1 /**@file 2 3 Copyright (c) 2006 - 2015, Intel Corporation. All rights reserved.<BR> 4 (C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR> 5 This program and the accompanying materials 6 are licensed and made available under the terms and conditions of the BSD License 7 which accompanies this distribution. The full text of the license may be found at 8 http://opensource.org/licenses/bsd-license.php 9 10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, 11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. 12 13 Module Name: 14 15 SecMain.c 16 17 Abstract: 18 WinNt emulator of SEC phase. It's really a Win32 application, but this is 19 Ok since all the other modules for NT32 are NOT Win32 applications. 20 21 This program gets NT32 PCD setting and figures out what the memory layout 22 will be, how may FD's will be loaded and also what the boot mode is. 23 24 The SEC registers a set of services with the SEC core. gPrivateDispatchTable 25 is a list of PPI's produced by the SEC that are available for usage in PEI. 26 27 This code produces 128 K of temporary memory for the PEI stack by directly 28 allocate memory space with ReadWrite and Execute attribute. 29 30 **/ 31 32 #include "SecMain.h" 33 34 #ifndef SE_TIME_ZONE_NAME 35 #define SE_TIME_ZONE_NAME TEXT("SeTimeZonePrivilege") 36 #endif 37 38 NT_PEI_LOAD_FILE_PPI mSecNtLoadFilePpi = { SecWinNtPeiLoadFile }; 39 40 PEI_NT_AUTOSCAN_PPI mSecNtAutoScanPpi = { SecWinNtPeiAutoScan }; 41 42 PEI_NT_THUNK_PPI mSecWinNtThunkPpi = { SecWinNtWinNtThunkAddress }; 43 44 EFI_PEI_PROGRESS_CODE_PPI mSecStatusCodePpi = { SecPeiReportStatusCode }; 45 46 NT_FWH_PPI mSecFwhInformationPpi = { SecWinNtFdAddress }; 47 48 EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI mSecTemporaryRamSupportPpi = {SecTemporaryRamSupport}; 49 50 EFI_PEI_PPI_DESCRIPTOR gPrivateDispatchTable[] = { 51 { 52 EFI_PEI_PPI_DESCRIPTOR_PPI, 53 &gNtPeiLoadFilePpiGuid, 54 &mSecNtLoadFilePpi 55 }, 56 { 57 EFI_PEI_PPI_DESCRIPTOR_PPI, 58 &gPeiNtAutoScanPpiGuid, 59 &mSecNtAutoScanPpi 60 }, 61 { 62 EFI_PEI_PPI_DESCRIPTOR_PPI, 63 &gPeiNtThunkPpiGuid, 64 &mSecWinNtThunkPpi 65 }, 66 { 67 EFI_PEI_PPI_DESCRIPTOR_PPI, 68 &gEfiPeiStatusCodePpiGuid, 69 &mSecStatusCodePpi 70 }, 71 { 72 EFI_PEI_PPI_DESCRIPTOR_PPI, 73 &gEfiTemporaryRamSupportPpiGuid, 74 &mSecTemporaryRamSupportPpi 75 }, 76 { 77 EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST, 78 &gNtFwhPpiGuid, 79 &mSecFwhInformationPpi 80 } 81 }; 82 83 84 // 85 // Default information about where the FD is located. 86 // This array gets filled in with information from PcdWinNtFirmwareVolume 87 // The number of array elements is allocated base on parsing 88 // PcdWinNtFirmwareVolume and the memory is never freed. 89 // 90 UINTN gFdInfoCount = 0; 91 NT_FD_INFO *gFdInfo; 92 93 // 94 // Array that supports seperate memory rantes. 95 // The memory ranges are set by PcdWinNtMemorySizeForSecMain. 96 // The number of array elements is allocated base on parsing 97 // PcdWinNtMemorySizeForSecMain value and the memory is never freed. 98 // 99 UINTN gSystemMemoryCount = 0; 100 NT_SYSTEM_MEMORY *gSystemMemory; 101 102 VOID 103 EFIAPI 104 SecSwitchStack ( 105 UINT32 TemporaryMemoryBase, 106 UINT32 PermenentMemoryBase 107 ); 108 EFI_STATUS 109 SecNt32PeCoffRelocateImage ( 110 IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext 111 ); 112 113 VOID 114 EFIAPI 115 PeiSwitchStacks ( 116 IN SWITCH_STACK_ENTRY_POINT EntryPoint, 117 IN VOID *Context1, OPTIONAL 118 IN VOID *Context2, OPTIONAL 119 IN VOID *Context3, OPTIONAL 120 IN VOID *NewStack 121 ); 122 123 VOID 124 SecPrint ( 125 CHAR8 *Format, 126 ... 127 ) 128 { 129 va_list Marker; 130 UINTN CharCount; 131 CHAR8 Buffer[EFI_STATUS_CODE_DATA_MAX_SIZE]; 132 133 va_start (Marker, Format); 134 135 _vsnprintf (Buffer, sizeof (Buffer), Format, Marker); 136 137 va_end (Marker); 138 139 CharCount = strlen (Buffer); 140 WriteFile ( 141 GetStdHandle (STD_OUTPUT_HANDLE), 142 Buffer, 143 (DWORD)CharCount, 144 (LPDWORD)&CharCount, 145 NULL 146 ); 147 } 148 149 INTN 150 EFIAPI 151 main ( 152 IN INTN Argc, 153 IN CHAR8 **Argv, 154 IN CHAR8 **Envp 155 ) 156 /*++ 157 158 Routine Description: 159 Main entry point to SEC for WinNt. This is a Windows program 160 161 Arguments: 162 Argc - Number of command line arguments 163 Argv - Array of command line argument strings 164 Envp - Array of environment variable strings 165 166 Returns: 167 0 - Normal exit 168 1 - Abnormal exit 169 170 --*/ 171 { 172 EFI_STATUS Status; 173 HANDLE Token; 174 TOKEN_PRIVILEGES TokenPrivileges; 175 EFI_PHYSICAL_ADDRESS InitialStackMemory; 176 UINT64 InitialStackMemorySize; 177 UINTN Index; 178 UINTN Index1; 179 UINTN Index2; 180 CHAR16 *FileName; 181 CHAR16 *FileNamePtr; 182 BOOLEAN Done; 183 VOID *PeiCoreFile; 184 CHAR16 *MemorySizeStr; 185 CHAR16 *FirmwareVolumesStr; 186 UINTN *StackPointer; 187 UINT32 ProcessAffinityMask; 188 UINT32 SystemAffinityMask; 189 INT32 LowBit; 190 191 192 // 193 // Enable the privilege so that RTC driver can successfully run SetTime() 194 // 195 OpenProcessToken (GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES|TOKEN_QUERY, &Token); 196 if (LookupPrivilegeValue(NULL, SE_TIME_ZONE_NAME, &TokenPrivileges.Privileges[0].Luid)) { 197 TokenPrivileges.PrivilegeCount = 1; 198 TokenPrivileges.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; 199 AdjustTokenPrivileges(Token, FALSE, &TokenPrivileges, 0, (PTOKEN_PRIVILEGES) NULL, 0); 200 } 201 202 MemorySizeStr = (CHAR16 *) PcdGetPtr (PcdWinNtMemorySizeForSecMain); 203 FirmwareVolumesStr = (CHAR16 *) PcdGetPtr (PcdWinNtFirmwareVolume); 204 205 SecPrint ("\nEDK II SEC Main NT Emulation Environment from www.TianoCore.org\n"); 206 207 // 208 // Determine the first thread available to this process. 209 // 210 if (GetProcessAffinityMask (GetCurrentProcess (), &ProcessAffinityMask, &SystemAffinityMask)) { 211 LowBit = (INT32)LowBitSet32 (ProcessAffinityMask); 212 if (LowBit != -1) { 213 // 214 // Force the system to bind the process to a single thread to work 215 // around odd semaphore type crashes. 216 // 217 SetProcessAffinityMask (GetCurrentProcess (), (INTN)(BIT0 << LowBit)); 218 } 219 } 220 221 // 222 // Make some Windows calls to Set the process to the highest priority in the 223 // idle class. We need this to have good performance. 224 // 225 SetPriorityClass (GetCurrentProcess (), IDLE_PRIORITY_CLASS); 226 SetThreadPriority (GetCurrentThread (), THREAD_PRIORITY_HIGHEST); 227 228 // 229 // Allocate space for gSystemMemory Array 230 // 231 gSystemMemoryCount = CountSeparatorsInString (MemorySizeStr, '!') + 1; 232 gSystemMemory = calloc (gSystemMemoryCount, sizeof (NT_SYSTEM_MEMORY)); 233 if (gSystemMemory == NULL) { 234 SecPrint ("ERROR : Can not allocate memory for %S. Exiting.\n", MemorySizeStr); 235 exit (1); 236 } 237 // 238 // Allocate space for gSystemMemory Array 239 // 240 gFdInfoCount = CountSeparatorsInString (FirmwareVolumesStr, '!') + 1; 241 gFdInfo = calloc (gFdInfoCount, sizeof (NT_FD_INFO)); 242 if (gFdInfo == NULL) { 243 SecPrint ("ERROR : Can not allocate memory for %S. Exiting.\n", FirmwareVolumesStr); 244 exit (1); 245 } 246 // 247 // Setup Boot Mode. If BootModeStr == "" then BootMode = 0 (BOOT_WITH_FULL_CONFIGURATION) 248 // 249 SecPrint (" BootMode 0x%02x\n", PcdGet32 (PcdWinNtBootMode)); 250 251 // 252 // Allocate 128K memory to emulate temp memory for PEI. 253 // on a real platform this would be SRAM, or using the cache as RAM. 254 // Set InitialStackMemory to zero so WinNtOpenFile will allocate a new mapping 255 // 256 InitialStackMemorySize = STACK_SIZE; 257 InitialStackMemory = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAlloc (NULL, (SIZE_T) (InitialStackMemorySize), MEM_COMMIT, PAGE_EXECUTE_READWRITE); 258 if (InitialStackMemory == 0) { 259 SecPrint ("ERROR : Can not allocate enough space for SecStack\n"); 260 exit (1); 261 } 262 263 for (StackPointer = (UINTN*) (UINTN) InitialStackMemory; 264 StackPointer < (UINTN*) ((UINTN)InitialStackMemory + (SIZE_T) InitialStackMemorySize); 265 StackPointer ++) { 266 *StackPointer = 0x5AA55AA5; 267 } 268 269 SecPrint (" SEC passing in %d bytes of temp RAM to PEI\n", InitialStackMemorySize); 270 271 // 272 // Open All the firmware volumes and remember the info in the gFdInfo global 273 // 274 FileNamePtr = (CHAR16 *)malloc (StrLen ((CHAR16 *)FirmwareVolumesStr) * sizeof(CHAR16)); 275 if (FileNamePtr == NULL) { 276 SecPrint ("ERROR : Can not allocate memory for firmware volume string\n"); 277 exit (1); 278 } 279 280 StrCpy (FileNamePtr, (CHAR16*)FirmwareVolumesStr); 281 282 for (Done = FALSE, Index = 0, PeiCoreFile = NULL; !Done; Index++) { 283 FileName = FileNamePtr; 284 for (Index1 = 0; (FileNamePtr[Index1] != '!') && (FileNamePtr[Index1] != 0); Index1++) 285 ; 286 if (FileNamePtr[Index1] == 0) { 287 Done = TRUE; 288 } else { 289 FileNamePtr[Index1] = '\0'; 290 FileNamePtr = FileNamePtr + Index1 + 1; 291 } 292 293 // 294 // Open the FD and remember where it got mapped into our processes address space 295 // 296 Status = WinNtOpenFile ( 297 FileName, 298 0, 299 OPEN_EXISTING, 300 &gFdInfo[Index].Address, 301 &gFdInfo[Index].Size 302 ); 303 if (EFI_ERROR (Status)) { 304 SecPrint ("ERROR : Can not open Firmware Device File %S (0x%X). Exiting.\n", FileName, Status); 305 exit (1); 306 } 307 308 SecPrint (" FD loaded from"); 309 // 310 // printf can't print filenames directly as the \ gets interpreted as an 311 // escape character. 312 // 313 for (Index2 = 0; FileName[Index2] != '\0'; Index2++) { 314 SecPrint ("%c", FileName[Index2]); 315 } 316 317 if (PeiCoreFile == NULL) { 318 // 319 // Assume the beginning of the FD is an FV and look for the PEI Core. 320 // Load the first one we find. 321 // 322 Status = SecFfsFindPeiCore ((EFI_FIRMWARE_VOLUME_HEADER *) (UINTN) gFdInfo[Index].Address, &PeiCoreFile); 323 if (!EFI_ERROR (Status)) { 324 SecPrint (" contains SEC Core"); 325 } 326 } 327 328 SecPrint ("\n"); 329 } 330 // 331 // Calculate memory regions and store the information in the gSystemMemory 332 // global for later use. The autosizing code will use this data to 333 // map this memory into the SEC process memory space. 334 // 335 for (Index = 0, Done = FALSE; !Done; Index++) { 336 // 337 // Save the size of the memory and make a Unicode filename SystemMemory00, ... 338 // 339 gSystemMemory[Index].Size = _wtoi (MemorySizeStr) * 0x100000; 340 341 // 342 // Find the next region 343 // 344 for (Index1 = 0; MemorySizeStr[Index1] != '!' && MemorySizeStr[Index1] != 0; Index1++) 345 ; 346 if (MemorySizeStr[Index1] == 0) { 347 Done = TRUE; 348 } 349 350 MemorySizeStr = MemorySizeStr + Index1 + 1; 351 } 352 353 SecPrint ("\n"); 354 355 // 356 // Hand off to PEI Core 357 // 358 SecLoadFromCore ((UINTN) InitialStackMemory, (UINTN) InitialStackMemorySize, (UINTN) gFdInfo[0].Address, PeiCoreFile); 359 360 // 361 // If we get here, then the PEI Core returned. This is an error as PEI should 362 // always hand off to DXE. 363 // 364 SecPrint ("ERROR : PEI Core returned\n"); 365 exit (1); 366 } 367 368 EFI_STATUS 369 WinNtOpenFile ( 370 IN CHAR16 *FileName, 371 IN UINT32 MapSize, 372 IN DWORD CreationDisposition, 373 IN OUT EFI_PHYSICAL_ADDRESS *BaseAddress, 374 OUT UINT64 *Length 375 ) 376 /*++ 377 378 Routine Description: 379 Opens and memory maps a file using WinNt services. If BaseAddress is non zero 380 the process will try and allocate the memory starting at BaseAddress. 381 382 Arguments: 383 FileName - The name of the file to open and map 384 MapSize - The amount of the file to map in bytes 385 CreationDisposition - The flags to pass to CreateFile(). Use to create new files for 386 memory emulation, and exiting files for firmware volume emulation 387 BaseAddress - The base address of the mapped file in the user address space. 388 If passed in as NULL the new memory region is used. 389 If passed in as non NULL the request memory region is used for 390 the mapping of the file into the process space. 391 Length - The size of the mapped region in bytes 392 393 Returns: 394 EFI_SUCCESS - The file was opened and mapped. 395 EFI_NOT_FOUND - FileName was not found in the current directory 396 EFI_DEVICE_ERROR - An error occured attempting to map the opened file 397 398 --*/ 399 { 400 HANDLE NtFileHandle; 401 HANDLE NtMapHandle; 402 VOID *VirtualAddress; 403 UINTN FileSize; 404 405 // 406 // Use Win API to open/create a file 407 // 408 NtFileHandle = CreateFile ( 409 FileName, 410 GENERIC_READ | GENERIC_WRITE | GENERIC_EXECUTE, 411 FILE_SHARE_READ, 412 NULL, 413 CreationDisposition, 414 FILE_ATTRIBUTE_NORMAL, 415 NULL 416 ); 417 if (NtFileHandle == INVALID_HANDLE_VALUE) { 418 return EFI_NOT_FOUND; 419 } 420 // 421 // Map the open file into a memory range 422 // 423 NtMapHandle = CreateFileMapping ( 424 NtFileHandle, 425 NULL, 426 PAGE_EXECUTE_READWRITE, 427 0, 428 MapSize, 429 NULL 430 ); 431 if (NtMapHandle == NULL) { 432 return EFI_DEVICE_ERROR; 433 } 434 // 435 // Get the virtual address (address in the emulator) of the mapped file 436 // 437 VirtualAddress = MapViewOfFileEx ( 438 NtMapHandle, 439 FILE_MAP_EXECUTE | FILE_MAP_ALL_ACCESS, 440 0, 441 0, 442 MapSize, 443 (LPVOID) (UINTN) *BaseAddress 444 ); 445 if (VirtualAddress == NULL) { 446 return EFI_DEVICE_ERROR; 447 } 448 449 if (MapSize == 0) { 450 // 451 // Seek to the end of the file to figure out the true file size. 452 // 453 FileSize = SetFilePointer ( 454 NtFileHandle, 455 0, 456 NULL, 457 FILE_END 458 ); 459 if (FileSize == -1) { 460 return EFI_DEVICE_ERROR; 461 } 462 463 *Length = (UINT64) FileSize; 464 } else { 465 *Length = (UINT64) MapSize; 466 } 467 468 *BaseAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAddress; 469 470 return EFI_SUCCESS; 471 } 472 473 474 #define BYTES_PER_RECORD 512 475 476 EFI_STATUS 477 EFIAPI 478 SecPeiReportStatusCode ( 479 IN CONST EFI_PEI_SERVICES **PeiServices, 480 IN EFI_STATUS_CODE_TYPE CodeType, 481 IN EFI_STATUS_CODE_VALUE Value, 482 IN UINT32 Instance, 483 IN CONST EFI_GUID *CallerId, 484 IN CONST EFI_STATUS_CODE_DATA *Data OPTIONAL 485 ) 486 /*++ 487 488 Routine Description: 489 490 This routine produces the ReportStatusCode PEI service. It's passed 491 up to the PEI Core via a PPI. T 492 493 This code currently uses the NT clib printf. This does not work the same way 494 as the EFI Print (), as %t, %g, %s as Unicode are not supported. 495 496 Arguments: 497 (see EFI_PEI_REPORT_STATUS_CODE) 498 499 Returns: 500 EFI_SUCCESS - Always return success 501 502 --*/ 503 // TODO: PeiServices - add argument and description to function comment 504 // TODO: CodeType - add argument and description to function comment 505 // TODO: Value - add argument and description to function comment 506 // TODO: Instance - add argument and description to function comment 507 // TODO: CallerId - add argument and description to function comment 508 // TODO: Data - add argument and description to function comment 509 { 510 CHAR8 *Format; 511 BASE_LIST Marker; 512 CHAR8 PrintBuffer[BYTES_PER_RECORD * 2]; 513 CHAR8 *Filename; 514 CHAR8 *Description; 515 UINT32 LineNumber; 516 UINT32 ErrorLevel; 517 518 519 if (Data == NULL) { 520 } else if (ReportStatusCodeExtractAssertInfo (CodeType, Value, Data, &Filename, &Description, &LineNumber)) { 521 // 522 // Processes ASSERT () 523 // 524 SecPrint ("ASSERT %s(%d): %s\n", Filename, (int)LineNumber, Description); 525 526 } else if (ReportStatusCodeExtractDebugInfo (Data, &ErrorLevel, &Marker, &Format)) { 527 // 528 // Process DEBUG () macro 529 // 530 AsciiBSPrint (PrintBuffer, BYTES_PER_RECORD, Format, Marker); 531 SecPrint (PrintBuffer); 532 } 533 534 return EFI_SUCCESS; 535 } 536 537 #if defined (MDE_CPU_IA32) 538 /** 539 Transfers control to a function starting with a new stack. 540 541 Transfers control to the function specified by EntryPoint using the new stack 542 specified by NewStack and passing in the parameters specified by Context1 and 543 Context2. Context1 and Context2 are optional and may be NULL. The function 544 EntryPoint must never return. 545 546 If EntryPoint is NULL, then ASSERT(). 547 If NewStack is NULL, then ASSERT(). 548 549 @param EntryPoint A pointer to function to call with the new stack. 550 @param Context1 A pointer to the context to pass into the EntryPoint 551 function. 552 @param Context2 A pointer to the context to pass into the EntryPoint 553 function. 554 @param NewStack A pointer to the new stack to use for the EntryPoint 555 function. 556 @param NewBsp A pointer to the new BSP for the EntryPoint on IPF. It's 557 Reserved on other architectures. 558 559 **/ 560 VOID 561 EFIAPI 562 PeiSwitchStacks ( 563 IN SWITCH_STACK_ENTRY_POINT EntryPoint, 564 IN VOID *Context1, OPTIONAL 565 IN VOID *Context2, OPTIONAL 566 IN VOID *Context3, OPTIONAL 567 IN VOID *NewStack 568 ) 569 { 570 BASE_LIBRARY_JUMP_BUFFER JumpBuffer; 571 572 ASSERT (EntryPoint != NULL); 573 ASSERT (NewStack != NULL); 574 575 // 576 // Stack should be aligned with CPU_STACK_ALIGNMENT 577 // 578 ASSERT (((UINTN)NewStack & (CPU_STACK_ALIGNMENT - 1)) == 0); 579 580 JumpBuffer.Eip = (UINTN)EntryPoint; 581 JumpBuffer.Esp = (UINTN)NewStack - sizeof (VOID*); 582 JumpBuffer.Esp -= sizeof (Context1) + sizeof (Context2) + sizeof(Context3); 583 ((VOID**)JumpBuffer.Esp)[1] = Context1; 584 ((VOID**)JumpBuffer.Esp)[2] = Context2; 585 ((VOID**)JumpBuffer.Esp)[3] = Context3; 586 587 LongJump (&JumpBuffer, (UINTN)-1); 588 589 590 // 591 // InternalSwitchStack () will never return 592 // 593 ASSERT (FALSE); 594 } 595 #endif 596 597 VOID 598 SecLoadFromCore ( 599 IN UINTN LargestRegion, 600 IN UINTN LargestRegionSize, 601 IN UINTN BootFirmwareVolumeBase, 602 IN VOID *PeiCorePe32File 603 ) 604 /*++ 605 606 Routine Description: 607 This is the service to load the PEI Core from the Firmware Volume 608 609 Arguments: 610 LargestRegion - Memory to use for PEI. 611 LargestRegionSize - Size of Memory to use for PEI 612 BootFirmwareVolumeBase - Start of the Boot FV 613 PeiCorePe32File - PEI Core PE32 614 615 Returns: 616 Success means control is transfered and thus we should never return 617 618 --*/ 619 { 620 EFI_STATUS Status; 621 VOID *TopOfStack; 622 UINT64 PeiCoreSize; 623 EFI_PHYSICAL_ADDRESS PeiCoreEntryPoint; 624 EFI_PHYSICAL_ADDRESS PeiImageAddress; 625 EFI_SEC_PEI_HAND_OFF *SecCoreData; 626 UINTN PeiStackSize; 627 628 // 629 // Compute Top Of Memory for Stack and PEI Core Allocations 630 // 631 PeiStackSize = (UINTN)RShiftU64((UINT64)STACK_SIZE,1); 632 633 // 634 // |-----------| <---- TemporaryRamBase + TemporaryRamSize 635 // | Heap | 636 // | | 637 // |-----------| <---- StackBase / PeiTemporaryMemoryBase 638 // | | 639 // | Stack | 640 // |-----------| <---- TemporaryRamBase 641 // 642 TopOfStack = (VOID *)(LargestRegion + PeiStackSize); 643 644 // 645 // Reservet space for storing PeiCore's parament in stack. 646 // 647 TopOfStack = (VOID *)((UINTN)TopOfStack - sizeof (EFI_SEC_PEI_HAND_OFF) - CPU_STACK_ALIGNMENT); 648 TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT); 649 650 // 651 // Bind this information into the SEC hand-off state 652 // 653 SecCoreData = (EFI_SEC_PEI_HAND_OFF*)(UINTN) TopOfStack; 654 SecCoreData->DataSize = sizeof(EFI_SEC_PEI_HAND_OFF); 655 SecCoreData->BootFirmwareVolumeBase = (VOID*)BootFirmwareVolumeBase; 656 SecCoreData->BootFirmwareVolumeSize = PcdGet32(PcdWinNtFirmwareFdSize); 657 SecCoreData->TemporaryRamBase = (VOID*)(UINTN)LargestRegion; 658 SecCoreData->TemporaryRamSize = STACK_SIZE; 659 SecCoreData->StackBase = SecCoreData->TemporaryRamBase; 660 SecCoreData->StackSize = PeiStackSize; 661 SecCoreData->PeiTemporaryRamBase = (VOID*) ((UINTN) SecCoreData->TemporaryRamBase + PeiStackSize); 662 SecCoreData->PeiTemporaryRamSize = STACK_SIZE - PeiStackSize; 663 664 // 665 // Load the PEI Core from a Firmware Volume 666 // 667 Status = SecWinNtPeiLoadFile ( 668 PeiCorePe32File, 669 &PeiImageAddress, 670 &PeiCoreSize, 671 &PeiCoreEntryPoint 672 ); 673 if (EFI_ERROR (Status)) { 674 return ; 675 } 676 677 // 678 // Transfer control to the PEI Core 679 // 680 PeiSwitchStacks ( 681 (SWITCH_STACK_ENTRY_POINT) (UINTN) PeiCoreEntryPoint, 682 SecCoreData, 683 (VOID *) (UINTN) ((EFI_PEI_PPI_DESCRIPTOR *) &gPrivateDispatchTable), 684 NULL, 685 TopOfStack 686 ); 687 // 688 // If we get here, then the PEI Core returned. This is an error 689 // 690 return ; 691 } 692 693 EFI_STATUS 694 EFIAPI 695 SecWinNtPeiAutoScan ( 696 IN UINTN Index, 697 OUT EFI_PHYSICAL_ADDRESS *MemoryBase, 698 OUT UINT64 *MemorySize 699 ) 700 /*++ 701 702 Routine Description: 703 This service is called from Index == 0 until it returns EFI_UNSUPPORTED. 704 It allows discontinuous memory regions to be supported by the emulator. 705 It uses gSystemMemory[] and gSystemMemoryCount that were created by 706 parsing PcdWinNtMemorySizeForSecMain value. 707 The size comes from the Pcd value and the address comes from the memory space 708 with ReadWrite and Execute attributes allocated by VirtualAlloc() API. 709 710 Arguments: 711 Index - Which memory region to use 712 MemoryBase - Return Base address of memory region 713 MemorySize - Return size in bytes of the memory region 714 715 Returns: 716 EFI_SUCCESS - If memory region was mapped 717 EFI_UNSUPPORTED - If Index is not supported 718 719 --*/ 720 { 721 if (Index >= gSystemMemoryCount) { 722 return EFI_UNSUPPORTED; 723 } 724 725 // 726 // Allocate enough memory space for emulator 727 // 728 gSystemMemory[Index].Memory = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAlloc (NULL, (SIZE_T) (gSystemMemory[Index].Size), MEM_COMMIT, PAGE_EXECUTE_READWRITE); 729 if (gSystemMemory[Index].Memory == 0) { 730 return EFI_OUT_OF_RESOURCES; 731 } 732 733 *MemoryBase = gSystemMemory[Index].Memory; 734 *MemorySize = gSystemMemory[Index].Size; 735 736 return EFI_SUCCESS; 737 } 738 739 VOID * 740 EFIAPI 741 SecWinNtWinNtThunkAddress ( 742 VOID 743 ) 744 /*++ 745 746 Routine Description: 747 Since the SEC is the only Windows program in stack it must export 748 an interface to do Win API calls. That's what the WinNtThunk address 749 is for. gWinNt is initialized in WinNtThunk.c. 750 751 Arguments: 752 InterfaceSize - sizeof (EFI_WIN_NT_THUNK_PROTOCOL); 753 InterfaceBase - Address of the gWinNt global 754 755 Returns: 756 EFI_SUCCESS - Data returned 757 758 --*/ 759 { 760 return gWinNt; 761 } 762 763 764 EFI_STATUS 765 EFIAPI 766 SecWinNtPeiLoadFile ( 767 IN VOID *Pe32Data, 768 IN EFI_PHYSICAL_ADDRESS *ImageAddress, 769 IN UINT64 *ImageSize, 770 IN EFI_PHYSICAL_ADDRESS *EntryPoint 771 ) 772 /*++ 773 774 Routine Description: 775 Loads and relocates a PE/COFF image into memory. 776 777 Arguments: 778 Pe32Data - The base address of the PE/COFF file that is to be loaded and relocated 779 ImageAddress - The base address of the relocated PE/COFF image 780 ImageSize - The size of the relocated PE/COFF image 781 EntryPoint - The entry point of the relocated PE/COFF image 782 783 Returns: 784 EFI_SUCCESS - The file was loaded and relocated 785 EFI_OUT_OF_RESOURCES - There was not enough memory to load and relocate the PE/COFF file 786 787 --*/ 788 { 789 EFI_STATUS Status; 790 PE_COFF_LOADER_IMAGE_CONTEXT ImageContext; 791 792 ZeroMem (&ImageContext, sizeof (ImageContext)); 793 ImageContext.Handle = Pe32Data; 794 795 ImageContext.ImageRead = (PE_COFF_LOADER_READ_FILE) SecImageRead; 796 797 Status = PeCoffLoaderGetImageInfo (&ImageContext); 798 if (EFI_ERROR (Status)) { 799 return Status; 800 } 801 // 802 // Allocate space in NT (not emulator) memory with ReadWrite and Execute attribute. 803 // Extra space is for alignment 804 // 805 ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) VirtualAlloc (NULL, (SIZE_T) (ImageContext.ImageSize + (ImageContext.SectionAlignment * 2)), MEM_COMMIT, PAGE_EXECUTE_READWRITE); 806 if (ImageContext.ImageAddress == 0) { 807 return EFI_OUT_OF_RESOURCES; 808 } 809 // 810 // Align buffer on section boundary 811 // 812 ImageContext.ImageAddress += ImageContext.SectionAlignment - 1; 813 ImageContext.ImageAddress &= ~((EFI_PHYSICAL_ADDRESS)ImageContext.SectionAlignment - 1); 814 815 Status = PeCoffLoaderLoadImage (&ImageContext); 816 if (EFI_ERROR (Status)) { 817 return Status; 818 } 819 820 Status = SecNt32PeCoffRelocateImage (&ImageContext); 821 if (EFI_ERROR (Status)) { 822 return Status; 823 } 824 825 // 826 // BugBug: Flush Instruction Cache Here when CPU Lib is ready 827 // 828 829 *ImageAddress = ImageContext.ImageAddress; 830 *ImageSize = ImageContext.ImageSize; 831 *EntryPoint = ImageContext.EntryPoint; 832 833 return EFI_SUCCESS; 834 } 835 836 EFI_STATUS 837 EFIAPI 838 SecWinNtFdAddress ( 839 IN UINTN Index, 840 IN OUT EFI_PHYSICAL_ADDRESS *FdBase, 841 IN OUT UINT64 *FdSize 842 ) 843 /*++ 844 845 Routine Description: 846 Return the FD Size and base address. Since the FD is loaded from a 847 file into Windows memory only the SEC will know it's address. 848 849 Arguments: 850 Index - Which FD, starts at zero. 851 FdSize - Size of the FD in bytes 852 FdBase - Start address of the FD. Assume it points to an FV Header 853 854 Returns: 855 EFI_SUCCESS - Return the Base address and size of the FV 856 EFI_UNSUPPORTED - Index does not map to an FD in the system 857 858 --*/ 859 { 860 if (Index >= gFdInfoCount) { 861 return EFI_UNSUPPORTED; 862 } 863 864 *FdBase = gFdInfo[Index].Address; 865 *FdSize = gFdInfo[Index].Size; 866 867 if (*FdBase == 0 && *FdSize == 0) { 868 return EFI_UNSUPPORTED; 869 } 870 871 return EFI_SUCCESS; 872 } 873 874 EFI_STATUS 875 EFIAPI 876 SecImageRead ( 877 IN VOID *FileHandle, 878 IN UINTN FileOffset, 879 IN OUT UINTN *ReadSize, 880 OUT VOID *Buffer 881 ) 882 /*++ 883 884 Routine Description: 885 Support routine for the PE/COFF Loader that reads a buffer from a PE/COFF file 886 887 Arguments: 888 FileHandle - The handle to the PE/COFF file 889 FileOffset - The offset, in bytes, into the file to read 890 ReadSize - The number of bytes to read from the file starting at FileOffset 891 Buffer - A pointer to the buffer to read the data into. 892 893 Returns: 894 EFI_SUCCESS - ReadSize bytes of data were read into Buffer from the PE/COFF file starting at FileOffset 895 896 --*/ 897 { 898 CHAR8 *Destination8; 899 CHAR8 *Source8; 900 UINTN Length; 901 902 Destination8 = Buffer; 903 Source8 = (CHAR8 *) ((UINTN) FileHandle + FileOffset); 904 Length = *ReadSize; 905 while (Length--) { 906 *(Destination8++) = *(Source8++); 907 } 908 909 return EFI_SUCCESS; 910 } 911 912 CHAR16 * 913 AsciiToUnicode ( 914 IN CHAR8 *Ascii, 915 IN UINTN *StrLen OPTIONAL 916 ) 917 /*++ 918 919 Routine Description: 920 Convert the passed in Ascii string to Unicode. 921 Optionally return the length of the strings. 922 923 Arguments: 924 Ascii - Ascii string to convert 925 StrLen - Length of string 926 927 Returns: 928 Pointer to malloc'ed Unicode version of Ascii 929 930 --*/ 931 { 932 UINTN Index; 933 CHAR16 *Unicode; 934 935 // 936 // Allocate a buffer for unicode string 937 // 938 for (Index = 0; Ascii[Index] != '\0'; Index++) 939 ; 940 Unicode = malloc ((Index + 1) * sizeof (CHAR16)); 941 if (Unicode == NULL) { 942 return NULL; 943 } 944 945 for (Index = 0; Ascii[Index] != '\0'; Index++) { 946 Unicode[Index] = (CHAR16) Ascii[Index]; 947 } 948 949 Unicode[Index] = '\0'; 950 951 if (StrLen != NULL) { 952 *StrLen = Index; 953 } 954 955 return Unicode; 956 } 957 958 UINTN 959 CountSeparatorsInString ( 960 IN CONST CHAR16 *String, 961 IN CHAR16 Separator 962 ) 963 /*++ 964 965 Routine Description: 966 Count the number of separators in String 967 968 Arguments: 969 String - String to process 970 Separator - Item to count 971 972 Returns: 973 Number of Separator in String 974 975 --*/ 976 { 977 UINTN Count; 978 979 for (Count = 0; *String != '\0'; String++) { 980 if (*String == Separator) { 981 Count++; 982 } 983 } 984 985 return Count; 986 } 987 988 989 EFI_STATUS 990 SecNt32PeCoffRelocateImage ( 991 IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext 992 ) 993 { 994 EFI_STATUS Status; 995 VOID *DllEntryPoint; 996 CHAR16 *DllFileName; 997 HMODULE Library; 998 UINTN Index; 999 1000 1001 Status = PeCoffLoaderRelocateImage (ImageContext); 1002 if (EFI_ERROR (Status)) { 1003 // 1004 // We could not relocated the image in memory properly 1005 // 1006 return Status; 1007 } 1008 1009 // 1010 // If we load our own PE COFF images the Windows debugger can not source 1011 // level debug our code. If a valid PDB pointer exists usw it to load 1012 // the *.dll file as a library using Windows* APIs. This allows 1013 // source level debug. The image is still loaded and relocated 1014 // in the Framework memory space like on a real system (by the code above), 1015 // but the entry point points into the DLL loaded by the code bellow. 1016 // 1017 1018 DllEntryPoint = NULL; 1019 1020 // 1021 // Load the DLL if it's not an EBC image. 1022 // 1023 if ((ImageContext->PdbPointer != NULL) && 1024 (ImageContext->Machine != EFI_IMAGE_MACHINE_EBC)) { 1025 // 1026 // Convert filename from ASCII to Unicode 1027 // 1028 DllFileName = AsciiToUnicode (ImageContext->PdbPointer, &Index); 1029 1030 // 1031 // Check that we have a valid filename 1032 // 1033 if (Index < 5 || DllFileName[Index - 4] != '.') { 1034 free (DllFileName); 1035 1036 // 1037 // Never return an error if PeCoffLoaderRelocateImage() succeeded. 1038 // The image will run, but we just can't source level debug. If we 1039 // return an error the image will not run. 1040 // 1041 return EFI_SUCCESS; 1042 } 1043 // 1044 // Replace .PDB with .DLL on the filename 1045 // 1046 DllFileName[Index - 3] = 'D'; 1047 DllFileName[Index - 2] = 'L'; 1048 DllFileName[Index - 1] = 'L'; 1049 1050 // 1051 // Load the .DLL file into the user process's address space for source 1052 // level debug 1053 // 1054 Library = LoadLibraryEx (DllFileName, NULL, DONT_RESOLVE_DLL_REFERENCES); 1055 if (Library != NULL) { 1056 // 1057 // InitializeDriver is the entry point we put in all our EFI DLL's. The 1058 // DONT_RESOLVE_DLL_REFERENCES argument to LoadLIbraryEx() suppresses the 1059 // normal DLL entry point of DllMain, and prevents other modules that are 1060 // referenced in side the DllFileName from being loaded. There is no error 1061 // checking as the we can point to the PE32 image loaded by Tiano. This 1062 // step is only needed for source level debugging 1063 // 1064 DllEntryPoint = (VOID *) (UINTN) GetProcAddress (Library, "InitializeDriver"); 1065 1066 } 1067 1068 if ((Library != NULL) && (DllEntryPoint != NULL)) { 1069 ImageContext->EntryPoint = (EFI_PHYSICAL_ADDRESS) (UINTN) DllEntryPoint; 1070 SecPrint ("LoadLibraryEx (%S,\n NULL, DONT_RESOLVE_DLL_REFERENCES)\n", DllFileName); 1071 } else { 1072 SecPrint ("WARNING: No source level debug %S. \n", DllFileName); 1073 } 1074 1075 free (DllFileName); 1076 } 1077 1078 // 1079 // Never return an error if PeCoffLoaderRelocateImage() succeeded. 1080 // The image will run, but we just can't source level debug. If we 1081 // return an error the image will not run. 1082 // 1083 return EFI_SUCCESS; 1084 } 1085 1086 1087 1088 1089 VOID 1090 _ModuleEntryPoint ( 1091 VOID 1092 ) 1093 { 1094 } 1095 1096 EFI_STATUS 1097 EFIAPI 1098 SecTemporaryRamSupport ( 1099 IN CONST EFI_PEI_SERVICES **PeiServices, 1100 IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase, 1101 IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase, 1102 IN UINTN CopySize 1103 ) 1104 { 1105 // 1106 // Migrate the whole temporary memory to permanent memory. 1107 // 1108 CopyMem ( 1109 (VOID*)(UINTN)PermanentMemoryBase, 1110 (VOID*)(UINTN)TemporaryMemoryBase, 1111 CopySize 1112 ); 1113 1114 // 1115 // SecSwitchStack function must be invoked after the memory migration 1116 // immediately, also we need fixup the stack change caused by new call into 1117 // permanent memory. 1118 // 1119 SecSwitchStack ( 1120 (UINT32) TemporaryMemoryBase, 1121 (UINT32) PermanentMemoryBase 1122 ); 1123 1124 // 1125 // We need *not* fix the return address because currently, 1126 // The PeiCore is executed in flash. 1127 // 1128 1129 // 1130 // Simulate to invalid temporary memory, terminate temporary memory 1131 // 1132 //ZeroMem ((VOID*)(UINTN)TemporaryMemoryBase, CopySize); 1133 1134 return EFI_SUCCESS; 1135 } 1136 1137