057   void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
   1058 
   1059   void RemoveDominatedBlock(HBasicBlock* block) {
   1060     RemoveElement(dominated_blocks_, block);
   1061   }
   1062 
   1063   void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
   1064     ReplaceElement(dominated_blocks_, existing, new_block);
   1065   }
   1066 
   1067   void ClearDominanceInformation();
   1068 
   1069   int NumberOfBackEdges() const {
   1070     return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
   1071   }
   1072 
   1073   HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
   1074   HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
   1075   const HInstructionList& GetInstructions() const { return instructions_; }
   1076   HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
   1077   HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
   1078   const HInstructionList& GetPhis() const { return phis_; }
   1079 
   1080   HInstruction* GetFirstInstructionDisregardMoves() const;
   1081 
   1082   void AddSuccessor(HBasicBlock* block) {
   1083     successors_.push_back(block);
   1084     block->predecessors_.push_back(this);
   1085   }
   1086 
   1087   void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
   1088     size_t successor_index = GetSuccessorIndexOf(existing);
   1089     existing->RemovePredecessor(this);
   1090     new_block->predecessors_.push_back(this);
   1091     successors_[successor_index] = new_block;
   1092   }
   1093 
   1094   void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
   1095     size_t predecessor_index = GetPredecessorIndexOf(existing);
   1096     existing->RemoveSuccessor(this);
   1097     new_block->successors_.push_back(this);
   1098     predecessors_[predecessor_index] = new_block;
   1099   }
   1100 
   1101   // Insert `this` between `predecessor` and `successor. This method
   1102   // preserves the indicies, and will update the first edge found between
   1103   // `predecessor` and `successor`.
   1104   void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
   1105     size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
   1106     size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
   1107     successor->predecessors_[predecessor_index] = this;
   1108     predecessor->successors_[successor_index] = this;
   1109     successors_.push_back(successor);
   1110     predecessors_.push_back(predecessor);
   1111   }
   1112 
   1113   void RemovePredecessor(HBasicBlock* block) {
   1114     predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
   1115   }
   1116 
   1117   void RemoveSuccessor(HBasicBlock* block) {
   1118     successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
   1119   }
   1120 
   1121   void ClearAllPredecessors() {
   1122     predecessors_.clear();
   1123   }
   1124 
   1125   void AddPredecessor(HBasicBlock* block) {
   1126     predecessors_.push_back(block);
   1127     block->successors_.push_back(this);
   1128   }
   1129 
   1130   void SwapPredecessors() {
   1131     DCHECK_EQ(predecessors_.size(), 2u);
   1132     std::swap(predecessors_[0], predecessors_[1]);
   1133   }
   1134 
   1135   void SwapSuccessors() {
   1136     DCHECK_EQ(successors_.size(), 2u);
   1137     std::swap(successors_[0], successors_[1]);
   1138   }
   1139 
   1140   size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
   1141     return IndexOfElement(predecessors_, predecessor);
   1142   }
   1143 
   1144   size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
   1145     return IndexOfElement(successors_, successor);
   1146   }
   1147 
   1148   HBasicBlock* GetSinglePredecessor() const {
   1149     DCHECK_EQ(GetPredecessors().size(), 1u);
   1150     return GetPredecessors()[0];
   1151   }
   1152 
   1153   HBasicBlock* GetSingleSuccessor() const {
   1154     DCHECK_EQ(GetSuccessors().size(), 1u);
   1155     return GetSuccessors()[0];
   1156   }
   1157 
   1158   // Returns whether the first occurrence of `predecessor` in the list of
   1159   // predecessors is at index `idx`.
   1160   bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
   1161     DCHECK_EQ(GetPredecessors()[idx], predecessor);
   1162     return GetPredecessorIndexOf(predecessor) == idx;
   1163   }
   1164 
   1165   // Create a new block between this block and its predecessors. The new block
   1166   // is added to the graph, all predecessor edges are relinked to it and an edge
   1167   // is created to `this`. Returns the new empty block. Reverse post order or
   1168   // loop and try/catch information are not updated.
   1169   HBasicBlock* CreateImmediateDominator();
   1170 
   1171   // Split the block into two blocks just before `cursor`. Returns the newly
   1172   // created, latter block. Note that this method will add the block to the
   1173   // graph, create a Goto at the end of the former block and will create an edge
   1174   // between the blocks. It will not, however, update the reverse post order or
   1175   // loop and try/catch information.
   1176   HBasicBlock* SplitBefore(HInstruction* cursor);
   1177 
   1178   // Split the block into two blocks just before `cursor`. Returns the newly
   1179   // created block. Note that this method just updates raw block information,
   1180   // like predecessors, successors, dominators, and instruction list. It does not
   1181   // update the graph, reverse post order, loop information, nor make sure the
   1182   // blocks are consistent (for example ending with a control flow instruction).
   1183   HBasicBlock* SplitBeforeForInlining(HInstruction* cursor);
   1184 
   1185   // Similar to `SplitBeforeForInlining` but does it after `cursor`.
   1186   HBasicBlock* SplitAfterForInlining(HInstruction* cursor);
   1187 
   1188   // Merge `other` at the end of `this`. Successors and dominated blocks of
   1189   // `other` are changed to be successors and dominated blocks of `this`. Note
   1190   // that this method does not update the graph, reverse post order, loop
   1191   // information, nor make sure the blocks are consistent (for example ending
   1192   // with a control flow instruction).
   1193   void MergeWithInlined(HBasicBlock* other);
   1194 
   1195   // Replace `this` with `other`. Predecessors, successors, and dominated blocks
   1196   // of `this` are moved to `other`.
   1197   // Note that this method does not update the graph, reverse post order, loop
   1198   // information, nor make sure the blocks are consistent (for example ending
   1199   // with a control flow instruction).
   1200   void ReplaceWith(HBasicBlock* other);
   1201 
   1202   // Merges the instructions of `other` at the end of `this`.
   1203   void MergeInstructionsWith(HBasicBlock* other);
   1204 
   1205   // Merge `other` at the end of `this`. This method updates loops, reverse post
   1206   // order, links to predecessors, successors, dominators and deletes the block
   1207   // from the graph. The two blocks must be successive, i.e. `this` the only
   1208   // predecessor of `other` and vice versa.
   1209   void MergeWith(HBasicBlock* other);
   1210 
   1211   // Disconnects `this` from all its predecessors, successors and dominator,
   1212   // removes it from all loops it is included in and eventually from the graph.
   1213   // The block must not dominate any other block. Predecessors and successors
   1214   // are safely updated.
   1215   void DisconnectAndDelete();
   1216 
   1217   void AddInstruction(HInstruction* instruction);
   1218   // Insert `instruction` before/after an existing instruction `cursor`.
   1219   void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
   1220   void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
   1221   // Replace phi `initial` with `replacement` within this block.
   1222   void ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement);
   1223   // Replace instruction `initial` with `replacement` within this block.
   1224   void ReplaceAndRemoveInstructionWith(HInstruction* initial,
   1225                                        HInstruction* replacement);
   1226   void AddPhi(HPhi* phi);
   1227   void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
   1228   // RemoveInstruction and RemovePhi delete a given instruction from the respective
   1229   // instruction list. With 'ensure_safety' set to true, it verifies that the
   1230   // instruction is not in use and removes it from the use lists of its inputs.
   1231   void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
   1232   void RemovePhi(HPhi* phi, bool ensure_safety = true);
   1233   void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
   1234 
   1235   bool IsLoopHeader() const {
   1236     return IsInLoop() && (loop_information_->GetHeader() == this);
   1237   }
   1238 
   1239   bool IsLoopPreHeaderFirstPredecessor() const {
   1240     DCHECK(IsLoopHeader());
   1241     return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
   1242   }
   1243 
   1244   bool IsFirstPredecessorBackEdge() const {
   1245     DCHECK(IsLoopHeader());
   1246     return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]);
   1247   }
   1248 
   1249   HLoopInformation* GetLoopInformation() const {
   1250     return loop_information_;
   1251   }
   1252 
   1253   // Set the loop_information_ on this block. Overrides the current
   1254   // loop_information if it is an outer loop of the passed loop information.
   1255   // Note that this method is called while creating the loop information.
   1256   void SetInLoop(HLoopInformation* info) {
   1257     if (IsLoopHeader()) {
   1258       // Nothing to do. This just means `info` is an outer loop.
   1259     } else if (!IsInLoop()) {
   1260       loop_information_ = info;
   1261     } else if (loop_information_->Contains(*info->GetHeader())) {
   1262       // Block is currently part of an outer loop. Make it part of this inner loop.
   1263       // Note that a non loop header having a loop information means this loop information
   1264       // has already been populated
   1265       loop_information_ = info;
   1266     } else {
   1267       // Block is part of an inner loop. Do not update the loop information.
   1268       // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
   1269       // at this point, because this method is being called while populating `info`.
   1270     }
   1271   }
   1272 
   1273   // Raw update of the loop information.
   1274   void SetLoopInformation(HLoopInformation* info) {
   1275     loop_information_ = info;
   1276   }
   1277 
   1278   bool IsInLoop() const { return loop_information_ != nullptr; }
   1279 
   1280   TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
   1281 
   1282   void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
   1283     try_catch_information_ = try_catch_information;
   1284   }
   1285 
   1286   bool IsTryBlock() const {
   1287     return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
   1288   }
   1289 
   1290   bool IsCatchBlock() const {
   1291     return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
   1292   }
   1293 
   1294   // Returns the try entry that this block's successors should have. They will
   1295   // be in the same try, unless the block ends in a try boundary. In that case,
   1296   // the appropriate try entry will be returned.
   1297   const HTryBoundary* ComputeTryEntryOfSuccessors() const;
   1298 
   1299   bool HasThrowingInstructions() const;
   1300 
   1301   // Returns whether this block dominates the blocked passed as parameter.
   1302   bool Dominates(HBasicBlock* block) const;
   1303 
   1304   size_t GetLifetimeStart() const { return lifetime_start_; }
   1305   size_t GetLifetimeEnd() const { return lifetime_end_; }
   1306 
   1307   void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
   1308   void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
   1309 
   1310   bool EndsWithControlFlowInstruction() const;
   1311   bool EndsWithReturn() const;
   1312   bool EndsWithIf() const;
   1313   bool EndsWithTryBoundary() const;
   1314   bool HasSinglePhi() const;
   1315 
   1316  private:
   1317   HGraph* graph_;
   1318   ArenaVector<HBasicBlock*> predecessors_;
   1319   ArenaVector<HBasicBlock*> successors_;
   1320   HInstructionList instructions_;
   1321   HInstructionList phis_;
   1322   HLoopInformation* loop_information_;
   1323   HBasicBlock* dominator_;
   1324   ArenaVector<HBasicBlock*> dominated_blocks_;
   1325   uint32_t block_id_;
   1326   // The dex program counter of the first instruction of this block.
   1327   const uint32_t dex_pc_;
   1328   size_t lifetime_start_;
   1329   size_t lifetime_end_;
   1330   TryCatchInformation* try_catch_information_;
   1331 
   1332   friend class HGraph;
   1333   friend class HInstruction;
   1334 
   1335   DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
   1336 };
   1337 
   1338 // Iterates over the LoopInformation of all loops which contain 'block'
   1339 // from the innermost to the outermost.
   1340 class HLoopInformationOutwardIterator : public ValueObject {
   1341  public:
   1342   explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
   1343       : current_(block.GetLoopInformation()) {}
   1344 
   1345   bool Done() const { return current_ == nullptr; }
   1346 
   1347   void Advance() {
   1348     DCHECK(!Done());
   1349     current_ = current_->GetPreHeader()->GetLoopInformation();
   1350   }
   1351 
   1352   HLoopInformation* Current() const {
   1353     DCHECK(!Done());
   1354     return current_;
   1355   }
   1356 
   1357  private:
   1358   HLoopInformation* current_;
   1359 
   1360   DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
   1361 };
   1362 
   1363 #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                         \
   1364   M(Above, Condition)                                                   \
   1365   M(AboveOrEqual, Condition)                                            \
   1366   M(Abs, UnaryOperation)                                                \
   1367   M(Add, BinaryOperation)                                               \
   1368   M(And, BinaryOperation)                                               \
   1369   M(ArrayGet, Instruction)                                              \
   1370   M(ArrayLength, Instruction)                                           \
   1371   M(ArraySet, Instruction)                                              \
   1372   M(Below, Condition)                                                   \
   1373   M(BelowOrEqual, Condition)                                            \
   1374   M(BooleanNot, UnaryOperation)                                         \
   1375   M(BoundsCheck, Instruction)                                           \
   1376   M(BoundType, Instruction)                                             \
   1377   M(CheckCast, Instruction)                                             \
   1378   M(ClassTableGet, Instruction)                                         \
   1379   M(ClearException, Instruction)                                        \
   1380   M(ClinitCheck, Instruction)                                           \
   1381   M(Compare, BinaryOperation)                                           \
   1382   M(ConstructorFence, Instruction)                                      \
   1383   M(CurrentMethod, Instruction)                                         \
   1384   M(ShouldDeoptimizeFlag, Instruction)                                  \
   1385   M(Deoptimize, Instruction)                                            \
   1386   M(Div, BinaryOperation)                                               \
   1387   M(DivZeroCheck, Instruction)                                          \
   1388   M(DoubleConstant, Constant)                                           \
   1389   M(Equal, Condition)                                                   \
   1390   M(Exit, Instruction)                                                  \
   1391   M(FloatConstant, Constant)                                            \
   1392   M(Goto, Instruction)                                                  \
   1393   M(GreaterThan, Condition)                                             \
   1394   M(GreaterThanOrEqual, Condition)                                      \
   1395   M(If, Instruction)                                                    \
   1396   M(InstanceFieldGet, Instruction)                                      \
   1397   M(InstanceFieldSet, Instruction)                                      \
   1398   M(InstanceOf, Instruction)                                            \
   1399   M(IntConstant, Constant)                                              \
   1400   M(IntermediateAddress, Instruction)                                   \
   1401   M(InvokeUnresolved, Invoke)                                           \
   1402   M(InvokeInterface, Invoke)                                            \
   1403   M(InvokeStaticOrDirect, Invoke)                                       \
   1404   M(InvokeVirtual, Invoke)                                              \
   1405   M(InvokePolymorphic, Invoke)                                          \
   1406   M(InvokeCustom, Invoke)                                               \
   1407   M(LessThan, Condition)                                                \
   1408   M(LessThanOrEqual, Condition)                                         \
   1409   M(LoadClass, Instruction)                                             \
   1410   M(LoadException, Instruction)                                         \
   1411   M(LoadMethodHandle, Instruction)                                      \
   1412   M(LoadMethodType, Instruction)                                        \
   1413   M(LoadString, Instruction)                                            \
   1414   M(LongConstant, Constant)                                             \
   1415   M(Max, Instruction)                                                   \
   1416   M(MemoryBarrier, Instruction)                                         \
   1417   M(Min, BinaryOperation)                                               \
   1418   M(MonitorOperation, Instruction)                                      \
   1419   M(Mul, BinaryOperation)                                               \
   1420   M(NativeDebugInfo, Instruction)                                       \
   1421   M(Neg, UnaryOperation)                                                \
   1422   M(NewArray, Instruction)                                              \
   1423   M(NewInstance, Instruction)                                           \
   1424   M(Not, UnaryOperation)                                                \
   1425   M(NotEqual, Condition)                                                \
   1426   M(NullConstant, Instruction)                                          \
   1427   M(NullCheck, Instruction)                                             \
   1428   M(Or, BinaryOperation)                                                \
   1429   M(PackedSwitch, Instruction)                                          \
   1430   M(ParallelMove, Instruction)                                          \
   1431   M(ParameterValue, Instruction)                                        \
   1432   M(Phi, Instruction)                                                   \
   1433   M(Rem, BinaryOperation)                                               \
   1434   M(Return, Instruction)                                                \
   1435   M(ReturnVoid, Instruction)                                            \
   1436   M(Ror, BinaryOperation)                                               \
   1437   M(Shl, BinaryOperation)                                               \
   1438   M(Shr, BinaryOperation)                                               \
   1439   M(StaticFieldGet, Instruction)                                        \
   1440   M(StaticFieldSet, Instruction)                                        \
   1441   M(UnresolvedInstanceFieldGet, Instruction)                            \
   1442   M(UnresolvedInstanceFieldSet, Instruction)                            \
   1443   M(UnresolvedStaticFieldGet, Instruction)                              \
   1444   M(UnresolvedStaticFieldSet, Instruction)                              \
   1445   M(Select, Instruction)                                                \
   1446   M(Sub, BinaryOperation)                                               \
   1447   M(SuspendCheck, Instruction)                                          \
   1448   M(Throw, Instruction)                                                 \
   1449   M(TryBoundary, Instruction)                                           \
   1450   M(TypeConversion, Instruction)                                        \
   1451   M(UShr, BinaryOperation)                                              \
   1452   M(Xor, BinaryOperation)                                               \
   1453   M(VecReplicateScalar, VecUnaryOperation)                              \
   1454   M(VecExtractScalar, VecUnaryOperation)                                \
   1455   M(VecReduce, VecUnaryOperation)                                       \
   1456   M(VecCnv, VecUnaryOperation)                                          \
   1457   M(VecNeg, VecUnaryOperation)                                          \
   1458   M(VecAbs, VecUnaryOperation)                                          \
   1459   M(VecNot, VecUnaryOperation)                                          \
   1460   M(VecAdd, VecBinaryOperation)                                         \
   1461   M(VecHalvingAdd, VecBinaryOperation)                                  \
   1462   M(VecSub, VecBinaryOperation)                                         \
   1463   M(VecMul, VecBinaryOperation)                                         \
   1464   M(VecDiv, VecBinaryOperation)                                         \
   1465   M(VecMin, VecBinaryOperation)                                         \
   1466   M(VecMax, VecBinaryOperation)                                         \
   1467   M(VecAnd, VecBinaryOperation)                                         \
   1468   M(VecAndNot, VecBinaryOperation)                                      \
   1469   M(VecOr, VecBinaryOperation)                                          \
   1470   M(VecXor, VecBinaryOperation)                                         \
   1471   M(VecSaturationAdd, VecBinaryOperation)                               \
   1472   M(VecSaturationSub, VecBinaryOperation)                               \
   1473   M(VecShl, VecBinaryOperation)                                         \
   1474   M(VecShr, VecBinaryOperation)                                         \
   1475   M(VecUShr, VecBinaryOperation)                                        \
   1476   M(VecSetScalars, VecOperation)                                        \
   1477   M(VecMultiplyAccumulate, VecOperation)                                \
   1478   M(VecSADAccumulate, VecOperation)                                     \
   1479   M(VecDotProd, VecOperation)                                           \
   1480   M(VecLoad, VecMemoryOperation)                                        \
   1481   M(VecStore, VecMemoryOperation)                                       \
   1482 
   1483 /*
   1484  * Instructions, shared across several (not all) architectures.
   1485  */
   1486 #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64)
   1487 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)
   1488 #else
   1489 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                         \
   1490   M(BitwiseNegatedRight, Instruction)                                   \
   1491   M(DataProcWithShifterOp, Instruction)                                 \
   1492   M(MultiplyAccumulate, Instruction)                                    \
   1493   M(IntermediateAddressIndex, Instruction)
   1494 #endif
   1495 
   1496 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
   1497 
   1498 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
   1499 
   1500 #ifndef ART_ENABLE_CODEGEN_mips
   1501 #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
   1502 #else
   1503 #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                           \
   1504   M(MipsComputeBaseMethodAddress, Instruction)                          \
   1505   M(MipsPackedSwitch, Instruction)                                      \
   1506   M(IntermediateArrayAddressIndex, Instruction)
   1507 #endif
   1508 
   1509 #define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
   1510 
   1511 #ifndef ART_ENABLE_CODEGEN_x86
   1512 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
   1513 #else
   1514 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                            \
   1515   M(X86ComputeBaseMethodAddress, Instruction)                           \
   1516   M(X86LoadFromConstantTable, Instruction)                              \
   1517   M(X86FPNeg, Instruction)                                              \
   1518   M(X86PackedSwitch, Instruction)
   1519 #endif
   1520 
   1521 #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
   1522 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)                     \
   1523   M(X86AndNot, Instruction)                                                \
   1524   M(X86MaskOrResetLeastSetBit, Instruction)
   1525 #else
   1526 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
   1527 #endif
   1528 
   1529 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
   1530 
   1531 #define FOR_EACH_CONCRETE_INSTRUCTION(M)                                \
   1532   FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M)                               \
   1533   FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)                               \
   1534   FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)                                  \
   1535   FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)                                \
   1536   FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)                                 \
   1537   FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)                               \
   1538   FOR_EACH_CONCRETE_INSTRUCTION_X86(M)                                  \
   1539   FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)                               \
   1540   FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
   1541 
   1542 #define FOR_EACH_ABSTRACT_INSTRUCTION(M)                                \
   1543   M(Condition, BinaryOperation)                                         \
   1544   M(Constant, Instruction)                                              \
   1545   M(UnaryOperation, Instruction)                                        \
   1546   M(BinaryOperation, Instruction)                                       \
   1547   M(Invoke, Instruction)                                                \
   1548   M(VecOperation, Instruction)                                          \
   1549   M(VecUnaryOperation, VecOperation)                                    \
   1550   M(VecBinaryOperation, VecOperation)                                   \
   1551   M(VecMemoryOperation, VecOperation)
   1552 
   1553 #define FOR_EACH_INSTRUCTION(M)                                         \
   1554   FOR_EACH_CONCRETE_INSTRUCTION(M)                                      \
   1555   FOR_EACH_ABSTRACT_INSTRUCTION(M)
   1556 
   1557 #define FORWARD_DECLARATION(type, super) class H##type;
   1558 FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
   1559 #undef FORWARD_DECLARATION
   1560 
   1561 #define DECLARE_INSTRUCTION(type)                                         \
   1562   private:                                                                \
   1563   H##type& operator=(const H##type&) = delete;                            \
   1564   public:                                                                 \
   1565   const char* DebugName() const override { return #type; }                \
   1566   HInstruction* Clone(ArenaAllocator* arena) const override {             \
   1567     DCHECK(IsClonable());                                                 \
   1568     return new (arena) H##type(*this->As##type());                        \
   1569   }                                                                       \
   1570   void Accept(HGraphVisitor* visitor) override
   1571 
   1572 #define DECLARE_ABSTRACT_INSTRUCTION(type)                              \
   1573   private:                                                              \
   1574   H##type& operator=(const H##type&) = delete;                          \
   1575   public:
   1576 
   1577 #define DEFAULT_COPY_CONSTRUCTOR(type)                                  \
   1578   explicit H##type(const H##type& other) = default;
   1579 
   1580 template <typename T>
   1581 class HUseListNode : public ArenaObject<kArenaAllocUseListNode>,
   1582                      public IntrusiveForwardListNode<HUseListNode<T>> {
   1583  public:
   1584   // Get the instruction which has this use as one of the inputs.
   1585   T GetUser() const { return user_; }
   1586   // Get the position of the input record that this use corresponds to.
   1587   size_t GetIndex() const { return index_; }
   1588   // Set the position of the input record that this use corresponds to.
   1589   void SetIndex(size_t index) { index_ = index; }
   1590 
   1591  private:
   1592   HUseListNode(T user, size_t index)
   1593       : user_(user), index_(index) {}
   1594 
   1595   T const user_;
   1596   size_t index_;
   1597 
   1598   friend class HInstruction;
   1599 
   1600   DISALLOW_COPY_AND_ASSIGN(HUseListNode);
   1601 };
   1602 
   1603 template <typename T>
   1604 using HUseList = IntrusiveForwardList<HUseListNode<T>>;
   1605 
   1606 // This class is used by HEnvironment and HInstruction classes to record the
   1607 // instructions they use and pointers to the corresponding HUseListNodes kept
   1608 // by the used instructions.
   1609 template <typename T>
   1610 class HUserRecord : public ValueObject {
   1611  public:
   1612   HUserRecord() : instruction_(nullptr), before_use_node_() {}
   1613   explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {}
   1614 
   1615   HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node)
   1616       : HUserRecord(old_record.instruction_, before_use_node) {}
   1617   HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node)
   1618       : instruction_(instruction), before_use_node_(before_use_node) {
   1619     DCHECK(instruction_ != nullptr);
   1620   }
   1621 
   1622   HInstruction* GetInstruction() const { return instruction_; }
   1623   typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; }
   1624   typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); }
   1625 
   1626  private:
   1627   // Instruction used by the user.
   1628   HInstruction* instruction_;
   1629 
   1630   // Iterator before the corresponding entry in the use list kept by 'instruction_'.
   1631   typename HUseList<T>::iterator before_use_node_;
   1632 };
   1633 
   1634 // Helper class that extracts the input instruction from HUserRecord<HInstruction*>.
   1635 // This is used for HInstruction::GetInputs() to return a container wrapper providing
   1636 // HInstruction* values even though the underlying container has HUserRecord<>s.
   1637 struct HInputExtractor {
   1638   HInstruction* operator()(HUserRecord<HInstruction*>& record) const {
   1639     return record.GetInstruction();
   1640   }
   1641   const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const {
   1642     return record.GetInstruction();
   1643   }
   1644 };
   1645 
   1646 using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>;
   1647 using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>;
   1648 
   1649 /**
   1650  * Side-effects representation.
   1651  *
   1652  * For write/read dependences on fields/arrays, the dependence analysis uses
   1653  * type disambiguation (e.g. a float field write cannot modify the value of an
   1654  * integer field read) and the access type (e.g.  a reference array write cannot
   1655  * modify the value of a reference field read [although it may modify the
   1656  * reference fetch prior to reading the field, which is represented by its own
   1657  * write/read dependence]). The analysis makes conservative points-to
   1658  * assumptions on reference types (e.g. two same typed arrays are assumed to be
   1659  * the same, and any reference read depends on any reference read without
   1660  * further regard of its type).
   1661  *
   1662  * kDependsOnGCBit is defined in the following way: instructions with kDependsOnGCBit must not be
   1663  * alive across the point where garbage collection might happen.
   1664  *
   1665  * Note: Instructions with kCanTriggerGCBit do not depend on each other.
   1666  *
   1667  * kCanTriggerGCBit must be used for instructions for which GC might happen on the path across
   1668  * those instructions from the compiler perspective (between this instruction and the next one
   1669  * in the IR).
   1670  *
   1671  * Note: Instructions which can cause GC only on a fatal slow path do not need
   1672  *       kCanTriggerGCBit as the execution never returns to the instruction next to the exceptional
   1673  *       one. However the execution may return to compiled code if there is a catch block in the
   1674  *       current method; for this purpose the TryBoundary exit instruction has kCanTriggerGCBit
   1675  *       set.
   1676  *
   1677  * The internal representation uses 38-bit and is described in the table below.
   1678  * The first line indicates the side effect, and for field/array accesses the
   1679  * second line indicates the type of the access (in the order of the
   1680  * DataType::Type enum).
   1681  * The two numbered lines below indicate the bit position in the bitfield (read
   1682  * vertically).
   1683  *
   1684  *   |Depends on GC|ARRAY-R  |FIELD-R  |Can trigger GC|ARRAY-W  |FIELD-W  |
   1685  *   +-------------+---------+---------+--------------+---------+---------+
   1686  *   |             |DFJISCBZL|DFJISCBZL|              |DFJISCBZL|DFJISCBZL|
   1687  *   |      3      |333333322|222222221|       1      |111111110|000000000|
   1688  *   |      7      |654321098|765432109|       8      |765432109|876543210|
   1689  *
   1690  * Note that, to ease the implementation, 'changes' bits are least significant
   1691  * bits, while 'dependency' bits are most significant bits.
   1692  */
   1693 class SideEffects : public ValueObject {
   1694  public:
   1695   SideEffects() : flags_(0) {}
   1696 
   1697   static SideEffects None() {
   1698     return SideEffects(0);
   1699   }
   1700 
   1701   static SideEffects All() {
   1702     return SideEffects(kAllChangeBits | kAllDependOnBits);
   1703   }
   1704 
   1705   static SideEffects AllChanges() {
   1706     return SideEffects(kAllChangeBits);
   1707   }
   1708 
   1709   static SideEffects AllDependencies() {
   1710     return SideEffects(kAllDependOnBits);
   1711   }
   1712 
   1713   static SideEffects AllExceptGCDependency() {
   1714     return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
   1715   }
   1716 
   1717   static SideEffects AllWritesAndReads() {
   1718     return SideEffects(kAllWrites | kAllReads);
   1719   }
   1720 
   1721   static SideEffects AllWrites() {
   1722     return SideEffects(kAllWrites);
   1723   }
   1724 
   1725   static SideEffects AllReads() {
   1726     return SideEffects(kAllReads);
   1727   }
   1728 
   1729   static SideEffects FieldWriteOfType(DataType::Type type, bool is_volatile) {
   1730     return is_volatile
   1731         ? AllWritesAndReads()
   1732         : SideEffects(TypeFlag(type, kFieldWriteOffset));
   1733   }
   1734 
   1735   static SideEffects ArrayWriteOfType(DataType::Type type) {
   1736     return SideEffects(TypeFlag(type, kArrayWriteOffset));
   1737   }
   1738 
   1739   static SideEffects FieldReadOfType(DataType::Type type, bool is_volatile) {
   1740     return is_volatile
   1741         ? AllWritesAndReads()
   1742         : SideEffects(TypeFlag(type, kFieldReadOffset));
   1743   }
   1744 
   1745   static SideEffects ArrayReadOfType(DataType::Type type) {
   1746     return SideEffects(TypeFlag(type, kArrayReadOffset));
   1747   }
   1748 
   1749   // Returns whether GC might happen across this instruction from the compiler perspective so
   1750   // the next instruction in the IR would see that.
   1751   //
   1752   // See the SideEffect class comments.
   1753   static SideEffects CanTriggerGC() {
   1754     return SideEffects(1ULL << kCanTriggerGCBit);
   1755   }
   1756 
   1757   // Returns whether the instruction must not be alive across a GC point.
   1758   //
   1759   // See the SideEffect class comments.
   1760   static SideEffects DependsOnGC() {
   1761     return SideEffects(1ULL << kDependsOnGCBit);
   1762   }
   1763 
   1764   // Combines the side-effects of this and the other.
   1765   SideEffects Union(SideEffects other) const {
   1766     return SideEffects(flags_ | other.flags_);
   1767   }
   1768 
   1769   SideEffects Exclusion(SideEffects other) const {
   1770     return SideEffects(flags_ & ~other.flags_);
   1771   }
   1772 
   1773   void Add(SideEffects other) {
   1774     flags_ |= other.flags_;
   1775   }
   1776 
   1777   bool Includes(SideEffects other) const {
   1778     return (other.flags_ & flags_) == other.flags_;
   1779   }
   1780 
   1781   bool HasSideEffects() const {
   1782     return (flags_ & kAllChangeBits);
   1783   }
   1784 
   1785   bool HasDependencies() const {
   1786     return (flags_ & kAllDependOnBits);
   1787   }
   1788 
   1789   // Returns true if there are no side effects or dependencies.
   1790   bool DoesNothing() const {
   1791     return flags_ == 0;
   1792   }
   1793 
   1794   // Returns true if something is written.
   1795   bool DoesAnyWrite() const {
   1796     return (flags_ & kAllWrites);
   1797   }
   1798 
   1799   // Returns true if something is read.
   1800   bool DoesAnyRead() const {
   1801     return (flags_ & kAllReads);
   1802   }
   1803 
   1804   // Returns true if potentially everything is written and read
   1805   // (every type and every kind of access).
   1806   bool DoesAllReadWrite() const {
   1807     return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
   1808   }
   1809 
   1810   bool DoesAll() const {
   1811     return flags_ == (kAllChangeBits | kAllDependOnBits);
   1812   }
   1813 
   1814   // Returns true if `this` may read something written by `other`.
   1815   bool MayDependOn(SideEffects other) const {
   1816     const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
   1817     return (other.flags_ & depends_on_flags);
   1818   }
   1819 
   1820   // Returns string representation of flags (for debugging only).
   1821   // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
   1822   std::string ToString() const {
   1823     std::string flags = "|";
   1824     for (int s = kLastBit; s >= 0; s--) {
   1825       bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
   1826       if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
   1827         // This is a bit for the GC side effect.
   1828         if (current_bit_is_set) {
   1829           flags += "GC";
   1830         }
   1831         flags += "|";
   1832       } else {
   1833         // This is a bit for the array/field analysis.
   1834         // The underscore character stands for the 'can trigger GC' bit.
   1835         static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
   1836         if (current_bit_is_set) {
   1837           flags += kDebug[s];
   1838         }
   1839         if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
   1840             (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
   1841           flags += "|";
   1842         }
   1843       }
   1844     }
   1845     return flags;
   1846   }
   1847 
   1848   bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
   1849 
   1850  private:
   1851   static constexpr int kFieldArrayAnalysisBits = 9;
   1852 
   1853   static constexpr int kFieldWriteOffset = 0;
   1854   static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
   1855   static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
   1856   static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
   1857 
   1858   static constexpr int kChangeBits = kCanTriggerGCBit + 1;
   1859 
   1860   static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
   1861   static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
   1862   static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
   1863   static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
   1864 
   1865   static constexpr int kLastBit = kDependsOnGCBit;
   1866   static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
   1867 
   1868   // Aliases.
   1869 
   1870   static_assert(kChangeBits == kDependOnBits,
   1871                 "the 'change' bits should match the 'depend on' bits.");
   1872 
   1873   static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
   1874   static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
   1875   static constexpr uint64_t kAllWrites =
   1876       ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
   1877   static constexpr uint64_t kAllReads =
   1878       ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
   1879 
   1880   // Translates type to bit flag. The type must correspond to a Java type.
   1881   static uint64_t TypeFlag(DataType::Type type, int offset) {
   1882     int shift;
   1883     switch (type) {
   1884       case DataType::Type::kReference: shift = 0; break;
   1885       case DataType::Type::kBool:      shift = 1; break;
   1886       case DataType::Type::kInt8:      shift = 2; break;
   1887       case DataType::Type::kUint16:    shift = 3; break;
   1888       case DataType::Type::kInt16:     shift = 4; break;
   1889       case DataType::Type::kInt32:     shift = 5; break;
   1890       case DataType::Type::kInt64:     shift = 6; break;
   1891       case DataType::Type::kFloat32:   shift = 7; break;
   1892       case DataType::Type::kFloat64:   shift = 8; break;
   1893       default:
   1894         LOG(FATAL) << "Unexpected data type " << type;
   1895         UNREACHABLE();
   1896     }
   1897     DCHECK_LE(kFieldWriteOffset, shift);
   1898     DCHECK_LT(shift, kArrayWriteOffset);
   1899     return UINT64_C(1) << (shift + offset);
   1900   }
   1901 
   1902   // Private constructor on direct flags value.
   1903   explicit SideEffects(uint64_t flags) : flags_(flags) {}
   1904 
   1905   uint64_t flags_;
   1906 };
   1907 
   1908 // A HEnvironment object contains the values of virtual registers at a given location.
   1909 class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
   1910  public:
   1911   ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator,
   1912                              size_t number_of_vregs,
   1913                              ArtMethod* method,
   1914                              uint32_t dex_pc,
   1915                              HInstruction* holder)
   1916      : vregs_(number_of_vregs, allocator->Adapter(kArenaAllocEnvironmentVRegs)),
   1917        locations_(allocator->Adapter(kArenaAllocEnvironmentLocations)),
   1918        parent_(nullptr),
   1919        method_(method),
   1920        dex_pc_(dex_pc),
   1921        holder_(holder) {
   1922   }
   1923 
   1924   ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator,
   1925                              const HEnvironment& to_copy,
   1926                              HInstruction* holder)
   1927       : HEnvironment(allocator,
   1928                      to_copy.Size(),
   1929                      to_copy.GetMethod(),
   1930                      to_copy.GetDexPc(),
   1931                      holder) {}
   1932 
   1933   void AllocateLocations() {
   1934     DCHECK(locations_.empty());
   1935     locations_.resize(vregs_.size());
   1936   }
   1937 
   1938   void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
   1939     if (parent_ != nullptr) {
   1940       parent_->SetAndCopyParentChain(allocator, parent);
   1941     } else {
   1942       parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
   1943       parent_->CopyFrom(parent);
   1944       if (parent->GetParent() != nullptr) {
   1945         parent_->SetAndCopyParentChain(allocator, parent->GetParent());
   1946       }
   1947     }
   1948   }
   1949 
   1950   void CopyFrom(ArrayRef<HInstruction* const> locals);
   1951   void CopyFrom(HEnvironment* environment);
   1952 
   1953   // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
   1954   // input to the loop phi instead. This is for inserting instructions that
   1955   // require an environment (like HDeoptimization) in the loop pre-header.
   1956   void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
   1957 
   1958   void SetRawEnvAt(size_t index, HInstruction* instruction) {
   1959     vregs_[index] = HUserRecord<HEnvironment*>(instruction);
   1960   }
   1961 
   1962   HInstruction* GetInstructionAt(size_t index) const {
   1963     return vregs_[index].GetInstruction();
   1964   }
   1965 
   1966   void RemoveAsUserOfInput(size_t index) const;
   1967 
   1968   // Replaces the input at the position 'index' with the replacement; the replacement and old
   1969   // input instructions' env_uses_ lists are adjusted. The function works similar to
   1970   // HInstruction::ReplaceInput.
   1971   void ReplaceInput(HInstruction* replacement, size_t index);
   1972 
   1973   size_t Size() const { return vregs_.size(); }
   1974 
   1975   HEnvironment* GetParent() const { return parent_; }
   1976 
   1977   void SetLocationAt(size_t index, Location location) {
   1978     locations_[index] = location;
   1979   }
   1980 
   1981   Location GetLocationAt(size_t index) const {
   1982     return locations_[index];
   1983   }
   1984 
   1985   uint32_t GetDexPc() const {
   1986     return dex_pc_;
   1987   }
   1988 
   1989   ArtMethod* GetMethod() const {
   1990     return method_;
   1991   }
   1992 
   1993   HInstruction* GetHolder() const {
   1994     return holder_;
   1995   }
   1996 
   1997 
   1998   bool IsFromInlinedInvoke() const {
   1999     return GetParent() != nullptr;
   2000   }
   2001 
   2002  private:
   2003   ArenaVector<HUserRecord<HEnvironment*>> vregs_;
   2004   ArenaVector<Location> locations_;
   2005   HEnvironment* parent_;
   2006   ArtMethod* method_;
   2007   const uint32_t dex_pc_;
   2008 
   2009   // The instruction that holds this environment.
   2010   HInstruction* const holder_;
   2011 
   2012   friend class HInstruction;
   2013 
   2014   DISALLOW_COPY_AND_ASSIGN(HEnvironment);
   2015 };
   2016 
   2017 class HInstruction : public ArenaObject<kArenaAllocInstruction> {
   2018  public:
   2019 #define DECLARE_KIND(type, super) k##type,
   2020   enum InstructionKind {
   2021     FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_KIND)
   2022     kLastInstructionKind
   2023   };
   2024 #undef DECLARE_KIND
   2025 
   2026   HInstruction(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc)
   2027       : HInstruction(kind, DataType::Type::kVoid, side_effects, dex_pc) {}
   2028 
   2029   HInstruction(InstructionKind kind, DataType::Type type, SideEffects side_effects, uint32_t dex_pc)
   2030       : previous_(nullptr),
   2031         next_(nullptr),
   2032         block_(nullptr),
   2033         dex_pc_(dex_pc),
   2034         id_(-1),
   2035         ssa_index_(-1),
   2036         packed_fields_(0u),
   2037         environment_(nullptr),
   2038         locations_(nullptr),
   2039         live_interval_(nullptr),
   2040         lifetime_position_(kNoLifetime),
   2041         side_effects_(side_effects),
   2042         reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) {
   2043     SetPackedField<InstructionKindField>(kind);
   2044     SetPackedField<TypeField>(type);
   2045     SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact());
   2046   }
   2047 
   2048   virtual ~HInstruction() {}
   2049 
   2050 
   2051   HInstruction* GetNext() const { return next_; }
   2052   HInstruction* GetPrevious() const { return previous_; }
   2053 
   2054   HInstruction* GetNextDisregardingMoves() const;
   2055   HInstruction* GetPreviousDisregardingMoves() const;
   2056 
   2057   HBasicBlock* GetBlock() const { return block_; }
   2058   ArenaAllocator* GetAllocator() const { return block_->GetGraph()->GetAllocator(); }
   2059   void SetBlock(HBasicBlock* block) { block_ = block; }
   2060   bool IsInBlock() const { return block_ != nullptr; }
   2061   bool IsInLoop() const { return block_->IsInLoop(); }
   2062   bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); }
   2063   bool IsIrreducibleLoopHeaderPhi() const {
   2064     return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible();
   2065   }
   2066 
   2067   virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0;
   2068 
   2069   ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const {
   2070     // One virtual method is enough, just const_cast<> and then re-add the const.
   2071     return ArrayRef<const HUserRecord<HInstruction*>>(
   2072         const_cast<HInstruction*>(this)->GetInputRecords());
   2073   }
   2074 
   2075   HInputsRef GetInputs() {
   2076     return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
   2077   }
   2078 
   2079   HConstInputsRef GetInputs() const {
   2080     return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
   2081   }
   2082 
   2083   size_t InputCount() const { return GetInputRecords().size(); }
   2084   HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
   2085 
   2086   bool HasInput(HInstruction* input) const {
   2087     for (const HInstruction* i : GetInputs()) {
   2088       if (i == input) {
   2089         return true;
   2090       }
   2091     }
   2092     return false;
   2093   }
   2094 
   2095   void SetRawInputAt(size_t index, HInstruction* input) {
   2096     SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
   2097   }
   2098 
   2099   virtual void Accept(HGraphVisitor* visitor) = 0;
   2100   virtual const char* DebugName() const = 0;
   2101 
   2102   DataType::Type GetType() const {
   2103     return TypeField::Decode(GetPackedFields());
   2104   }
   2105 
   2106   virtual bool NeedsEnvironment() const { return false; }
   2107 
   2108   uint32_t GetDexPc() const { return dex_pc_; }
   2109 
   2110   virtual bool IsControlFlow() const { return false; }
   2111 
   2112   // Can the instruction throw?
   2113   // TODO: We should rename to CanVisiblyThrow, as some instructions (like HNewInstance),
   2114   // could throw OOME, but it is still OK to remove them if they are unused.
   2115   virtual bool CanThrow() const { return false; }
   2116 
   2117   // Does the instruction always throw an exception unconditionally?
   2118   virtual bool AlwaysThrows() const { return false; }
   2119 
   2120   bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
   2121 
   2122   bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
   2123   bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
   2124 
   2125   // Does not apply for all instructions, but having this at top level greatly
   2126   // simplifies the null check elimination.
   2127   // TODO: Consider merging can_be_null into ReferenceTypeInfo.
   2128   virtual bool CanBeNull() const {
   2129     DCHECK_EQ(GetType(), DataType::Type::kReference) << "CanBeNull only applies to reference types";
   2130     return true;
   2131   }
   2132 
   2133   virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
   2134     return false;
   2135   }
   2136 
   2137   // If this instruction will do an implicit null check, return the `HNullCheck` associated
   2138   // with it. Otherwise return null.
   2139   HNullCheck* GetImplicitNullCheck() const {
   2140     // Find the first previous instruction which is not a move.
   2141     HInstruction* first_prev_not_move = GetPreviousDisregardingMoves();
   2142     if (first_prev_not_move != nullptr &&
   2143         first_prev_not_move->IsNullCheck() &&
   2144         first_prev_not_move->IsEmittedAtUseSite()) {
   2145       return first_prev_not_move->AsNullCheck();
   2146     }
   2147     return nullptr;
   2148   }
   2149 
   2150   virtual bool IsActualObject() const {
   2151     return GetType() == DataType::Type::kReference;
   2152   }
   2153 
   2154   void SetReferenceTypeInfo(ReferenceTypeInfo rti);
   2155 
   2156   ReferenceTypeInfo GetReferenceTypeInfo() const {
   2157     DCHECK_EQ(GetType(), DataType::Type::kReference);
   2158     return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_,
   2159                                               GetPackedFlag<kFlagReferenceTypeIsExact>());
   2160   }
   2161 
   2162   void AddUseAt(HInstruction* user, size_t index) {
   2163     DCHECK(user != nullptr);
   2164     // Note: fixup_end remains valid across push_front().
   2165     auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin();
   2166     HUseListNode<HInstruction*>* new_node =
   2167         new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HInstruction*>(user, index);
   2168     uses_.push_front(*new_node);
   2169     FixUpUserRecordsAfterUseInsertion(fixup_end);
   2170   }
   2171 
   2172   void AddEnvUseAt(HEnvironment* user, size_t index) {
   2173     DCHECK(user != nullptr);
   2174     // Note: env_fixup_end remains valid across push_front().
   2175     auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin();
   2176     HUseListNode<HEnvironment*>* new_node =
   2177         new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HEnvironment*>(user, index);
   2178     env_uses_.push_front(*new_node);
   2179     FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
   2180   }
   2181 
   2182   void RemoveAsUserOfInput(size_t input) {
   2183     HUserRecord<HInstruction*> input_use = InputRecordAt(input);
   2184     HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
   2185     input_use.GetInstruction()->uses_.erase_after(before_use_node);
   2186     input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
   2187   }
   2188 
   2189   void RemoveAsUserOfAllInputs() {
   2190     for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) {
   2191       HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
   2192       input_use.GetInstruction()->uses_.erase_after(before_use_node);
   2193       input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
   2194     }
   2195   }
   2196 
   2197   const HUseList<HInstruction*>& GetUses() const { return uses_; }
   2198   const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
   2199 
   2200   bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); }
   2201   bool HasEnvironmentUses() const { return !env_uses_.empty(); }
   2202   bool HasNonEnvironmentUses() const { return !uses_.empty(); }
   2203   bool HasOnlyOneNonEnvironmentUse() const {
   2204     return !HasEnvironmentUses() && GetUses().HasExactlyOneElement();
   2205   }
   2206 
   2207   bool IsRemovable() const {
   2208     return
   2209         !DoesAnyWrite() &&
   2210         !CanThrow() &&
   2211         !IsSuspendCheck() &&
   2212         !IsControlFlow() &&
   2213         !IsNativeDebugInfo() &&
   2214         !IsParameterValue() &&
   2215         // If we added an explicit barrier then we should keep it.
   2216         !IsMemoryBarrier() &&
   2217         !IsConstructorFence();
   2218   }
   2219 
   2220   bool IsDeadAndRemovable() const {
   2221     return IsRemovable() && !HasUses();
   2222   }
   2223 
   2224   // Does this instruction strictly dominate `other_instruction`?
   2225   // Returns false if this instruction and `other_instruction` are the same.
   2226   // Aborts if this instruction and `other_instruction` are both phis.
   2227   bool StrictlyDominates(HInstruction* other_instruction) const;
   2228 
   2229   int GetId() const { return id_; }
   2230   void SetId(int id) { id_ = id; }
   2231 
   2232   int GetSsaIndex() const { return ssa_index_; }
   2233   void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
   2234   bool HasSsaIndex() const { return ssa_index_ != -1; }
   2235 
   2236   bool HasEnvironment() const { return environment_ != nullptr; }
   2237   HEnvironment* GetEnvironment() const { return environment_; }
   2238   // Set the `environment_` field. Raw because this method does not
   2239   // update the uses lists.
   2240   void SetRawEnvironment(HEnvironment* environment) {
   2241     DCHECK(environment_ == nullptr);
   2242     DCHECK_EQ(environment->GetHolder(), this);
   2243     environment_ = environment;
   2244   }
   2245 
   2246   void InsertRawEnvironment(HEnvironment* environment) {
   2247     DCHECK(environment_ != nullptr);
   2248     DCHECK_EQ(environment->GetHolder(), this);
   2249     DCHECK(environment->GetParent() == nullptr);
   2250     environment->parent_ = environment_;
   2251     environment_ = environment;
   2252   }
   2253 
   2254   void RemoveEnvironment();
   2255 
   2256   // Set the environment of this instruction, copying it from `environment`. While
   2257   // copying, the uses lists are being updated.
   2258   void CopyEnvironmentFrom(HEnvironment* environment) {
   2259     DCHECK(environment_ == nullptr);
   2260     ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator();
   2261     environment_ = new (allocator) HEnvironment(allocator, *environment, this);
   2262     environment_->CopyFrom(environment);
   2263     if (environment->GetParent() != nullptr) {
   2264       environment_->SetAndCopyParentChain(allocator, environment->GetParent());
   2265     }
   2266   }
   2267 
   2268   void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
   2269                                                 HBasicBlock* block) {
   2270     DCHECK(environment_ == nullptr);
   2271     ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator();
   2272     environment_ = new (allocator) HEnvironment(allocator, *environment, this);
   2273     environment_->CopyFromWithLoopPhiAdjustment(environment, block);
   2274     if (environment->GetParent() != nullptr) {
   2275       environment_->SetAndCopyParentChain(allocator, environment->GetParent());
   2276     }
   2277   }
   2278 
   2279   // Returns the number of entries in the environment. Typically, that is the
   2280   // number of dex registers in a method. It could be more in case of inlining.
   2281   size_t EnvironmentSize() const;
   2282 
   2283   LocationSummary* GetLocations() const { return locations_; }
   2284   void SetLocations(LocationSummary* locations) { locations_ = locations; }
   2285 
   2286   void ReplaceWith(HInstruction* instruction);
   2287   void ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
   2288   void ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
   2289   void ReplaceInput(HInstruction* replacement, size_t index);
   2290 
   2291   // This is almost the same as doing `ReplaceWith()`. But in this helper, the
   2292   // uses of this instruction by `other` are *not* updated.
   2293   void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
   2294     ReplaceWith(other);
   2295     other->ReplaceInput(this, use_index);
   2296   }
   2297 
   2298   // Move `this` instruction before `cursor`
   2299   void MoveBefore(HInstruction* cursor, bool do_checks = true);
   2300 
   2301   // Move `this` before its first user and out of any loops. If there is no
   2302   // out-of-loop user that dominates all other users, move the instruction
   2303   // to the end of the out-of-loop common dominator of the user's blocks.
   2304   //
   2305   // This can be used only on non-throwing instructions with no side effects that
   2306   // have at least one use but no environment uses.
   2307   void MoveBeforeFirstUserAndOutOfLoops();
   2308 
   2309 #define INSTRUCTION_TYPE_CHECK(type, super)                                    \
   2310   bool Is##type() const;
   2311 
   2312   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
   2313 #undef INSTRUCTION_TYPE_CHECK
   2314 
   2315 #define INSTRUCTION_TYPE_CAST(type, super)                                     \
   2316   const H##type* As##type() const;                                             \
   2317   H##type* As##type();
   2318 
   2319   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)
   2320 #undef INSTRUCTION_TYPE_CAST
   2321 
   2322   // Return a clone of the instruction if it is clonable (shallow copy by default, custom copy
   2323   // if a custom copy-constructor is provided for a particular type). If IsClonable() is false for
   2324   // the instruction then the behaviour of this function is undefined.
   2325   //
   2326   // Note: It is semantically valid to create a clone of the instruction only until
   2327   // prepare_for_register_allocator phase as lifetime, intervals and codegen info are not
   2328   // copied.
   2329   //
   2330   // Note: HEnvironment and some other fields are not copied and are set to default values, see
   2331   // 'explicit HInstruction(const HInstruction& other)' for details.
   2332   virtual HInstruction* Clone(ArenaAllocator* arena ATTRIBUTE_UNUSED) const {
   2333     LOG(FATAL) << "Cloning is not implemented for the instruction " <<
   2334                   DebugName() << " " << GetId();
   2335     UNREACHABLE();
   2336   }
   2337 
   2338   // Return whether instruction can be cloned (copied).
   2339   virtual bool IsClonable() const { return false; }
   2340 
   2341   // Returns whether the instruction can be moved within the graph.
   2342   // TODO: this method is used by LICM and GVN with possibly different
   2343   //       meanings? split and rename?
   2344   virtual bool CanBeMoved() const { return false; }
   2345 
   2346   // Returns whether any data encoded in the two instructions is equal.
   2347   // This method does not look at the inputs. Both instructions must be
   2348   // of the same type, otherwise the method has undefined behavior.
   2349   virtual bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const {
   2350     return false;
   2351   }
   2352 
   2353   // Returns whether two instructions are equal, that is:
   2354   // 1) They have the same type and contain the same data (InstructionDataEquals).
   2355   // 2) Their inputs are identical.
   2356   bool Equals(const HInstruction* other) const;
   2357 
   2358   InstructionKind GetKind() const { return GetPackedField<InstructionKindField>(); }
   2359 
   2360   virtual size_t ComputeHashCode() const {
   2361     size_t result = GetKind();
   2362     for (const HInstruction* input : GetInputs()) {
   2363       result = (result * 31) + input->GetId();
   2364     }
   2365     return result;
   2366   }
   2367 
   2368   SideEffects GetSideEffects() const { return side_effects_; }
   2369   void SetSideEffects(SideEffects other) { side_effects_ = other; }
   2370   void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
   2371 
   2372   size_t GetLifetimePosition() const { return lifetime_position_; }
   2373   void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
   2374   LiveInterval* GetLiveInterval() const { return live_interval_; }
   2375   void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
   2376   bool HasLiveInterval() const { return live_interval_ != nullptr; }
   2377 
   2378   bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
   2379 
   2380   // Returns whether the code generation of the instruction will require to have access
   2381   // to the current method. Such instructions are:
   2382   // (1): Instructions that require an environment, as calling the runtime requires
   2383   //      to walk the stack and have the current method stored at a specific stack address.
   2384   // (2): HCurrentMethod, potentially used by HInvokeStaticOrDirect, HLoadString, or HLoadClass
   2385   //      to access the dex cache.
   2386   bool NeedsCurrentMethod() const {
   2387     return NeedsEnvironment() || IsCurrentMethod();
   2388   }
   2389 
   2390   // Returns whether the code generation of the instruction will require to have access
   2391   // to the dex cache of the current method's declaring class via the current method.
   2392   virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
   2393 
   2394   // Does this instruction have any use in an environment before
   2395   // control flow hits 'other'?
   2396   bool HasAnyEnvironmentUseBefore(HInstruction* other);
   2397 
   2398   // Remove all references to environment uses of this instruction.
   2399   // The caller must ensure that this is safe to do.
   2400   void RemoveEnvironmentUsers();
   2401 
   2402   bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); }
   2403   void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); }
   2404 
   2405  protected:
   2406   // If set, the machine code for this instruction is assumed to be generated by
   2407   // its users. Used by liveness analysis to compute use positions accordingly.
   2408   static constexpr size_t kFlagEmittedAtUseSite = 0u;
   2409   static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1;
   2410   static constexpr size_t kFieldInstructionKind = kFlagReferenceTypeIsExact + 1;
   2411   static constexpr size_t kFieldInstructionKindSize =
   2412       MinimumBitsToStore(static_cast<size_t>(InstructionKind::kLastInstructionKind - 1));
   2413   static constexpr size_t kFieldType =
   2414       kFieldInstructionKind + kFieldInstructionKindSize;
   2415   static constexpr size_t kFieldTypeSize =
   2416       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
   2417   static constexpr size_t kNumberOfGenericPackedBits = kFieldType + kFieldTypeSize;
   2418   static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte;
   2419 
   2420   static_assert(kNumberOfGenericPackedBits <= kMaxNumberOfPackedBits,
   2421                 "Too many generic packed fields");
   2422 
   2423   using TypeField = BitField<DataType::Type, kFieldType, kFieldTypeSize>;
   2424 
   2425   const HUserRecord<HInstruction*> InputRecordAt(size_t i) const {
   2426     return GetInputRecords()[i];
   2427   }
   2428 
   2429   void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) {
   2430     ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords();
   2431     input_records[index] = input;
   2432   }
   2433 
   2434   uint32_t GetPackedFields() const {
   2435     return packed_fields_;
   2436   }
   2437 
   2438   template <size_t flag>
   2439   bool GetPackedFlag() const {
   2440     return (packed_fields_ & (1u << flag)) != 0u;
   2441   }
   2442 
   2443   template <size_t flag>
   2444   void SetPackedFlag(bool value = true) {
   2445     packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag);
   2446   }
   2447 
   2448   template <typename BitFieldType>
   2449   typename BitFieldType::value_type GetPackedField() const {
   2450     return BitFieldType::Decode(packed_fields_);
   2451   }
   2452 
   2453   template <typename BitFieldType>
   2454   void SetPackedField(typename BitFieldType::value_type value) {
   2455     DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value)));
   2456     packed_fields_ = BitFieldType::Update(value, packed_fields_);
   2457   }
   2458 
   2459   // Copy construction for the instruction (used for Clone function).
   2460   //
   2461   // Fields (e.g. lifetime, intervals and codegen info) associated with phases starting from
   2462   // prepare_for_register_allocator are not copied (set to default values).
   2463   //
   2464   // Copy constructors must be provided for every HInstruction type; default copy constructor is
   2465   // fine for most of them. However for some of the instructions a custom copy constructor must be
   2466   // specified (when instruction has non-trivially copyable fields and must have a special behaviour
   2467   // for copying them).
   2468   explicit HInstruction(const HInstruction& other)
   2469       : previous_(nullptr),
   2470         next_(nullptr),
   2471         block_(nullptr),
   2472         dex_pc_(other.dex_pc_),
   2473         id_(-1),
   2474         ssa_index_(-1),
   2475         packed_fields_(other.packed_fields_),
   2476         environment_(nullptr),
   2477         locations_(nullptr),
   2478         live_interval_(nullptr),
   2479         lifetime_position_(kNoLifetime),
   2480         side_effects_(other.side_effects_),
   2481         reference_type_handle_(other.reference_type_handle_) {
   2482   }
   2483 
   2484  private:
   2485   using InstructionKindField =
   2486      BitField<InstructionKind, kFieldInstructionKind, kFieldInstructionKindSize>;
   2487 
   2488   void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) {
   2489     auto before_use_node = uses_.before_begin();
   2490     for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) {
   2491       HInstruction* user = use_node->GetUser();
   2492       size_t input_index = use_node->GetIndex();
   2493       user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node));
   2494       before_use_node = use_node;
   2495     }
   2496   }
   2497 
   2498   void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) {
   2499     auto next = ++HUseList<HInstruction*>::iterator(before_use_node);
   2500     if (next != uses_.end()) {
   2501       HInstruction* next_user = next->GetUser();
   2502       size_t next_index = next->GetIndex();
   2503       DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this);
   2504       next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node));
   2505     }
   2506   }
   2507 
   2508   void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) {
   2509     auto before_env_use_node = env_uses_.before_begin();
   2510     for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) {
   2511       HEnvironment* user = env_use_node->GetUser();
   2512       size_t input_index = env_use_node->GetIndex();
   2513       user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
   2514       before_env_use_node = env_use_node;
   2515     }
   2516   }
   2517 
   2518   void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) {
   2519     auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node);
   2520     if (next != env_uses_.end()) {
   2521       HEnvironment* next_user = next->GetUser();
   2522       size_t next_index = next->GetIndex();
   2523       DCHECK(next_user->vregs_[next_index].GetInstruction() == this);
   2524       next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
   2525     }
   2526   }
   2527 
   2528   HInstruction* previous_;
   2529   HInstruction* next_;
   2530   HBasicBlock* block_;
   2531   const uint32_t dex_pc_;
   2532 
   2533   // An instruction gets an id when it is added to the graph.
   2534   // It reflects creation order. A negative id means the instruction
   2535   // has not been added to the graph.
   2536   int id_;
   2537 
   2538   // When doing liveness analysis, instructions that have uses get an SSA index.
   2539   int ssa_index_;
   2540 
   2541   // Packed fields.
   2542   uint32_t packed_fields_;
   2543 
   2544   // List of instructions that have this instruction as input.
   2545   HUseList<HInstruction*> uses_;
   2546 
   2547   // List of environments that contain this instruction.
   2548   HUseList<HEnvironment*> env_uses_;
   2549 
   2550   // The environment associated with this instruction. Not null if the instruction
   2551   // might jump out of the method.
   2552   HEnvironment* environment_;
   2553 
   2554   // Set by the code generator.
   2555   LocationSummary* locations_;
   2556 
   2557   // Set by the liveness analysis.
   2558   LiveInterval* live_interval_;
   2559 
   2560   // Set by the liveness analysis, this is the position in a linear
   2561   // order of blocks where this instruction's live interval start.
   2562   size_t lifetime_position_;
   2563 
   2564   SideEffects side_effects_;
   2565 
   2566   // The reference handle part of the reference type info.
   2567   // The IsExact() flag is stored in packed fields.
   2568   // TODO: for primitive types this should be marked as invalid.
   2569   ReferenceTypeInfo::TypeHandle reference_type_handle_;
   2570 
   2571   friend class GraphChecker;
   2572   friend class HBasicBlock;
   2573   friend class HEnvironment;
   2574   friend class HGraph;
   2575   friend class HInstructionList;
   2576 };
   2577 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
   2578 
   2579 // Iterates over the instructions, while preserving the next instruction
   2580 // in case the current instruction gets removed from the list by the user
   2581 // of this iterator.
   2582 class HInstructionIterator : public ValueObject {
   2583  public:
   2584   explicit HInstructionIterator(const HInstructionList& instructions)
   2585       : instruction_(instructions.first_instruction_) {
   2586     next_ = Done() ? nullptr : instruction_->GetNext();
   2587   }
   2588 
   2589   bool Done() const { return instruction_ == nullptr; }
   2590   HInstruction* Current() const { return instruction_; }
   2591   void Advance() {
   2592     instruction_ = next_;
   2593     next_ = Done() ? nullptr : instruction_->GetNext();
   2594   }
   2595 
   2596  private:
   2597   HInstruction* instruction_;
   2598   HInstruction* next_;
   2599 
   2600   DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
   2601 };
   2602 
   2603 // Iterates over the instructions without saving the next instruction,
   2604 // therefore handling changes in the graph potentially made by the user
   2605 // of this iterator.
   2606 class HInstructionIteratorHandleChanges : public ValueObject {
   2607  public:
   2608   explicit HInstructionIteratorHandleChanges(const HInstructionList& instructions)
   2609       : instruction_(instructions.first_instruction_) {
   2610   }
   2611 
   2612   bool Done() const { return instruction_ == nullptr; }
   2613   HInstruction* Current() const { return instruction_; }
   2614   void Advance() {
   2615     instruction_ = instruction_->GetNext();
   2616   }
   2617 
   2618  private:
   2619   HInstruction* instruction_;
   2620 
   2621   DISALLOW_COPY_AND_ASSIGN(HInstructionIteratorHandleChanges);
   2622 };
   2623 
   2624 
   2625 class HBackwardInstructionIterator : public ValueObject {
   2626  public:
   2627   explicit HBackwardInstructionIterator(const HInstructionList& instructions)
   2628       : instruction_(instructions.last_instruction_) {
   2629     next_ = Done() ? nullptr : instruction_->GetPrevious();
   2630   }
   2631 
   2632   bool Done() const { return instruction_ == nullptr; }
   2633   HInstruction* Current() const { return instruction_; }
   2634   void Advance() {
   2635     instruction_ = next_;
   2636     next_ = Done() ? nullptr : instruction_->GetPrevious();
   2637   }
   2638 
   2639  private:
   2640   HInstruction* instruction_;
   2641   HInstruction* next_;
   2642 
   2643   DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
   2644 };
   2645 
   2646 class HVariableInputSizeInstruction : public HInstruction {
   2647  public:
   2648   using HInstruction::GetInputRecords;  // Keep the const version visible.
   2649   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
   2650     return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
   2651   }
   2652 
   2653   void AddInput(HInstruction* input);
   2654   void InsertInputAt(size_t index, HInstruction* input);
   2655   void RemoveInputAt(size_t index);
   2656 
   2657   // Removes all the inputs.
   2658   // Also removes this instructions from each input's use list
   2659   // (for non-environment uses only).
   2660   void RemoveAllInputs();
   2661 
   2662  protected:
   2663   HVariableInputSizeInstruction(InstructionKind inst_kind,
   2664                                 SideEffects side_effects,
   2665                                 uint32_t dex_pc,
   2666                                 ArenaAllocator* allocator,
   2667                                 size_t number_of_inputs,
   2668                                 ArenaAllocKind kind)
   2669       : HInstruction(inst_kind, side_effects, dex_pc),
   2670         inputs_(number_of_inputs, allocator->Adapter(kind)) {}
   2671   HVariableInputSizeInstruction(InstructionKind inst_kind,
   2672                                 DataType::Type type,
   2673                                 SideEffects side_effects,
   2674                                 uint32_t dex_pc,
   2675                                 ArenaAllocator* allocator,
   2676                                 size_t number_of_inputs,
   2677                                 ArenaAllocKind kind)
   2678       : HInstruction(inst_kind, type, side_effects, dex_pc),
   2679         inputs_(number_of_inputs, allocator->Adapter(kind)) {}
   2680 
   2681   DEFAULT_COPY_CONSTRUCTOR(VariableInputSizeInstruction);
   2682 
   2683   ArenaVector<HUserRecord<HInstruction*>> inputs_;
   2684 };
   2685 
   2686 template<size_t N>
   2687 class HExpression : public HInstruction {
   2688  public:
   2689   HExpression<N>(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc)
   2690       : HInstruction(kind, side_effects, dex_pc), inputs_() {}
   2691   HExpression<N>(InstructionKind kind,
   2692                  DataType::Type type,
   2693                  SideEffects side_effects,
   2694                  uint32_t dex_pc)
   2695       : HInstruction(kind, type, side_effects, dex_pc), inputs_() {}
   2696   virtual ~HExpression() {}
   2697 
   2698   using HInstruction::GetInputRecords;  // Keep the const version visible.
   2699   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
   2700     return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
   2701   }
   2702 
   2703  protected:
   2704   DEFAULT_COPY_CONSTRUCTOR(Expression<N>);
   2705 
   2706  private:
   2707   std::array<HUserRecord<HInstruction*>, N> inputs_;
   2708 
   2709   friend class SsaBuilder;
   2710 };
   2711 
   2712 // HExpression specialization for N=0.
   2713 template<>
   2714 class HExpression<0> : public HInstruction {
   2715  public:
   2716   using HInstruction::HInstruction;
   2717 
   2718   virtual ~HExpression() {}
   2719 
   2720   using HInstruction::GetInputRecords;  // Keep the const version visible.
   2721   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
   2722     return ArrayRef<HUserRecord<HInstruction*>>();
   2723   }
   2724 
   2725  protected:
   2726   DEFAULT_COPY_CONSTRUCTOR(Expression<0>);
   2727 
   2728  private:
   2729   friend class SsaBuilder;
   2730 };
   2731 
   2732 // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
   2733 // instruction that branches to the exit block.
   2734 class HReturnVoid final : public HExpression<0> {
   2735  public:
   2736   explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
   2737       : HExpression(kReturnVoid, SideEffects::None(), dex_pc) {
   2738   }
   2739 
   2740   bool IsControlFlow() const override { return true; }
   2741 
   2742   DECLARE_INSTRUCTION(ReturnVoid);
   2743 
   2744  protected:
   2745   DEFAULT_COPY_CONSTRUCTOR(ReturnVoid);
   2746 };
   2747 
   2748 // Represents dex's RETURN opcodes. A HReturn is a control flow
   2749 // instruction that branches to the exit block.
   2750 class HReturn final : public HExpression<1> {
   2751  public:
   2752   explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
   2753       : HExpression(kReturn, SideEffects::None(), dex_pc) {
   2754     SetRawInputAt(0, value);
   2755   }
   2756 
   2757   bool IsControlFlow() const override { return true; }
   2758 
   2759   DECLARE_INSTRUCTION(Return);
   2760 
   2761  protected:
   2762   DEFAULT_COPY_CONSTRUCTOR(Return);
   2763 };
   2764 
   2765 class HPhi final : public HVariableInputSizeInstruction {
   2766  public:
   2767   HPhi(ArenaAllocator* allocator,
   2768        uint32_t reg_number,
   2769        size_t number_of_inputs,
   2770        DataType::Type type,
   2771        uint32_t dex_pc = kNoDexPc)
   2772       : HVariableInputSizeInstruction(
   2773             kPhi,
   2774             ToPhiType(type),
   2775             SideEffects::None(),
   2776             dex_pc,
   2777             allocator,
   2778             number_of_inputs,
   2779             kArenaAllocPhiInputs),
   2780         reg_number_(reg_number) {
   2781     DCHECK_NE(GetType(), DataType::Type::kVoid);
   2782     // Phis are constructed live and marked dead if conflicting or unused.
   2783     // Individual steps of SsaBuilder should assume that if a phi has been
   2784     // marked dead, it can be ignored and will be removed by SsaPhiElimination.
   2785     SetPackedFlag<kFlagIsLive>(true);
   2786     SetPackedFlag<kFlagCanBeNull>(true);
   2787   }
   2788 
   2789   bool IsClonable() const override { return true; }
   2790 
   2791   // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
   2792   static DataType::Type ToPhiType(DataType::Type type) {
   2793     return DataType::Kind(type);
   2794   }
   2795 
   2796   bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
   2797 
   2798   void SetType(DataType::Type new_type) {
   2799     // Make sure that only valid type changes occur. The following are allowed:
   2800     //  (1) int  -> float/ref (primitive type propagation),
   2801     //  (2) long -> double (primitive type propagation).
   2802     DCHECK(GetType() == new_type ||
   2803            (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kFloat32) ||
   2804            (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kReference) ||
   2805            (GetType() == DataType::Type::kInt64 && new_type == DataType::Type::kFloat64));
   2806     SetPackedField<TypeField>(new_type);
   2807   }
   2808 
   2809   bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
   2810   void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
   2811 
   2812   uint32_t GetRegNumber() const { return reg_number_; }
   2813 
   2814   void SetDead() { SetPackedFlag<kFlagIsLive>(false); }
   2815   void SetLive() { SetPackedFlag<kFlagIsLive>(true); }
   2816   bool IsDead() const { return !IsLive(); }
   2817   bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); }
   2818 
   2819   bool IsVRegEquivalentOf(const HInstruction* other) const {
   2820     return other != nullptr
   2821         && other->IsPhi()
   2822         && other->AsPhi()->GetBlock() == GetBlock()
   2823         && other->AsPhi()->GetRegNumber() == GetRegNumber();
   2824   }
   2825 
   2826   bool HasEquivalentPhi() const {
   2827     if (GetPrevious() != nullptr && GetPrevious()->AsPhi()->GetRegNumber() == GetRegNumber()) {
   2828       return true;
   2829     }
   2830     if (GetNext() != nullptr && GetNext()->AsPhi()->GetRegNumber() == GetRegNumber()) {
   2831       return true;
   2832     }
   2833     return false;
   2834   }
   2835 
   2836   // Returns the next equivalent phi (starting from the current one) or null if there is none.
   2837   // An equivalent phi is a phi having the same dex register and type.
   2838   // It assumes that phis with the same dex register are adjacent.
   2839   HPhi* GetNextEquivalentPhiWithSameType() {
   2840     HInstruction* next = GetNext();
   2841     while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
   2842       if (next->GetType() == GetType()) {
   2843         return next->AsPhi();
   2844       }
   2845       next = next->GetNext();
   2846     }
   2847     return nullptr;
   2848   }
   2849 
   2850   DECLARE_INSTRUCTION(Phi);
   2851 
   2852  protected:
   2853   DEFAULT_COPY_CONSTRUCTOR(Phi);
   2854 
   2855  private:
   2856   static constexpr size_t kFlagIsLive = HInstruction::kNumberOfGenericPackedBits;
   2857   static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1;
   2858   static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1;
   2859   static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
   2860 
   2861   const uint32_t reg_number_;
   2862 };
   2863 
   2864 // The exit instruction is the only instruction of the exit block.
   2865 // Instructions aborting the method (HThrow and HReturn) must branch to the
   2866 // exit block.
   2867 class HExit final : public HExpression<0> {
   2868  public:
   2869   explicit HExit(uint32_t dex_pc = kNoDexPc)
   2870       : HExpression(kExit, SideEffects::None(), dex_pc) {
   2871   }
   2872 
   2873   bool IsControlFlow() const override { return true; }
   2874 
   2875   DECLARE_INSTRUCTION(Exit);
   2876 
   2877  protected:
   2878   DEFAULT_COPY_CONSTRUCTOR(Exit);
   2879 };
   2880 
   2881 // Jumps from one block to another.
   2882 class HGoto final : public HExpression<0> {
   2883  public:
   2884   explicit HGoto(uint32_t dex_pc = kNoDexPc)
   2885       : HExpression(kGoto, SideEffects::None(), dex_pc) {
   2886   }
   2887 
   2888   bool IsClonable() const override { return true; }
   2889   bool IsControlFlow() const override { return true; }
   2890 
   2891   HBasicBlock* GetSuccessor() const {
   2892     return GetBlock()->GetSingleSuccessor();
   2893   }
   2894 
   2895   DECLARE_INSTRUCTION(Goto);
   2896 
   2897  protected:
   2898   DEFAULT_COPY_CONSTRUCTOR(Goto);
   2899 };
   2900 
   2901 class HConstant : public HExpression<0> {
   2902  public:
   2903   explicit HConstant(InstructionKind kind, DataType::Type type, uint32_t dex_pc = kNoDexPc)
   2904       : HExpression(kind, type, SideEffects::None(), dex_pc) {
   2905   }
   2906 
   2907   bool CanBeMoved() const override { return true; }
   2908 
   2909   // Is this constant -1 in the arithmetic sense?
   2910   virtual bool IsMinusOne() const { return false; }
   2911   // Is this constant 0 in the arithmetic sense?
   2912   virtual bool IsArithmeticZero() const { return false; }
   2913   // Is this constant a 0-bit pattern?
   2914   virtual bool IsZeroBitPattern() const { return false; }
   2915   // Is this constant 1 in the arithmetic sense?
   2916   virtual bool IsOne() const { return false; }
   2917 
   2918   virtual uint64_t GetValueAsUint64() const = 0;
   2919 
   2920   DECLARE_ABSTRACT_INSTRUCTION(Constant);
   2921 
   2922  protected:
   2923   DEFAULT_COPY_CONSTRUCTOR(Constant);
   2924 };
   2925 
   2926 class HNullConstant final : public HConstant {
   2927  public:
   2928   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
   2929     return true;
   2930   }
   2931 
   2932   uint64_t GetValueAsUint64() const override { return 0; }
   2933 
   2934   size_t ComputeHashCode() const override { return 0; }
   2935 
   2936   // The null constant representation is a 0-bit pattern.
   2937   bool IsZeroBitPattern() const override { return true; }
   2938 
   2939   DECLARE_INSTRUCTION(NullConstant);
   2940 
   2941  protected:
   2942   DEFAULT_COPY_CONSTRUCTOR(NullConstant);
   2943 
   2944  private:
   2945   explicit HNullConstant(uint32_t dex_pc = kNoDexPc)
   2946       : HConstant(kNullConstant, DataType::Type::kReference, dex_pc) {
   2947   }
   2948 
   2949   friend class HGraph;
   2950 };
   2951 
   2952 // Constants of the type int. Those can be from Dex instructions, or
   2953 // synthesized (for example with the if-eqz instruction).
   2954 class HIntConstant final : public HConstant {
   2955  public:
   2956   int32_t GetValue() const { return value_; }
   2957 
   2958   uint64_t GetValueAsUint64() const override {
   2959     return static_cast<uint64_t>(static_cast<uint32_t>(value_));
   2960   }
   2961 
   2962   bool InstructionDataEquals(const HInstruction* other) const override {
   2963     DCHECK(other->IsIntConstant()) << other->DebugName();
   2964     return other->AsIntConstant()->value_ == value_;
   2965   }
   2966 
   2967   size_t ComputeHashCode() const override { return GetValue(); }
   2968 
   2969   bool IsMinusOne() const override { return GetValue() == -1; }
   2970   bool IsArithmeticZero() const override { return GetValue() == 0; }
   2971   bool IsZeroBitPattern() const override { return GetValue() == 0; }
   2972   bool IsOne() const override { return GetValue() == 1; }
   2973 
   2974   // Integer constants are used to encode Boolean values as well,
   2975   // where 1 means true and 0 means false.
   2976   bool IsTrue() const { return GetValue() == 1; }
   2977   bool IsFalse() const { return GetValue() == 0; }
   2978 
   2979   DECLARE_INSTRUCTION(IntConstant);
   2980 
   2981  protected:
   2982   DEFAULT_COPY_CONSTRUCTOR(IntConstant);
   2983 
   2984  private:
   2985   explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
   2986       : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc), value_(value) {
   2987   }
   2988   explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
   2989       : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc),
   2990         value_(value ? 1 : 0) {
   2991   }
   2992 
   2993   const int32_t value_;
   2994 
   2995   friend class HGraph;
   2996   ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
   2997   ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
   2998 };
   2999 
   3000 class HLongConstant final : public HConstant {
   3001  public:
   3002   int64_t GetValue() const { return value_; }
   3003 
   3004   uint64_t GetValueAsUint64() const override { return value_; }
   3005 
   3006   bool InstructionDataEquals(const HInstruction* other) const override {
   3007     DCHECK(other->IsLongConstant()) << other->DebugName();
   3008     return other->AsLongConstant()->value_ == value_;
   3009   }
   3010 
   3011   size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
   3012 
   3013   bool IsMinusOne() const override { return GetValue() == -1; }
   3014   bool IsArithmeticZero() const override { return GetValue() == 0; }
   3015   bool IsZeroBitPattern() const override { return GetValue() == 0; }
   3016   bool IsOne() const override { return GetValue() == 1; }
   3017 
   3018   DECLARE_INSTRUCTION(LongConstant);
   3019 
   3020  protected:
   3021   DEFAULT_COPY_CONSTRUCTOR(LongConstant);
   3022 
   3023  private:
   3024   explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
   3025       : HConstant(kLongConstant, DataType::Type::kInt64, dex_pc),
   3026         value_(value) {
   3027   }
   3028 
   3029   const int64_t value_;
   3030 
   3031   friend class HGraph;
   3032 };
   3033 
   3034 class HFloatConstant final : public HConstant {
   3035  public:
   3036   float GetValue() const { return value_; }
   3037 
   3038   uint64_t GetValueAsUint64() const override {
   3039     return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
   3040   }
   3041 
   3042   bool InstructionDataEquals(const HInstruction* other) const override {
   3043     DCHECK(other->IsFloatConstant()) << other->DebugName();
   3044     return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
   3045   }
   3046 
   3047   size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
   3048 
   3049   bool IsMinusOne() const override {
   3050     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
   3051   }
   3052   bool IsArithmeticZero() const override {
   3053     return std::fpclassify(value_) == FP_ZERO;
   3054   }
   3055   bool IsArithmeticPositiveZero() const {
   3056     return IsArithmeticZero() && !std::signbit(value_);
   3057   }
   3058   bool IsArithmeticNegativeZero() const {
   3059     return IsArithmeticZero() && std::signbit(value_);
   3060   }
   3061   bool IsZeroBitPattern() const override {
   3062     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f);
   3063   }
   3064   bool IsOne() const override {
   3065     return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
   3066   }
   3067   bool IsNaN() const {
   3068     return std::isnan(value_);
   3069   }
   3070 
   3071   DECLARE_INSTRUCTION(FloatConstant);
   3072 
   3073  protected:
   3074   DEFAULT_COPY_CONSTRUCTOR(FloatConstant);
   3075 
   3076  private:
   3077   explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
   3078       : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc),
   3079         value_(value) {
   3080   }
   3081   explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
   3082       : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc),
   3083         value_(bit_cast<float, int32_t>(value)) {
   3084   }
   3085 
   3086   const float value_;
   3087 
   3088   // Only the SsaBuilder and HGraph can create floating-point constants.
   3089   friend class SsaBuilder;
   3090   friend class HGraph;
   3091 };
   3092 
   3093 class HDoubleConstant final : public HConstant {
   3094  public:
   3095   double GetValue() const { return value_; }
   3096 
   3097   uint64_t GetValueAsUint64() const override { return bit_cast<uint64_t, double>(value_); }
   3098 
   3099   bool InstructionDataEquals(const HInstruction* other) const override {
   3100     DCHECK(other->IsDoubleConstant()) << other->DebugName();
   3101     return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
   3102   }
   3103 
   3104   size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
   3105 
   3106   bool IsMinusOne() const override {
   3107     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
   3108   }
   3109   bool IsArithmeticZero() const override {
   3110     return std::fpclassify(value_) == FP_ZERO;
   3111   }
   3112   bool IsArithmeticPositiveZero() const {
   3113     return IsArithmeticZero() && !std::signbit(value_);
   3114   }
   3115   bool IsArithmeticNegativeZero() const {
   3116     return IsArithmeticZero() && std::signbit(value_);
   3117   }
   3118   bool IsZeroBitPattern() const override {
   3119     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0));
   3120   }
   3121   bool IsOne() const override {
   3122     return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
   3123   }
   3124   bool IsNaN() const {
   3125     return std::isnan(value_);
   3126   }
   3127 
   3128   DECLARE_INSTRUCTION(DoubleConstant);
   3129 
   3130  protected:
   3131   DEFAULT_COPY_CONSTRUCTOR(DoubleConstant);
   3132 
   3133  private:
   3134   explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
   3135       : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc),
   3136         value_(value) {
   3137   }
   3138   explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
   3139       : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc),
   3140         value_(bit_cast<double, int64_t>(value)) {
   3141   }
   3142 
   3143   const double value_;
   3144 
   3145   // Only the SsaBuilder and HGraph can create floating-point constants.
   3146   friend class SsaBuilder;
   3147   friend class HGraph;
   3148 };
   3149 
   3150 // Conditional branch. A block ending with an HIf instruction must have
   3151 // two successors.
   3152 class HIf final : public HExpression<1> {
   3153  public:
   3154   explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
   3155       : HExpression(kIf, SideEffects::None(), dex_pc) {
   3156     SetRawInputAt(0, input);
   3157   }
   3158 
   3159   bool IsClonable() const override { return true; }
   3160   bool IsControlFlow() const override { return true; }
   3161 
   3162   HBasicBlock* IfTrueSuccessor() const {
   3163     return GetBlock()->GetSuccessors()[0];
   3164   }
   3165 
   3166   HBasicBlock* IfFalseSuccessor() const {
   3167     return GetBlock()->GetSuccessors()[1];
   3168   }
   3169 
   3170   DECLARE_INSTRUCTION(If);
   3171 
   3172  protected:
   3173   DEFAULT_COPY_CONSTRUCTOR(If);
   3174 };
   3175 
   3176 
   3177 // Abstract instruction which marks the beginning and/or end of a try block and
   3178 // links it to the respective exception handlers. Behaves the same as a Goto in
   3179 // non-exceptional control flow.
   3180 // Normal-flow successor is stored at index zero, exception handlers under
   3181 // higher indices in no particular order.
   3182 class HTryBoundary final : public HExpression<0> {
   3183  public:
   3184   enum class BoundaryKind {
   3185     kEntry,
   3186     kExit,
   3187     kLast = kExit
   3188   };
   3189 
   3190   // SideEffects::CanTriggerGC prevents instructions with SideEffects::DependOnGC to be alive
   3191   // across the catch block entering edges as GC might happen during throwing an exception.
   3192   // TryBoundary with BoundaryKind::kExit is conservatively used for that as there is no
   3193   // HInstruction which a catch block must start from.
   3194   explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
   3195       : HExpression(kTryBoundary,
   3196                     (kind == BoundaryKind::kExit) ? SideEffects::CanTriggerGC()
   3197                                                   : SideEffects::None(),
   3198                     dex_pc) {
   3199     SetPackedField<BoundaryKindField>(kind);
   3200   }
   3201 
   3202   bool IsControlFlow() const override { return true; }
   3203 
   3204   // Returns the block's non-exceptional successor (index zero).
   3205   HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
   3206 
   3207   ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
   3208     return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
   3209   }
   3210 
   3211   // Returns whether `handler` is among its exception handlers (non-zero index
   3212   // successors).
   3213   bool HasExceptionHandler(const HBasicBlock& handler) const {
   3214     DCHECK(handler.IsCatchBlock());
   3215     return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
   3216   }
   3217 
   3218   // If not present already, adds `handler` to its block's list of exception
   3219   // handlers.
   3220   void AddExceptionHandler(HBasicBlock* handler) {
   3221     if (!HasExceptionHandler(*handler)) {
   3222       GetBlock()->AddSuccessor(handler);
   3223     }
   3224   }
   3225 
   3226   BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); }
   3227   bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; }
   3228 
   3229   bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
   3230 
   3231   DECLARE_INSTRUCTION(TryBoundary);
   3232 
   3233  protected:
   3234   DEFAULT_COPY_CONSTRUCTOR(TryBoundary);
   3235 
   3236  private:
   3237   static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits;
   3238   static constexpr size_t kFieldBoundaryKindSize =
   3239       MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast));
   3240   static constexpr size_t kNumberOfTryBoundaryPackedBits =
   3241       kFieldBoundaryKind + kFieldBoundaryKindSize;
   3242   static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits,
   3243                 "Too many packed fields.");
   3244   using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>;
   3245 };
   3246 
   3247 // Deoptimize to interpreter, upon checking a condition.
   3248 class HDeoptimize final : public HVariableInputSizeInstruction {
   3249  public:
   3250   // Use this constructor when the `HDeoptimize` acts as a barrier, where no code can move
   3251   // across.
   3252   HDeoptimize(ArenaAllocator* allocator,
   3253               HInstruction* cond,
   3254               DeoptimizationKind kind,
   3255               uint32_t dex_pc)
   3256       : HVariableInputSizeInstruction(
   3257             kDeoptimize,
   3258             SideEffects::All(),
   3259             dex_pc,
   3260             allocator,
   3261             /* number_of_inputs= */ 1,
   3262             kArenaAllocMisc) {
   3263     SetPackedFlag<kFieldCanBeMoved>(false);
   3264     SetPackedField<DeoptimizeKindField>(kind);
   3265     SetRawInputAt(0, cond);
   3266   }
   3267 
   3268   bool IsClonable() const override { return true; }
   3269 
   3270   // Use this constructor when the `HDeoptimize` guards an instruction, and any user
   3271   // that relies on the deoptimization to pass should have its input be the `HDeoptimize`
   3272   // instead of `guard`.
   3273   // We set CanTriggerGC to prevent any intermediate address to be live
   3274   // at the point of the `HDeoptimize`.
   3275   HDeoptimize(ArenaAllocator* allocator,
   3276               HInstruction* cond,
   3277               HInstruction* guard,
   3278               DeoptimizationKind kind,
   3279               uint32_t dex_pc)
   3280       : HVariableInputSizeInstruction(
   3281             kDeoptimize,
   3282             guard->GetType(),
   3283             SideEffects::CanTriggerGC(),
   3284             dex_pc,
   3285             allocator,
   3286             /* number_of_inputs= */ 2,
   3287             kArenaAllocMisc) {
   3288     SetPackedFlag<kFieldCanBeMoved>(true);
   3289     SetPackedField<DeoptimizeKindField>(kind);
   3290     SetRawInputAt(0, cond);
   3291     SetRawInputAt(1, guard);
   3292   }
   3293 
   3294   bool CanBeMoved() const override { return GetPackedFlag<kFieldCanBeMoved>(); }
   3295 
   3296   bool InstructionDataEquals(const HInstruction* other) const override {
   3297     return (other->CanBeMoved() == CanBeMoved()) && (other->AsDeoptimize()->GetKind() == GetKind());
   3298   }
   3299 
   3300   bool NeedsEnvironment() const override { return true; }
   3301 
   3302   bool CanThrow() const override { return true; }
   3303 
   3304   DeoptimizationKind GetDeoptimizationKind() const { return GetPackedField<DeoptimizeKindField>(); }
   3305 
   3306   bool GuardsAnInput() const {
   3307     return InputCount() == 2;
   3308   }
   3309 
   3310   HInstruction* GuardedInput() const {
   3311     DCHECK(GuardsAnInput());
   3312     return InputAt(1);
   3313   }
   3314 
   3315   void RemoveGuard() {
   3316     RemoveInputAt(1);
   3317   }
   3318 
   3319   DECLARE_INSTRUCTION(Deoptimize);
   3320 
   3321  protected:
   3322   DEFAULT_COPY_CONSTRUCTOR(Deoptimize);
   3323 
   3324  private:
   3325   static constexpr size_t kFieldCanBeMoved = kNumberOfGenericPackedBits;
   3326   static constexpr size_t kFieldDeoptimizeKind = kNumberOfGenericPackedBits + 1;
   3327   static constexpr size_t kFieldDeoptimizeKindSize =
   3328       MinimumBitsToStore(static_cast<size_t>(DeoptimizationKind::kLast));
   3329   static constexpr size_t kNumberOfDeoptimizePackedBits =
   3330       kFieldDeoptimizeKind + kFieldDeoptimizeKindSize;
   3331   static_assert(kNumberOfDeoptimizePackedBits <= kMaxNumberOfPackedBits,
   3332                 "Too many packed fields.");
   3333   using DeoptimizeKindField =
   3334       BitField<DeoptimizationKind, kFieldDeoptimizeKind, kFieldDeoptimizeKindSize>;
   3335 };
   3336 
   3337 // Represents a should_deoptimize flag. Currently used for CHA-based devirtualization.
   3338 // The compiled code checks this flag value in a guard before devirtualized call and
   3339 // if it's true, starts to do deoptimization.
   3340 // It has a 4-byte slot on stack.
   3341 // TODO: allocate a register for this flag.
   3342 class HShouldDeoptimizeFlag final : public HVariableInputSizeInstruction {
   3343  public:
   3344   // CHA guards are only optimized in a separate pass and it has no side effects
   3345   // with regard to other passes.
   3346   HShouldDeoptimizeFlag(ArenaAllocator* allocator, uint32_t dex_pc)
   3347       : HVariableInputSizeInstruction(kShouldDeoptimizeFlag,
   3348                                       DataType::Type::kInt32,
   3349                                       SideEffects::None(),
   3350                                       dex_pc,
   3351                                       allocator,
   3352                                       0,
   3353                                       kArenaAllocCHA) {
   3354   }
   3355 
   3356   // We do all CHA guard elimination/motion in a single pass, after which there is no
   3357   // further guard elimination/motion since a guard might have been used for justification
   3358   // of the elimination of another guard. Therefore, we pretend this guard cannot be moved
   3359   // to avoid other optimizations trying to move it.
   3360   bool CanBeMoved() const override { return false; }
   3361 
   3362   DECLARE_INSTRUCTION(ShouldDeoptimizeFlag);
   3363 
   3364  protected:
   3365   DEFAULT_COPY_CONSTRUCTOR(ShouldDeoptimizeFlag);
   3366 };
   3367 
   3368 // Represents the ArtMethod that was passed as a first argument to
   3369 // the method. It is used by instructions that depend on it, like
   3370 // instructions that work with the dex cache.
   3371 class HCurrentMethod final : public HExpression<0> {
   3372  public:
   3373   explicit HCurrentMethod(DataType::Type type, uint32_t dex_pc = kNoDexPc)
   3374       : HExpression(kCurrentMethod, type, SideEffects::None(), dex_pc) {
   3375   }
   3376 
   3377   DECLARE_INSTRUCTION(CurrentMethod);
   3378 
   3379  protected:
   3380   DEFAULT_COPY_CONSTRUCTOR(CurrentMethod);
   3381 };
   3382 
   3383 // Fetches an ArtMethod from the virtual table or the interface method table
   3384 // of a class.
   3385 class HClassTableGet final : public HExpression<1> {
   3386  public:
   3387   enum class TableKind {
   3388     kVTable,
   3389     kIMTable,
   3390     kLast = kIMTable
   3391   };
   3392   HClassTableGet(HInstruction* cls,
   3393                  DataType::Type type,
   3394                  TableKind kind,
   3395                  size_t index,
   3396                  uint32_t dex_pc)
   3397       : HExpression(kClassTableGet, type, SideEffects::None(), dex_pc),
   3398         index_(index) {
   3399     SetPackedField<TableKindField>(kind);
   3400     SetRawInputAt(0, cls);
   3401   }
   3402 
   3403   bool IsClonable() const override { return true; }
   3404   bool CanBeMoved() const override { return true; }
   3405   bool InstructionDataEquals(const HInstruction* other) const override {
   3406     return other->AsClassTableGet()->GetIndex() == index_ &&
   3407         other->AsClassTableGet()->GetPackedFields() == GetPackedFields();
   3408   }
   3409 
   3410   TableKind GetTableKind() const { return GetPackedField<TableKindField>(); }
   3411   size_t GetIndex() const { return index_; }
   3412 
   3413   DECLARE_INSTRUCTION(ClassTableGet);
   3414 
   3415  protected:
   3416   DEFAULT_COPY_CONSTRUCTOR(ClassTableGet);
   3417 
   3418  private:
   3419   static constexpr size_t kFieldTableKind = kNumberOfGenericPackedBits;
   3420   static constexpr size_t kFieldTableKindSize =
   3421       MinimumBitsToStore(static_cast<size_t>(TableKind::kLast));
   3422   static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize;
   3423   static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits,
   3424                 "Too many packed fields.");
   3425   using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>;
   3426 
   3427   // The index of the ArtMethod in the table.
   3428   const size_t index_;
   3429 };
   3430 
   3431 // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
   3432 // have one successor for each entry in the switch table, and the final successor
   3433 // will be the block containing the next Dex opcode.
   3434 class HPackedSwitch final : public HExpression<1> {
   3435  public:
   3436   HPackedSwitch(int32_t start_value,
   3437                 uint32_t num_entries,
   3438                 HInstruction* input,
   3439                 uint32_t dex_pc = kNoDexPc)
   3440     : HExpression(kPackedSwitch, SideEffects::None(), dex_pc),
   3441       start_value_(start_value),
   3442       num_entries_(num_entries) {
   3443     SetRawInputAt(0, input);
   3444   }
   3445 
   3446   bool IsClonable() const override { return true; }
   3447 
   3448   bool IsControlFlow() const override { return true; }
   3449 
   3450   int32_t GetStartValue() const { return start_value_; }
   3451 
   3452   uint32_t GetNumEntries() const { return num_entries_; }
   3453 
   3454   HBasicBlock* GetDefaultBlock() const {
   3455     // Last entry is the default block.
   3456     return GetBlock()->GetSuccessors()[num_entries_];
   3457   }
   3458   DECLARE_INSTRUCTION(PackedSwitch);
   3459 
   3460  protected:
   3461   DEFAULT_COPY_CONSTRUCTOR(PackedSwitch);
   3462 
   3463  private:
   3464   const int32_t start_value_;
   3465   const uint32_t num_entries_;
   3466 };
   3467 
   3468 class HUnaryOperation : public HExpression<1> {
   3469  public:
   3470   HUnaryOperation(InstructionKind kind,
   3471                   DataType::Type result_type,
   3472                   HInstruction* input,
   3473                   uint32_t dex_pc = kNoDexPc)
   3474       : HExpression(kind, result_type, SideEffects::None(), dex_pc) {
   3475     SetRawInputAt(0, input);
   3476   }
   3477 
   3478   // All of the UnaryOperation instructions are clonable.
   3479   bool IsClonable() const override { return true; }
   3480 
   3481   HInstruction* GetInput() const { return InputAt(0); }
   3482   DataType::Type GetResultType() const { return GetType(); }
   3483 
   3484   bool CanBeMoved() const override { return true; }
   3485   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
   3486     return true;
   3487   }
   3488 
   3489   // Try to statically evaluate `this` and return a HConstant
   3490   // containing the result of this evaluation.  If `this` cannot
   3491   // be evaluated as a constant, return null.
   3492   HConstant* TryStaticEvaluation() const;
   3493 
   3494   // Apply this operation to `x`.
   3495   virtual HConstant* Evaluate(HIntConstant* x) const = 0;
   3496   virtual HConstant* Evaluate(HLongConstant* x) const = 0;
   3497   virtual HConstant* Evaluate(HFloatConstant* x) const = 0;
   3498   virtual HConstant* Evaluate(HDoubleConstant* x) const = 0;
   3499 
   3500   DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
   3501 
   3502  protected:
   3503   DEFAULT_COPY_CONSTRUCTOR(UnaryOperation);
   3504 };
   3505 
   3506 class HBinaryOperation : public HExpression<2> {
   3507  public:
   3508   HBinaryOperation(InstructionKind kind,
   3509                    DataType::Type result_type,
   3510                    HInstruction* left,
   3511                    HInstruction* right,
   3512                    SideEffects side_effects = SideEffects::None(),
   3513                    uint32_t dex_pc = kNoDexPc)
   3514       : HExpression(kind, result_type, side_effects, dex_pc) {
   3515     SetRawInputAt(0, left);
   3516     SetRawInputAt(1, right);
   3517   }
   3518 
   3519   // All of the BinaryOperation instructions are clonable.
   3520   bool IsClonable() const override { return true; }
   3521 
   3522   HInstruction* GetLeft() const { return InputAt(0); }
   3523   HInstruction* GetRight() const { return InputAt(1); }
   3524   DataType::Type GetResultType() const { return GetType(); }
   3525 
   3526   virtual bool IsCommutative() const { return false; }
   3527 
   3528   // Put constant on the right.
   3529   // Returns whether order is changed.
   3530   bool OrderInputsWithConstantOnTheRight() {
   3531     HInstruction* left = InputAt(0);
   3532     HInstruction* right = InputAt(1);
   3533     if (left->IsConstant() && !right->IsConstant()) {
   3534       ReplaceInput(right, 0);
   3535       ReplaceInput(left, 1);
   3536       return true;
   3537     }
   3538     return false;
   3539   }
   3540 
   3541   // Order inputs by instruction id, but favor constant on the right side.
   3542   // This helps GVN for commutative ops.
   3543   void OrderInputs() {
   3544     DCHECK(IsCommutative());
   3545     HInstruction* left = InputAt(0);
   3546     HInstruction* right = InputAt(1);
   3547     if (left == right || (!left->IsConstant() && right->IsConstant())) {
   3548       return;
   3549     }
   3550     if (OrderInputsWithConstantOnTheRight()) {
   3551       return;
   3552     }
   3553     // Order according to instruction id.
   3554     if (left->GetId() > right->GetId()) {
   3555       ReplaceInput(right, 0);
   3556       ReplaceInput(left, 1);
   3557     }
   3558   }
   3559 
   3560   bool CanBeMoved() const override { return true; }
   3561   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
   3562     return true;
   3563   }
   3564 
   3565   // Try to statically evaluate `this` and return a HConstant
   3566   // containing the result of this evaluation.  If `this` cannot
   3567   // be evaluated as a constant, return null.
   3568   HConstant* TryStaticEvaluation() const;
   3569 
   3570   // Apply this operation to `x` and `y`.
   3571   virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
   3572                               HNullConstant* y ATTRIBUTE_UNUSED) const {
   3573     LOG(FATAL) << DebugName() << " is not defined for the (null, null) case.";
   3574     UNREACHABLE();
   3575   }
   3576   virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
   3577   virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
   3578   virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
   3579                               HIntConstant* y ATTRIBUTE_UNUSED) const {
   3580     LOG(FATAL) << DebugName() << " is not defined for the (long, int) case.";
   3581     UNREACHABLE();
   3582   }
   3583   virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0;
   3584   virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0;
   3585 
   3586   // Returns an input that can legally be used as the right input and is
   3587   // constant, or null.
   3588   HConstant* GetConstantRight() const;
   3589 
   3590   // If `GetConstantRight()` returns one of the input, this returns the other
   3591   // one. Otherwise it returns null.
   3592   HInstruction* GetLeastConstantLeft() const;
   3593 
   3594   DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
   3595 
   3596  protected:
   3597   DEFAULT_COPY_CONSTRUCTOR(BinaryOperation);
   3598 };
   3599 
   3600 // The comparison bias applies for floating point operations and indicates how NaN
   3601 // comparisons are treated:
   3602 enum class ComparisonBias {
   3603   kNoBias,  // bias is not applicable (i.e. for long operation)
   3604   kGtBias,  // return 1 for NaN comparisons
   3605   kLtBias,  // return -1 for NaN comparisons
   3606   kLast = kLtBias
   3607 };
   3608 
   3609 std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs);
   3610 
   3611 class HCondition : public HBinaryOperation {
   3612  public:
   3613   HCondition(InstructionKind kind,
   3614              HInstruction* first,
   3615              HInstruction* second,
   3616              uint32_t dex_pc = kNoDexPc)
   3617       : HBinaryOperation(kind,
   3618                          DataType::Type::kBool,
   3619                          first,
   3620                          second,
   3621                          SideEffects::None(),
   3622                          dex_pc) {
   3623     SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias);
   3624   }
   3625 
   3626   // For code generation purposes, returns whether this instruction is just before
   3627   // `instruction`, and disregard moves in between.
   3628   bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
   3629 
   3630   DECLARE_ABSTRACT_INSTRUCTION(Condition);
   3631 
   3632   virtual IfCondition GetCondition() const = 0;
   3633 
   3634   virtual IfCondition GetOppositeCondition() const = 0;
   3635 
   3636   bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; }
   3637   bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; }
   3638 
   3639   ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
   3640   void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); }
   3641 
   3642   bool InstructionDataEquals(const HInstruction* other) const override {
   3643     return GetPackedFields() == other->AsCondition()->GetPackedFields();
   3644   }
   3645 
   3646   bool IsFPConditionTrueIfNaN() const {
   3647     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
   3648     IfCondition if_cond = GetCondition();
   3649     if (if_cond == kCondNE) {
   3650       return true;
   3651     } else if (if_cond == kCondEQ) {
   3652       return false;
   3653     }
   3654     return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias();
   3655   }
   3656 
   3657   bool IsFPConditionFalseIfNaN() const {
   3658     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
   3659     IfCondition if_cond = GetCondition();
   3660     if (if_cond == kCondEQ) {
   3661       return true;
   3662     } else if (if_cond == kCondNE) {
   3663       return false;
   3664     }
   3665     return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias();
   3666   }
   3667 
   3668  protected:
   3669   // Needed if we merge a HCompare into a HCondition.
   3670   static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
   3671   static constexpr size_t kFieldComparisonBiasSize =
   3672       MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
   3673   static constexpr size_t kNumberOfConditionPackedBits =
   3674       kFieldComparisonBias + kFieldComparisonBiasSize;
   3675   static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
   3676   using ComparisonBiasField =
   3677       BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
   3678 
   3679   template <typename T>
   3680   int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
   3681 
   3682   template <typename T>
   3683   int32_t CompareFP(T x, T y) const {
   3684     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
   3685     DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
   3686     // Handle the bias.
   3687     return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y);
   3688   }
   3689 
   3690   // Return an integer constant containing the result of a condition evaluated at compile time.
   3691   HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const {
   3692     return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
   3693   }
   3694 
   3695   DEFAULT_COPY_CONSTRUCTOR(Condition);
   3696 };
   3697 
   3698 // Instruction to check if two inputs are equal to each other.
   3699 class HEqual final : public HCondition {
   3700  public:
   3701   HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
   3702       : HCondition(kEqual, first, second, dex_pc) {
   3703   }
   3704 
   3705   bool IsCommutative() const override { return true; }
   3706 
   3707   HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
   3708                       HNullConstant* y ATTRIBUTE_UNUSED) const override {
   3709     return MakeConstantCondition(true, GetDexPc());
   3710   }
   3711   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   3712     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   3713   }
   3714   // In the following Evaluate methods, a HCompare instruction has
   3715   // been merged into this HEqual instruction; evaluate it as
   3716   // `Compare(x, y) == 0`.
   3717   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   3718     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0),
   3719                                  GetDexPc());
   3720   }
   3721   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
   3722     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3723   }
   3724   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
   3725     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3726   }
   3727 
   3728   DECLARE_INSTRUCTION(Equal);
   3729 
   3730   IfCondition GetCondition() const override {
   3731     return kCondEQ;
   3732   }
   3733 
   3734   IfCondition GetOppositeCondition() const override {
   3735     return kCondNE;
   3736   }
   3737 
   3738  protected:
   3739   DEFAULT_COPY_CONSTRUCTOR(Equal);
   3740 
   3741  private:
   3742   template <typename T> static bool Compute(T x, T y) { return x == y; }
   3743 };
   3744 
   3745 class HNotEqual final : public HCondition {
   3746  public:
   3747   HNotEqual(HInstruction* first, HInstruction* second,
   3748             uint32_t dex_pc = kNoDexPc)
   3749       : HCondition(kNotEqual, first, second, dex_pc) {
   3750   }
   3751 
   3752   bool IsCommutative() const override { return true; }
   3753 
   3754   HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
   3755                       HNullConstant* y ATTRIBUTE_UNUSED) const override {
   3756     return MakeConstantCondition(false, GetDexPc());
   3757   }
   3758   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   3759     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   3760   }
   3761   // In the following Evaluate methods, a HCompare instruction has
   3762   // been merged into this HNotEqual instruction; evaluate it as
   3763   // `Compare(x, y) != 0`.
   3764   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   3765     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3766   }
   3767   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
   3768     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3769   }
   3770   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
   3771     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3772   }
   3773 
   3774   DECLARE_INSTRUCTION(NotEqual);
   3775 
   3776   IfCondition GetCondition() const override {
   3777     return kCondNE;
   3778   }
   3779 
   3780   IfCondition GetOppositeCondition() const override {
   3781     return kCondEQ;
   3782   }
   3783 
   3784  protected:
   3785   DEFAULT_COPY_CONSTRUCTOR(NotEqual);
   3786 
   3787  private:
   3788   template <typename T> static bool Compute(T x, T y) { return x != y; }
   3789 };
   3790 
   3791 class HLessThan final : public HCondition {
   3792  public:
   3793   HLessThan(HInstruction* first, HInstruction* second,
   3794             uint32_t dex_pc = kNoDexPc)
   3795       : HCondition(kLessThan, first, second, dex_pc) {
   3796   }
   3797 
   3798   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   3799     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   3800   }
   3801   // In the following Evaluate methods, a HCompare instruction has
   3802   // been merged into this HLessThan instruction; evaluate it as
   3803   // `Compare(x, y) < 0`.
   3804   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   3805     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3806   }
   3807   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
   3808     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3809   }
   3810   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
   3811     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3812   }
   3813 
   3814   DECLARE_INSTRUCTION(LessThan);
   3815 
   3816   IfCondition GetCondition() const override {
   3817     return kCondLT;
   3818   }
   3819 
   3820   IfCondition GetOppositeCondition() const override {
   3821     return kCondGE;
   3822   }
   3823 
   3824  protected:
   3825   DEFAULT_COPY_CONSTRUCTOR(LessThan);
   3826 
   3827  private:
   3828   template <typename T> static bool Compute(T x, T y) { return x < y; }
   3829 };
   3830 
   3831 class HLessThanOrEqual final : public HCondition {
   3832  public:
   3833   HLessThanOrEqual(HInstruction* first, HInstruction* second,
   3834                    uint32_t dex_pc = kNoDexPc)
   3835       : HCondition(kLessThanOrEqual, first, second, dex_pc) {
   3836   }
   3837 
   3838   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   3839     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   3840   }
   3841   // In the following Evaluate methods, a HCompare instruction has
   3842   // been merged into this HLessThanOrEqual instruction; evaluate it as
   3843   // `Compare(x, y) <= 0`.
   3844   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   3845     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3846   }
   3847   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
   3848     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3849   }
   3850   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
   3851     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3852   }
   3853 
   3854   DECLARE_INSTRUCTION(LessThanOrEqual);
   3855 
   3856   IfCondition GetCondition() const override {
   3857     return kCondLE;
   3858   }
   3859 
   3860   IfCondition GetOppositeCondition() const override {
   3861     return kCondGT;
   3862   }
   3863 
   3864  protected:
   3865   DEFAULT_COPY_CONSTRUCTOR(LessThanOrEqual);
   3866 
   3867  private:
   3868   template <typename T> static bool Compute(T x, T y) { return x <= y; }
   3869 };
   3870 
   3871 class HGreaterThan final : public HCondition {
   3872  public:
   3873   HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
   3874       : HCondition(kGreaterThan, first, second, dex_pc) {
   3875   }
   3876 
   3877   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   3878     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   3879   }
   3880   // In the following Evaluate methods, a HCompare instruction has
   3881   // been merged into this HGreaterThan instruction; evaluate it as
   3882   // `Compare(x, y) > 0`.
   3883   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   3884     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3885   }
   3886   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
   3887     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3888   }
   3889   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
   3890     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3891   }
   3892 
   3893   DECLARE_INSTRUCTION(GreaterThan);
   3894 
   3895   IfCondition GetCondition() const override {
   3896     return kCondGT;
   3897   }
   3898 
   3899   IfCondition GetOppositeCondition() const override {
   3900     return kCondLE;
   3901   }
   3902 
   3903  protected:
   3904   DEFAULT_COPY_CONSTRUCTOR(GreaterThan);
   3905 
   3906  private:
   3907   template <typename T> static bool Compute(T x, T y) { return x > y; }
   3908 };
   3909 
   3910 class HGreaterThanOrEqual final : public HCondition {
   3911  public:
   3912   HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
   3913       : HCondition(kGreaterThanOrEqual, first, second, dex_pc) {
   3914   }
   3915 
   3916   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   3917     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   3918   }
   3919   // In the following Evaluate methods, a HCompare instruction has
   3920   // been merged into this HGreaterThanOrEqual instruction; evaluate it as
   3921   // `Compare(x, y) >= 0`.
   3922   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   3923     return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3924   }
   3925   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
   3926     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3927   }
   3928   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
   3929     return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
   3930   }
   3931 
   3932   DECLARE_INSTRUCTION(GreaterThanOrEqual);
   3933 
   3934   IfCondition GetCondition() const override {
   3935     return kCondGE;
   3936   }
   3937 
   3938   IfCondition GetOppositeCondition() const override {
   3939     return kCondLT;
   3940   }
   3941 
   3942  protected:
   3943   DEFAULT_COPY_CONSTRUCTOR(GreaterThanOrEqual);
   3944 
   3945  private:
   3946   template <typename T> static bool Compute(T x, T y) { return x >= y; }
   3947 };
   3948 
   3949 class HBelow final : public HCondition {
   3950  public:
   3951   HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
   3952       : HCondition(kBelow, first, second, dex_pc) {
   3953   }
   3954 
   3955   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   3956     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   3957   }
   3958   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   3959     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   3960   }
   3961   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
   3962                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
   3963     LOG(FATAL) << DebugName() << " is not defined for float values";
   3964     UNREACHABLE();
   3965   }
   3966   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
   3967                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
   3968     LOG(FATAL) << DebugName() << " is not defined for double values";
   3969     UNREACHABLE();
   3970   }
   3971 
   3972   DECLARE_INSTRUCTION(Below);
   3973 
   3974   IfCondition GetCondition() const override {
   3975     return kCondB;
   3976   }
   3977 
   3978   IfCondition GetOppositeCondition() const override {
   3979     return kCondAE;
   3980   }
   3981 
   3982  protected:
   3983   DEFAULT_COPY_CONSTRUCTOR(Below);
   3984 
   3985  private:
   3986   template <typename T> static bool Compute(T x, T y) {
   3987     return MakeUnsigned(x) < MakeUnsigned(y);
   3988   }
   3989 };
   3990 
   3991 class HBelowOrEqual final : public HCondition {
   3992  public:
   3993   HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
   3994       : HCondition(kBelowOrEqual, first, second, dex_pc) {
   3995   }
   3996 
   3997   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   3998     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   3999   }
   4000   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   4001     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   4002   }
   4003   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
   4004                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
   4005     LOG(FATAL) << DebugName() << " is not defined for float values";
   4006     UNREACHABLE();
   4007   }
   4008   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
   4009                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
   4010     LOG(FATAL) << DebugName() << " is not defined for double values";
   4011     UNREACHABLE();
   4012   }
   4013 
   4014   DECLARE_INSTRUCTION(BelowOrEqual);
   4015 
   4016   IfCondition GetCondition() const override {
   4017     return kCondBE;
   4018   }
   4019 
   4020   IfCondition GetOppositeCondition() const override {
   4021     return kCondA;
   4022   }
   4023 
   4024  protected:
   4025   DEFAULT_COPY_CONSTRUCTOR(BelowOrEqual);
   4026 
   4027  private:
   4028   template <typename T> static bool Compute(T x, T y) {
   4029     return MakeUnsigned(x) <= MakeUnsigned(y);
   4030   }
   4031 };
   4032 
   4033 class HAbove final : public HCondition {
   4034  public:
   4035   HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
   4036       : HCondition(kAbove, first, second, dex_pc) {
   4037   }
   4038 
   4039   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   4040     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   4041   }
   4042   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   4043     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   4044   }
   4045   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
   4046                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
   4047     LOG(FATAL) << DebugName() << " is not defined for float values";
   4048     UNREACHABLE();
   4049   }
   4050   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
   4051                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
   4052     LOG(FATAL) << DebugName() << " is not defined for double values";
   4053     UNREACHABLE();
   4054   }
   4055 
   4056   DECLARE_INSTRUCTION(Above);
   4057 
   4058   IfCondition GetCondition() const override {
   4059     return kCondA;
   4060   }
   4061 
   4062   IfCondition GetOppositeCondition() const override {
   4063     return kCondBE;
   4064   }
   4065 
   4066  protected:
   4067   DEFAULT_COPY_CONSTRUCTOR(Above);
   4068 
   4069  private:
   4070   template <typename T> static bool Compute(T x, T y) {
   4071     return MakeUnsigned(x) > MakeUnsigned(y);
   4072   }
   4073 };
   4074 
   4075 class HAboveOrEqual final : public HCondition {
   4076  public:
   4077   HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
   4078       : HCondition(kAboveOrEqual, first, second, dex_pc) {
   4079   }
   4080 
   4081   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   4082     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   4083   }
   4084   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   4085     return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   4086   }
   4087   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
   4088                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
   4089     LOG(FATAL) << DebugName() << " is not defined for float values";
   4090     UNREACHABLE();
   4091   }
   4092   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
   4093                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
   4094     LOG(FATAL) << DebugName() << " is not defined for double values";
   4095     UNREACHABLE();
   4096   }
   4097 
   4098   DECLARE_INSTRUCTION(AboveOrEqual);
   4099 
   4100   IfCondition GetCondition() const override {
   4101     return kCondAE;
   4102   }
   4103 
   4104   IfCondition GetOppositeCondition() const override {
   4105     return kCondB;
   4106   }
   4107 
   4108  protected:
   4109   DEFAULT_COPY_CONSTRUCTOR(AboveOrEqual);
   4110 
   4111  private:
   4112   template <typename T> static bool Compute(T x, T y) {
   4113     return MakeUnsigned(x) >= MakeUnsigned(y);
   4114   }
   4115 };
   4116 
   4117 // Instruction to check how two inputs compare to each other.
   4118 // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
   4119 class HCompare final : public HBinaryOperation {
   4120  public:
   4121   // Note that `comparison_type` is the type of comparison performed
   4122   // between the comparison's inputs, not the type of the instantiated
   4123   // HCompare instruction (which is always DataType::Type::kInt).
   4124   HCompare(DataType::Type comparison_type,
   4125            HInstruction* first,
   4126            HInstruction* second,
   4127            ComparisonBias bias,
   4128            uint32_t dex_pc)
   4129       : HBinaryOperation(kCompare,
   4130                          DataType::Type::kInt32,
   4131                          first,
   4132                          second,
   4133                          SideEffectsForArchRuntimeCalls(comparison_type),
   4134                          dex_pc) {
   4135     SetPackedField<ComparisonBiasField>(bias);
   4136     DCHECK_EQ(comparison_type, DataType::Kind(first->GetType()));
   4137     DCHECK_EQ(comparison_type, DataType::Kind(second->GetType()));
   4138   }
   4139 
   4140   template <typename T>
   4141   int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
   4142 
   4143   template <typename T>
   4144   int32_t ComputeFP(T x, T y) const {
   4145     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
   4146     DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
   4147     // Handle the bias.
   4148     return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y);
   4149   }
   4150 
   4151   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   4152     // Note that there is no "cmp-int" Dex instruction so we shouldn't
   4153     // reach this code path when processing a freshly built HIR
   4154     // graph. However HCompare integer instructions can be synthesized
   4155     // by the instruction simplifier to implement IntegerCompare and
   4156     // IntegerSignum intrinsics, so we have to handle this case.
   4157     return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   4158   }
   4159   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   4160     return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
   4161   }
   4162   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
   4163     return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
   4164   }
   4165   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
   4166     return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
   4167   }
   4168 
   4169   bool InstructionDataEquals(const HInstruction* other) const override {
   4170     return GetPackedFields() == other->AsCompare()->GetPackedFields();
   4171   }
   4172 
   4173   ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
   4174 
   4175   // Does this compare instruction have a "gt bias" (vs an "lt bias")?
   4176   // Only meaningful for floating-point comparisons.
   4177   bool IsGtBias() const {
   4178     DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
   4179     return GetBias() == ComparisonBias::kGtBias;
   4180   }
   4181 
   4182   static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type type ATTRIBUTE_UNUSED) {
   4183     // Comparisons do not require a runtime call in any back end.
   4184     return SideEffects::None();
   4185   }
   4186 
   4187   DECLARE_INSTRUCTION(Compare);
   4188 
   4189  protected:
   4190   static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
   4191   static constexpr size_t kFieldComparisonBiasSize =
   4192       MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
   4193   static constexpr size_t kNumberOfComparePackedBits =
   4194       kFieldComparisonBias + kFieldComparisonBiasSize;
   4195   static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
   4196   using ComparisonBiasField =
   4197       BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
   4198 
   4199   // Return an integer constant containing the result of a comparison evaluated at compile time.
   4200   HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const {
   4201     DCHECK(value == -1 || value == 0 || value == 1) << value;
   4202     return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
   4203   }
   4204 
   4205   DEFAULT_COPY_CONSTRUCTOR(Compare);
   4206 };
   4207 
   4208 class HNewInstance final : public HExpression<1> {
   4209  public:
   4210   HNewInstance(HInstruction* cls,
   4211                uint32_t dex_pc,
   4212                dex::TypeIndex type_index,
   4213                const DexFile& dex_file,
   4214                bool finalizable,
   4215                QuickEntrypointEnum entrypoint)
   4216       : HExpression(kNewInstance,
   4217                     DataType::Type::kReference,
   4218                     SideEffects::CanTriggerGC(),
   4219                     dex_pc),
   4220         type_index_(type_index),
   4221         dex_file_(dex_file),
   4222         entrypoint_(entrypoint) {
   4223     SetPackedFlag<kFlagFinalizable>(finalizable);
   4224     SetRawInputAt(0, cls);
   4225   }
   4226 
   4227   bool IsClonable() const override { return true; }
   4228 
   4229   dex::TypeIndex GetTypeIndex() const { return type_index_; }
   4230   const DexFile& GetDexFile() const { return dex_file_; }
   4231 
   4232   // Calls runtime so needs an environment.
   4233   bool NeedsEnvironment() const override { return true; }
   4234 
   4235   // Can throw errors when out-of-memory or if it's not instantiable/accessible.
   4236   bool CanThrow() const override { return true; }
   4237 
   4238   bool NeedsChecks() const {
   4239     return entrypoint_ == kQuickAllocObjectWithChecks;
   4240   }
   4241 
   4242   bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); }
   4243 
   4244   bool CanBeNull() const override { return false; }
   4245 
   4246   QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
   4247 
   4248   void SetEntrypoint(QuickEntrypointEnum entrypoint) {
   4249     entrypoint_ = entrypoint;
   4250   }
   4251 
   4252   HLoadClass* GetLoadClass() const {
   4253     HInstruction* input = InputAt(0);
   4254     if (input->IsClinitCheck()) {
   4255       input = input->InputAt(0);
   4256     }
   4257     DCHECK(input->IsLoadClass());
   4258     return input->AsLoadClass();
   4259   }
   4260 
   4261   bool IsStringAlloc() const;
   4262 
   4263   DECLARE_INSTRUCTION(NewInstance);
   4264 
   4265  protected:
   4266   DEFAULT_COPY_CONSTRUCTOR(NewInstance);
   4267 
   4268  private:
   4269   static constexpr size_t kFlagFinalizable = kNumberOfGenericPackedBits;
   4270   static constexpr size_t kNumberOfNewInstancePackedBits = kFlagFinalizable + 1;
   4271   static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits,
   4272                 "Too many packed fields.");
   4273 
   4274   const dex::TypeIndex type_index_;
   4275   const DexFile& dex_file_;
   4276   QuickEntrypointEnum entrypoint_;
   4277 };
   4278 
   4279 enum IntrinsicNeedsEnvironmentOrCache {
   4280   kNoEnvironmentOrCache,        // Intrinsic does not require an environment or dex cache.
   4281   kNeedsEnvironmentOrCache      // Intrinsic requires an environment or requires a dex cache.
   4282 };
   4283 
   4284 enum IntrinsicSideEffects {
   4285   kNoSideEffects,     // Intrinsic does not have any heap memory side effects.
   4286   kReadSideEffects,   // Intrinsic may read heap memory.
   4287   kWriteSideEffects,  // Intrinsic may write heap memory.
   4288   kAllSideEffects     // Intrinsic may read or write heap memory, or trigger GC.
   4289 };
   4290 
   4291 enum IntrinsicExceptions {
   4292   kNoThrow,  // Intrinsic does not throw any exceptions.
   4293   kCanThrow  // Intrinsic may throw exceptions.
   4294 };
   4295 
   4296 class HInvoke : public HVariableInputSizeInstruction {
   4297  public:
   4298   bool NeedsEnvironment() const override;
   4299 
   4300   void SetArgumentAt(size_t index, HInstruction* argument) {
   4301     SetRawInputAt(index, argument);
   4302   }
   4303 
   4304   // Return the number of arguments.  This number can be lower than
   4305   // the number of inputs returned by InputCount(), as some invoke
   4306   // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
   4307   // inputs at the end of their list of inputs.
   4308   uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
   4309 
   4310   uint32_t GetDexMethodIndex() const { return dex_method_index_; }
   4311 
   4312   InvokeType GetInvokeType() const {
   4313     return GetPackedField<InvokeTypeField>();
   4314   }
   4315 
   4316   Intrinsics GetIntrinsic() const {
   4317     return intrinsic_;
   4318   }
   4319 
   4320   void SetIntrinsic(Intrinsics intrinsic,
   4321                     IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
   4322                     IntrinsicSideEffects side_effects,
   4323                     IntrinsicExceptions exceptions);
   4324 
   4325   bool IsFromInlinedInvoke() const {
   4326     return GetEnvironment()->IsFromInlinedInvoke();
   4327   }
   4328 
   4329   void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); }
   4330 
   4331   bool CanThrow() const override { return GetPackedFlag<kFlagCanThrow>(); }
   4332 
   4333   void SetAlwaysThrows(bool always_throws) { SetPackedFlag<kFlagAlwaysThrows>(always_throws); }
   4334 
   4335   bool AlwaysThrows() const override { return GetPackedFlag<kFlagAlwaysThrows>(); }
   4336 
   4337   bool CanBeMoved() const override { return IsIntrinsic() && !DoesAnyWrite(); }
   4338 
   4339   bool InstructionDataEquals(const HInstruction* other) const override {
   4340     return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_;
   4341   }
   4342 
   4343   uint32_t* GetIntrinsicOptimizations() {
   4344     return &intrinsic_optimizations_;
   4345   }
   4346 
   4347   const uint32_t* GetIntrinsicOptimizations() const {
   4348     return &intrinsic_optimizations_;
   4349   }
   4350 
   4351   bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
   4352 
   4353   ArtMethod* GetResolvedMethod() const { return resolved_method_; }
   4354   void SetResolvedMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_);
   4355 
   4356   DECLARE_ABSTRACT_INSTRUCTION(Invoke);
   4357 
   4358  protected:
   4359   static constexpr size_t kFieldInvokeType = kNumberOfGenericPackedBits;
   4360   static constexpr size_t kFieldInvokeTypeSize =
   4361       MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType));
   4362   static constexpr size_t kFlagCanThrow = kFieldInvokeType + kFieldInvokeTypeSize;
   4363   static constexpr size_t kFlagAlwaysThrows = kFlagCanThrow + 1;
   4364   static constexpr size_t kNumberOfInvokePackedBits = kFlagAlwaysThrows + 1;
   4365   static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
   4366   using InvokeTypeField = BitField<InvokeType, kFieldInvokeType, kFieldInvokeTypeSize>;
   4367 
   4368   HInvoke(InstructionKind kind,
   4369           ArenaAllocator* allocator,
   4370           uint32_t number_of_arguments,
   4371           uint32_t number_of_other_inputs,
   4372           DataType::Type return_type,
   4373           uint32_t dex_pc,
   4374           uint32_t dex_method_index,
   4375           ArtMethod* resolved_method,
   4376           InvokeType invoke_type)
   4377     : HVariableInputSizeInstruction(
   4378           kind,
   4379           return_type,
   4380           SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
   4381           dex_pc,
   4382           allocator,
   4383           number_of_arguments + number_of_other_inputs,
   4384           kArenaAllocInvokeInputs),
   4385       number_of_arguments_(number_of_arguments),
   4386       dex_method_index_(dex_method_index),
   4387       intrinsic_(Intrinsics::kNone),
   4388       intrinsic_optimizations_(0) {
   4389     SetPackedField<InvokeTypeField>(invoke_type);
   4390     SetPackedFlag<kFlagCanThrow>(true);
   4391     // Check mutator lock, constructors lack annotalysis support.
   4392     Locks::mutator_lock_->AssertNotExclusiveHeld(Thread::Current());
   4393     SetResolvedMethod(resolved_method);
   4394   }
   4395 
   4396   DEFAULT_COPY_CONSTRUCTOR(Invoke);
   4397 
   4398   uint32_t number_of_arguments_;
   4399   ArtMethod* resolved_method_;
   4400   const uint32_t dex_method_index_;
   4401   Intrinsics intrinsic_;
   4402 
   4403   // A magic word holding optimizations for intrinsics. See intrinsics.h.
   4404   uint32_t intrinsic_optimizations_;
   4405 };
   4406 
   4407 class HInvokeUnresolved final : public HInvoke {
   4408  public:
   4409   HInvokeUnresolved(ArenaAllocator* allocator,
   4410                     uint32_t number_of_arguments,
   4411                     DataType::Type return_type,
   4412                     uint32_t dex_pc,
   4413                     uint32_t dex_method_index,
   4414                     InvokeType invoke_type)
   4415       : HInvoke(kInvokeUnresolved,
   4416                 allocator,
   4417                 number_of_arguments,
   4418                 /* number_of_other_inputs= */ 0u,
   4419                 return_type,
   4420                 dex_pc,
   4421                 dex_method_index,
   4422                 nullptr,
   4423                 invoke_type) {
   4424   }
   4425 
   4426   bool IsClonable() const override { return true; }
   4427 
   4428   DECLARE_INSTRUCTION(InvokeUnresolved);
   4429 
   4430  protected:
   4431   DEFAULT_COPY_CONSTRUCTOR(InvokeUnresolved);
   4432 };
   4433 
   4434 class HInvokePolymorphic final : public HInvoke {
   4435  public:
   4436   HInvokePolymorphic(ArenaAllocator* allocator,
   4437                      uint32_t number_of_arguments,
   4438                      DataType::Type return_type,
   4439                      uint32_t dex_pc,
   4440                      uint32_t dex_method_index)
   4441       : HInvoke(kInvokePolymorphic,
   4442                 allocator,
   4443                 number_of_arguments,
   4444                 /* number_of_other_inputs= */ 0u,
   4445                 return_type,
   4446                 dex_pc,
   4447                 dex_method_index,
   4448                 nullptr,
   4449                 kVirtual) {
   4450   }
   4451 
   4452   bool IsClonable() const override { return true; }
   4453 
   4454   DECLARE_INSTRUCTION(InvokePolymorphic);
   4455 
   4456  protected:
   4457   DEFAULT_COPY_CONSTRUCTOR(InvokePolymorphic);
   4458 };
   4459 
   4460 class HInvokeCustom final : public HInvoke {
   4461  public:
   4462   HInvokeCustom(ArenaAllocator* allocator,
   4463                 uint32_t number_of_arguments,
   4464                 uint32_t call_site_index,
   4465                 DataType::Type return_type,
   4466                 uint32_t dex_pc)
   4467       : HInvoke(kInvokeCustom,
   4468                 allocator,
   4469                 number_of_arguments,
   4470                 /* number_of_other_inputs= */ 0u,
   4471                 return_type,
   4472                 dex_pc,
   4473                 /* dex_method_index= */ dex::kDexNoIndex,
   4474                 /* resolved_method= */ nullptr,
   4475                 kStatic),
   4476       call_site_index_(call_site_index) {
   4477   }
   4478 
   4479   uint32_t GetCallSiteIndex() const { return call_site_index_; }
   4480 
   4481   bool IsClonable() const override { return true; }
   4482 
   4483   DECLARE_INSTRUCTION(InvokeCustom);
   4484 
   4485  protected:
   4486   DEFAULT_COPY_CONSTRUCTOR(InvokeCustom);
   4487 
   4488  private:
   4489   uint32_t call_site_index_;
   4490 };
   4491 
   4492 class HInvokeStaticOrDirect final : public HInvoke {
   4493  public:
   4494   // Requirements of this method call regarding the class
   4495   // initialization (clinit) check of its declaring class.
   4496   enum class ClinitCheckRequirement {
   4497     kNone,      // Class already initialized.
   4498     kExplicit,  // Static call having explicit clinit check as last input.
   4499     kImplicit,  // Static call implicitly requiring a clinit check.
   4500     kLast = kImplicit
   4501   };
   4502 
   4503   // Determines how to load the target ArtMethod*.
   4504   enum class MethodLoadKind {
   4505     // Use a String init ArtMethod* loaded from Thread entrypoints.
   4506     kStringInit,
   4507 
   4508     // Use the method's own ArtMethod* loaded by the register allocator.
   4509     kRecursive,
   4510 
   4511     // Use PC-relative boot image ArtMethod* address that will be known at link time.
   4512     // Used for boot image methods referenced by boot image code.
   4513     kBootImageLinkTimePcRelative,
   4514 
   4515     // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
   4516     // Used for app->boot calls with relocatable image.
   4517     kBootImageRelRo,
   4518 
   4519     // Load from an entry in the .bss section using a PC-relative load.
   4520     // Used for methods outside boot image referenced by AOT-compiled app and boot image code.
   4521     kBssEntry,
   4522 
   4523     // Use ArtMethod* at a known address, embed the direct address in the code.
   4524     // Used for for JIT-compiled calls.
   4525     kJitDirectAddress,
   4526 
   4527     // Make a runtime call to resolve and call the method. This is the last-resort-kind
   4528     // used when other kinds are unimplemented on a particular architecture.
   4529     kRuntimeCall,
   4530   };
   4531 
   4532   // Determines the location of the code pointer.
   4533   enum class CodePtrLocation {
   4534     // Recursive call, use local PC-relative call instruction.
   4535     kCallSelf,
   4536 
   4537     // Use code pointer from the ArtMethod*.
   4538     // Used when we don't know the target code. This is also the last-resort-kind used when
   4539     // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
   4540     kCallArtMethod,
   4541   };
   4542 
   4543   struct DispatchInfo {
   4544     MethodLoadKind method_load_kind;
   4545     CodePtrLocation code_ptr_location;
   4546     // The method load data holds
   4547     //   - thread entrypoint offset for kStringInit method if this is a string init invoke.
   4548     //     Note that there are multiple string init methods, each having its own offset.
   4549     //   - the method address for kDirectAddress
   4550     uint64_t method_load_data;
   4551   };
   4552 
   4553   HInvokeStaticOrDirect(ArenaAllocator* allocator,
   4554                         uint32_t number_of_arguments,
   4555                         DataType::Type return_type,
   4556                         uint32_t dex_pc,
   4557                         uint32_t method_index,
   4558                         ArtMethod* resolved_method,
   4559                         DispatchInfo dispatch_info,
   4560                         InvokeType invoke_type,
   4561                         MethodReference target_method,
   4562                         ClinitCheckRequirement clinit_check_requirement)
   4563       : HInvoke(kInvokeStaticOrDirect,
   4564                 allocator,
   4565                 number_of_arguments,
   4566                 // There is potentially one extra argument for the HCurrentMethod node, and
   4567                 // potentially one other if the clinit check is explicit.
   4568                 (NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
   4569                     (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u),
   4570                 return_type,
   4571                 dex_pc,
   4572                 method_index,
   4573                 resolved_method,
   4574                 invoke_type),
   4575         target_method_(target_method),
   4576         dispatch_info_(dispatch_info) {
   4577     SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement);
   4578   }
   4579 
   4580   bool IsClonable() const override { return true; }
   4581 
   4582   void SetDispatchInfo(const DispatchInfo& dispatch_info) {
   4583     bool had_current_method_input = HasCurrentMethodInput();
   4584     bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
   4585 
   4586     // Using the current method is the default and once we find a better
   4587     // method load kind, we should not go back to using the current method.
   4588     DCHECK(had_current_method_input || !needs_current_method_input);
   4589 
   4590     if (had_current_method_input && !needs_current_method_input) {
   4591       DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
   4592       RemoveInputAt(GetSpecialInputIndex());
   4593     }
   4594     dispatch_info_ = dispatch_info;
   4595   }
   4596 
   4597   DispatchInfo GetDispatchInfo() const {
   4598     return dispatch_info_;
   4599   }
   4600 
   4601   void AddSpecialInput(HInstruction* input) {
   4602     // We allow only one special input.
   4603     DCHECK(!IsStringInit() && !HasCurrentMethodInput());
   4604     DCHECK(InputCount() == GetSpecialInputIndex() ||
   4605            (InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck()));
   4606     InsertInputAt(GetSpecialInputIndex(), input);
   4607   }
   4608 
   4609   using HInstruction::GetInputRecords;  // Keep the const version visible.
   4610   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
   4611     ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords();
   4612     if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) {
   4613       DCHECK(!input_records.empty());
   4614       DCHECK_GT(input_records.size(), GetNumberOfArguments());
   4615       HInstruction* last_input = input_records.back().GetInstruction();
   4616       // Note: `last_input` may be null during arguments setup.
   4617       if (last_input != nullptr) {
   4618         // `last_input` is the last input of a static invoke marked as having
   4619         // an explicit clinit check. It must either be:
   4620         // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
   4621         // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
   4622         DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName();
   4623       }
   4624     }
   4625     return input_records;
   4626   }
   4627 
   4628   bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
   4629     // We access the method via the dex cache so we can't do an implicit null check.
   4630     // TODO: for intrinsics we can generate implicit null checks.
   4631     return false;
   4632   }
   4633 
   4634   bool CanBeNull() const override {
   4635     return GetType() == DataType::Type::kReference && !IsStringInit();
   4636   }
   4637 
   4638   // Get the index of the special input, if any.
   4639   //
   4640   // If the invoke HasCurrentMethodInput(), the "special input" is the current
   4641   // method pointer; otherwise there may be one platform-specific special input,
   4642   // such as PC-relative addressing base.
   4643   uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); }
   4644   bool HasSpecialInput() const { return GetNumberOfArguments() != InputCount(); }
   4645 
   4646   MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
   4647   CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
   4648   bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
   4649   bool NeedsDexCacheOfDeclaringClass() const override;
   4650   bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
   4651   bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kJitDirectAddress; }
   4652   bool HasPcRelativeMethodLoadKind() const {
   4653     return GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative ||
   4654            GetMethodLoadKind() == MethodLoadKind::kBootImageRelRo ||
   4655            GetMethodLoadKind() == MethodLoadKind::kBssEntry;
   4656   }
   4657   bool HasCurrentMethodInput() const {
   4658     // This function can be called only after the invoke has been fully initialized by the builder.
   4659     if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
   4660       DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod());
   4661       return true;
   4662     } else {
   4663       DCHECK(InputCount() == GetSpecialInputIndex() ||
   4664              !InputAt(GetSpecialInputIndex())->IsCurrentMethod());
   4665       return false;
   4666     }
   4667   }
   4668 
   4669   QuickEntrypointEnum GetStringInitEntryPoint() const {
   4670     DCHECK(IsStringInit());
   4671     return static_cast<QuickEntrypointEnum>(dispatch_info_.method_load_data);
   4672   }
   4673 
   4674   uint64_t GetMethodAddress() const {
   4675     DCHECK(HasMethodAddress());
   4676     return dispatch_info_.method_load_data;
   4677   }
   4678 
   4679   const DexFile& GetDexFileForPcRelativeDexCache() const;
   4680 
   4681   ClinitCheckRequirement GetClinitCheckRequirement() const {
   4682     return GetPackedField<ClinitCheckRequirementField>();
   4683   }
   4684 
   4685   // Is this instruction a call to a static method?
   4686   bool IsStatic() const {
   4687     return GetInvokeType() == kStatic;
   4688   }
   4689 
   4690   MethodReference GetTargetMethod() const {
   4691     return target_method_;
   4692   }
   4693 
   4694   // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
   4695   // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
   4696   // instruction; only relevant for static calls with explicit clinit check.
   4697   void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
   4698     DCHECK(IsStaticWithExplicitClinitCheck());
   4699     size_t last_input_index = inputs_.size() - 1u;
   4700     HInstruction* last_input = inputs_.back().GetInstruction();
   4701     DCHECK(last_input != nullptr);
   4702     DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
   4703     RemoveAsUserOfInput(last_input_index);
   4704     inputs_.pop_back();
   4705     SetPackedField<ClinitCheckRequirementField>(new_requirement);
   4706     DCHECK(!IsStaticWithExplicitClinitCheck());
   4707   }
   4708 
   4709   // Is this a call to a static method whose declaring class has an
   4710   // explicit initialization check in the graph?
   4711   bool IsStaticWithExplicitClinitCheck() const {
   4712     return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit);
   4713   }
   4714 
   4715   // Is this a call to a static method whose declaring class has an
   4716   // implicit intialization check requirement?
   4717   bool IsStaticWithImplicitClinitCheck() const {
   4718     return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit);
   4719   }
   4720 
   4721   // Does this method load kind need the current method as an input?
   4722   static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
   4723     return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kRuntimeCall;
   4724   }
   4725 
   4726   DECLARE_INSTRUCTION(InvokeStaticOrDirect);
   4727 
   4728  protected:
   4729   DEFAULT_COPY_CONSTRUCTOR(InvokeStaticOrDirect);
   4730 
   4731  private:
   4732   static constexpr size_t kFieldClinitCheckRequirement = kNumberOfInvokePackedBits;
   4733   static constexpr size_t kFieldClinitCheckRequirementSize =
   4734       MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast));
   4735   static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits =
   4736       kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize;
   4737   static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits,
   4738                 "Too many packed fields.");
   4739   using ClinitCheckRequirementField = BitField<ClinitCheckRequirement,
   4740                                                kFieldClinitCheckRequirement,
   4741                                                kFieldClinitCheckRequirementSize>;
   4742 
   4743   // Cached values of the resolved method, to avoid needing the mutator lock.
   4744   const MethodReference target_method_;
   4745   DispatchInfo dispatch_info_;
   4746 };
   4747 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs);
   4748 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
   4749 
   4750 class HInvokeVirtual final : public HInvoke {
   4751  public:
   4752   HInvokeVirtual(ArenaAllocator* allocator,
   4753                  uint32_t number_of_arguments,
   4754                  DataType::Type return_type,
   4755                  uint32_t dex_pc,
   4756                  uint32_t dex_method_index,
   4757                  ArtMethod* resolved_method,
   4758                  uint32_t vtable_index)
   4759       : HInvoke(kInvokeVirtual,
   4760                 allocator,
   4761                 number_of_arguments,
   4762                 0u,
   4763                 return_type,
   4764                 dex_pc,
   4765                 dex_method_index,
   4766                 resolved_method,
   4767                 kVirtual),
   4768         vtable_index_(vtable_index) {
   4769   }
   4770 
   4771   bool IsClonable() const override { return true; }
   4772 
   4773   bool CanBeNull() const override {
   4774     switch (GetIntrinsic()) {
   4775       case Intrinsics::kThreadCurrentThread:
   4776       case Intrinsics::kStringBufferAppend:
   4777       case Intrinsics::kStringBufferToString:
   4778       case Intrinsics::kStringBuilderAppend:
   4779       case Intrinsics::kStringBuilderToString:
   4780         return false;
   4781       default:
   4782         return HInvoke::CanBeNull();
   4783     }
   4784   }
   4785 
   4786   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
   4787     // TODO: Add implicit null checks in intrinsics.
   4788     return (obj == InputAt(0)) && !IsIntrinsic();
   4789   }
   4790 
   4791   uint32_t GetVTableIndex() const { return vtable_index_; }
   4792 
   4793   DECLARE_INSTRUCTION(InvokeVirtual);
   4794 
   4795  protected:
   4796   DEFAULT_COPY_CONSTRUCTOR(InvokeVirtual);
   4797 
   4798  private:
   4799   // Cached value of the resolved method, to avoid needing the mutator lock.
   4800   const uint32_t vtable_index_;
   4801 };
   4802 
   4803 class HInvokeInterface final : public HInvoke {
   4804  public:
   4805   HInvokeInterface(ArenaAllocator* allocator,
   4806                    uint32_t number_of_arguments,
   4807                    DataType::Type return_type,
   4808                    uint32_t dex_pc,
   4809                    uint32_t dex_method_index,
   4810                    ArtMethod* resolved_method,
   4811                    uint32_t imt_index)
   4812       : HInvoke(kInvokeInterface,
   4813                 allocator,
   4814                 number_of_arguments,
   4815                 0u,
   4816                 return_type,
   4817                 dex_pc,
   4818                 dex_method_index,
   4819                 resolved_method,
   4820                 kInterface),
   4821         imt_index_(imt_index) {
   4822   }
   4823 
   4824   bool IsClonable() const override { return true; }
   4825 
   4826   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
   4827     // TODO: Add implicit null checks in intrinsics.
   4828     return (obj == InputAt(0)) && !IsIntrinsic();
   4829   }
   4830 
   4831   bool NeedsDexCacheOfDeclaringClass() const override {
   4832     // The assembly stub currently needs it.
   4833     return true;
   4834   }
   4835 
   4836   uint32_t GetImtIndex() const { return imt_index_; }
   4837 
   4838   DECLARE_INSTRUCTION(InvokeInterface);
   4839 
   4840  protected:
   4841   DEFAULT_COPY_CONSTRUCTOR(InvokeInterface);
   4842 
   4843  private:
   4844   // Cached value of the resolved method, to avoid needing the mutator lock.
   4845   const uint32_t imt_index_;
   4846 };
   4847 
   4848 class HNeg final : public HUnaryOperation {
   4849  public:
   4850   HNeg(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
   4851       : HUnaryOperation(kNeg, result_type, input, dex_pc) {
   4852     DCHECK_EQ(result_type, DataType::Kind(input->GetType()));
   4853   }
   4854 
   4855   template <typename T> static T Compute(T x) { return -x; }
   4856 
   4857   HConstant* Evaluate(HIntConstant* x) const override {
   4858     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
   4859   }
   4860   HConstant* Evaluate(HLongConstant* x) const override {
   4861     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
   4862   }
   4863   HConstant* Evaluate(HFloatConstant* x) const override {
   4864     return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc());
   4865   }
   4866   HConstant* Evaluate(HDoubleConstant* x) const override {
   4867     return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc());
   4868   }
   4869 
   4870   DECLARE_INSTRUCTION(Neg);
   4871 
   4872  protected:
   4873   DEFAULT_COPY_CONSTRUCTOR(Neg);
   4874 };
   4875 
   4876 class HNewArray final : public HExpression<2> {
   4877  public:
   4878   HNewArray(HInstruction* cls, HInstruction* length, uint32_t dex_pc, size_t component_size_shift)
   4879       : HExpression(kNewArray, DataType::Type::kReference, SideEffects::CanTriggerGC(), dex_pc) {
   4880     SetRawInputAt(0, cls);
   4881     SetRawInputAt(1, length);
   4882     SetPackedField<ComponentSizeShiftField>(component_size_shift);
   4883   }
   4884 
   4885   bool IsClonable() const override { return true; }
   4886 
   4887   // Calls runtime so needs an environment.
   4888   bool NeedsEnvironment() const override { return true; }
   4889 
   4890   // May throw NegativeArraySizeException, OutOfMemoryError, etc.
   4891   bool CanThrow() const override { return true; }
   4892 
   4893   bool CanBeNull() const override { return false; }
   4894 
   4895   HLoadClass* GetLoadClass() const {
   4896     DCHECK(InputAt(0)->IsLoadClass());
   4897     return InputAt(0)->AsLoadClass();
   4898   }
   4899 
   4900   HInstruction* GetLength() const {
   4901     return InputAt(1);
   4902   }
   4903 
   4904   size_t GetComponentSizeShift() {
   4905     return GetPackedField<ComponentSizeShiftField>();
   4906   }
   4907 
   4908   DECLARE_INSTRUCTION(NewArray);
   4909 
   4910  protected:
   4911   DEFAULT_COPY_CONSTRUCTOR(NewArray);
   4912 
   4913  private:
   4914   static constexpr size_t kFieldComponentSizeShift = kNumberOfGenericPackedBits;
   4915   static constexpr size_t kFieldComponentSizeShiftSize = MinimumBitsToStore(3u);
   4916   static constexpr size_t kNumberOfNewArrayPackedBits =
   4917       kFieldComponentSizeShift + kFieldComponentSizeShiftSize;
   4918   static_assert(kNumberOfNewArrayPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
   4919   using ComponentSizeShiftField =
   4920       BitField<size_t, kFieldComponentSizeShift, kFieldComponentSizeShift>;
   4921 };
   4922 
   4923 class HAdd final : public HBinaryOperation {
   4924  public:
   4925   HAdd(DataType::Type result_type,
   4926        HInstruction* left,
   4927        HInstruction* right,
   4928        uint32_t dex_pc = kNoDexPc)
   4929       : HBinaryOperation(kAdd, result_type, left, right, SideEffects::None(), dex_pc) {
   4930   }
   4931 
   4932   bool IsCommutative() const override { return true; }
   4933 
   4934   template <typename T> static T Compute(T x, T y) { return x + y; }
   4935 
   4936   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   4937     return GetBlock()->GetGraph()->GetIntConstant(
   4938         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   4939   }
   4940   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   4941     return GetBlock()->GetGraph()->GetLongConstant(
   4942         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   4943   }
   4944   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
   4945     return GetBlock()->GetGraph()->GetFloatConstant(
   4946         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   4947   }
   4948   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
   4949     return GetBlock()->GetGraph()->GetDoubleConstant(
   4950         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   4951   }
   4952 
   4953   DECLARE_INSTRUCTION(Add);
   4954 
   4955  protected:
   4956   DEFAULT_COPY_CONSTRUCTOR(Add);
   4957 };
   4958 
   4959 class HSub final : public HBinaryOperation {
   4960  public:
   4961   HSub(DataType::Type result_type,
   4962        HInstruction* left,
   4963        HInstruction* right,
   4964        uint32_t dex_pc = kNoDexPc)
   4965       : HBinaryOperation(kSub, result_type, left, right, SideEffects::None(), dex_pc) {
   4966   }
   4967 
   4968   template <typename T> static T Compute(T x, T y) { return x - y; }
   4969 
   4970   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   4971     return GetBlock()->GetGraph()->GetIntConstant(
   4972         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   4973   }
   4974   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   4975     return GetBlock()->GetGraph()->GetLongConstant(
   4976         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   4977   }
   4978   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
   4979     return GetBlock()->GetGraph()->GetFloatConstant(
   4980         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   4981   }
   4982   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
   4983     return GetBlock()->GetGraph()->GetDoubleConstant(
   4984         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   4985   }
   4986 
   4987   DECLARE_INSTRUCTION(Sub);
   4988 
   4989  protected:
   4990   DEFAULT_COPY_CONSTRUCTOR(Sub);
   4991 };
   4992 
   4993 class HMul final : public HBinaryOperation {
   4994  public:
   4995   HMul(DataType::Type result_type,
   4996        HInstruction* left,
   4997        HInstruction* right,
   4998        uint32_t dex_pc = kNoDexPc)
   4999       : HBinaryOperation(kMul, result_type, left, right, SideEffects::None(), dex_pc) {
   5000   }
   5001 
   5002   bool IsCommutative() const override { return true; }
   5003 
   5004   template <typename T> static T Compute(T x, T y) { return x * y; }
   5005 
   5006   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   5007     return GetBlock()->GetGraph()->GetIntConstant(
   5008         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   5009   }
   5010   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   5011     return GetBlock()->GetGraph()->GetLongConstant(
   5012         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   5013   }
   5014   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
   5015     return GetBlock()->GetGraph()->GetFloatConstant(
   5016         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   5017   }
   5018   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
   5019     return GetBlock()->GetGraph()->GetDoubleConstant(
   5020         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   5021   }
   5022 
   5023   DECLARE_INSTRUCTION(Mul);
   5024 
   5025  protected:
   5026   DEFAULT_COPY_CONSTRUCTOR(Mul);
   5027 };
   5028 
   5029 class HDiv final : public HBinaryOperation {
   5030  public:
   5031   HDiv(DataType::Type result_type,
   5032        HInstruction* left,
   5033        HInstruction* right,
   5034        uint32_t dex_pc)
   5035       : HBinaryOperation(kDiv, result_type, left, right, SideEffects::None(), dex_pc) {
   5036   }
   5037 
   5038   template <typename T>
   5039   T ComputeIntegral(T x, T y) const {
   5040     DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
   5041     // Our graph structure ensures we never have 0 for `y` during
   5042     // constant folding.
   5043     DCHECK_NE(y, 0);
   5044     // Special case -1 to avoid getting a SIGFPE on x86(_64).
   5045     return (y == -1) ? -x : x / y;
   5046   }
   5047 
   5048   template <typename T>
   5049   T ComputeFP(T x, T y) const {
   5050     DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
   5051     return x / y;
   5052   }
   5053 
   5054   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   5055     return GetBlock()->GetGraph()->GetIntConstant(
   5056         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
   5057   }
   5058   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   5059     return GetBlock()->GetGraph()->GetLongConstant(
   5060         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
   5061   }
   5062   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
   5063     return GetBlock()->GetGraph()->GetFloatConstant(
   5064         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
   5065   }
   5066   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
   5067     return GetBlock()->GetGraph()->GetDoubleConstant(
   5068         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
   5069   }
   5070 
   5071   DECLARE_INSTRUCTION(Div);
   5072 
   5073  protected:
   5074   DEFAULT_COPY_CONSTRUCTOR(Div);
   5075 };
   5076 
   5077 class HRem final : public HBinaryOperation {
   5078  public:
   5079   HRem(DataType::Type result_type,
   5080        HInstruction* left,
   5081        HInstruction* right,
   5082        uint32_t dex_pc)
   5083       : HBinaryOperation(kRem, result_type, left, right, SideEffects::None(), dex_pc) {
   5084   }
   5085 
   5086   template <typename T>
   5087   T ComputeIntegral(T x, T y) const {
   5088     DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
   5089     // Our graph structure ensures we never have 0 for `y` during
   5090     // constant folding.
   5091     DCHECK_NE(y, 0);
   5092     // Special case -1 to avoid getting a SIGFPE on x86(_64).
   5093     return (y == -1) ? 0 : x % y;
   5094   }
   5095 
   5096   template <typename T>
   5097   T ComputeFP(T x, T y) const {
   5098     DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
   5099     return std::fmod(x, y);
   5100   }
   5101 
   5102   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   5103     return GetBlock()->GetGraph()->GetIntConstant(
   5104         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
   5105   }
   5106   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   5107     return GetBlock()->GetGraph()->GetLongConstant(
   5108         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
   5109   }
   5110   HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
   5111     return GetBlock()->GetGraph()->GetFloatConstant(
   5112         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
   5113   }
   5114   HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
   5115     return GetBlock()->GetGraph()->GetDoubleConstant(
   5116         ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
   5117   }
   5118 
   5119   DECLARE_INSTRUCTION(Rem);
   5120 
   5121  protected:
   5122   DEFAULT_COPY_CONSTRUCTOR(Rem);
   5123 };
   5124 
   5125 class HMin final : public HBinaryOperation {
   5126  public:
   5127   HMin(DataType::Type result_type,
   5128        HInstruction* left,
   5129        HInstruction* right,
   5130        uint32_t dex_pc)
   5131       : HBinaryOperation(kMin, result_type, left, right, SideEffects::None(), dex_pc) {}
   5132 
   5133   bool IsCommutative() const override { return true; }
   5134 
   5135   // Evaluation for integral values.
   5136   template <typename T> static T ComputeIntegral(T x, T y) {
   5137     return (x <= y) ? x : y;
   5138   }
   5139 
   5140   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   5141     return GetBlock()->GetGraph()->GetIntConstant(
   5142         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
   5143   }
   5144   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   5145     return GetBlock()->GetGraph()->GetLongConstant(
   5146         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
   5147   }
   5148   // TODO: Evaluation for floating-point values.
   5149   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
   5150                       HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
   5151   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
   5152                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
   5153 
   5154   DECLARE_INSTRUCTION(Min);
   5155 
   5156  protected:
   5157   DEFAULT_COPY_CONSTRUCTOR(Min);
   5158 };
   5159 
   5160 class HMax final : public HBinaryOperation {
   5161  public:
   5162   HMax(DataType::Type result_type,
   5163        HInstruction* left,
   5164        HInstruction* right,
   5165        uint32_t dex_pc)
   5166       : HBinaryOperation(kMax, result_type, left, right, SideEffects::None(), dex_pc) {}
   5167 
   5168   bool IsCommutative() const override { return true; }
   5169 
   5170   // Evaluation for integral values.
   5171   template <typename T> static T ComputeIntegral(T x, T y) {
   5172     return (x >= y) ? x : y;
   5173   }
   5174 
   5175   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   5176     return GetBlock()->GetGraph()->GetIntConstant(
   5177         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
   5178   }
   5179   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   5180     return GetBlock()->GetGraph()->GetLongConstant(
   5181         ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
   5182   }
   5183   // TODO: Evaluation for floating-point values.
   5184   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
   5185                       HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
   5186   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
   5187                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
   5188 
   5189   DECLARE_INSTRUCTION(Max);
   5190 
   5191  protected:
   5192   DEFAULT_COPY_CONSTRUCTOR(Max);
   5193 };
   5194 
   5195 class HAbs final : public HUnaryOperation {
   5196  public:
   5197   HAbs(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
   5198       : HUnaryOperation(kAbs, result_type, input, dex_pc) {}
   5199 
   5200   // Evaluation for integral values.
   5201   template <typename T> static T ComputeIntegral(T x) {
   5202     return x < 0 ? -x : x;
   5203   }
   5204 
   5205   // Evaluation for floating-point values.
   5206   // Note, as a "quality of implementation", rather than pure "spec compliance",
   5207   // we require that Math.abs() clears the sign bit (but changes nothing else)
   5208   // for all floating-point numbers, including NaN (signaling NaN may become quiet though).
   5209   // http://b/30758343
   5210   template <typename T, typename S> static T ComputeFP(T x) {
   5211     S bits = bit_cast<S, T>(x);
   5212     return bit_cast<T, S>(bits & std::numeric_limits<S>::max());
   5213   }
   5214 
   5215   HConstant* Evaluate(HIntConstant* x) const override {
   5216     return GetBlock()->GetGraph()->GetIntConstant(ComputeIntegral(x->GetValue()), GetDexPc());
   5217   }
   5218   HConstant* Evaluate(HLongConstant* x) const override {
   5219     return GetBlock()->GetGraph()->GetLongConstant(ComputeIntegral(x->GetValue()), GetDexPc());
   5220   }
   5221   HConstant* Evaluate(HFloatConstant* x) const override {
   5222     return GetBlock()->GetGraph()->GetFloatConstant(
   5223         ComputeFP<float, int32_t>(x->GetValue()), GetDexPc());
   5224   }
   5225   HConstant* Evaluate(HDoubleConstant* x) const override {
   5226     return GetBlock()->GetGraph()->GetDoubleConstant(
   5227         ComputeFP<double, int64_t>(x->GetValue()), GetDexPc());
   5228   }
   5229 
   5230   DECLARE_INSTRUCTION(Abs);
   5231 
   5232  protected:
   5233   DEFAULT_COPY_CONSTRUCTOR(Abs);
   5234 };
   5235 
   5236 class HDivZeroCheck final : public HExpression<1> {
   5237  public:
   5238   // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException`
   5239   // constructor. However it can only do it on a fatal slow path so execution never returns to the
   5240   // instruction following the current one; thus 'SideEffects::None()' is used.
   5241   HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
   5242       : HExpression(kDivZeroCheck, value->GetType(), SideEffects::None(), dex_pc) {
   5243     SetRawInputAt(0, value);
   5244   }
   5245 
   5246   bool IsClonable() const override { return true; }
   5247   bool CanBeMoved() const override { return true; }
   5248 
   5249   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
   5250     return true;
   5251   }
   5252 
   5253   bool NeedsEnvironment() const override { return true; }
   5254   bool CanThrow() const override { return true; }
   5255 
   5256   DECLARE_INSTRUCTION(DivZeroCheck);
   5257 
   5258  protected:
   5259   DEFAULT_COPY_CONSTRUCTOR(DivZeroCheck);
   5260 };
   5261 
   5262 class HShl final : public HBinaryOperation {
   5263  public:
   5264   HShl(DataType::Type result_type,
   5265        HInstruction* value,
   5266        HInstruction* distance,
   5267        uint32_t dex_pc = kNoDexPc)
   5268       : HBinaryOperation(kShl, result_type, value, distance, SideEffects::None(), dex_pc) {
   5269     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
   5270     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
   5271   }
   5272 
   5273   template <typename T>
   5274   static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
   5275     return value << (distance & max_shift_distance);
   5276   }
   5277 
   5278   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
   5279     return GetBlock()->GetGraph()->GetIntConstant(
   5280         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
   5281   }
   5282   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
   5283     return GetBlock()->GetGraph()->GetLongConstant(
   5284         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
   5285   }
   5286   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
   5287                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
   5288     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
   5289     UNREACHABLE();
   5290   }
   5291   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
   5292                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
   5293     LOG(FATAL) << DebugName() << " is not defined for float values";
   5294     UNREACHABLE();
   5295   }
   5296   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
   5297                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
   5298     LOG(FATAL) << DebugName() << " is not defined for double values";
   5299     UNREACHABLE();
   5300   }
   5301 
   5302   DECLARE_INSTRUCTION(Shl);
   5303 
   5304  protected:
   5305   DEFAULT_COPY_CONSTRUCTOR(Shl);
   5306 };
   5307 
   5308 class HShr final : public HBinaryOperation {
   5309  public:
   5310   HShr(DataType::Type result_type,
   5311        HInstruction* value,
   5312        HInstruction* distance,
   5313        uint32_t dex_pc = kNoDexPc)
   5314       : HBinaryOperation(kShr, result_type, value, distance, SideEffects::None(), dex_pc) {
   5315     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
   5316     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
   5317   }
   5318 
   5319   template <typename T>
   5320   static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
   5321     return value >> (distance & max_shift_distance);
   5322   }
   5323 
   5324   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
   5325     return GetBlock()->GetGraph()->GetIntConstant(
   5326         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
   5327   }
   5328   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
   5329     return GetBlock()->GetGraph()->GetLongConstant(
   5330         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
   5331   }
   5332   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
   5333                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
   5334     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
   5335     UNREACHABLE();
   5336   }
   5337   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
   5338                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
   5339     LOG(FATAL) << DebugName() << " is not defined for float values";
   5340     UNREACHABLE();
   5341   }
   5342   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
   5343                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
   5344     LOG(FATAL) << DebugName() << " is not defined for double values";
   5345     UNREACHABLE();
   5346   }
   5347 
   5348   DECLARE_INSTRUCTION(Shr);
   5349 
   5350  protected:
   5351   DEFAULT_COPY_CONSTRUCTOR(Shr);
   5352 };
   5353 
   5354 class HUShr final : public HBinaryOperation {
   5355  public:
   5356   HUShr(DataType::Type result_type,
   5357         HInstruction* value,
   5358         HInstruction* distance,
   5359         uint32_t dex_pc = kNoDexPc)
   5360       : HBinaryOperation(kUShr, result_type, value, distance, SideEffects::None(), dex_pc) {
   5361     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
   5362     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
   5363   }
   5364 
   5365   template <typename T>
   5366   static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
   5367     typedef typename std::make_unsigned<T>::type V;
   5368     V ux = static_cast<V>(value);
   5369     return static_cast<T>(ux >> (distance & max_shift_distance));
   5370   }
   5371 
   5372   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
   5373     return GetBlock()->GetGraph()->GetIntConstant(
   5374         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
   5375   }
   5376   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
   5377     return GetBlock()->GetGraph()->GetLongConstant(
   5378         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
   5379   }
   5380   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
   5381                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
   5382     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
   5383     UNREACHABLE();
   5384   }
   5385   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
   5386                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
   5387     LOG(FATAL) << DebugName() << " is not defined for float values";
   5388     UNREACHABLE();
   5389   }
   5390   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
   5391                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
   5392     LOG(FATAL) << DebugName() << " is not defined for double values";
   5393     UNREACHABLE();
   5394   }
   5395 
   5396   DECLARE_INSTRUCTION(UShr);
   5397 
   5398  protected:
   5399   DEFAULT_COPY_CONSTRUCTOR(UShr);
   5400 };
   5401 
   5402 class HAnd final : public HBinaryOperation {
   5403  public:
   5404   HAnd(DataType::Type result_type,
   5405        HInstruction* left,
   5406        HInstruction* right,
   5407        uint32_t dex_pc = kNoDexPc)
   5408       : HBinaryOperation(kAnd, result_type, left, right, SideEffects::None(), dex_pc) {
   5409   }
   5410 
   5411   bool IsCommutative() const override { return true; }
   5412 
   5413   template <typename T> static T Compute(T x, T y) { return x & y; }
   5414 
   5415   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   5416     return GetBlock()->GetGraph()->GetIntConstant(
   5417         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   5418   }
   5419   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   5420     return GetBlock()->GetGraph()->GetLongConstant(
   5421         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   5422   }
   5423   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
   5424                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
   5425     LOG(FATAL) << DebugName() << " is not defined for float values";
   5426     UNREACHABLE();
   5427   }
   5428   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
   5429                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
   5430     LOG(FATAL) << DebugName() << " is not defined for double values";
   5431     UNREACHABLE();
   5432   }
   5433 
   5434   DECLARE_INSTRUCTION(And);
   5435 
   5436  protected:
   5437   DEFAULT_COPY_CONSTRUCTOR(And);
   5438 };
   5439 
   5440 class HOr final : public HBinaryOperation {
   5441  public:
   5442   HOr(DataType::Type result_type,
   5443       HInstruction* left,
   5444       HInstruction* right,
   5445       uint32_t dex_pc = kNoDexPc)
   5446       : HBinaryOperation(kOr, result_type, left, right, SideEffects::None(), dex_pc) {
   5447   }
   5448 
   5449   bool IsCommutative() const override { return true; }
   5450 
   5451   template <typename T> static T Compute(T x, T y) { return x | y; }
   5452 
   5453   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   5454     return GetBlock()->GetGraph()->GetIntConstant(
   5455         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   5456   }
   5457   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   5458     return GetBlock()->GetGraph()->GetLongConstant(
   5459         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   5460   }
   5461   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
   5462                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
   5463     LOG(FATAL) << DebugName() << " is not defined for float values";
   5464     UNREACHABLE();
   5465   }
   5466   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
   5467                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
   5468     LOG(FATAL) << DebugName() << " is not defined for double values";
   5469     UNREACHABLE();
   5470   }
   5471 
   5472   DECLARE_INSTRUCTION(Or);
   5473 
   5474  protected:
   5475   DEFAULT_COPY_CONSTRUCTOR(Or);
   5476 };
   5477 
   5478 class HXor final : public HBinaryOperation {
   5479  public:
   5480   HXor(DataType::Type result_type,
   5481        HInstruction* left,
   5482        HInstruction* right,
   5483        uint32_t dex_pc = kNoDexPc)
   5484       : HBinaryOperation(kXor, result_type, left, right, SideEffects::None(), dex_pc) {
   5485   }
   5486 
   5487   bool IsCommutative() const override { return true; }
   5488 
   5489   template <typename T> static T Compute(T x, T y) { return x ^ y; }
   5490 
   5491   HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
   5492     return GetBlock()->GetGraph()->GetIntConstant(
   5493         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   5494   }
   5495   HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
   5496     return GetBlock()->GetGraph()->GetLongConstant(
   5497         Compute(x->GetValue(), y->GetValue()), GetDexPc());
   5498   }
   5499   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
   5500                       HFloatConstant* y ATTRIBUTE_UNUSED) const override {
   5501     LOG(FATAL) << DebugName() << " is not defined for float values";
   5502     UNREACHABLE();
   5503   }
   5504   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
   5505                       HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
   5506     LOG(FATAL) << DebugName() << " is not defined for double values";
   5507     UNREACHABLE();
   5508   }
   5509 
   5510   DECLARE_INSTRUCTION(Xor);
   5511 
   5512  protected:
   5513   DEFAULT_COPY_CONSTRUCTOR(Xor);
   5514 };
   5515 
   5516 class HRor final : public HBinaryOperation {
   5517  public:
   5518   HRor(DataType::Type result_type, HInstruction* value, HInstruction* distance)
   5519       : HBinaryOperation(kRor, result_type, value, distance) {
   5520     DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
   5521     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
   5522   }
   5523 
   5524   template <typename T>
   5525   static T Compute(T value, int32_t distance, int32_t max_shift_value) {
   5526     typedef typename std::make_unsigned<T>::type V;
   5527     V ux = static_cast<V>(value);
   5528     if ((distance & max_shift_value) == 0) {
   5529       return static_cast<T>(ux);
   5530     } else {
   5531       const V reg_bits = sizeof(T) * 8;
   5532       return static_cast<T>(ux >> (distance & max_shift_value)) |
   5533                            (value << (reg_bits - (distance & max_shift_value)));
   5534     }
   5535   }
   5536 
   5537   HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
   5538     return GetBlock()->GetGraph()->GetIntConstant(
   5539         Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
   5540   }
   5541   HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
   5542     return GetBlock()->GetGraph()->GetLongConstant(
   5543         Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
   5544   }
   5545   HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
   5546                       HLongConstant* distance ATTRIBUTE_UNUSED) const override {
   5547     LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
   5548     UNREACHABLE();
   5549   }
   5550   HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
   5551                       HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
   5552     LOG(FATAL) << DebugName() << " is not defined for float values";
   5553     UNREACHABLE();
   5554   }
   5555   HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
   5556                       HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
   5557     LOG(FATAL) << DebugName() << " is not defined for double values";
   5558     UNREACHABLE();
   5559   }
   5560 
   5561   DECLARE_INSTRUCTION(Ror);
   5562 
   5563  protected:
   5564   DEFAULT_COPY_CONSTRUCTOR(Ror);
   5565 };
   5566 
   5567 // The value of a parameter in this method. Its location depends on
   5568 // the calling convention.
   5569 class HParameterValue final : public HExpression<0> {
   5570  public:
   5571   HParameterValue(const DexFile& dex_file,
   5572                   dex::TypeIndex type_index,
   5573                   uint8_t index,
   5574                   DataType::Type parameter_type,
   5575                   bool is_this = false)
   5576       : HExpression(kParameterValue, parameter_type, SideEffects::None(), kNoDexPc),
   5577         dex_file_(dex_file),
   5578         type_index_(type_index),
   5579         index_(index) {
   5580     SetPackedFlag<kFlagIsThis>(is_this);
   5581     SetPackedFlag<kFlagCanBeNull>(!is_this);
   5582   }
   5583 
   5584   const DexFile& GetDexFile() const { return dex_file_; }
   5585   dex::TypeIndex GetTypeIndex() const { return type_index_; }
   5586   uint8_t GetIndex() const { return index_; }
   5587   bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); }
   5588 
   5589   bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
   5590   void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
   5591 
   5592   DECLARE_INSTRUCTION(ParameterValue);
   5593 
   5594  protected:
   5595   DEFAULT_COPY_CONSTRUCTOR(ParameterValue);
   5596 
   5597  private:
   5598   // Whether or not the parameter value corresponds to 'this' argument.
   5599   static constexpr size_t kFlagIsThis = kNumberOfGenericPackedBits;
   5600   static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1;
   5601   static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1;
   5602   static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits,
   5603                 "Too many packed fields.");
   5604 
   5605   const DexFile& dex_file_;
   5606   const dex::TypeIndex type_index_;
   5607   // The index of this parameter in the parameters list. Must be less
   5608   // than HGraph::number_of_in_vregs_.
   5609   const uint8_t index_;
   5610 };
   5611 
   5612 class HNot final : public HUnaryOperation {
   5613  public:
   5614   HNot(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
   5615       : HUnaryOperation(kNot, result_type, input, dex_pc) {
   5616   }
   5617 
   5618   bool CanBeMoved() const override { return true; }
   5619   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
   5620     return true;
   5621   }
   5622 
   5623   template <typename T> static T Compute(T x) { return ~x; }
   5624 
   5625   HConstant* Evaluate(HIntConstant* x) const override {
   5626     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
   5627   }
   5628   HConstant* Evaluate(HLongConstant* x) const override {
   5629     return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
   5630   }
   5631   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override {
   5632     LOG(FATAL) << DebugName() << " is not defined for float values";
   5633     UNREACHABLE();
   5634   }
   5635   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override {
   5636     LOG(FATAL) << DebugName() << " is not defined for double values";
   5637     UNREACHABLE();
   5638   }
   5639 
   5640   DECLARE_INSTRUCTION(Not);
   5641 
   5642  protected:
   5643   DEFAULT_COPY_CONSTRUCTOR(Not);
   5644 };
   5645 
   5646 class HBooleanNot final : public HUnaryOperation {
   5647  public:
   5648   explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
   5649       : HUnaryOperation(kBooleanNot, DataType::Type::kBool, input, dex_pc) {
   5650   }
   5651 
   5652   bool CanBeMoved() const override { return true; }
   5653   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
   5654     return true;
   5655   }
   5656 
   5657   template <typename T> static bool Compute(T x) {
   5658     DCHECK(IsUint<1>(x)) << x;
   5659     return !x;
   5660   }
   5661 
   5662   HConstant* Evaluate(HIntConstant* x) const override {
   5663     return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
   5664   }
   5665   HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const override {
   5666     LOG(FATAL) << DebugName() << " is not defined for long values";
   5667     UNREACHABLE();
   5668   }
   5669   HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override {
   5670     LOG(FATAL) << DebugName() << " is not defined for float values";
   5671     UNREACHABLE();
   5672   }
   5673   HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override {
   5674     LOG(FATAL) << DebugName() << " is not defined for double values";
   5675     UNREACHABLE();
   5676   }
   5677 
   5678   DECLARE_INSTRUCTION(BooleanNot);
   5679 
   5680  protected:
   5681   DEFAULT_COPY_CONSTRUCTOR(BooleanNot);
   5682 };
   5683 
   5684 class HTypeConversion final : public HExpression<1> {
   5685  public:
   5686   // Instantiate a type conversion of `input` to `result_type`.
   5687   HTypeConversion(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
   5688       : HExpression(kTypeConversion, result_type, SideEffects::None(), dex_pc) {
   5689     SetRawInputAt(0, input);
   5690     // Invariant: We should never generate a conversion to a Boolean value.
   5691     DCHECK_NE(DataType::Type::kBool, result_type);
   5692   }
   5693 
   5694   HInstruction* GetInput() const { return InputAt(0); }
   5695   DataType::Type GetInputType() const { return GetInput()->GetType(); }
   5696   DataType::Type GetResultType() const { return GetType(); }
   5697 
   5698   bool IsClonable() const override { return true; }
   5699   bool CanBeMoved() const override { return true; }
   5700   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
   5701     return true;
   5702   }
   5703   // Return whether the conversion is implicit. This includes conversion to the same type.
   5704   bool IsImplicitConversion() const {
   5705     return DataType::IsTypeConversionImplicit(GetInputType(), GetResultType());
   5706   }
   5707 
   5708   // Try to statically evaluate the conversion and return a HConstant
   5709   // containing the result.  If the input cannot be converted, return nullptr.
   5710   HConstant* TryStaticEvaluation() const;
   5711 
   5712   DECLARE_INSTRUCTION(TypeConversion);
   5713 
   5714  protected:
   5715   DEFAULT_COPY_CONSTRUCTOR(TypeConversion);
   5716 };
   5717 
   5718 static constexpr uint32_t kNoRegNumber = -1;
   5719 
   5720 class HNullCheck final : public HExpression<1> {
   5721  public:
   5722   // `HNullCheck` can trigger GC, as it may call the `NullPointerException`
   5723   // constructor. However it can only do it on a fatal slow path so execution never returns to the
   5724   // instruction following the current one; thus 'SideEffects::None()' is used.
   5725   HNullCheck(HInstruction* value, uint32_t dex_pc)
   5726       : HExpression(kNullCheck, value->GetType(), SideEffects::None(), dex_pc) {
   5727     SetRawInputAt(0, value);
   5728   }
   5729 
   5730   bool IsClonable() const override { return true; }
   5731   bool CanBeMoved() const override { return true; }
   5732   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
   5733     return true;
   5734   }
   5735 
   5736   bool NeedsEnvironment() const override { return true; }
   5737 
   5738   bool CanThrow() const override { return true; }
   5739 
   5740   bool CanBeNull() const override { return false; }
   5741 
   5742   DECLARE_INSTRUCTION(NullCheck);
   5743 
   5744  protected:
   5745   DEFAULT_COPY_CONSTRUCTOR(NullCheck);
   5746 };
   5747 
   5748 // Embeds an ArtField and all the information required by the compiler. We cache
   5749 // that information to avoid requiring the mutator lock every time we need it.
   5750 class FieldInfo : public ValueObject {
   5751  public:
   5752   FieldInfo(ArtField* field,
   5753             MemberOffset field_offset,
   5754             DataType::Type field_type,
   5755             bool is_volatile,
   5756             uint32_t index,
   5757             uint16_t declaring_class_def_index,
   5758             const DexFile& dex_file)
   5759       : field_(field),
   5760         field_offset_(field_offset),
   5761         field_type_(field_type),
   5762         is_volatile_(is_volatile),
   5763         index_(index),
   5764         declaring_class_def_index_(declaring_class_def_index),
   5765         dex_file_(dex_file) {}
   5766 
   5767   ArtField* GetField() const { return field_; }
   5768   MemberOffset GetFieldOffset() const { return field_offset_; }
   5769   DataType::Type GetFieldType() const { return field_type_; }
   5770   uint32_t GetFieldIndex() const { return index_; }
   5771   uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
   5772   const DexFile& GetDexFile() const { return dex_file_; }
   5773   bool IsVolatile() const { return is_volatile_; }
   5774 
   5775  private:
   5776   ArtField* const field_;
   5777   const MemberOffset field_offset_;
   5778   const DataType::Type field_type_;
   5779   const bool is_volatile_;
   5780   const uint32_t index_;
   5781   const uint16_t declaring_class_def_index_;
   5782   const DexFile& dex_file_;
   5783 };
   5784 
   5785 class HInstanceFieldGet final : public HExpression<1> {
   5786  public:
   5787   HInstanceFieldGet(HInstruction* value,
   5788                     ArtField* field,
   5789                     DataType::Type field_type,
   5790                     MemberOffset field_offset,
   5791                     bool is_volatile,
   5792                     uint32_t field_idx,
   5793                     uint16_t declaring_class_def_index,
   5794                     const DexFile& dex_file,
   5795                     uint32_t dex_pc)
   5796       : HExpression(kInstanceFieldGet,
   5797                     field_type,
   5798                     SideEffects::FieldReadOfType(field_type, is_volatile),
   5799                     dex_pc),
   5800         field_info_(field,
   5801                     field_offset,
   5802                     field_type,
   5803                     is_volatile,
   5804                     field_idx,
   5805                     declaring_class_def_index,
   5806                     dex_file) {
   5807     SetRawInputAt(0, value);
   5808   }
   5809 
   5810   bool IsClonable() const override { return true; }
   5811   bool CanBeMoved() const override { return !IsVolatile(); }
   5812 
   5813   bool InstructionDataEquals(const HInstruction* other) const override {
   5814     const HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
   5815     return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
   5816   }
   5817 
   5818   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
   5819     return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
   5820   }
   5821 
   5822   size_t ComputeHashCode() const override {
   5823     return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
   5824   }
   5825 
   5826   const FieldInfo& GetFieldInfo() const { return field_info_; }
   5827   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
   5828   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
   5829   bool IsVolatile() const { return field_info_.IsVolatile(); }
   5830 
   5831   void SetType(DataType::Type new_type) {
   5832     DCHECK(DataType::IsIntegralType(GetType()));
   5833     DCHECK(DataType::IsIntegralType(new_type));
   5834     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
   5835     SetPackedField<TypeField>(new_type);
   5836   }
   5837 
   5838   DECLARE_INSTRUCTION(InstanceFieldGet);
   5839 
   5840  protected:
   5841   DEFAULT_COPY_CONSTRUCTOR(InstanceFieldGet);
   5842 
   5843  private:
   5844   const FieldInfo field_info_;
   5845 };
   5846 
   5847 class HInstanceFieldSet final : public HExpression<2> {
   5848  public:
   5849   HInstanceFieldSet(HInstruction* object,
   5850                     HInstruction* value,
   5851                     ArtField* field,
   5852                     DataType::Type field_type,
   5853                     MemberOffset field_offset,
   5854                     bool is_volatile,
   5855                     uint32_t field_idx,
   5856                     uint16_t declaring_class_def_index,
   5857                     const DexFile& dex_file,
   5858                     uint32_t dex_pc)
   5859       : HExpression(kInstanceFieldSet,
   5860                     SideEffects::FieldWriteOfType(field_type, is_volatile),
   5861                     dex_pc),
   5862         field_info_(field,
   5863                     field_offset,
   5864                     field_type,
   5865                     is_volatile,
   5866                     field_idx,
   5867                     declaring_class_def_index,
   5868                     dex_file) {
   5869     SetPackedFlag<kFlagValueCanBeNull>(true);
   5870     SetRawInputAt(0, object);
   5871     SetRawInputAt(1, value);
   5872   }
   5873 
   5874   bool IsClonable() const override { return true; }
   5875 
   5876   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
   5877     return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
   5878   }
   5879 
   5880   const FieldInfo& GetFieldInfo() const { return field_info_; }
   5881   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
   5882   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
   5883   bool IsVolatile() const { return field_info_.IsVolatile(); }
   5884   HInstruction* GetValue() const { return InputAt(1); }
   5885   bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
   5886   void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
   5887 
   5888   DECLARE_INSTRUCTION(InstanceFieldSet);
   5889 
   5890  protected:
   5891   DEFAULT_COPY_CONSTRUCTOR(InstanceFieldSet);
   5892 
   5893  private:
   5894   static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
   5895   static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagValueCanBeNull + 1;
   5896   static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits,
   5897                 "Too many packed fields.");
   5898 
   5899   const FieldInfo field_info_;
   5900 };
   5901 
   5902 class HArrayGet final : public HExpression<2> {
   5903  public:
   5904   HArrayGet(HInstruction* array,
   5905             HInstruction* index,
   5906             DataType::Type type,
   5907             uint32_t dex_pc)
   5908      : HArrayGet(array,
   5909                  index,
   5910                  type,
   5911                  SideEffects::ArrayReadOfType(type),
   5912                  dex_pc,
   5913                  /* is_string_char_at= */ false) {
   5914   }
   5915 
   5916   HArrayGet(HInstruction* array,
   5917             HInstruction* index,
   5918             DataType::Type type,
   5919             SideEffects side_effects,
   5920             uint32_t dex_pc,
   5921             bool is_string_char_at)
   5922       : HExpression(kArrayGet, type, side_effects, dex_pc) {
   5923     SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
   5924     SetRawInputAt(0, array);
   5925     SetRawInputAt(1, index);
   5926   }
   5927 
   5928   bool IsClonable() const override { return true; }
   5929   bool CanBeMoved() const override { return true; }
   5930   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
   5931     return true;
   5932   }
   5933   bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
   5934     // TODO: We can be smarter here.
   5935     // Currently, unless the array is the result of NewArray, the array access is always
   5936     // preceded by some form of null NullCheck necessary for the bounds check, usually
   5937     // implicit null check on the ArrayLength input to BoundsCheck or Deoptimize for
   5938     // dynamic BCE. There are cases when these could be removed to produce better code.
   5939     // If we ever add optimizations to do so we should allow an implicit check here
   5940     // (as long as the address falls in the first page).
   5941     //
   5942     // As an example of such fancy optimization, we could eliminate BoundsCheck for
   5943     //     a = cond ? new int[1] : null;
   5944     //     a[0];  // The Phi does not need bounds check for either input.
   5945     return false;
   5946   }
   5947 
   5948   bool IsEquivalentOf(HArrayGet* other) const {
   5949     bool result = (GetDexPc() == other->GetDexPc());
   5950     if (kIsDebugBuild && result) {
   5951       DCHECK_EQ(GetBlock(), other->GetBlock());
   5952       DCHECK_EQ(GetArray(), other->GetArray());
   5953       DCHECK_EQ(GetIndex(), other->GetIndex());
   5954       if (DataType::IsIntOrLongType(GetType())) {
   5955         DCHECK(DataType::IsFloatingPointType(other->GetType())) << other->GetType();
   5956       } else {
   5957         DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
   5958         DCHECK(DataType::IsIntOrLongType(other->GetType())) << other->GetType();
   5959       }
   5960     }
   5961     return result;
   5962   }
   5963 
   5964   bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
   5965 
   5966   HInstruction* GetArray() const { return InputAt(0); }
   5967   HInstruction* GetIndex() const { return InputAt(1); }
   5968 
   5969   void SetType(DataType::Type new_type) {
   5970     DCHECK(DataType::IsIntegralType(GetType()));
   5971     DCHECK(DataType::IsIntegralType(new_type));
   5972     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
   5973     SetPackedField<TypeField>(new_type);
   5974   }
   5975 
   5976   DECLARE_INSTRUCTION(ArrayGet);
   5977 
   5978  protected:
   5979   DEFAULT_COPY_CONSTRUCTOR(ArrayGet);
   5980 
   5981  private:
   5982   // We treat a String as an array, creating the HArrayGet from String.charAt()
   5983   // intrinsic in the instruction simplifier. We can always determine whether
   5984   // a particular HArrayGet is actually a String.charAt() by looking at the type
   5985   // of the input but that requires holding the mutator lock, so we prefer to use
   5986   // a flag, so that code generators don't need to do the locking.
   5987   static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
   5988   static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1;
   5989   static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
   5990                 "Too many packed fields.");
   5991 };
   5992 
   5993 class HArraySet final : public HExpression<3> {
   5994  public:
   5995   HArraySet(HInstruction* array,
   5996             HInstruction* index,
   5997             HInstruction* value,
   5998             DataType::Type expected_component_type,
   5999             uint32_t dex_pc)
   6000       : HArraySet(array,
   6001                   index,
   6002                   value,
   6003                   expected_component_type,
   6004                   // Make a best guess for side effects now, may be refined during SSA building.
   6005                   ComputeSideEffects(GetComponentType(value->GetType(), expected_component_type)),
   6006                   dex_pc) {
   6007   }
   6008 
   6009   HArraySet(HInstruction* array,
   6010             HInstruction* index,
   6011             HInstruction* value,
   6012             DataType::Type expected_component_type,
   6013             SideEffects side_effects,
   6014             uint32_t dex_pc)
   6015       : HExpression(kArraySet, side_effects, dex_pc) {
   6016     SetPackedField<ExpectedComponentTypeField>(expected_component_type);
   6017     SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == DataType::Type::kReference);
   6018     SetPackedFlag<kFlagValueCanBeNull>(true);
   6019     SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false);
   6020     SetRawInputAt(0, array);
   6021     SetRawInputAt(1, index);
   6022     SetRawInputAt(2, value);
   6023   }
   6024 
   6025   bool IsClonable() const override { return true; }
   6026 
   6027   bool NeedsEnvironment() const override {
   6028     // We call a runtime method to throw ArrayStoreException.
   6029     return NeedsTypeCheck();
   6030   }
   6031 
   6032   // Can throw ArrayStoreException.
   6033   bool CanThrow() const override { return NeedsTypeCheck(); }
   6034 
   6035   bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
   6036     // TODO: Same as for ArrayGet.
   6037     return false;
   6038   }
   6039 
   6040   void ClearNeedsTypeCheck() {
   6041     SetPackedFlag<kFlagNeedsTypeCheck>(false);
   6042   }
   6043 
   6044   void ClearValueCanBeNull() {
   6045     SetPackedFlag<kFlagValueCanBeNull>(false);
   6046   }
   6047 
   6048   void SetStaticTypeOfArrayIsObjectArray() {
   6049     SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true);
   6050   }
   6051 
   6052   bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
   6053   bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); }
   6054   bool StaticTypeOfArrayIsObjectArray() const {
   6055     return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>();
   6056   }
   6057 
   6058   HInstruction* GetArray() const { return InputAt(0); }
   6059   HInstruction* GetIndex() const { return InputAt(1); }
   6060   HInstruction* GetValue() const { return InputAt(2); }
   6061 
   6062   DataType::Type GetComponentType() const {
   6063     return GetComponentType(GetValue()->GetType(), GetRawExpectedComponentType());
   6064   }
   6065 
   6066   static DataType::Type GetComponentType(DataType::Type value_type,
   6067                                          DataType::Type expected_component_type) {
   6068     // The Dex format does not type floating point index operations. Since the
   6069     // `expected_component_type` comes from SSA building and can therefore not
   6070     // be correct, we also check what is the value type. If it is a floating
   6071     // point type, we must use that type.
   6072     return ((value_type == DataType::Type::kFloat32) || (value_type == DataType::Type::kFloat64))
   6073         ? value_type
   6074         : expected_component_type;
   6075   }
   6076 
   6077   DataType::Type GetRawExpectedComponentType() const {
   6078     return GetPackedField<ExpectedComponentTypeField>();
   6079   }
   6080 
   6081   static SideEffects ComputeSideEffects(DataType::Type type) {
   6082     return SideEffects::ArrayWriteOfType(type).Union(SideEffectsForArchRuntimeCalls(type));
   6083   }
   6084 
   6085   static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type value_type) {
   6086     return (value_type == DataType::Type::kReference) ? SideEffects::CanTriggerGC()
   6087                                                       : SideEffects::None();
   6088   }
   6089 
   6090   DECLARE_INSTRUCTION(ArraySet);
   6091 
   6092  protected:
   6093   DEFAULT_COPY_CONSTRUCTOR(ArraySet);
   6094 
   6095  private:
   6096   static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits;
   6097   static constexpr size_t kFieldExpectedComponentTypeSize =
   6098       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
   6099   static constexpr size_t kFlagNeedsTypeCheck =
   6100       kFieldExpectedComponentType + kFieldExpectedComponentTypeSize;
   6101   static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1;
   6102   // Cached information for the reference_type_info_ so that codegen
   6103   // does not need to inspect the static type.
   6104   static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1;
   6105   static constexpr size_t kNumberOfArraySetPackedBits =
   6106       kFlagStaticTypeOfArrayIsObjectArray + 1;
   6107   static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
   6108   using ExpectedComponentTypeField =
   6109       BitField<DataType::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>;
   6110 };
   6111 
   6112 class HArrayLength final : public HExpression<1> {
   6113  public:
   6114   HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false)
   6115       : HExpression(kArrayLength, DataType::Type::kInt32, SideEffects::None(), dex_pc) {
   6116     SetPackedFlag<kFlagIsStringLength>(is_string_length);
   6117     // Note that arrays do not change length, so the instruction does not
   6118     // depend on any write.
   6119     SetRawInputAt(0, array);
   6120   }
   6121 
   6122   bool IsClonable() const override { return true; }
   6123   bool CanBeMoved() const override { return true; }
   6124   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
   6125     return true;
   6126   }
   6127   bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
   6128     return obj == InputAt(0);
   6129   }
   6130 
   6131   bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); }
   6132 
   6133   DECLARE_INSTRUCTION(ArrayLength);
   6134 
   6135  protected:
   6136   DEFAULT_COPY_CONSTRUCTOR(ArrayLength);
   6137 
   6138  private:
   6139   // We treat a String as an array, creating the HArrayLength from String.length()
   6140   // or String.isEmpty() intrinsic in the instruction simplifier. We can always
   6141   // determine whether a particular HArrayLength is actually a String.length() by
   6142   // looking at the type of the input but that requires holding the mutator lock, so
   6143   // we prefer to use a flag, so that code generators don't need to do the locking.
   6144   static constexpr size_t kFlagIsStringLength = kNumberOfGenericPackedBits;
   6145   static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1;
   6146   static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits,
   6147                 "Too many packed fields.");
   6148 };
   6149 
   6150 class HBoundsCheck final : public HExpression<2> {
   6151  public:
   6152   // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException`
   6153   // constructor. However it can only do it on a fatal slow path so execution never returns to the
   6154   // instruction following the current one; thus 'SideEffects::None()' is used.
   6155   HBoundsCheck(HInstruction* index,
   6156                HInstruction* length,
   6157                uint32_t dex_pc,
   6158                bool is_string_char_at = false)
   6159       : HExpression(kBoundsCheck, index->GetType(), SideEffects::None(), dex_pc) {
   6160     DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(index->GetType()));
   6161     SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
   6162     SetRawInputAt(0, index);
   6163     SetRawInputAt(1, length);
   6164   }
   6165 
   6166   bool IsClonable() const override { return true; }
   6167   bool CanBeMoved() const override { return true; }
   6168   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
   6169     return true;
   6170   }
   6171 
   6172   bool NeedsEnvironment() const override { return true; }
   6173 
   6174   bool CanThrow() const override { return true; }
   6175 
   6176   bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
   6177 
   6178   HInstruction* GetIndex() const { return InputAt(0); }
   6179 
   6180   DECLARE_INSTRUCTION(BoundsCheck);
   6181 
   6182  protected:
   6183   DEFAULT_COPY_CONSTRUCTOR(BoundsCheck);
   6184 
   6185  private:
   6186   static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
   6187   static constexpr size_t kNumberOfBoundsCheckPackedBits = kFlagIsStringCharAt + 1;
   6188   static_assert(kNumberOfBoundsCheckPackedBits <= HInstruction::kMaxNumberOfPackedBits,
   6189                 "Too many packed fields.");
   6190 };
   6191 
   6192 class HSuspendCheck final : public HExpression<0> {
   6193  public:
   6194   explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc)
   6195       : HExpression(kSuspendCheck, SideEffects::CanTriggerGC(), dex_pc),
   6196         slow_path_(nullptr) {
   6197   }
   6198 
   6199   bool IsClonable() const override { return true; }
   6200 
   6201   bool NeedsEnvironment() const override {
   6202     return true;
   6203   }
   6204 
   6205   void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
   6206   SlowPathCode* GetSlowPath() const { return slow_path_; }
   6207 
   6208   DECLARE_INSTRUCTION(SuspendCheck);
   6209 
   6210  protected:
   6211   DEFAULT_COPY_CONSTRUCTOR(SuspendCheck);
   6212 
   6213  private:
   6214   // Only used for code generation, in order to share the same slow path between back edges
   6215   // of a same loop.
   6216   SlowPathCode* slow_path_;
   6217 };
   6218 
   6219 // Pseudo-instruction which provides the native debugger with mapping information.
   6220 // It ensures that we can generate line number and local variables at this point.
   6221 class HNativeDebugInfo : public HExpression<0> {
   6222  public:
   6223   explicit HNativeDebugInfo(uint32_t dex_pc)
   6224       : HExpression<0>(kNativeDebugInfo, SideEffects::None(), dex_pc) {
   6225   }
   6226 
   6227   bool NeedsEnvironment() const override {
   6228     return true;
   6229   }
   6230 
   6231   DECLARE_INSTRUCTION(NativeDebugInfo);
   6232 
   6233  protected:
   6234   DEFAULT_COPY_CONSTRUCTOR(NativeDebugInfo);
   6235 };
   6236 
   6237 /**
   6238  * Instruction to load a Class object.
   6239  */
   6240 class HLoadClass final : public HInstruction {
   6241  public:
   6242   // Determines how to load the Class.
   6243   enum class LoadKind {
   6244     // We cannot load this class. See HSharpening::SharpenLoadClass.
   6245     kInvalid = -1,
   6246 
   6247     // Use the Class* from the method's own ArtMethod*.
   6248     kReferrersClass,
   6249 
   6250     // Use PC-relative boot image Class* address that will be known at link time.
   6251     // Used for boot image classes referenced by boot image code.
   6252     kBootImageLinkTimePcRelative,
   6253 
   6254     // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
   6255     // Used for boot image classes referenced by apps in AOT-compiled code.
   6256     kBootImageRelRo,
   6257 
   6258     // Load from an entry in the .bss section using a PC-relative load.
   6259     // Used for classes outside boot image referenced by AOT-compiled app and boot image code.
   6260     kBssEntry,
   6261 
   6262     // Use a known boot image Class* address, embedded in the code by the codegen.
   6263     // Used for boot image classes referenced by apps in JIT-compiled code.
   6264     kJitBootImageAddress,
   6265 
   6266     // Load from the root table associated with the JIT compiled method.
   6267     kJitTableAddress,
   6268 
   6269     // Load using a simple runtime call. This is the fall-back load kind when
   6270     // the codegen is unable to use another appropriate kind.
   6271     kRuntimeCall,
   6272 
   6273     kLast = kRuntimeCall
   6274   };
   6275 
   6276   HLoadClass(HCurrentMethod* current_method,
   6277              dex::TypeIndex type_index,
   6278              const DexFile& dex_file,
   6279              Handle<mirror::Class> klass,
   6280              bool is_referrers_class,
   6281              uint32_t dex_pc,
   6282              bool needs_access_check)
   6283       : HInstruction(kLoadClass,
   6284                      DataType::Type::kReference,
   6285                      SideEffectsForArchRuntimeCalls(),
   6286                      dex_pc),
   6287         special_input_(HUserRecord<HInstruction*>(current_method)),
   6288         type_index_(type_index),
   6289         dex_file_(dex_file),
   6290         klass_(klass) {
   6291     // Referrers class should not need access check. We never inline unverified
   6292     // methods so we can't possibly end up in this situation.
   6293     DCHECK(!is_referrers_class || !needs_access_check);
   6294 
   6295     SetPackedField<LoadKindField>(
   6296         is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kRuntimeCall);
   6297     SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check);
   6298     SetPackedFlag<kFlagIsInBootImage>(false);
   6299     SetPackedFlag<kFlagGenerateClInitCheck>(false);
   6300     SetPackedFlag<kFlagValidLoadedClassRTI>(false);
   6301   }
   6302 
   6303   bool IsClonable() const override { return true; }
   6304 
   6305   void SetLoadKind(LoadKind load_kind);
   6306 
   6307   LoadKind GetLoadKind() const {
   6308     return GetPackedField<LoadKindField>();
   6309   }
   6310 
   6311   bool HasPcRelativeLoadKind() const {
   6312     return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
   6313            GetLoadKind() == LoadKind::kBootImageRelRo ||
   6314            GetLoadKind() == LoadKind::kBssEntry;
   6315   }
   6316 
   6317   bool CanBeMoved() const override { return true; }
   6318 
   6319   bool InstructionDataEquals(const HInstruction* other) const override;
   6320 
   6321   size_t ComputeHashCode() const override { return type_index_.index_; }
   6322 
   6323   bool CanBeNull() const override { return false; }
   6324 
   6325   bool NeedsEnvironment() const override {
   6326     return CanCallRuntime();
   6327   }
   6328 
   6329   void SetMustGenerateClinitCheck(bool generate_clinit_check) {
   6330     // The entrypoint the code generator is going to call does not do
   6331     // clinit of the class.
   6332     DCHECK(!NeedsAccessCheck());
   6333     SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check);
   6334   }
   6335 
   6336   bool CanCallRuntime() const {
   6337     return NeedsAccessCheck() ||
   6338            MustGenerateClinitCheck() ||
   6339            GetLoadKind() == LoadKind::kRuntimeCall ||
   6340            GetLoadKind() == LoadKind::kBssEntry;
   6341   }
   6342 
   6343   bool CanThrow() const override {
   6344     return NeedsAccessCheck() ||
   6345            MustGenerateClinitCheck() ||
   6346            // If the class is in the boot image, the lookup in the runtime call cannot throw.
   6347            ((GetLoadKind() == LoadKind::kRuntimeCall ||
   6348              GetLoadKind() == LoadKind::kBssEntry) &&
   6349             !IsInBootImage());
   6350   }
   6351 
   6352   ReferenceTypeInfo GetLoadedClassRTI() {
   6353     if (GetPackedFlag<kFlagValidLoadedClassRTI>()) {
   6354       // Note: The is_exact flag from the return value should not be used.
   6355       return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true);
   6356     } else {
   6357       return ReferenceTypeInfo::CreateInvalid();
   6358     }
   6359   }
   6360 
   6361   // Loaded class RTI is marked as valid by RTP if the klass_ is admissible.
   6362   void SetValidLoadedClassRTI() REQUIRES_SHARED(Locks::mutator_lock_) {
   6363     DCHECK(klass_ != nullptr);
   6364     SetPackedFlag<kFlagValidLoadedClassRTI>(true);
   6365   }
   6366 
   6367   dex::TypeIndex GetTypeIndex() const { return type_index_; }
   6368   const DexFile& GetDexFile() const { return dex_file_; }
   6369 
   6370   bool NeedsDexCacheOfDeclaringClass() const override {
   6371     return GetLoadKind() == LoadKind::kRuntimeCall;
   6372   }
   6373 
   6374   static SideEffects SideEffectsForArchRuntimeCalls() {
   6375     return SideEffects::CanTriggerGC();
   6376   }
   6377 
   6378   bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; }
   6379   bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); }
   6380   bool IsInBootImage() const { return GetPackedFlag<kFlagIsInBootImage>(); }
   6381   bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); }
   6382 
   6383   bool MustResolveTypeOnSlowPath() const {
   6384     // Check that this instruction has a slow path.
   6385     DCHECK(GetLoadKind() != LoadKind::kRuntimeCall);  // kRuntimeCall calls on main path.
   6386     DCHECK(GetLoadKind() == LoadKind::kBssEntry || MustGenerateClinitCheck());
   6387     return GetLoadKind() == LoadKind::kBssEntry;
   6388   }
   6389 
   6390   void MarkInBootImage() {
   6391     SetPackedFlag<kFlagIsInBootImage>(true);
   6392   }
   6393 
   6394   void AddSpecialInput(HInstruction* special_input);
   6395 
   6396   using HInstruction::GetInputRecords;  // Keep the const version visible.
   6397   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
   6398     return ArrayRef<HUserRecord<HInstruction*>>(
   6399         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
   6400   }
   6401 
   6402   Handle<mirror::Class> GetClass() const {
   6403     return klass_;
   6404   }
   6405 
   6406   DECLARE_INSTRUCTION(LoadClass);
   6407 
   6408  protected:
   6409   DEFAULT_COPY_CONSTRUCTOR(LoadClass);
   6410 
   6411  private:
   6412   static constexpr size_t kFlagNeedsAccessCheck    = kNumberOfGenericPackedBits;
   6413   static constexpr size_t kFlagIsInBootImage       = kFlagNeedsAccessCheck + 1;
   6414   // Whether this instruction must generate the initialization check.
   6415   // Used for code generation.
   6416   static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInBootImage + 1;
   6417   static constexpr size_t kFieldLoadKind           = kFlagGenerateClInitCheck + 1;
   6418   static constexpr size_t kFieldLoadKindSize =
   6419       MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
   6420   static constexpr size_t kFlagValidLoadedClassRTI = kFieldLoadKind + kFieldLoadKindSize;
   6421   static constexpr size_t kNumberOfLoadClassPackedBits = kFlagValidLoadedClassRTI + 1;
   6422   static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields.");
   6423   using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
   6424 
   6425   static bool HasTypeReference(LoadKind load_kind) {
   6426     return load_kind == LoadKind::kReferrersClass ||
   6427         load_kind == LoadKind::kBootImageLinkTimePcRelative ||
   6428         load_kind == LoadKind::kBssEntry ||
   6429         load_kind == LoadKind::kRuntimeCall;
   6430   }
   6431 
   6432   void SetLoadKindInternal(LoadKind load_kind);
   6433 
   6434   // The special input is the HCurrentMethod for kRuntimeCall or kReferrersClass.
   6435   // For other load kinds it's empty or possibly some architecture-specific instruction
   6436   // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
   6437   HUserRecord<HInstruction*> special_input_;
   6438 
   6439   // A type index and dex file where the class can be accessed. The dex file can be:
   6440   // - The compiling method's dex file if the class is defined there too.
   6441   // - The compiling method's dex file if the class is referenced there.
   6442   // - The dex file where the class is defined. When the load kind can only be
   6443   //   kBssEntry or kRuntimeCall, we cannot emit code for this `HLoadClass`.
   6444   const dex::TypeIndex type_index_;
   6445   const DexFile& dex_file_;
   6446 
   6447   Handle<mirror::Class> klass_;
   6448 };
   6449 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs);
   6450 
   6451 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
   6452 inline void HLoadClass::SetLoadKind(LoadKind load_kind) {
   6453   // The load kind should be determined before inserting the instruction to the graph.
   6454   DCHECK(GetBlock() == nullptr);
   6455   DCHECK(GetEnvironment() == nullptr);
   6456   SetPackedField<LoadKindField>(load_kind);
   6457   if (load_kind != LoadKind::kRuntimeCall && load_kind != LoadKind::kReferrersClass) {
   6458     special_input_ = HUserRecord<HInstruction*>(nullptr);
   6459   }
   6460   if (!NeedsEnvironment()) {
   6461     SetSideEffects(SideEffects::None());
   6462   }
   6463 }
   6464 
   6465 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
   6466 inline void HLoadClass::AddSpecialInput(HInstruction* special_input) {
   6467   // The special input is used for PC-relative loads on some architectures,
   6468   // including literal pool loads, which are PC-relative too.
   6469   DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
   6470          GetLoadKind() == LoadKind::kBootImageRelRo ||
   6471          GetLoadKind() == LoadKind::kBssEntry ||
   6472          GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
   6473   DCHECK(special_input_.GetInstruction() == nullptr);
   6474   special_input_ = HUserRecord<HInstruction*>(special_input);
   6475   special_input->AddUseAt(this, 0);
   6476 }
   6477 
   6478 class HLoadString final : public HInstruction {
   6479  public:
   6480   // Determines how to load the String.
   6481   enum class LoadKind {
   6482     // Use PC-relative boot image String* address that will be known at link time.
   6483     // Used for boot image strings referenced by boot image code.
   6484     kBootImageLinkTimePcRelative,
   6485 
   6486     // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
   6487     // Used for boot image strings referenced by apps in AOT-compiled code.
   6488     kBootImageRelRo,
   6489 
   6490     // Load from an entry in the .bss section using a PC-relative load.
   6491     // Used for strings outside boot image referenced by AOT-compiled app and boot image code.
   6492     kBssEntry,
   6493 
   6494     // Use a known boot image String* address, embedded in the code by the codegen.
   6495     // Used for boot image strings referenced by apps in JIT-compiled code.
   6496     kJitBootImageAddress,
   6497 
   6498     // Load from the root table associated with the JIT compiled method.
   6499     kJitTableAddress,
   6500 
   6501     // Load using a simple runtime call. This is the fall-back load kind when
   6502     // the codegen is unable to use another appropriate kind.
   6503     kRuntimeCall,
   6504 
   6505     kLast = kRuntimeCall,
   6506   };
   6507 
   6508   HLoadString(HCurrentMethod* current_method,
   6509               dex::StringIndex string_index,
   6510               const DexFile& dex_file,
   6511               uint32_t dex_pc)
   6512       : HInstruction(kLoadString,
   6513                      DataType::Type::kReference,
   6514                      SideEffectsForArchRuntimeCalls(),
   6515                      dex_pc),
   6516         special_input_(HUserRecord<HInstruction*>(current_method)),
   6517         string_index_(string_index),
   6518         dex_file_(dex_file) {
   6519     SetPackedField<LoadKindField>(LoadKind::kRuntimeCall);
   6520   }
   6521 
   6522   bool IsClonable() const override { return true; }
   6523 
   6524   void SetLoadKind(LoadKind load_kind);
   6525 
   6526   LoadKind GetLoadKind() const {
   6527     return GetPackedField<LoadKindField>();
   6528   }
   6529 
   6530   bool HasPcRelativeLoadKind() const {
   6531     return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
   6532            GetLoadKind() == LoadKind::kBootImageRelRo ||
   6533            GetLoadKind() == LoadKind::kBssEntry;
   6534   }
   6535 
   6536   const DexFile& GetDexFile() const {
   6537     return dex_file_;
   6538   }
   6539 
   6540   dex::StringIndex GetStringIndex() const {
   6541     return string_index_;
   6542   }
   6543 
   6544   Handle<mirror::String> GetString() const {
   6545     return string_;
   6546   }
   6547 
   6548   void SetString(Handle<mirror::String> str) {
   6549     string_ = str;
   6550   }
   6551 
   6552   bool CanBeMoved() const override { return true; }
   6553 
   6554   bool InstructionDataEquals(const HInstruction* other) const override;
   6555 
   6556   size_t ComputeHashCode() const override { return string_index_.index_; }
   6557 
   6558   // Will call the runtime if we need to load the string through
   6559   // the dex cache and the string is not guaranteed to be there yet.
   6560   bool NeedsEnvironment() const override {
   6561     LoadKind load_kind = GetLoadKind();
   6562     if (load_kind == LoadKind::kBootImageLinkTimePcRelative ||
   6563         load_kind == LoadKind::kBootImageRelRo ||
   6564         load_kind == LoadKind::kJitBootImageAddress ||
   6565         load_kind == LoadKind::kJitTableAddress) {
   6566       return false;
   6567     }
   6568     return true;
   6569   }
   6570 
   6571   bool NeedsDexCacheOfDeclaringClass() const override {
   6572     return GetLoadKind() == LoadKind::kRuntimeCall;
   6573   }
   6574 
   6575   bool CanBeNull() const override { return false; }
   6576   bool CanThrow() const override { return NeedsEnvironment(); }
   6577 
   6578   static SideEffects SideEffectsForArchRuntimeCalls() {
   6579     return SideEffects::CanTriggerGC();
   6580   }
   6581 
   6582   void AddSpecialInput(HInstruction* special_input);
   6583 
   6584   using HInstruction::GetInputRecords;  // Keep the const version visible.
   6585   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
   6586     return ArrayRef<HUserRecord<HInstruction*>>(
   6587         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
   6588   }
   6589 
   6590   DECLARE_INSTRUCTION(LoadString);
   6591 
   6592  protected:
   6593   DEFAULT_COPY_CONSTRUCTOR(LoadString);
   6594 
   6595  private:
   6596   static constexpr size_t kFieldLoadKind = kNumberOfGenericPackedBits;
   6597   static constexpr size_t kFieldLoadKindSize =
   6598       MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
   6599   static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize;
   6600   static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
   6601   using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
   6602 
   6603   void SetLoadKindInternal(LoadKind load_kind);
   6604 
   6605   // The special input is the HCurrentMethod for kRuntimeCall.
   6606   // For other load kinds it's empty or possibly some architecture-specific instruction
   6607   // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
   6608   HUserRecord<HInstruction*> special_input_;
   6609 
   6610   dex::StringIndex string_index_;
   6611   const DexFile& dex_file_;
   6612 
   6613   Handle<mirror::String> string_;
   6614 };
   6615 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs);
   6616 
   6617 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
   6618 inline void HLoadString::SetLoadKind(LoadKind load_kind) {
   6619   // The load kind should be determined before inserting the instruction to the graph.
   6620   DCHECK(GetBlock() == nullptr);
   6621   DCHECK(GetEnvironment() == nullptr);
   6622   DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall);
   6623   SetPackedField<LoadKindField>(load_kind);
   6624   if (load_kind != LoadKind::kRuntimeCall) {
   6625     special_input_ = HUserRecord<HInstruction*>(nullptr);
   6626   }
   6627   if (!NeedsEnvironment()) {
   6628     SetSideEffects(SideEffects::None());
   6629   }
   6630 }
   6631 
   6632 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
   6633 inline void HLoadString::AddSpecialInput(HInstruction* special_input) {
   6634   // The special input is used for PC-relative loads on some architectures,
   6635   // including literal pool loads, which are PC-relative too.
   6636   DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
   6637          GetLoadKind() == LoadKind::kBootImageRelRo ||
   6638          GetLoadKind() == LoadKind::kBssEntry ||
   6639          GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
   6640   // HLoadString::GetInputRecords() returns an empty array at this point,
   6641   // so use the GetInputRecords() from the base class to set the input record.
   6642   DCHECK(special_input_.GetInstruction() == nullptr);
   6643   special_input_ = HUserRecord<HInstruction*>(special_input);
   6644   special_input->AddUseAt(this, 0);
   6645 }
   6646 
   6647 class HLoadMethodHandle final : public HInstruction {
   6648  public:
   6649   HLoadMethodHandle(HCurrentMethod* current_method,
   6650                     uint16_t method_handle_idx,
   6651                     const DexFile& dex_file,
   6652                     uint32_t dex_pc)
   6653       : HInstruction(kLoadMethodHandle,
   6654                      DataType::Type::kReference,
   6655                      SideEffectsForArchRuntimeCalls(),
   6656                      dex_pc),
   6657         special_input_(HUserRecord<HInstruction*>(current_method)),
   6658         method_handle_idx_(method_handle_idx),
   6659         dex_file_(dex_file) {
   6660   }
   6661 
   6662   using HInstruction::GetInputRecords;  // Keep the const version visible.
   6663   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
   6664     return ArrayRef<HUserRecord<HInstruction*>>(
   6665         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
   6666   }
   6667 
   6668   bool IsClonable() const override { return true; }
   6669 
   6670   uint16_t GetMethodHandleIndex() const { return method_handle_idx_; }
   6671 
   6672   const DexFile& GetDexFile() const { return dex_file_; }
   6673 
   6674   static SideEffects SideEffectsForArchRuntimeCalls() {
   6675     return SideEffects::CanTriggerGC();
   6676   }
   6677 
   6678   DECLARE_INSTRUCTION(LoadMethodHandle);
   6679 
   6680  protected:
   6681   DEFAULT_COPY_CONSTRUCTOR(LoadMethodHandle);
   6682 
   6683  private:
   6684   // The special input is the HCurrentMethod for kRuntimeCall.
   6685   HUserRecord<HInstruction*> special_input_;
   6686 
   6687   const uint16_t method_handle_idx_;
   6688   const DexFile& dex_file_;
   6689 };
   6690 
   6691 class HLoadMethodType final : public HInstruction {
   6692  public:
   6693   HLoadMethodType(HCurrentMethod* current_method,
   6694                   dex::ProtoIndex proto_index,
   6695                   const DexFile& dex_file,
   6696                   uint32_t dex_pc)
   6697       : HInstruction(kLoadMethodType,
   6698                      DataType::Type::kReference,
   6699                      SideEffectsForArchRuntimeCalls(),
   6700                      dex_pc),
   6701         special_input_(HUserRecord<HInstruction*>(current_method)),
   6702         proto_index_(proto_index),
   6703         dex_file_(dex_file) {
   6704   }
   6705 
   6706   using HInstruction::GetInputRecords;  // Keep the const version visible.
   6707   ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
   6708     return ArrayRef<HUserRecord<HInstruction*>>(
   6709         &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
   6710   }
   6711 
   6712   bool IsClonable() const override { return true; }
   6713 
   6714   dex::ProtoIndex GetProtoIndex() const { return proto_index_; }
   6715 
   6716   const DexFile& GetDexFile() const { return dex_file_; }
   6717 
   6718   static SideEffects SideEffectsForArchRuntimeCalls() {
   6719     return SideEffects::CanTriggerGC();
   6720   }
   6721 
   6722   DECLARE_INSTRUCTION(LoadMethodType);
   6723 
   6724  protected:
   6725   DEFAULT_COPY_CONSTRUCTOR(LoadMethodType);
   6726 
   6727  private:
   6728   // The special input is the HCurrentMethod for kRuntimeCall.
   6729   HUserRecord<HInstruction*> special_input_;
   6730 
   6731   const dex::ProtoIndex proto_index_;
   6732   const DexFile& dex_file_;
   6733 };
   6734 
   6735 /**
   6736  * Performs an initialization check on its Class object input.
   6737  */
   6738 class HClinitCheck final : public HExpression<1> {
   6739  public:
   6740   HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
   6741       : HExpression(
   6742             kClinitCheck,
   6743             DataType::Type::kReference,
   6744             SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
   6745             dex_pc) {
   6746     SetRawInputAt(0, constant);
   6747   }
   6748   // TODO: Make ClinitCheck clonable.
   6749   bool CanBeMoved() const override { return true; }
   6750   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
   6751     return true;
   6752   }
   6753 
   6754   bool NeedsEnvironment() const override {
   6755     // May call runtime to initialize the class.
   6756     return true;
   6757   }
   6758 
   6759   bool CanThrow() const override { return true; }
   6760 
   6761   HLoadClass* GetLoadClass() const {
   6762     DCHECK(InputAt(0)->IsLoadClass());
   6763     return InputAt(0)->AsLoadClass();
   6764   }
   6765 
   6766   DECLARE_INSTRUCTION(ClinitCheck);
   6767 
   6768 
   6769  protected:
   6770   DEFAULT_COPY_CONSTRUCTOR(ClinitCheck);
   6771 };
   6772 
   6773 class HStaticFieldGet final : public HExpression<1> {
   6774  public:
   6775   HStaticFieldGet(HInstruction* cls,
   6776                   ArtField* field,
   6777                   DataType::Type field_type,
   6778                   MemberOffset field_offset,
   6779                   bool is_volatile,
   6780                   uint32_t field_idx,
   6781                   uint16_t declaring_class_def_index,
   6782                   const DexFile& dex_file,
   6783                   uint32_t dex_pc)
   6784       : HExpression(kStaticFieldGet,
   6785                     field_type,
   6786                     SideEffects::FieldReadOfType(field_type, is_volatile),
   6787                     dex_pc),
   6788         field_info_(field,
   6789                     field_offset,
   6790                     field_type,
   6791                     is_volatile,
   6792                     field_idx,
   6793                     declaring_class_def_index,
   6794                     dex_file) {
   6795     SetRawInputAt(0, cls);
   6796   }
   6797 
   6798 
   6799   bool IsClonable() const override { return true; }
   6800   bool CanBeMoved() const override { return !IsVolatile(); }
   6801 
   6802   bool InstructionDataEquals(const HInstruction* other) const override {
   6803     const HStaticFieldGet* other_get = other->AsStaticFieldGet();
   6804     return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
   6805   }
   6806 
   6807   size_t ComputeHashCode() const override {
   6808     return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
   6809   }
   6810 
   6811   const FieldInfo& GetFieldInfo() const { return field_info_; }
   6812   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
   6813   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
   6814   bool IsVolatile() const { return field_info_.IsVolatile(); }
   6815 
   6816   void SetType(DataType::Type new_type) {
   6817     DCHECK(DataType::IsIntegralType(GetType()));
   6818     DCHECK(DataType::IsIntegralType(new_type));
   6819     DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
   6820     SetPackedField<TypeField>(new_type);
   6821   }
   6822 
   6823   DECLARE_INSTRUCTION(StaticFieldGet);
   6824 
   6825  protected:
   6826   DEFAULT_COPY_CONSTRUCTOR(StaticFieldGet);
   6827 
   6828  private:
   6829   const FieldInfo field_info_;
   6830 };
   6831 
   6832 class HStaticFieldSet final : public HExpression<2> {
   6833  public:
   6834   HStaticFieldSet(HInstruction* cls,
   6835                   HInstruction* value,
   6836                   ArtField* field,
   6837                   DataType::Type field_type,
   6838                   MemberOffset field_offset,
   6839                   bool is_volatile,
   6840                   uint32_t field_idx,
   6841                   uint16_t declaring_class_def_index,
   6842                   const DexFile& dex_file,
   6843                   uint32_t dex_pc)
   6844       : HExpression(kStaticFieldSet,
   6845                     SideEffects::FieldWriteOfType(field_type, is_volatile),
   6846                     dex_pc),
   6847         field_info_(field,
   6848                     field_offset,
   6849                     field_type,
   6850                     is_volatile,
   6851                     field_idx,
   6852                     declaring_class_def_index,
   6853                     dex_file) {
   6854     SetPackedFlag<kFlagValueCanBeNull>(true);
   6855     SetRawInputAt(0, cls);
   6856     SetRawInputAt(1, value);
   6857   }
   6858 
   6859   bool IsClonable() const override { return true; }
   6860   const FieldInfo& GetFieldInfo() const { return field_info_; }
   6861   MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
   6862   DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
   6863   bool IsVolatile() const { return field_info_.IsVolatile(); }
   6864 
   6865   HInstruction* GetValue() const { return InputAt(1); }
   6866   bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
   6867   void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
   6868 
   6869   DECLARE_INSTRUCTION(StaticFieldSet);
   6870 
   6871  protected:
   6872   DEFAULT_COPY_CONSTRUCTOR(StaticFieldSet);
   6873 
   6874  private:
   6875   static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
   6876   static constexpr size_t kNumberOfStaticFieldSetPackedBits = kFlagValueCanBeNull + 1;
   6877   static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits,
   6878                 "Too many packed fields.");
   6879 
   6880   const FieldInfo field_info_;
   6881 };
   6882 
   6883 class HUnresolvedInstanceFieldGet final : public HExpression<1> {
   6884  public:
   6885   HUnresolvedInstanceFieldGet(HInstruction* obj,
   6886                               DataType::Type field_type,
   6887                               uint32_t field_index,
   6888                               uint32_t dex_pc)
   6889       : HExpression(kUnresolvedInstanceFieldGet,
   6890                     field_type,
   6891                     SideEffects::AllExceptGCDependency(),
   6892                     dex_pc),
   6893         field_index_(field_index) {
   6894     SetRawInputAt(0, obj);
   6895   }
   6896 
   6897   bool IsClonable() const override { return true; }
   6898   bool NeedsEnvironment() const override { return true; }
   6899   bool CanThrow() const override { return true; }
   6900 
   6901   DataType::Type GetFieldType() const { return GetType(); }
   6902   uint32_t GetFieldIndex() const { return field_index_; }
   6903 
   6904   DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
   6905 
   6906  protected:
   6907   DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldGet);
   6908 
   6909  private:
   6910   const uint32_t field_index_;
   6911 };
   6912 
   6913 class HUnresolvedInstanceFieldSet final : public HExpression<2> {
   6914  public:
   6915   HUnresolvedInstanceFieldSet(HInstruction* obj,
   6916                               HInstruction* value,
   6917                               DataType::Type field_type,
   6918                               uint32_t field_index,
   6919                               uint32_t dex_pc)
   6920       : HExpression(kUnresolvedInstanceFieldSet, SideEffects::AllExceptGCDependency(), dex_pc),
   6921         field_index_(field_index) {
   6922     SetPackedField<FieldTypeField>(field_type);
   6923     DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType()));
   6924     SetRawInputAt(0, obj);
   6925     SetRawInputAt(1, value);
   6926   }
   6927 
   6928   bool IsClonable() const override { return true; }
   6929   bool NeedsEnvironment() const override { return true; }
   6930   bool CanThrow() const override { return true; }
   6931 
   6932   DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
   6933   uint32_t GetFieldIndex() const { return field_index_; }
   6934 
   6935   DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
   6936 
   6937  protected:
   6938   DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldSet);
   6939 
   6940  private:
   6941   static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
   6942   static constexpr size_t kFieldFieldTypeSize =
   6943       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
   6944   static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
   6945       kFieldFieldType + kFieldFieldTypeSize;
   6946   static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
   6947                 "Too many packed fields.");
   6948   using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>;
   6949 
   6950   const uint32_t field_index_;
   6951 };
   6952 
   6953 class HUnresolvedStaticFieldGet final : public HExpression<0> {
   6954  public:
   6955   HUnresolvedStaticFieldGet(DataType::Type field_type,
   6956                             uint32_t field_index,
   6957                             uint32_t dex_pc)
   6958       : HExpression(kUnresolvedStaticFieldGet,
   6959                     field_type,
   6960                     SideEffects::AllExceptGCDependency(),
   6961                     dex_pc),
   6962         field_index_(field_index) {
   6963   }
   6964 
   6965   bool IsClonable() const override { return true; }
   6966   bool NeedsEnvironment() const override { return true; }
   6967   bool CanThrow() const override { return true; }
   6968 
   6969   DataType::Type GetFieldType() const { return GetType(); }
   6970   uint32_t GetFieldIndex() const { return field_index_; }
   6971 
   6972   DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
   6973 
   6974  protected:
   6975   DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldGet);
   6976 
   6977  private:
   6978   const uint32_t field_index_;
   6979 };
   6980 
   6981 class HUnresolvedStaticFieldSet final : public HExpression<1> {
   6982  public:
   6983   HUnresolvedStaticFieldSet(HInstruction* value,
   6984                             DataType::Type field_type,
   6985                             uint32_t field_index,
   6986                             uint32_t dex_pc)
   6987       : HExpression(kUnresolvedStaticFieldSet, SideEffects::AllExceptGCDependency(), dex_pc),
   6988         field_index_(field_index) {
   6989     SetPackedField<FieldTypeField>(field_type);
   6990     DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType()));
   6991     SetRawInputAt(0, value);
   6992   }
   6993 
   6994   bool IsClonable() const override { return true; }
   6995   bool NeedsEnvironment() const override { return true; }
   6996   bool CanThrow() const override { return true; }
   6997 
   6998   DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
   6999   uint32_t GetFieldIndex() const { return field_index_; }
   7000 
   7001   DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
   7002 
   7003  protected:
   7004   DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldSet);
   7005 
   7006  private:
   7007   static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
   7008   static constexpr size_t kFieldFieldTypeSize =
   7009       MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
   7010   static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
   7011       kFieldFieldType + kFieldFieldTypeSize;
   7012   static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
   7013                 "Too many packed fields.");
   7014   using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>;
   7015 
   7016   const uint32_t field_index_;
   7017 };
   7018 
   7019 // Implement the move-exception DEX instruction.
   7020 class HLoadException final : public HExpression<0> {
   7021  public:
   7022   explicit HLoadException(uint32_t dex_pc = kNoDexPc)
   7023       : HExpression(kLoadException, DataType::Type::kReference, SideEffects::None(), dex_pc) {
   7024   }
   7025 
   7026   bool CanBeNull() const override { return false; }
   7027 
   7028   DECLARE_INSTRUCTION(LoadException);
   7029 
   7030  protected:
   7031   DEFAULT_COPY_CONSTRUCTOR(LoadException);
   7032 };
   7033 
   7034 // Implicit part of move-exception which clears thread-local exception storage.
   7035 // Must not be removed because the runtime expects the TLS to get cleared.
   7036 class HClearException final : public HExpression<0> {
   7037  public:
   7038   explicit HClearException(uint32_t dex_pc = kNoDexPc)
   7039       : HExpression(kClearException, SideEffects::AllWrites(), dex_pc) {
   7040   }
   7041 
   7042   DECLARE_INSTRUCTION(ClearException);
   7043 
   7044  protected:
   7045   DEFAULT_COPY_CONSTRUCTOR(ClearException);
   7046 };
   7047 
   7048 class HThrow final : public HExpression<1> {
   7049  public:
   7050   HThrow(HInstruction* exception, uint32_t dex_pc)
   7051       : HExpression(kThrow, SideEffects::CanTriggerGC(), dex_pc) {
   7052     SetRawInputAt(0, exception);
   7053   }
   7054 
   7055   bool IsControlFlow() const override { return true; }
   7056 
   7057   bool NeedsEnvironment() const override { return true; }
   7058 
   7059   bool CanThrow() const override { return true; }
   7060 
   7061   bool AlwaysThrows() const override { return true; }
   7062 
   7063   DECLARE_INSTRUCTION(Throw);
   7064 
   7065  protected:
   7066   DEFAULT_COPY_CONSTRUCTOR(Throw);
   7067 };
   7068 
   7069 /**
   7070  * Implementation strategies for the code generator of a HInstanceOf
   7071  * or `HCheckCast`.
   7072  */
   7073 enum class TypeCheckKind {
   7074   kUnresolvedCheck,       // Check against an unresolved type.
   7075   kExactCheck,            // Can do a single class compare.
   7076   kClassHierarchyCheck,   // Can just walk the super class chain.
   7077   kAbstractClassCheck,    // Can just walk the super class chain, starting one up.
   7078   kInterfaceCheck,        // No optimization yet when checking against an interface.
   7079   kArrayObjectCheck,      // Can just check if the array is not primitive.
   7080   kArrayCheck,            // No optimization yet when checking against a generic array.
   7081   kBitstringCheck,        // Compare the type check bitstring.
   7082   kLast = kArrayCheck
   7083 };
   7084 
   7085 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs);
   7086 
   7087 // Note: HTypeCheckInstruction is just a helper class, not an abstract instruction with an
   7088 // `IsTypeCheckInstruction()`. (New virtual methods in the HInstruction class have a high cost.)
   7089 class HTypeCheckInstruction : public HVariableInputSizeInstruction {
   7090  public:
   7091   HTypeCheckInstruction(InstructionKind kind,
   7092                         DataType::Type type,
   7093                         HInstruction* object,
   7094                         HInstruction* target_class_or_null,
   7095                         TypeCheckKind check_kind,
   7096                         Handle<mirror::Class> klass,
   7097                         uint32_t dex_pc,
   7098                         ArenaAllocator* allocator,
   7099                         HIntConstant* bitstring_path_to_root,
   7100                         HIntConstant* bitstring_mask,
   7101                         SideEffects side_effects)
   7102       : HVariableInputSizeInstruction(
   7103           kind,
   7104           type,
   7105           side_effects,
   7106           dex_pc,
   7107           allocator,
   7108           /* number_of_inputs= */ check_kind == TypeCheckKind::kBitstringCheck ? 4u : 2u,
   7109           kArenaAllocTypeCheckInputs),
   7110         klass_(klass) {
   7111     SetPackedField<TypeCheckKindField>(check_kind);
   7112     SetPackedFlag<kFlagMustDoNullCheck>(true);
   7113     SetPackedFlag<kFlagValidTargetClassRTI>(false);
   7114     SetRawInputAt(0, object);
   7115     SetRawInputAt(1, target_class_or_null);
   7116     DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_path_to_root != nullptr);
   7117     DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_mask != nullptr);
   7118     if (check_kind == TypeCheckKind::kBitstringCheck) {
   7119       DCHECK(target_class_or_null->IsNullConstant());
   7120       SetRawInputAt(2, bitstring_path_to_root);
   7121       SetRawInputAt(3, bitstring_mask);
   7122     } else {
   7123       DCHECK(target_class_or_null->IsLoadClass());
   7124     }
   7125   }
   7126 
   7127   HLoadClass* GetTargetClass() const {
   7128     DCHECK_NE(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
   7129     HInstruction* load_class = InputAt(1);
   7130     DCHECK(load_class->IsLoadClass());
   7131     return load_class->AsLoadClass();
   7132   }
   7133 
   7134   uint32_t GetBitstringPathToRoot() const {
   7135     DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
   7136     HInstruction* path_to_root = InputAt(2);
   7137     DCHECK(path_to_root->IsIntConstant());
   7138     return static_cast<uint32_t>(path_to_root->AsIntConstant()->GetValue());
   7139   }
   7140 
   7141   uint32_t GetBitstringMask() const {
   7142     DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
   7143     HInstruction* mask = InputAt(3);
   7144     DCHECK(mask->IsIntConstant());
   7145     return static_cast<uint32_t>(mask->AsIntConstant()->GetValue());
   7146   }
   7147 
   7148   bool IsClonable() const override { return true; }
   7149   bool CanBeMoved() const override { return true; }
   7150 
   7151   bool InstructionDataEquals(const HInstruction* other) const override {
   7152     DCHECK(other->IsInstanceOf() || other->IsCheckCast()) << other->DebugName();
   7153     return GetPackedFields() == down_cast<const HTypeCheckInstruction*>(other)->GetPackedFields();
   7154   }
   7155 
   7156   bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); }
   7157   void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); }
   7158   TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); }
   7159   bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; }
   7160 
   7161   ReferenceTypeInfo GetTargetClassRTI() {
   7162     if (GetPackedFlag<kFlagValidTargetClassRTI>()) {
   7163       // Note: The is_exact flag from the return value should not be used.
   7164       return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true);
   7165     } else {
   7166       return ReferenceTypeInfo::CreateInvalid();
   7167     }
   7168   }
   7169 
   7170   // Target class RTI is marked as valid by RTP if the klass_ is admissible.
   7171   void SetValidTargetClassRTI() REQUIRES_SHARED(Locks::mutator_lock_) {
   7172     DCHECK(klass_ != nullptr);
   7173     SetPackedFlag<kFlagValidTargetClassRTI>(true);
   7174   }
   7175 
   7176   Handle<mirror::Class> GetClass() const {
   7177     return klass_;
   7178   }
   7179 
   7180  protected:
   7181   DEFAULT_COPY_CONSTRUCTOR(TypeCheckInstruction);
   7182 
   7183  private:
   7184   static constexpr size_t kFieldTypeCheckKind = kNumberOfGenericPackedBits;
   7185   static constexpr size_t kFieldTypeCheckKindSize =
   7186       MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast));
   7187   static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize;
   7188   static constexpr size_t kFlagValidTargetClassRTI = kFlagMustDoNullCheck + 1;
   7189   static constexpr size_t kNumberOfInstanceOfPackedBits = kFlagValidTargetClassRTI + 1;
   7190   static_assert(kNumberOfInstanceOfPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
   7191   using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>;
   7192 
   7193   Handle<mirror::Class> klass_;
   7194 };
   7195 
   7196 class HInstanceOf final : public HTypeCheckInstruction {
   7197  public:
   7198   HInstanceOf(HInstruction* object,
   7199               HInstruction* target_class_or_null,
   7200               TypeCheckKind check_kind,
   7201               Handle<mirror::Class> klass,
   7202               uint32_t dex_pc,
   7203               ArenaAllocator* allocator,
   7204               HIntConstant* bitstring_path_to_root,
   7205               HIntConstant* bitstring_mask)
   7206       : HTypeCheckInstruction(kInstanceOf,
   7207                               DataType::Type::kBool,
   7208                               object,
   7209                               target_class_or_null,
   7210                               check_kind,
   7211                               klass,
   7212                               dex_pc,
   7213                               allocator,
   7214                               bitstring_path_to_root,
   7215                               bitstring_mask,
   7216                               SideEffectsForArchRuntimeCalls(check_kind)) {}
   7217 
   7218   bool IsClonable() const override { return true; }
   7219 
   7220   bool NeedsEnvironment() const override {
   7221     return CanCallRuntime(GetTypeCheckKind());
   7222   }
   7223 
   7224   static bool CanCallRuntime(TypeCheckKind check_kind) {
   7225     // Mips currently does runtime calls for any other checks.
   7226     return check_kind != TypeCheckKind::kExactCheck;
   7227   }
   7228 
   7229   static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
   7230     return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None();
   7231   }
   7232 
   7233   DECLARE_INSTRUCTION(InstanceOf);
   7234 
   7235  protected:
   7236   DEFAULT_COPY_CONSTRUCTOR(InstanceOf);
   7237 };
   7238 
   7239 class HBoundType final : public HExpression<1> {
   7240  public:
   7241   explicit HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc)
   7242       : HExpression(kBoundType, DataType::Type::kReference, SideEffects::None(), dex_pc),
   7243         upper_bound_(ReferenceTypeInfo::CreateInvalid()) {
   7244     SetPackedFlag<kFlagUpperCanBeNull>(true);
   7245     SetPackedFlag<kFlagCanBeNull>(true);
   7246     DCHECK_EQ(input->GetType(), DataType::Type::kReference);
   7247     SetRawInputAt(0, input);
   7248   }
   7249 
   7250   bool InstructionDataEquals(const HInstruction* other) const override;
   7251   bool IsClonable() const override { return true; }
   7252 
   7253   // {Get,Set}Upper* should only be used in reference type propagation.
   7254   const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
   7255   bool GetUpperCanBeNull() const { return GetPackedFlag<kFlagUpperCanBeNull>(); }
   7256   void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null);
   7257 
   7258   void SetCanBeNull(bool can_be_null) {
   7259     DCHECK(GetUpperCanBeNull() || !can_be_null);
   7260     SetPackedFlag<kFlagCanBeNull>(can_be_null);
   7261   }
   7262 
   7263   bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
   7264 
   7265   DECLARE_INSTRUCTION(BoundType);
   7266 
   7267  protected:
   7268   DEFAULT_COPY_CONSTRUCTOR(BoundType);
   7269 
   7270  private:
   7271   // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
   7272   // is false then CanBeNull() cannot be true).
   7273   static constexpr size_t kFlagUpperCanBeNull = kNumberOfGenericPackedBits;
   7274   static constexpr size_t kFlagCanBeNull = kFlagUpperCanBeNull + 1;
   7275   static constexpr size_t kNumberOfBoundTypePackedBits = kFlagCanBeNull + 1;
   7276   static_assert(kNumberOfBoundTypePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
   7277 
   7278   // Encodes the most upper class that this instruction can have. In other words
   7279   // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
   7280   // It is used to bound the type in cases like:
   7281   //   if (x instanceof ClassX) {
   7282   //     // uper_bound_ will be ClassX
   7283   //   }
   7284   ReferenceTypeInfo upper_bound_;
   7285 };
   7286 
   7287 class HCheckCast final : public HTypeCheckInstruction {
   7288  public:
   7289   HCheckCast(HInstruction* object,
   7290              HInstruction* target_class_or_null,
   7291              TypeCheckKind check_kind,
   7292              Handle<mirror::Class> klass,
   7293              uint32_t dex_pc,
   7294              ArenaAllocator* allocator,
   7295              HIntConstant* bitstring_path_to_root,
   7296              HIntConstant* bitstring_mask)
   7297       : HTypeCheckInstruction(kCheckCast,
   7298                               DataType::Type::kVoid,
   7299                               object,
   7300                               target_class_or_null,
   7301                               check_kind,
   7302                               klass,
   7303                               dex_pc,
   7304                               allocator,
   7305                               bitstring_path_to_root,
   7306                               bitstring_mask,
   7307                               SideEffects::CanTriggerGC()) {}
   7308 
   7309   bool IsClonable() const override { return true; }
   7310   bool NeedsEnvironment() const override {
   7311     // Instruction may throw a CheckCastError.
   7312     return true;
   7313   }
   7314 
   7315   bool CanThrow() const override { return true; }
   7316 
   7317   DECLARE_INSTRUCTION(CheckCast);
   7318 
   7319  protected:
   7320   DEFAULT_COPY_CONSTRUCTOR(CheckCast);
   7321 };
   7322 
   7323 /**
   7324  * @brief Memory barrier types (see "The JSR-133 Cookbook for Compiler Writers").
   7325  * @details We define the combined barrier types that are actually required
   7326  * by the Java Memory Model, rather than using exactly the terminology from
   7327  * the JSR-133 cookbook.  These should, in many cases, be replaced by acquire/release
   7328  * primitives.  Note that the JSR-133 cookbook generally does not deal with
   7329  * store atomicity issues, and the recipes there are not always entirely sufficient.
   7330  * The current recipe is as follows:
   7331  * -# Use AnyStore ~= (LoadStore | StoreStore) ~= release barrier before volatile store.
   7332  * -# Use AnyAny barrier after volatile store.  (StoreLoad is as expensive.)
   7333  * -# Use LoadAny barrier ~= (LoadLoad | LoadStore) ~= acquire barrier after each volatile load.
   7334  * -# Use StoreStore barrier after all stores but before return from any constructor whose
   7335  *    class has final fields.
   7336  * -# Use NTStoreStore to order non-temporal stores with respect to all later
   7337  *    store-to-memory instructions.  Only generated together with non-temporal stores.
   7338  */
   7339 enum MemBarrierKind {
   7340   kAnyStore,
   7341   kLoadAny,
   7342   kStoreStore,
   7343   kAnyAny,
   7344   kNTStoreStore,
   7345   kLastBarrierKind = kNTStoreStore
   7346 };
   7347 std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind);
   7348 
   7349 class HMemoryBarrier final : public HExpression<0> {
   7350  public:
   7351   explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
   7352       : HExpression(kMemoryBarrier,
   7353                     SideEffects::AllWritesAndReads(),  // Assume write/read on all fields/arrays.
   7354                     dex_pc) {
   7355     SetPackedField<BarrierKindField>(barrier_kind);
   7356   }
   7357 
   7358   bool IsClonable() const override { return true; }
   7359 
   7360   MemBarrierKind GetBarrierKind() { return GetPackedField<BarrierKindField>(); }
   7361 
   7362   DECLARE_INSTRUCTION(MemoryBarrier);
   7363 
   7364  protected:
   7365   DEFAULT_COPY_CONSTRUCTOR(MemoryBarrier);
   7366 
   7367  private:
   7368   static constexpr size_t kFieldBarrierKind = HInstruction::kNumberOfGenericPackedBits;
   7369   static constexpr size_t kFieldBarrierKindSize =
   7370       MinimumBitsToStore(static_cast<size_t>(kLastBarrierKind));
   7371   static constexpr size_t kNumberOfMemoryBarrierPackedBits =
   7372       kFieldBarrierKind + kFieldBarrierKindSize;
   7373   static_assert(kNumberOfMemoryBarrierPackedBits <= kMaxNumberOfPackedBits,
   7374                 "Too many packed fields.");
   7375   using BarrierKindField = BitField<MemBarrierKind, kFieldBarrierKind, kFieldBarrierKindSize>;
   7376 };
   7377 
   7378 // A constructor fence orders all prior stores to fields that could be accessed via a final field of
   7379 // the specified object(s), with respect to any subsequent store that might "publish"
   7380 // (i.e. make visible) the specified object to another thread.
   7381 //
   7382 // JLS 17.5.1 "Semantics of final fields" states that a freeze action happens
   7383 // for all final fields (that were set) at the end of the invoked constructor.
   7384 //
   7385 // The constructor fence models the freeze actions for the final fields of an object
   7386 // being constructed (semantically at the end of the constructor). Constructor fences
   7387 // have a per-object affinity; two separate objects being constructed get two separate
   7388 // constructor fences.
   7389 //
   7390 // (Note: that if calling a super-constructor or forwarding to another constructor,
   7391 // the freezes would happen at the end of *that* constructor being invoked).
   7392 //
   7393 // The memory model guarantees that when the object being constructed is "published" after
   7394 // constructor completion (i.e. escapes the current thread via a store), then any final field
   7395 // writes must be observable on other threads (once they observe that publication).
   7396 //
   7397 // Further, anything written before the freeze, and read by dereferencing through the final field,
   7398 // must also be visible (so final object field could itself have an object with non-final fields;
   7399 // yet the freeze must also extend to them).
   7400 //
   7401 // Constructor example:
   7402 //
   7403 //     class HasFinal {
   7404 //        final int field;                              Optimizing IR for <init>()V:
   7405 //        HasFinal() {
   7406 //          field = 123;                                HInstanceFieldSet(this, HasFinal.field, 123)
   7407 //          // freeze(this.field);                      HConstructorFence(this)
   7408 //        }                                             HReturn
   7409 //     }
   7410 //
   7411 // HConstructorFence can serve double duty as a fence for new-instance/new-array allocations of
   7412 // already-initialized classes; in that case the allocation must act as a "default-initializer"
   7413 // of the object which effectively writes the class pointer "final field".
   7414 //
   7415 // For example, we can model default-initialiation as roughly the equivalent of the following:
   7416 //
   7417 //     class Object {
   7418 //       private final Class header;
   7419 //     }
   7420 //
   7421 //  Java code:                                           Optimizing IR:
   7422 //
   7423 //     T new_instance<T>() {
   7424 //       Object obj = allocate_memory(T.class.size);     obj = HInvoke(art_quick_alloc_object, T)
   7425 //       obj.header = T.class;                           // header write is done by above call.
   7426 //       // freeze(obj.header)                           HConstructorFence(obj)
   7427 //       return (T)obj;
   7428 //     }
   7429 //
   7430 // See also:
   7431 // * DexCompilationUnit::RequiresConstructorBarrier
   7432 // * QuasiAtomic::ThreadFenceForConstructor
   7433 //
   7434 class HConstructorFence final : public HVariableInputSizeInstruction {
   7435                                   // A fence has variable inputs because the inputs can be removed
   7436                                   // after prepare_for_register_allocation phase.
   7437                                   // (TODO: In the future a fence could freeze multiple objects
   7438                                   //        after merging two fences together.)
   7439  public:
   7440   // `fence_object` is the reference that needs to be protected for correct publication.
   7441   //
   7442   // It makes sense in the following situations:
   7443   // * <init> constructors, it's the "this" parameter (i.e. HParameterValue, s.t. IsThis() == true).
   7444   // * new-instance-like instructions, it's the return value (i.e. HNewInstance).
   7445   //
   7446   // After construction the `fence_object` becomes the 0th input.
   7447   // This is not an input in a real sense, but just a convenient place to stash the information
   7448   // about the associated object.
   7449   HConstructorFence(HInstruction* fence_object,
   7450                     uint32_t dex_pc,
   7451                     ArenaAllocator* allocator)
   7452     // We strongly suspect there is not a more accurate way to describe the fine-grained reordering
   7453     // constraints described in the class header. We claim that these SideEffects constraints
   7454     // enforce a superset of the real constraints.
   7455     //
   7456     // The ordering described above is conservatively modeled with SideEffects as follows:
   7457     //
   7458     // * To prevent reordering of the publication stores:
   7459     // ----> "Reads of objects" is the initial SideEffect.
   7460     // * For every primitive final field store in the constructor:
   7461     // ----> Union that field's type as a read (e.g. "Read of T") into the SideEffect.
   7462     // * If there are any stores to reference final fields in the constructor:
   7463     // ----> Use a more conservative "AllReads" SideEffect because any stores to any references
   7464     //       that are reachable from `fence_object` also need to be prevented for reordering
   7465     //       (and we do not want to do alias analysis to figure out what those stores are).
   7466     //
   7467     // In the implementation, this initially starts out as an "all reads" side effect; this is an
   7468     // even more conservative approach than the one described above, and prevents all of the
   7469     // above reordering without analyzing any of the instructions in the constructor.
   7470     //
   7471     // If in a later phase we discover that there are no writes to reference final fields,
   7472     // we can refine the side effect to a smaller set of type reads (see above constraints).
   7473       : HVariableInputSizeInstruction(kConstructorFence,
   7474                                       SideEffects::AllReads(),
   7475                                       dex_pc,
   7476                                       allocator,
   7477                                       /* number_of_inputs= */ 1,
   7478                                       kArenaAllocConstructorFenceInputs) {
   7479     DCHECK(fence_object != nullptr);
   7480     SetRawInputAt(0, fence_object);
   7481   }
   7482 
   7483   // The object associated with this constructor fence.
   7484   //
   7485   // (Note: This will be null after the prepare_for_register_allocation phase,
   7486   // as all constructor fence inputs are removed there).
   7487   HInstruction* GetFenceObject() const {
   7488     return InputAt(0);
   7489   }
   7490 
   7491   // Find all the HConstructorFence uses (`fence_use`) for `this` and:
   7492   // - Delete `fence_use` from `this`'s use list.
   7493   // - Delete `this` from `fence_use`'s inputs list.
   7494   // - If the `fence_use` is dead, remove it from the graph.
   7495   //
   7496   // A fence is considered dead once it no longer has any uses
   7497   // and all of the inputs are dead.
   7498   //
   7499   // This must *not* be called during/after prepare_for_register_allocation,
   7500   // because that removes all the inputs to the fences but the fence is actually
   7501   // still considered live.
   7502   //
   7503   // Returns how many HConstructorFence instructions were removed from graph.
   7504   static size_t RemoveConstructorFences(HInstruction* instruction);
   7505 
   7506   // Combine all inputs of `this` and `other` instruction and remove
   7507   // `other` from the graph.
   7508   //
   7509   // Inputs are unique after the merge.
   7510   //
   7511   // Requirement: `this` must not be the same as `other.
   7512   void Merge(HConstructorFence* other);
   7513 
   7514   // Check if this constructor fence is protecting
   7515   // an HNewInstance or HNewArray that is also the immediate
   7516   // predecessor of `this`.
   7517   //
   7518   // If `ignore_inputs` is true, then the immediate predecessor doesn't need
   7519   // to be one of the inputs of `this`.
   7520   //
   7521   // Returns the associated HNewArray or HNewInstance,
   7522   // or null otherwise.
   7523   HInstruction* GetAssociatedAllocation(bool ignore_inputs = false);
   7524 
   7525   DECLARE_INSTRUCTION(ConstructorFence);
   7526 
   7527  protected:
   7528   DEFAULT_COPY_CONSTRUCTOR(ConstructorFence);
   7529 };
   7530 
   7531 class HMonitorOperation final : public HExpression<1> {
   7532  public:
   7533   enum class OperationKind {
   7534     kEnter,
   7535     kExit,
   7536     kLast = kExit
   7537   };
   7538 
   7539   HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
   7540     : HExpression(kMonitorOperation,
   7541                   SideEffects::AllExceptGCDependency(),  // Assume write/read on all fields/arrays.
   7542                   dex_pc) {
   7543     SetPackedField<OperationKindField>(kind);
   7544     SetRawInputAt(0, object);
   7545   }
   7546 
   7547   // Instruction may go into runtime, so we need an environment.
   7548   bool NeedsEnvironment() const override { return true; }
   7549 
   7550   bool CanThrow() const override {
   7551     // Verifier guarantees that monitor-exit cannot throw.
   7552     // This is important because it allows the HGraphBuilder to remove
   7553     // a dead throw-catch loop generated for `synchronized` blocks/methods.
   7554     return IsEnter();
   7555   }
   7556 
   7557   OperationKind GetOperationKind() const { return GetPackedField<OperationKindField>(); }
   7558   bool IsEnter() const { return GetOperationKind() == OperationKind::kEnter; }
   7559 
   7560   DECLARE_INSTRUCTION(MonitorOperation);
   7561 
   7562  protected:
   7563   DEFAULT_COPY_CONSTRUCTOR(MonitorOperation);
   7564 
   7565  private:
   7566   static constexpr size_t kFieldOperationKind = HInstruction::kNumberOfGenericPackedBits;
   7567   static constexpr size_t kFieldOperationKindSize =
   7568       MinimumBitsToStore(static_cast<size_t>(OperationKind::kLast));
   7569   static constexpr size_t kNumberOfMonitorOperationPackedBits =
   7570       kFieldOperationKind + kFieldOperationKindSize;
   7571   static_assert(kNumberOfMonitorOperationPackedBits <= HInstruction::kMaxNumberOfPackedBits,
   7572                 "Too many packed fields.");
   7573   using OperationKindField = BitField<OperationKind, kFieldOperationKind, kFieldOperationKindSize>;
   7574 };
   7575 
   7576 class HSelect final : public HExpression<3> {
   7577  public:
   7578   HSelect(HInstruction* condition,
   7579           HInstruction* true_value,
   7580           HInstruction* false_value,
   7581           uint32_t dex_pc)
   7582       : HExpression(kSelect, HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) {
   7583     DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType()));
   7584 
   7585     // First input must be `true_value` or `false_value` to allow codegens to
   7586     // use the SameAsFirstInput allocation policy. We make it `false_value`, so
   7587     // that architectures which implement HSelect as a conditional move also
   7588     // will not need to invert the condition.
   7589     SetRawInputAt(0, false_value);
   7590     SetRawInputAt(1, true_value);
   7591     SetRawInputAt(2, condition);
   7592   }
   7593 
   7594   bool IsClonable() const override { return true; }
   7595   HInstruction* GetFalseValue() const { return InputAt(0); }
   7596   HInstruction* GetTrueValue() const { return InputAt(1); }
   7597   HInstruction* GetCondition() const { return InputAt(2); }
   7598 
   7599   bool CanBeMoved() const override { return true; }
   7600   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
   7601     return true;
   7602   }
   7603 
   7604   bool CanBeNull() const override {
   7605     return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull();
   7606   }
   7607 
   7608   DECLARE_INSTRUCTION(Select);
   7609 
   7610  protected:
   7611   DEFAULT_COPY_CONSTRUCTOR(Select);
   7612 };
   7613 
   7614 class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
   7615  public:
   7616   MoveOperands(Location source,
   7617                Location destination,
   7618                DataType::Type type,
   7619                HInstruction* instruction)
   7620       : source_(source), destination_(destination), type_(type), instruction_(instruction) {}
   7621 
   7622   Location GetSource() const { return source_; }
   7623   Location GetDestination() const { return destination_; }
   7624 
   7625   void SetSource(Location value) { source_ = value; }
   7626   void SetDestination(Location value) { destination_ = value; }
   7627 
   7628   // The parallel move resolver marks moves as "in-progress" by clearing the
   7629   // destination (but not the source).
   7630   Location MarkPending() {
   7631     DCHECK(!IsPending());
   7632     Location dest = destination_;
   7633     destination_ = Location::NoLocation();
   7634     return dest;
   7635   }
   7636 
   7637   void ClearPending(Location dest) {
   7638     DCHECK(IsPending());
   7639     destination_ = dest;
   7640   }
   7641 
   7642   bool IsPending() const {
   7643     DCHECK(source_.IsValid() || destination_.IsInvalid());
   7644     return destination_.IsInvalid() && source_.IsValid();
   7645   }
   7646 
   7647   // True if this blocks a move from the given location.
   7648   bool Blocks(Location loc) const {
   7649     return !IsEliminated() && source_.OverlapsWith(loc);
   7650   }
   7651 
   7652   // A move is redundant if it's been eliminated, if its source and
   7653   // destination are the same, or if its destination is unneeded.
   7654   bool IsRedundant() const {
   7655     return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
   7656   }
   7657 
   7658   // We clear both operands to indicate move that's been eliminated.
   7659   void Eliminate() {
   7660     source_ = destination_ = Location::NoLocation();
   7661   }
   7662 
   7663   bool IsEliminated() const {
   7664     DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
   7665     return source_.IsInvalid();
   7666   }
   7667 
   7668   DataType::Type GetType() const { return type_; }
   7669 
   7670   bool Is64BitMove() const {
   7671     return DataType::Is64BitType(type_);
   7672   }
   7673 
   7674   HInstruction* GetInstruction() const { return instruction_; }
   7675 
   7676  private:
   7677   Location source_;
   7678   Location destination_;
   7679   // The type this move is for.
   7680   DataType::Type type_;
   7681   // The instruction this move is assocatied with. Null when this move is
   7682   // for moving an input in the expected locations of user (including a phi user).
   7683   // This is only used in debug mode, to ensure we do not connect interval siblings
   7684   // in the same parallel move.
   7685   HInstruction* instruction_;
   7686 };
   7687 
   7688 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs);
   7689 
   7690 static constexpr size_t kDefaultNumberOfMoves = 4;
   7691 
   7692 class HParallelMove final : public HExpression<0> {
   7693  public:
   7694   explicit HParallelMove(ArenaAllocator* allocator, uint32_t dex_pc = kNoDexPc)
   7695       : HExpression(kParallelMove, SideEffects::None(), dex_pc),
   7696         moves_(allocator->Adapter(kArenaAllocMoveOperands)) {
   7697     moves_.reserve(kDefaultNumberOfMoves);
   7698   }
   7699 
   7700   void AddMove(Location source,
   7701                Location destination,
   7702                DataType::Type type,
   7703                HInstruction* instruction) {
   7704     DCHECK(source.IsValid());
   7705     DCHECK(destination.IsValid());
   7706     if (kIsDebugBuild) {
   7707       if (instruction != nullptr) {
   7708         for (const MoveOperands& move : moves_) {
   7709           if (move.GetInstruction() == instruction) {
   7710             // Special case the situation where the move is for the spill slot
   7711             // of the instruction.
   7712             if ((GetPrevious() == instruction)
   7713                 || ((GetPrevious() == nullptr)
   7714                     && instruction->IsPhi()
   7715                     && instruction->GetBlock() == GetBlock())) {
   7716               DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
   7717                   << "Doing parallel moves for the same instruction.";
   7718             } else {
   7719               DCHECK(false) << "Doing parallel moves for the same instruction.";
   7720             }
   7721           }
   7722         }
   7723       }
   7724       for (const MoveOperands& move : moves_) {
   7725         DCHECK(!destination.OverlapsWith(move.GetDestination()))
   7726             << "Overlapped destination for two moves in a parallel move: "
   7727             << move.GetSource() << " ==> " << move.GetDestination() << " and "
   7728             << source << " ==> " << destination;
   7729       }
   7730     }
   7731     moves_.emplace_back(source, destination, type, instruction);
   7732   }
   7733 
   7734   MoveOperands* MoveOperandsAt(size_t index) {
   7735     return &moves_[index];
   7736   }
   7737 
   7738   size_t NumMoves() const { return moves_.size(); }
   7739 
   7740   DECLARE_INSTRUCTION(ParallelMove);
   7741 
   7742  protected:
   7743   DEFAULT_COPY_CONSTRUCTOR(ParallelMove);
   7744 
   7745  private:
   7746   ArenaVector<MoveOperands> moves_;
   7747 };
   7748 
   7749 // This instruction computes an intermediate address pointing in the 'middle' of an object. The
   7750 // result pointer cannot be handled by GC, so extra care is taken to make sure that this value is
   7751 // never used across anything that can trigger GC.
   7752 // The result of this instruction is not a pointer in the sense of `DataType::Type::kreference`.
   7753 // So we represent it by the type `DataType::Type::kInt`.
   7754 class HIntermediateAddress final : public HExpression<2> {
   7755  public:
   7756   HIntermediateAddress(HInstruction* base_address, HInstruction* offset, uint32_t dex_pc)
   7757       : HExpression(kIntermediateAddress,
   7758                     DataType::Type::kInt32,
   7759                     SideEffects::DependsOnGC(),
   7760                     dex_pc) {
   7761         DCHECK_EQ(DataType::Size(DataType::Type::kInt32),
   7762                   DataType::Size(DataType::Type::kReference))
   7763             << "kPrimInt and kPrimNot have different sizes.";
   7764     SetRawInputAt(0, base_address);
   7765     SetRawInputAt(1, offset);
   7766   }
   7767 
   7768   bool IsClonable() const override { return true; }
   7769   bool CanBeMoved() const override { return true; }
   7770   bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
   7771     return true;
   7772   }
   7773   bool IsActualObject() const override { return false; }
   7774 
   7775   HInstruction* GetBaseAddress() const { return InputAt(0); }
   7776   HInstruction* GetOffset() const { return InputAt(1); }
   7777 
   7778   DECLARE_INSTRUCTION(IntermediateAddress);
   7779 
   7780  protected:
   7781   DEFAULT_COPY_CONSTRUCTOR(IntermediateAddress);
   7782 };
   7783 
   7784 
   7785 }  // namespace art
   7786 
   7787 #include "nodes_vector.h"
   7788 
   7789 #if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64)
   7790 #include "nodes_shared.h"
   7791 #endif
   7792 #ifdef ART_ENABLE_CODEGEN_mips
   7793 #include "nodes_mips.h"
   7794 #endif
   7795 #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
   7796 #include "nodes_x86.h"
   7797 #endif
   7798 
   7799 namespace art {
   7800 
   7801 class OptimizingCompilerStats;
   7802 
   7803 class HGraphVisitor : public ValueObject {
   7804  public:
   7805   explicit HGraphVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr)
   7806       : stats_(stats),
   7807         graph_(graph) {}
   7808   virtual ~HGraphVisitor() {}
   7809 
   7810   virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
   7811   virtual void VisitBasicBlock(HBasicBlock* block);
   7812 
   7813   // Visit the graph following basic block insertion order.
   7814   void VisitInsertionOrder();
   7815 
   7816   // Visit the graph following dominator tree reverse post-order.
   7817   void VisitReversePostOrder();
   7818 
   7819   HGraph* GetGraph() const { return graph_; }
   7820 
   7821   // Visit functions for instruction classes.
   7822 #define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
   7823   virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
   7824 
   7825   FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
   7826 
   7827 #undef DECLARE_VISIT_INSTRUCTION
   7828 
   7829  protected:
   7830   OptimizingCompilerStats* stats_;
   7831 
   7832  private:
   7833   HGraph* const graph_;
   7834 
   7835   DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
   7836 };
   7837 
   7838 class HGraphDelegateVisitor : public HGraphVisitor {
   7839  public:
   7840   explicit HGraphDelegateVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr)
   7841       : HGraphVisitor(graph, stats) {}
   7842   virtual ~HGraphDelegateVisitor() {}
   7843 
   7844   // Visit functions that delegate to to super class.
   7845 #define DECLARE_VISIT_INSTRUCTION(name, super)                                        \
   7846   void Visit##name(H##name* instr) override { Visit##super(instr); }
   7847 
   7848   FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
   7849 
   7850 #undef DECLARE_VISIT_INSTRUCTION
   7851 
   7852  private:
   7853   DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
   7854 };
   7855 
   7856 // Create a clone of the instruction, insert it into the graph; replace the old one with a new
   7857 // and remove the old instruction.
   7858 HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr);
   7859 
   7860 // Create a clone for each clonable instructions/phis and replace the original with the clone.
   7861 //
   7862 // Used for testing individual instruction cloner.
   7863 class CloneAndReplaceInstructionVisitor : public HGraphDelegateVisitor {
   7864  public:
   7865   explicit CloneAndReplaceInstructionVisitor(HGraph* graph)
   7866       : HGraphDelegateVisitor(graph), instr_replaced_by_clones_count_(0) {}
   7867 
   7868   void VisitInstruction(HInstruction* instruction) override {
   7869     if (instruction->IsClonable()) {
   7870       ReplaceInstrOrPhiByClone(instruction);
   7871       instr_replaced_by_clones_count_++;
   7872     }
   7873   }
   7874 
   7875   size_t GetInstrReplacedByClonesCount() const { return instr_replaced_by_clones_count_; }
   7876 
   7877  private:
   7878   size_t instr_replaced_by_clones_count_;
   7879 
   7880   DISALLOW_COPY_AND_ASSIGN(CloneAndReplaceInstructionVisitor);
   7881 };
   7882 
   7883 // Iterator over the blocks that art part of the loop. Includes blocks part
   7884 // of an inner loop. The order in which the blocks are iterated is on their
   7885 // block id.
   7886 class HBlocksInLoopIterator : public ValueObject {
   7887  public:
   7888   explicit HBlocksInLoopIterator(const HLoopInformation& info)
   7889       : blocks_in_loop_(info.GetBlocks()),
   7890         blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
   7891         index_(0) {
   7892     if (!blocks_in_loop_.IsBitSet(index_)) {
   7893       Advance();
   7894     }
   7895   }
   7896 
   7897   bool Done() const { return index_ == blocks_.size(); }
   7898   HBasicBlock* Current() const { return blocks_[index_]; }
   7899   void Advance() {
   7900     ++index_;
   7901     for (size_t e = blocks_.size(); index_ < e; ++index_) {
   7902       if (blocks_in_loop_.IsBitSet(index_)) {
   7903         break;
   7904       }
   7905     }
   7906   }
   7907 
   7908  private:
   7909   const BitVector& blocks_in_loop_;
   7910   const ArenaVector<HBasicBlock*>& blocks_;
   7911   size_t index_;
   7912 
   7913   DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
   7914 };
   7915 
   7916 // Iterator over the blocks that art part of the loop. Includes blocks part
   7917 // of an inner loop. The order in which the blocks are iterated is reverse
   7918 // post order.
   7919 class HBlocksInLoopReversePostOrderIterator : public ValueObject {
   7920  public:
   7921   explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
   7922       : blocks_in_loop_(info.GetBlocks()),
   7923         blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
   7924         index_(0) {
   7925     if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
   7926       Advance();
   7927     }
   7928   }
   7929 
   7930   bool Done() const { return index_ == blocks_.size(); }
   7931   HBasicBlock* Current() const { return blocks_[index_]; }
   7932   void Advance() {
   7933     ++index_;
   7934     for (size_t e = blocks_.size(); index_ < e; ++index_) {
   7935       if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
   7936         break;
   7937       }
   7938     }
   7939   }
   7940 
   7941  private:
   7942   const BitVector& blocks_in_loop_;
   7943   const ArenaVector<HBasicBlock*>& blocks_;
   7944   size_t index_;
   7945 
   7946   DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
   7947 };
   7948 
   7949 // Returns int64_t value of a properly typed constant.
   7950 inline int64_t Int64FromConstant(HConstant* constant) {
   7951   if (constant->IsIntConstant()) {
   7952     return constant->AsIntConstant()->GetValue();
   7953   } else if (constant->IsLongConstant()) {
   7954     return constant->AsLongConstant()->GetValue();
   7955   } else {
   7956     DCHECK(constant->IsNullConstant()) << constant->DebugName();
   7957     return 0;
   7958   }
   7959 }
   7960 
   7961 // Returns true iff instruction is an integral constant (and sets value on success).
   7962 inline bool IsInt64AndGet(HInstruction* instruction, /*out*/ int64_t* value) {
   7963   if (instruction->IsIntConstant()) {
   7964     *value = instruction->AsIntConstant()->GetValue();
   7965     return true;
   7966   } else if (instruction->IsLongConstant()) {
   7967     *value = instruction->AsLongConstant()->GetValue();
   7968     return true;
   7969   } else if (instruction->IsNullConstant()) {
   7970     *value = 0;
   7971     return true;
   7972   }
   7973   return false;
   7974 }
   7975 
   7976 // Returns true iff instruction is the given integral constant.
   7977 inline bool IsInt64Value(HInstruction* instruction, int64_t value) {
   7978   int64_t val = 0;
   7979   return IsInt64AndGet(instruction, &val) && val == value;
   7980 }
   7981 
   7982 // Returns true iff instruction is a zero bit pattern.
   7983 inline bool IsZeroBitPattern(HInstruction* instruction) {
   7984   return instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern();
   7985 }
   7986 
   7987 // Implement HInstruction::Is##type() for concrete instructions.
   7988 #define INSTRUCTION_TYPE_CHECK(type, super)                                    \
   7989   inline bool HInstruction::Is##type() const { return GetKind() == k##type; }
   7990   FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
   7991 #undef INSTRUCTION_TYPE_CHECK
   7992 
   7993 // Implement HInstruction::Is##type() for abstract instructions.
   7994 #define INSTRUCTION_TYPE_CHECK_RESULT(type, super)                             \
   7995   std::is_base_of<BaseType, H##type>::value,
   7996 #define INSTRUCTION_TYPE_CHECK(type, super)                                    \
   7997   inline bool HInstruction::Is##type() const {                                 \
   7998     DCHECK_LT(GetKind(), kLastInstructionKind);                                \
   7999     using BaseType = H##type;                                                  \
   8000     static constexpr bool results[] = {                                        \
   8001         FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK_RESULT)           \
   8002     };                                                                         \
   8003     return results[static_cast<size_t>(GetKind())];                            \
   8004   }
   8005 
   8006   FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
   8007 #undef INSTRUCTION_TYPE_CHECK
   8008 #undef INSTRUCTION_TYPE_CHECK_RESULT
   8009 
   8010 #define INSTRUCTION_TYPE_CAST(type, super)                                     \
   8011   inline const H##type* HInstruction::As##type() const {                       \
   8012     return Is##type() ? down_cast<const H##type*>(this) : nullptr;             \
   8013   }                                                                            \
   8014   inline H##type* HInstruction::As##type() {                                   \
   8015     return Is##type() ? static_cast<H##type*>(this) : nullptr;                 \
   8016   }
   8017 
   8018   FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)
   8019 #undef INSTRUCTION_TYPE_CAST
   8020 
   8021 
   8022 // Create space in `blocks` for adding `number_of_new_blocks` entries
   8023 // starting at location `at`. Blocks after `at` are moved accordingly.
   8024 inline void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks,
   8025                         size_t number_of_new_blocks,
   8026                         size_t after) {
   8027   DCHECK_LT(after, blocks->size());
   8028   size_t old_size = blocks->size();
   8029   size_t new_size = old_size + number_of_new_blocks;
   8030   blocks->resize(new_size);
   8031   std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end());
   8032 }
   8033 
   8034 /*
   8035  * Hunt "under the hood" of array lengths (leading to array references),
   8036  * null checks (also leading to array references), and new arrays
   8037  * (leading to the actual length). This makes it more likely related
   8038  * instructions become actually comparable.
   8039  */
   8040 inline HInstruction* HuntForDeclaration(HInstruction* instruction) {
   8041   while (instruction->IsArrayLength() ||
   8042          instruction->IsNullCheck() ||
   8043          instruction->IsNewArray()) {
   8044     instruction = instruction->IsNewArray()
   8045         ? instruction->AsNewArray()->GetLength()
   8046         : instruction->InputAt(0);
   8047   }
   8048   return instruction;
   8049 }
   8050 
   8051 void RemoveEnvironmentUses(HInstruction* instruction);
   8052 bool HasEnvironmentUsedByOthers(HInstruction* instruction);
   8053 void ResetEnvironmentInputRecords(HInstruction* instruction);
   8054 
   8055 }  // namespace art
   8056 
   8057 #endif  // ART_COMPILER_OPTIMIZING_NODES_H_
   8058