Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2014 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
     18 #define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
     19 
     20 #include "arch/instruction_set.h"
     21 #include "arch/instruction_set_features.h"
     22 #include "base/arena_containers.h"
     23 #include "base/arena_object.h"
     24 #include "base/array_ref.h"
     25 #include "base/bit_field.h"
     26 #include "base/bit_utils.h"
     27 #include "base/enums.h"
     28 #include "base/globals.h"
     29 #include "base/memory_region.h"
     30 #include "dex/string_reference.h"
     31 #include "dex/type_reference.h"
     32 #include "graph_visualizer.h"
     33 #include "locations.h"
     34 #include "nodes.h"
     35 #include "optimizing_compiler_stats.h"
     36 #include "read_barrier_option.h"
     37 #include "stack.h"
     38 #include "utils/label.h"
     39 
     40 namespace art {
     41 
     42 // Binary encoding of 2^32 for type double.
     43 static int64_t constexpr k2Pow32EncodingForDouble = INT64_C(0x41F0000000000000);
     44 // Binary encoding of 2^31 for type double.
     45 static int64_t constexpr k2Pow31EncodingForDouble = INT64_C(0x41E0000000000000);
     46 
     47 // Minimum value for a primitive integer.
     48 static int32_t constexpr kPrimIntMin = 0x80000000;
     49 // Minimum value for a primitive long.
     50 static int64_t constexpr kPrimLongMin = INT64_C(0x8000000000000000);
     51 
     52 // Maximum value for a primitive integer.
     53 static int32_t constexpr kPrimIntMax = 0x7fffffff;
     54 // Maximum value for a primitive long.
     55 static int64_t constexpr kPrimLongMax = INT64_C(0x7fffffffffffffff);
     56 
     57 static constexpr ReadBarrierOption kCompilerReadBarrierOption =
     58     kEmitCompilerReadBarrier ? kWithReadBarrier : kWithoutReadBarrier;
     59 
     60 class Assembler;
     61 class CodeGenerator;
     62 class CompilerOptions;
     63 class StackMapStream;
     64 class ParallelMoveResolver;
     65 
     66 namespace linker {
     67 class LinkerPatch;
     68 }  // namespace linker
     69 
     70 class CodeAllocator {
     71  public:
     72   CodeAllocator() {}
     73   virtual ~CodeAllocator() {}
     74 
     75   virtual uint8_t* Allocate(size_t size) = 0;
     76   virtual ArrayRef<const uint8_t> GetMemory() const = 0;
     77 
     78  private:
     79   DISALLOW_COPY_AND_ASSIGN(CodeAllocator);
     80 };
     81 
     82 class SlowPathCode : public DeletableArenaObject<kArenaAllocSlowPaths> {
     83  public:
     84   explicit SlowPathCode(HInstruction* instruction) : instruction_(instruction) {
     85     for (size_t i = 0; i < kMaximumNumberOfExpectedRegisters; ++i) {
     86       saved_core_stack_offsets_[i] = kRegisterNotSaved;
     87       saved_fpu_stack_offsets_[i] = kRegisterNotSaved;
     88     }
     89   }
     90 
     91   virtual ~SlowPathCode() {}
     92 
     93   virtual void EmitNativeCode(CodeGenerator* codegen) = 0;
     94 
     95   // Save live core and floating-point caller-save registers and
     96   // update the stack mask in `locations` for registers holding object
     97   // references.
     98   virtual void SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations);
     99   // Restore live core and floating-point caller-save registers.
    100   virtual void RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations);
    101 
    102   bool IsCoreRegisterSaved(int reg) const {
    103     return saved_core_stack_offsets_[reg] != kRegisterNotSaved;
    104   }
    105 
    106   bool IsFpuRegisterSaved(int reg) const {
    107     return saved_fpu_stack_offsets_[reg] != kRegisterNotSaved;
    108   }
    109 
    110   uint32_t GetStackOffsetOfCoreRegister(int reg) const {
    111     return saved_core_stack_offsets_[reg];
    112   }
    113 
    114   uint32_t GetStackOffsetOfFpuRegister(int reg) const {
    115     return saved_fpu_stack_offsets_[reg];
    116   }
    117 
    118   virtual bool IsFatal() const { return false; }
    119 
    120   virtual const char* GetDescription() const = 0;
    121 
    122   Label* GetEntryLabel() { return &entry_label_; }
    123   Label* GetExitLabel() { return &exit_label_; }
    124 
    125   HInstruction* GetInstruction() const {
    126     return instruction_;
    127   }
    128 
    129   uint32_t GetDexPc() const {
    130     return instruction_ != nullptr ? instruction_->GetDexPc() : kNoDexPc;
    131   }
    132 
    133  protected:
    134   static constexpr size_t kMaximumNumberOfExpectedRegisters = 32;
    135   static constexpr uint32_t kRegisterNotSaved = -1;
    136   // The instruction where this slow path is happening.
    137   HInstruction* instruction_;
    138   uint32_t saved_core_stack_offsets_[kMaximumNumberOfExpectedRegisters];
    139   uint32_t saved_fpu_stack_offsets_[kMaximumNumberOfExpectedRegisters];
    140 
    141  private:
    142   Label entry_label_;
    143   Label exit_label_;
    144 
    145   DISALLOW_COPY_AND_ASSIGN(SlowPathCode);
    146 };
    147 
    148 class InvokeDexCallingConventionVisitor {
    149  public:
    150   virtual Location GetNextLocation(DataType::Type type) = 0;
    151   virtual Location GetReturnLocation(DataType::Type type) const = 0;
    152   virtual Location GetMethodLocation() const = 0;
    153 
    154  protected:
    155   InvokeDexCallingConventionVisitor() {}
    156   virtual ~InvokeDexCallingConventionVisitor() {}
    157 
    158   // The current index for core registers.
    159   uint32_t gp_index_ = 0u;
    160   // The current index for floating-point registers.
    161   uint32_t float_index_ = 0u;
    162   // The current stack index.
    163   uint32_t stack_index_ = 0u;
    164 
    165  private:
    166   DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitor);
    167 };
    168 
    169 class FieldAccessCallingConvention {
    170  public:
    171   virtual Location GetObjectLocation() const = 0;
    172   virtual Location GetFieldIndexLocation() const = 0;
    173   virtual Location GetReturnLocation(DataType::Type type) const = 0;
    174   virtual Location GetSetValueLocation(DataType::Type type, bool is_instance) const = 0;
    175   virtual Location GetFpuLocation(DataType::Type type) const = 0;
    176   virtual ~FieldAccessCallingConvention() {}
    177 
    178  protected:
    179   FieldAccessCallingConvention() {}
    180 
    181  private:
    182   DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConvention);
    183 };
    184 
    185 class CodeGenerator : public DeletableArenaObject<kArenaAllocCodeGenerator> {
    186  public:
    187   // Compiles the graph to executable instructions.
    188   void Compile(CodeAllocator* allocator);
    189   static std::unique_ptr<CodeGenerator> Create(HGraph* graph,
    190                                                const CompilerOptions& compiler_options,
    191                                                OptimizingCompilerStats* stats = nullptr);
    192   virtual ~CodeGenerator();
    193 
    194   // Get the graph. This is the outermost graph, never the graph of a method being inlined.
    195   HGraph* GetGraph() const { return graph_; }
    196 
    197   HBasicBlock* GetNextBlockToEmit() const;
    198   HBasicBlock* FirstNonEmptyBlock(HBasicBlock* block) const;
    199   bool GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const;
    200 
    201   size_t GetStackSlotOfParameter(HParameterValue* parameter) const {
    202     // Note that this follows the current calling convention.
    203     return GetFrameSize()
    204         + static_cast<size_t>(InstructionSetPointerSize(GetInstructionSet()))  // Art method
    205         + parameter->GetIndex() * kVRegSize;
    206   }
    207 
    208   virtual void Initialize() = 0;
    209   virtual void Finalize(CodeAllocator* allocator);
    210   virtual void EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches);
    211   virtual bool NeedsThunkCode(const linker::LinkerPatch& patch) const;
    212   virtual void EmitThunkCode(const linker::LinkerPatch& patch,
    213                              /*out*/ ArenaVector<uint8_t>* code,
    214                              /*out*/ std::string* debug_name);
    215   virtual void GenerateFrameEntry() = 0;
    216   virtual void GenerateFrameExit() = 0;
    217   virtual void Bind(HBasicBlock* block) = 0;
    218   virtual void MoveConstant(Location destination, int32_t value) = 0;
    219   virtual void MoveLocation(Location dst, Location src, DataType::Type dst_type) = 0;
    220   virtual void AddLocationAsTemp(Location location, LocationSummary* locations) = 0;
    221 
    222   virtual Assembler* GetAssembler() = 0;
    223   virtual const Assembler& GetAssembler() const = 0;
    224   virtual size_t GetWordSize() const = 0;
    225   virtual size_t GetFloatingPointSpillSlotSize() const = 0;
    226   virtual uintptr_t GetAddressOf(HBasicBlock* block) = 0;
    227   void InitializeCodeGeneration(size_t number_of_spill_slots,
    228                                 size_t maximum_safepoint_spill_size,
    229                                 size_t number_of_out_slots,
    230                                 const ArenaVector<HBasicBlock*>& block_order);
    231   // Backends can override this as necessary. For most, no special alignment is required.
    232   virtual uint32_t GetPreferredSlotsAlignment() const { return 1; }
    233 
    234   uint32_t GetFrameSize() const { return frame_size_; }
    235   void SetFrameSize(uint32_t size) { frame_size_ = size; }
    236   uint32_t GetCoreSpillMask() const { return core_spill_mask_; }
    237   uint32_t GetFpuSpillMask() const { return fpu_spill_mask_; }
    238 
    239   size_t GetNumberOfCoreRegisters() const { return number_of_core_registers_; }
    240   size_t GetNumberOfFloatingPointRegisters() const { return number_of_fpu_registers_; }
    241   virtual void SetupBlockedRegisters() const = 0;
    242 
    243   virtual void ComputeSpillMask() {
    244     core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
    245     DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
    246     fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
    247   }
    248 
    249   static uint32_t ComputeRegisterMask(const int* registers, size_t length) {
    250     uint32_t mask = 0;
    251     for (size_t i = 0, e = length; i < e; ++i) {
    252       mask |= (1 << registers[i]);
    253     }
    254     return mask;
    255   }
    256 
    257   virtual void DumpCoreRegister(std::ostream& stream, int reg) const = 0;
    258   virtual void DumpFloatingPointRegister(std::ostream& stream, int reg) const = 0;
    259   virtual InstructionSet GetInstructionSet() const = 0;
    260 
    261   const CompilerOptions& GetCompilerOptions() const { return compiler_options_; }
    262 
    263   // Saves the register in the stack. Returns the size taken on stack.
    264   virtual size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) = 0;
    265   // Restores the register from the stack. Returns the size taken on stack.
    266   virtual size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) = 0;
    267 
    268   virtual size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0;
    269   virtual size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) = 0;
    270 
    271   virtual bool NeedsTwoRegisters(DataType::Type type) const = 0;
    272   // Returns whether we should split long moves in parallel moves.
    273   virtual bool ShouldSplitLongMoves() const { return false; }
    274 
    275   size_t GetNumberOfCoreCalleeSaveRegisters() const {
    276     return POPCOUNT(core_callee_save_mask_);
    277   }
    278 
    279   size_t GetNumberOfCoreCallerSaveRegisters() const {
    280     DCHECK_GE(GetNumberOfCoreRegisters(), GetNumberOfCoreCalleeSaveRegisters());
    281     return GetNumberOfCoreRegisters() - GetNumberOfCoreCalleeSaveRegisters();
    282   }
    283 
    284   bool IsCoreCalleeSaveRegister(int reg) const {
    285     return (core_callee_save_mask_ & (1 << reg)) != 0;
    286   }
    287 
    288   bool IsFloatingPointCalleeSaveRegister(int reg) const {
    289     return (fpu_callee_save_mask_ & (1 << reg)) != 0;
    290   }
    291 
    292   uint32_t GetSlowPathSpills(LocationSummary* locations, bool core_registers) const {
    293     DCHECK(locations->OnlyCallsOnSlowPath() ||
    294            (locations->Intrinsified() && locations->CallsOnMainAndSlowPath() &&
    295                !locations->HasCustomSlowPathCallingConvention()));
    296     uint32_t live_registers = core_registers
    297         ? locations->GetLiveRegisters()->GetCoreRegisters()
    298         : locations->GetLiveRegisters()->GetFloatingPointRegisters();
    299     if (locations->HasCustomSlowPathCallingConvention()) {
    300       // Save only the live registers that the custom calling convention wants us to save.
    301       uint32_t caller_saves = core_registers
    302           ? locations->GetCustomSlowPathCallerSaves().GetCoreRegisters()
    303           : locations->GetCustomSlowPathCallerSaves().GetFloatingPointRegisters();
    304       return live_registers & caller_saves;
    305     } else {
    306       // Default ABI, we need to spill non-callee-save live registers.
    307       uint32_t callee_saves = core_registers ? core_callee_save_mask_ : fpu_callee_save_mask_;
    308       return live_registers & ~callee_saves;
    309     }
    310   }
    311 
    312   size_t GetNumberOfSlowPathSpills(LocationSummary* locations, bool core_registers) const {
    313     return POPCOUNT(GetSlowPathSpills(locations, core_registers));
    314   }
    315 
    316   size_t GetStackOffsetOfShouldDeoptimizeFlag() const {
    317     DCHECK(GetGraph()->HasShouldDeoptimizeFlag());
    318     DCHECK_GE(GetFrameSize(), FrameEntrySpillSize() + kShouldDeoptimizeFlagSize);
    319     return GetFrameSize() - FrameEntrySpillSize() - kShouldDeoptimizeFlagSize;
    320   }
    321 
    322   // Record native to dex mapping for a suspend point.  Required by runtime.
    323   void RecordPcInfo(HInstruction* instruction,
    324                     uint32_t dex_pc,
    325                     SlowPathCode* slow_path = nullptr,
    326                     bool native_debug_info = false);
    327   // Check whether we have already recorded mapping at this PC.
    328   bool HasStackMapAtCurrentPc();
    329   // Record extra stack maps if we support native debugging.
    330   void MaybeRecordNativeDebugInfo(HInstruction* instruction,
    331                                   uint32_t dex_pc,
    332                                   SlowPathCode* slow_path = nullptr);
    333 
    334   bool CanMoveNullCheckToUser(HNullCheck* null_check);
    335   void MaybeRecordImplicitNullCheck(HInstruction* instruction);
    336   LocationSummary* CreateThrowingSlowPathLocations(
    337       HInstruction* instruction, RegisterSet caller_saves = RegisterSet::Empty());
    338   void GenerateNullCheck(HNullCheck* null_check);
    339   virtual void GenerateImplicitNullCheck(HNullCheck* null_check) = 0;
    340   virtual void GenerateExplicitNullCheck(HNullCheck* null_check) = 0;
    341 
    342   // Records a stack map which the runtime might use to set catch phi values
    343   // during exception delivery.
    344   // TODO: Replace with a catch-entering instruction that records the environment.
    345   void RecordCatchBlockInfo();
    346 
    347   // Get the ScopedArenaAllocator used for codegen memory allocation.
    348   ScopedArenaAllocator* GetScopedAllocator();
    349 
    350   void AddSlowPath(SlowPathCode* slow_path);
    351 
    352   ScopedArenaVector<uint8_t> BuildStackMaps(const dex::CodeItem* code_item_for_osr_check);
    353   size_t GetNumberOfJitRoots() const;
    354 
    355   // Fills the `literals` array with literals collected during code generation.
    356   // Also emits literal patches.
    357   void EmitJitRoots(uint8_t* code,
    358                     const uint8_t* roots_data,
    359                     /*out*/std::vector<Handle<mirror::Object>>* roots)
    360       REQUIRES_SHARED(Locks::mutator_lock_);
    361 
    362   bool IsLeafMethod() const {
    363     return is_leaf_;
    364   }
    365 
    366   void MarkNotLeaf() {
    367     is_leaf_ = false;
    368     requires_current_method_ = true;
    369   }
    370 
    371   void SetRequiresCurrentMethod() {
    372     requires_current_method_ = true;
    373   }
    374 
    375   bool RequiresCurrentMethod() const {
    376     return requires_current_method_;
    377   }
    378 
    379   // Clears the spill slots taken by loop phis in the `LocationSummary` of the
    380   // suspend check. This is called when the code generator generates code
    381   // for the suspend check at the back edge (instead of where the suspend check
    382   // is, which is the loop entry). At this point, the spill slots for the phis
    383   // have not been written to.
    384   void ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check,
    385                                              HParallelMove* spills) const;
    386 
    387   bool* GetBlockedCoreRegisters() const { return blocked_core_registers_; }
    388   bool* GetBlockedFloatingPointRegisters() const { return blocked_fpu_registers_; }
    389 
    390   bool IsBlockedCoreRegister(size_t i) { return blocked_core_registers_[i]; }
    391   bool IsBlockedFloatingPointRegister(size_t i) { return blocked_fpu_registers_[i]; }
    392 
    393   // Helper that returns the offset of the array's length field.
    394   // Note: Besides the normal arrays, we also use the HArrayLength for
    395   // accessing the String's `count` field in String intrinsics.
    396   static uint32_t GetArrayLengthOffset(HArrayLength* array_length);
    397 
    398   // Helper that returns the offset of the array's data.
    399   // Note: Besides the normal arrays, we also use the HArrayGet for
    400   // accessing the String's `value` field in String intrinsics.
    401   static uint32_t GetArrayDataOffset(HArrayGet* array_get);
    402 
    403   void EmitParallelMoves(Location from1,
    404                          Location to1,
    405                          DataType::Type type1,
    406                          Location from2,
    407                          Location to2,
    408                          DataType::Type type2);
    409 
    410   static bool InstanceOfNeedsReadBarrier(HInstanceOf* instance_of) {
    411     // Used only for kExactCheck, kAbstractClassCheck, kClassHierarchyCheck and kArrayObjectCheck.
    412     DCHECK(instance_of->GetTypeCheckKind() == TypeCheckKind::kExactCheck ||
    413            instance_of->GetTypeCheckKind() == TypeCheckKind::kAbstractClassCheck ||
    414            instance_of->GetTypeCheckKind() == TypeCheckKind::kClassHierarchyCheck ||
    415            instance_of->GetTypeCheckKind() == TypeCheckKind::kArrayObjectCheck)
    416         << instance_of->GetTypeCheckKind();
    417     // If the target class is in the boot image, it's non-moveable and it doesn't matter
    418     // if we compare it with a from-space or to-space reference, the result is the same.
    419     // It's OK to traverse a class hierarchy jumping between from-space and to-space.
    420     return kEmitCompilerReadBarrier && !instance_of->GetTargetClass()->IsInBootImage();
    421   }
    422 
    423   static ReadBarrierOption ReadBarrierOptionForInstanceOf(HInstanceOf* instance_of) {
    424     return InstanceOfNeedsReadBarrier(instance_of) ? kWithReadBarrier : kWithoutReadBarrier;
    425   }
    426 
    427   static bool IsTypeCheckSlowPathFatal(HCheckCast* check_cast) {
    428     switch (check_cast->GetTypeCheckKind()) {
    429       case TypeCheckKind::kExactCheck:
    430       case TypeCheckKind::kAbstractClassCheck:
    431       case TypeCheckKind::kClassHierarchyCheck:
    432       case TypeCheckKind::kArrayObjectCheck:
    433       case TypeCheckKind::kInterfaceCheck: {
    434         bool needs_read_barrier =
    435             kEmitCompilerReadBarrier && !check_cast->GetTargetClass()->IsInBootImage();
    436         // We do not emit read barriers for HCheckCast, so we can get false negatives
    437         // and the slow path shall re-check and simply return if the cast is actually OK.
    438         return !needs_read_barrier;
    439       }
    440       case TypeCheckKind::kArrayCheck:
    441       case TypeCheckKind::kUnresolvedCheck:
    442         return false;
    443       case TypeCheckKind::kBitstringCheck:
    444         return true;
    445     }
    446     LOG(FATAL) << "Unreachable";
    447     UNREACHABLE();
    448   }
    449 
    450   static LocationSummary::CallKind GetCheckCastCallKind(HCheckCast* check_cast) {
    451     return (IsTypeCheckSlowPathFatal(check_cast) && !check_cast->CanThrowIntoCatchBlock())
    452         ? LocationSummary::kNoCall  // In fact, call on a fatal (non-returning) slow path.
    453         : LocationSummary::kCallOnSlowPath;
    454   }
    455 
    456   static bool StoreNeedsWriteBarrier(DataType::Type type, HInstruction* value) {
    457     // Check that null value is not represented as an integer constant.
    458     DCHECK(type != DataType::Type::kReference || !value->IsIntConstant());
    459     return type == DataType::Type::kReference && !value->IsNullConstant();
    460   }
    461 
    462 
    463   // Performs checks pertaining to an InvokeRuntime call.
    464   void ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
    465                              HInstruction* instruction,
    466                              SlowPathCode* slow_path);
    467 
    468   // Performs checks pertaining to an InvokeRuntimeWithoutRecordingPcInfo call.
    469   static void ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
    470                                                           SlowPathCode* slow_path);
    471 
    472   void AddAllocatedRegister(Location location) {
    473     allocated_registers_.Add(location);
    474   }
    475 
    476   bool HasAllocatedRegister(bool is_core, int reg) const {
    477     return is_core
    478         ? allocated_registers_.ContainsCoreRegister(reg)
    479         : allocated_registers_.ContainsFloatingPointRegister(reg);
    480   }
    481 
    482   void AllocateLocations(HInstruction* instruction);
    483 
    484   // Tells whether the stack frame of the compiled method is
    485   // considered "empty", that is either actually having a size of zero,
    486   // or just containing the saved return address register.
    487   bool HasEmptyFrame() const {
    488     return GetFrameSize() == (CallPushesPC() ? GetWordSize() : 0);
    489   }
    490 
    491   static int8_t GetInt8ValueOf(HConstant* constant) {
    492     DCHECK(constant->IsIntConstant());
    493     return constant->AsIntConstant()->GetValue();
    494   }
    495 
    496   static int16_t GetInt16ValueOf(HConstant* constant) {
    497     DCHECK(constant->IsIntConstant());
    498     return constant->AsIntConstant()->GetValue();
    499   }
    500 
    501   static int32_t GetInt32ValueOf(HConstant* constant) {
    502     if (constant->IsIntConstant()) {
    503       return constant->AsIntConstant()->GetValue();
    504     } else if (constant->IsNullConstant()) {
    505       return 0;
    506     } else {
    507       DCHECK(constant->IsFloatConstant());
    508       return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue());
    509     }
    510   }
    511 
    512   static int64_t GetInt64ValueOf(HConstant* constant) {
    513     if (constant->IsIntConstant()) {
    514       return constant->AsIntConstant()->GetValue();
    515     } else if (constant->IsNullConstant()) {
    516       return 0;
    517     } else if (constant->IsFloatConstant()) {
    518       return bit_cast<int32_t, float>(constant->AsFloatConstant()->GetValue());
    519     } else if (constant->IsLongConstant()) {
    520       return constant->AsLongConstant()->GetValue();
    521     } else {
    522       DCHECK(constant->IsDoubleConstant());
    523       return bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue());
    524     }
    525   }
    526 
    527   size_t GetFirstRegisterSlotInSlowPath() const {
    528     return first_register_slot_in_slow_path_;
    529   }
    530 
    531   uint32_t FrameEntrySpillSize() const {
    532     return GetFpuSpillSize() + GetCoreSpillSize();
    533   }
    534 
    535   virtual ParallelMoveResolver* GetMoveResolver() = 0;
    536 
    537   static void CreateCommonInvokeLocationSummary(
    538       HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor);
    539 
    540   void GenerateInvokeStaticOrDirectRuntimeCall(
    541       HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path);
    542 
    543   void GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke);
    544 
    545   void GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke);
    546 
    547   void GenerateInvokeCustomCall(HInvokeCustom* invoke);
    548 
    549   void CreateUnresolvedFieldLocationSummary(
    550       HInstruction* field_access,
    551       DataType::Type field_type,
    552       const FieldAccessCallingConvention& calling_convention);
    553 
    554   void GenerateUnresolvedFieldAccess(
    555       HInstruction* field_access,
    556       DataType::Type field_type,
    557       uint32_t field_index,
    558       uint32_t dex_pc,
    559       const FieldAccessCallingConvention& calling_convention);
    560 
    561   static void CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
    562                                                         Location runtime_type_index_location,
    563                                                         Location runtime_return_location);
    564   void GenerateLoadClassRuntimeCall(HLoadClass* cls);
    565 
    566   static void CreateLoadMethodHandleRuntimeCallLocationSummary(HLoadMethodHandle* method_handle,
    567                                                              Location runtime_handle_index_location,
    568                                                              Location runtime_return_location);
    569   void GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle* method_handle);
    570 
    571   static void CreateLoadMethodTypeRuntimeCallLocationSummary(HLoadMethodType* method_type,
    572                                                              Location runtime_type_index_location,
    573                                                              Location runtime_return_location);
    574   void GenerateLoadMethodTypeRuntimeCall(HLoadMethodType* method_type);
    575 
    576   uint32_t GetBootImageOffset(HLoadClass* load_class);
    577   uint32_t GetBootImageOffset(HLoadString* load_string);
    578   uint32_t GetBootImageOffset(HInvokeStaticOrDirect* invoke);
    579 
    580   static void CreateSystemArrayCopyLocationSummary(HInvoke* invoke);
    581 
    582   void SetDisassemblyInformation(DisassemblyInformation* info) { disasm_info_ = info; }
    583   DisassemblyInformation* GetDisassemblyInformation() const { return disasm_info_; }
    584 
    585   virtual void InvokeRuntime(QuickEntrypointEnum entrypoint,
    586                              HInstruction* instruction,
    587                              uint32_t dex_pc,
    588                              SlowPathCode* slow_path = nullptr) = 0;
    589 
    590   // Check if the desired_string_load_kind is supported. If it is, return it,
    591   // otherwise return a fall-back kind that should be used instead.
    592   virtual HLoadString::LoadKind GetSupportedLoadStringKind(
    593       HLoadString::LoadKind desired_string_load_kind) = 0;
    594 
    595   // Check if the desired_class_load_kind is supported. If it is, return it,
    596   // otherwise return a fall-back kind that should be used instead.
    597   virtual HLoadClass::LoadKind GetSupportedLoadClassKind(
    598       HLoadClass::LoadKind desired_class_load_kind) = 0;
    599 
    600   static LocationSummary::CallKind GetLoadStringCallKind(HLoadString* load) {
    601     switch (load->GetLoadKind()) {
    602       case HLoadString::LoadKind::kBssEntry:
    603         DCHECK(load->NeedsEnvironment());
    604         return LocationSummary::kCallOnSlowPath;
    605       case HLoadString::LoadKind::kRuntimeCall:
    606         DCHECK(load->NeedsEnvironment());
    607         return LocationSummary::kCallOnMainOnly;
    608       case HLoadString::LoadKind::kJitTableAddress:
    609         DCHECK(!load->NeedsEnvironment());
    610         return kEmitCompilerReadBarrier
    611             ? LocationSummary::kCallOnSlowPath
    612             : LocationSummary::kNoCall;
    613         break;
    614       default:
    615         DCHECK(!load->NeedsEnvironment());
    616         return LocationSummary::kNoCall;
    617     }
    618   }
    619 
    620   // Check if the desired_dispatch_info is supported. If it is, return it,
    621   // otherwise return a fall-back info that should be used instead.
    622   virtual HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch(
    623       const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
    624       ArtMethod* method) = 0;
    625 
    626   // Generate a call to a static or direct method.
    627   virtual void GenerateStaticOrDirectCall(
    628       HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0;
    629   // Generate a call to a virtual method.
    630   virtual void GenerateVirtualCall(
    631       HInvokeVirtual* invoke, Location temp, SlowPathCode* slow_path = nullptr) = 0;
    632 
    633   // Copy the result of a call into the given target.
    634   virtual void MoveFromReturnRegister(Location trg, DataType::Type type) = 0;
    635 
    636   virtual void GenerateNop() = 0;
    637 
    638   static QuickEntrypointEnum GetArrayAllocationEntrypoint(HNewArray* new_array);
    639 
    640  protected:
    641   // Patch info used for recording locations of required linker patches and their targets,
    642   // i.e. target method, string, type or code identified by their dex file and index,
    643   // or .data.bimg.rel.ro entries identified by the boot image offset.
    644   template <typename LabelType>
    645   struct PatchInfo {
    646     PatchInfo(const DexFile* dex_file, uint32_t off_or_idx)
    647         : target_dex_file(dex_file), offset_or_index(off_or_idx), label() { }
    648 
    649     // Target dex file or null for .data.bmig.rel.ro patches.
    650     const DexFile* target_dex_file;
    651     // Either the boot image offset (to write to .data.bmig.rel.ro) or string/type/method index.
    652     uint32_t offset_or_index;
    653     // Label for the instruction to patch.
    654     LabelType label;
    655   };
    656 
    657   CodeGenerator(HGraph* graph,
    658                 size_t number_of_core_registers,
    659                 size_t number_of_fpu_registers,
    660                 size_t number_of_register_pairs,
    661                 uint32_t core_callee_save_mask,
    662                 uint32_t fpu_callee_save_mask,
    663                 const CompilerOptions& compiler_options,
    664                 OptimizingCompilerStats* stats);
    665 
    666   virtual HGraphVisitor* GetLocationBuilder() = 0;
    667   virtual HGraphVisitor* GetInstructionVisitor() = 0;
    668 
    669   // Returns the location of the first spilled entry for floating point registers,
    670   // relative to the stack pointer.
    671   uint32_t GetFpuSpillStart() const {
    672     return GetFrameSize() - FrameEntrySpillSize();
    673   }
    674 
    675   uint32_t GetFpuSpillSize() const {
    676     return POPCOUNT(fpu_spill_mask_) * GetFloatingPointSpillSlotSize();
    677   }
    678 
    679   uint32_t GetCoreSpillSize() const {
    680     return POPCOUNT(core_spill_mask_) * GetWordSize();
    681   }
    682 
    683   virtual bool HasAllocatedCalleeSaveRegisters() const {
    684     // We check the core registers against 1 because it always comprises the return PC.
    685     return (POPCOUNT(allocated_registers_.GetCoreRegisters() & core_callee_save_mask_) != 1)
    686       || (POPCOUNT(allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_) != 0);
    687   }
    688 
    689   bool CallPushesPC() const {
    690     InstructionSet instruction_set = GetInstructionSet();
    691     return instruction_set == InstructionSet::kX86 || instruction_set == InstructionSet::kX86_64;
    692   }
    693 
    694   // Arm64 has its own type for a label, so we need to templatize these methods
    695   // to share the logic.
    696 
    697   template <typename LabelType>
    698   LabelType* CommonInitializeLabels() {
    699     // We use raw array allocations instead of ArenaVector<> because Labels are
    700     // non-constructible and non-movable and as such cannot be held in a vector.
    701     size_t size = GetGraph()->GetBlocks().size();
    702     LabelType* labels =
    703         GetGraph()->GetAllocator()->AllocArray<LabelType>(size, kArenaAllocCodeGenerator);
    704     for (size_t i = 0; i != size; ++i) {
    705       new(labels + i) LabelType();
    706     }
    707     return labels;
    708   }
    709 
    710   template <typename LabelType>
    711   LabelType* CommonGetLabelOf(LabelType* raw_pointer_to_labels_array, HBasicBlock* block) const {
    712     block = FirstNonEmptyBlock(block);
    713     return raw_pointer_to_labels_array + block->GetBlockId();
    714   }
    715 
    716   SlowPathCode* GetCurrentSlowPath() {
    717     return current_slow_path_;
    718   }
    719 
    720   StackMapStream* GetStackMapStream();
    721 
    722   void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string);
    723   uint64_t GetJitStringRootIndex(StringReference string_reference);
    724   void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass);
    725   uint64_t GetJitClassRootIndex(TypeReference type_reference);
    726 
    727   // Emit the patches assocatied with JIT roots. Only applies to JIT compiled code.
    728   virtual void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data);
    729 
    730   // Frame size required for this method.
    731   uint32_t frame_size_;
    732   uint32_t core_spill_mask_;
    733   uint32_t fpu_spill_mask_;
    734   uint32_t first_register_slot_in_slow_path_;
    735 
    736   // Registers that were allocated during linear scan.
    737   RegisterSet allocated_registers_;
    738 
    739   // Arrays used when doing register allocation to know which
    740   // registers we can allocate. `SetupBlockedRegisters` updates the
    741   // arrays.
    742   bool* const blocked_core_registers_;
    743   bool* const blocked_fpu_registers_;
    744   size_t number_of_core_registers_;
    745   size_t number_of_fpu_registers_;
    746   size_t number_of_register_pairs_;
    747   const uint32_t core_callee_save_mask_;
    748   const uint32_t fpu_callee_save_mask_;
    749 
    750   // The order to use for code generation.
    751   const ArenaVector<HBasicBlock*>* block_order_;
    752 
    753   DisassemblyInformation* disasm_info_;
    754 
    755  private:
    756   class CodeGenerationData;
    757 
    758   void InitializeCodeGenerationData();
    759   size_t GetStackOffsetOfSavedRegister(size_t index);
    760   void GenerateSlowPaths();
    761   void BlockIfInRegister(Location location, bool is_out = false) const;
    762   void EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path);
    763 
    764   OptimizingCompilerStats* stats_;
    765 
    766   HGraph* const graph_;
    767   const CompilerOptions& compiler_options_;
    768 
    769   // The current slow-path that we're generating code for.
    770   SlowPathCode* current_slow_path_;
    771 
    772   // The current block index in `block_order_` of the block
    773   // we are generating code for.
    774   size_t current_block_index_;
    775 
    776   // Whether the method is a leaf method.
    777   bool is_leaf_;
    778 
    779   // Whether an instruction in the graph accesses the current method.
    780   // TODO: Rename: this actually indicates that some instruction in the method
    781   // needs the environment including a valid stack frame.
    782   bool requires_current_method_;
    783 
    784   // The CodeGenerationData contains a ScopedArenaAllocator intended for reusing the
    785   // ArenaStack memory allocated in previous passes instead of adding to the memory
    786   // held by the ArenaAllocator. This ScopedArenaAllocator is created in
    787   // CodeGenerator::Compile() and remains alive until the CodeGenerator is destroyed.
    788   std::unique_ptr<CodeGenerationData> code_generation_data_;
    789 
    790   friend class OptimizingCFITest;
    791 
    792   DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
    793 };
    794 
    795 template <typename C, typename F>
    796 class CallingConvention {
    797  public:
    798   CallingConvention(const C* registers,
    799                     size_t number_of_registers,
    800                     const F* fpu_registers,
    801                     size_t number_of_fpu_registers,
    802                     PointerSize pointer_size)
    803       : registers_(registers),
    804         number_of_registers_(number_of_registers),
    805         fpu_registers_(fpu_registers),
    806         number_of_fpu_registers_(number_of_fpu_registers),
    807         pointer_size_(pointer_size) {}
    808 
    809   size_t GetNumberOfRegisters() const { return number_of_registers_; }
    810   size_t GetNumberOfFpuRegisters() const { return number_of_fpu_registers_; }
    811 
    812   C GetRegisterAt(size_t index) const {
    813     DCHECK_LT(index, number_of_registers_);
    814     return registers_[index];
    815   }
    816 
    817   F GetFpuRegisterAt(size_t index) const {
    818     DCHECK_LT(index, number_of_fpu_registers_);
    819     return fpu_registers_[index];
    820   }
    821 
    822   size_t GetStackOffsetOf(size_t index) const {
    823     // We still reserve the space for parameters passed by registers.
    824     // Add space for the method pointer.
    825     return static_cast<size_t>(pointer_size_) + index * kVRegSize;
    826   }
    827 
    828  private:
    829   const C* registers_;
    830   const size_t number_of_registers_;
    831   const F* fpu_registers_;
    832   const size_t number_of_fpu_registers_;
    833   const PointerSize pointer_size_;
    834 
    835   DISALLOW_COPY_AND_ASSIGN(CallingConvention);
    836 };
    837 
    838 /**
    839  * A templated class SlowPathGenerator with a templated method NewSlowPath()
    840  * that can be used by any code generator to share equivalent slow-paths with
    841  * the objective of reducing generated code size.
    842  *
    843  * InstructionType:  instruction that requires SlowPathCodeType
    844  * SlowPathCodeType: subclass of SlowPathCode, with constructor SlowPathCodeType(InstructionType *)
    845  */
    846 template <typename InstructionType>
    847 class SlowPathGenerator {
    848   static_assert(std::is_base_of<HInstruction, InstructionType>::value,
    849                 "InstructionType is not a subclass of art::HInstruction");
    850 
    851  public:
    852   SlowPathGenerator(HGraph* graph, CodeGenerator* codegen)
    853       : graph_(graph),
    854         codegen_(codegen),
    855         slow_path_map_(std::less<uint32_t>(),
    856                        graph->GetAllocator()->Adapter(kArenaAllocSlowPaths)) {}
    857 
    858   // Creates and adds a new slow-path, if needed, or returns existing one otherwise.
    859   // Templating the method (rather than the whole class) on the slow-path type enables
    860   // keeping this code at a generic, non architecture-specific place.
    861   //
    862   // NOTE: This approach assumes each InstructionType only generates one SlowPathCodeType.
    863   //       To relax this requirement, we would need some RTTI on the stored slow-paths,
    864   //       or template the class as a whole on SlowPathType.
    865   template <typename SlowPathCodeType>
    866   SlowPathCodeType* NewSlowPath(InstructionType* instruction) {
    867     static_assert(std::is_base_of<SlowPathCode, SlowPathCodeType>::value,
    868                   "SlowPathCodeType is not a subclass of art::SlowPathCode");
    869     static_assert(std::is_constructible<SlowPathCodeType, InstructionType*>::value,
    870                   "SlowPathCodeType is not constructible from InstructionType*");
    871     // Iterate over potential candidates for sharing. Currently, only same-typed
    872     // slow-paths with exactly the same dex-pc are viable candidates.
    873     // TODO: pass dex-pc/slow-path-type to run-time to allow even more sharing?
    874     const uint32_t dex_pc = instruction->GetDexPc();
    875     auto iter = slow_path_map_.find(dex_pc);
    876     if (iter != slow_path_map_.end()) {
    877       const ArenaVector<std::pair<InstructionType*, SlowPathCode*>>& candidates = iter->second;
    878       for (const auto& it : candidates) {
    879         InstructionType* other_instruction = it.first;
    880         SlowPathCodeType* other_slow_path = down_cast<SlowPathCodeType*>(it.second);
    881         // Determine if the instructions allow for slow-path sharing.
    882         if (HaveSameLiveRegisters(instruction, other_instruction) &&
    883             HaveSameStackMap(instruction, other_instruction)) {
    884           // Can share: reuse existing one.
    885           return other_slow_path;
    886         }
    887       }
    888     } else {
    889       // First time this dex-pc is seen.
    890       iter = slow_path_map_.Put(dex_pc,
    891                                 {{}, {graph_->GetAllocator()->Adapter(kArenaAllocSlowPaths)}});
    892     }
    893     // Cannot share: create and add new slow-path for this particular dex-pc.
    894     SlowPathCodeType* slow_path =
    895         new (codegen_->GetScopedAllocator()) SlowPathCodeType(instruction);
    896     iter->second.emplace_back(std::make_pair(instruction, slow_path));
    897     codegen_->AddSlowPath(slow_path);
    898     return slow_path;
    899   }
    900 
    901  private:
    902   // Tests if both instructions have same set of live physical registers. This ensures
    903   // the slow-path has exactly the same preamble on saving these registers to stack.
    904   bool HaveSameLiveRegisters(const InstructionType* i1, const InstructionType* i2) const {
    905     const uint32_t core_spill = ~codegen_->GetCoreSpillMask();
    906     const uint32_t fpu_spill = ~codegen_->GetFpuSpillMask();
    907     RegisterSet* live1 = i1->GetLocations()->GetLiveRegisters();
    908     RegisterSet* live2 = i2->GetLocations()->GetLiveRegisters();
    909     return (((live1->GetCoreRegisters() & core_spill) ==
    910              (live2->GetCoreRegisters() & core_spill)) &&
    911             ((live1->GetFloatingPointRegisters() & fpu_spill) ==
    912              (live2->GetFloatingPointRegisters() & fpu_spill)));
    913   }
    914 
    915   // Tests if both instructions have the same stack map. This ensures the interpreter
    916   // will find exactly the same dex-registers at the same entries.
    917   bool HaveSameStackMap(const InstructionType* i1, const InstructionType* i2) const {
    918     DCHECK(i1->HasEnvironment());
    919     DCHECK(i2->HasEnvironment());
    920     // We conservatively test if the two instructions find exactly the same instructions
    921     // and location in each dex-register. This guarantees they will have the same stack map.
    922     HEnvironment* e1 = i1->GetEnvironment();
    923     HEnvironment* e2 = i2->GetEnvironment();
    924     if (e1->GetParent() != e2->GetParent() || e1->Size() != e2->Size()) {
    925       return false;
    926     }
    927     for (size_t i = 0, sz = e1->Size(); i < sz; ++i) {
    928       if (e1->GetInstructionAt(i) != e2->GetInstructionAt(i) ||
    929           !e1->GetLocationAt(i).Equals(e2->GetLocationAt(i))) {
    930         return false;
    931       }
    932     }
    933     return true;
    934   }
    935 
    936   HGraph* const graph_;
    937   CodeGenerator* const codegen_;
    938 
    939   // Map from dex-pc to vector of already existing instruction/slow-path pairs.
    940   ArenaSafeMap<uint32_t, ArenaVector<std::pair<InstructionType*, SlowPathCode*>>> slow_path_map_;
    941 
    942   DISALLOW_COPY_AND_ASSIGN(SlowPathGenerator);
    943 };
    944 
    945 class InstructionCodeGenerator : public HGraphVisitor {
    946  public:
    947   InstructionCodeGenerator(HGraph* graph, CodeGenerator* codegen)
    948       : HGraphVisitor(graph),
    949         deopt_slow_paths_(graph, codegen) {}
    950 
    951  protected:
    952   // Add slow-path generator for each instruction/slow-path combination that desires sharing.
    953   // TODO: under current regime, only deopt sharing make sense; extend later.
    954   SlowPathGenerator<HDeoptimize> deopt_slow_paths_;
    955 };
    956 
    957 }  // namespace art
    958 
    959 #endif  // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_H_
    960