Home | History | Annotate | Download | only in Parse
      1 //===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements the Declaration portions of the Parser interfaces.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Parse/Parser.h"
     15 #include "RAIIObjectsForParser.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/DeclTemplate.h"
     18 #include "clang/Basic/AddressSpaces.h"
     19 #include "clang/Basic/Attributes.h"
     20 #include "clang/Basic/CharInfo.h"
     21 #include "clang/Basic/TargetInfo.h"
     22 #include "clang/Parse/ParseDiagnostic.h"
     23 #include "clang/Sema/Lookup.h"
     24 #include "clang/Sema/ParsedTemplate.h"
     25 #include "clang/Sema/PrettyDeclStackTrace.h"
     26 #include "clang/Sema/Scope.h"
     27 #include "clang/Sema/SemaDiagnostic.h"
     28 #include "llvm/ADT/SmallSet.h"
     29 #include "llvm/ADT/SmallString.h"
     30 #include "llvm/ADT/StringSwitch.h"
     31 #include "llvm/Support/ScopedPrinter.h"
     32 
     33 using namespace clang;
     34 
     35 //===----------------------------------------------------------------------===//
     36 // C99 6.7: Declarations.
     37 //===----------------------------------------------------------------------===//
     38 
     39 /// ParseTypeName
     40 ///       type-name: [C99 6.7.6]
     41 ///         specifier-qualifier-list abstract-declarator[opt]
     42 ///
     43 /// Called type-id in C++.
     44 TypeResult Parser::ParseTypeName(SourceRange *Range,
     45                                  Declarator::TheContext Context,
     46                                  AccessSpecifier AS,
     47                                  Decl **OwnedType,
     48                                  ParsedAttributes *Attrs) {
     49   DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
     50   if (DSC == DSC_normal)
     51     DSC = DSC_type_specifier;
     52 
     53   // Parse the common declaration-specifiers piece.
     54   DeclSpec DS(AttrFactory);
     55   if (Attrs)
     56     DS.addAttributes(Attrs->getList());
     57   ParseSpecifierQualifierList(DS, AS, DSC);
     58   if (OwnedType)
     59     *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
     60 
     61   // Parse the abstract-declarator, if present.
     62   Declarator DeclaratorInfo(DS, Context);
     63   ParseDeclarator(DeclaratorInfo);
     64   if (Range)
     65     *Range = DeclaratorInfo.getSourceRange();
     66 
     67   if (DeclaratorInfo.isInvalidType())
     68     return true;
     69 
     70   return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
     71 }
     72 
     73 /// isAttributeLateParsed - Return true if the attribute has arguments that
     74 /// require late parsing.
     75 static bool isAttributeLateParsed(const IdentifierInfo &II) {
     76 #define CLANG_ATTR_LATE_PARSED_LIST
     77     return llvm::StringSwitch<bool>(II.getName())
     78 #include "clang/Parse/AttrParserStringSwitches.inc"
     79         .Default(false);
     80 #undef CLANG_ATTR_LATE_PARSED_LIST
     81 }
     82 
     83 /// ParseGNUAttributes - Parse a non-empty attributes list.
     84 ///
     85 /// [GNU] attributes:
     86 ///         attribute
     87 ///         attributes attribute
     88 ///
     89 /// [GNU]  attribute:
     90 ///          '__attribute__' '(' '(' attribute-list ')' ')'
     91 ///
     92 /// [GNU]  attribute-list:
     93 ///          attrib
     94 ///          attribute_list ',' attrib
     95 ///
     96 /// [GNU]  attrib:
     97 ///          empty
     98 ///          attrib-name
     99 ///          attrib-name '(' identifier ')'
    100 ///          attrib-name '(' identifier ',' nonempty-expr-list ')'
    101 ///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
    102 ///
    103 /// [GNU]  attrib-name:
    104 ///          identifier
    105 ///          typespec
    106 ///          typequal
    107 ///          storageclass
    108 ///
    109 /// Whether an attribute takes an 'identifier' is determined by the
    110 /// attrib-name. GCC's behavior here is not worth imitating:
    111 ///
    112 ///  * In C mode, if the attribute argument list starts with an identifier
    113 ///    followed by a ',' or an ')', and the identifier doesn't resolve to
    114 ///    a type, it is parsed as an identifier. If the attribute actually
    115 ///    wanted an expression, it's out of luck (but it turns out that no
    116 ///    attributes work that way, because C constant expressions are very
    117 ///    limited).
    118 ///  * In C++ mode, if the attribute argument list starts with an identifier,
    119 ///    and the attribute *wants* an identifier, it is parsed as an identifier.
    120 ///    At block scope, any additional tokens between the identifier and the
    121 ///    ',' or ')' are ignored, otherwise they produce a parse error.
    122 ///
    123 /// We follow the C++ model, but don't allow junk after the identifier.
    124 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
    125                                 SourceLocation *endLoc,
    126                                 LateParsedAttrList *LateAttrs,
    127                                 Declarator *D) {
    128   assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
    129 
    130   while (Tok.is(tok::kw___attribute)) {
    131     ConsumeToken();
    132     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
    133                          "attribute")) {
    134       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
    135       return;
    136     }
    137     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
    138       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
    139       return;
    140     }
    141     // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
    142     while (true) {
    143       // Allow empty/non-empty attributes. ((__vector_size__(16),,,,))
    144       if (TryConsumeToken(tok::comma))
    145         continue;
    146 
    147       // Expect an identifier or declaration specifier (const, int, etc.)
    148       if (Tok.isAnnotation())
    149         break;
    150       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    151       if (!AttrName)
    152         break;
    153 
    154       SourceLocation AttrNameLoc = ConsumeToken();
    155 
    156       if (Tok.isNot(tok::l_paren)) {
    157         attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
    158                      AttributeList::AS_GNU);
    159         continue;
    160       }
    161 
    162       // Handle "parameterized" attributes
    163       if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
    164         ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
    165                               SourceLocation(), AttributeList::AS_GNU, D);
    166         continue;
    167       }
    168 
    169       // Handle attributes with arguments that require late parsing.
    170       LateParsedAttribute *LA =
    171           new LateParsedAttribute(this, *AttrName, AttrNameLoc);
    172       LateAttrs->push_back(LA);
    173 
    174       // Attributes in a class are parsed at the end of the class, along
    175       // with other late-parsed declarations.
    176       if (!ClassStack.empty() && !LateAttrs->parseSoon())
    177         getCurrentClass().LateParsedDeclarations.push_back(LA);
    178 
    179       // consume everything up to and including the matching right parens
    180       ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
    181 
    182       Token Eof;
    183       Eof.startToken();
    184       Eof.setLocation(Tok.getLocation());
    185       LA->Toks.push_back(Eof);
    186     }
    187 
    188     if (ExpectAndConsume(tok::r_paren))
    189       SkipUntil(tok::r_paren, StopAtSemi);
    190     SourceLocation Loc = Tok.getLocation();
    191     if (ExpectAndConsume(tok::r_paren))
    192       SkipUntil(tok::r_paren, StopAtSemi);
    193     if (endLoc)
    194       *endLoc = Loc;
    195   }
    196 }
    197 
    198 /// \brief Normalizes an attribute name by dropping prefixed and suffixed __.
    199 static StringRef normalizeAttrName(StringRef Name) {
    200   if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
    201     Name = Name.drop_front(2).drop_back(2);
    202   return Name;
    203 }
    204 
    205 /// \brief Determine whether the given attribute has an identifier argument.
    206 static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
    207 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
    208   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
    209 #include "clang/Parse/AttrParserStringSwitches.inc"
    210            .Default(false);
    211 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
    212 }
    213 
    214 /// \brief Determine whether the given attribute parses a type argument.
    215 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
    216 #define CLANG_ATTR_TYPE_ARG_LIST
    217   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
    218 #include "clang/Parse/AttrParserStringSwitches.inc"
    219            .Default(false);
    220 #undef CLANG_ATTR_TYPE_ARG_LIST
    221 }
    222 
    223 /// \brief Determine whether the given attribute requires parsing its arguments
    224 /// in an unevaluated context or not.
    225 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
    226 #define CLANG_ATTR_ARG_CONTEXT_LIST
    227   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
    228 #include "clang/Parse/AttrParserStringSwitches.inc"
    229            .Default(false);
    230 #undef CLANG_ATTR_ARG_CONTEXT_LIST
    231 }
    232 
    233 IdentifierLoc *Parser::ParseIdentifierLoc() {
    234   assert(Tok.is(tok::identifier) && "expected an identifier");
    235   IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
    236                                             Tok.getLocation(),
    237                                             Tok.getIdentifierInfo());
    238   ConsumeToken();
    239   return IL;
    240 }
    241 
    242 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
    243                                        SourceLocation AttrNameLoc,
    244                                        ParsedAttributes &Attrs,
    245                                        SourceLocation *EndLoc,
    246                                        IdentifierInfo *ScopeName,
    247                                        SourceLocation ScopeLoc,
    248                                        AttributeList::Syntax Syntax) {
    249   BalancedDelimiterTracker Parens(*this, tok::l_paren);
    250   Parens.consumeOpen();
    251 
    252   TypeResult T;
    253   if (Tok.isNot(tok::r_paren))
    254     T = ParseTypeName();
    255 
    256   if (Parens.consumeClose())
    257     return;
    258 
    259   if (T.isInvalid())
    260     return;
    261 
    262   if (T.isUsable())
    263     Attrs.addNewTypeAttr(&AttrName,
    264                          SourceRange(AttrNameLoc, Parens.getCloseLocation()),
    265                          ScopeName, ScopeLoc, T.get(), Syntax);
    266   else
    267     Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
    268                  ScopeName, ScopeLoc, nullptr, 0, Syntax);
    269 }
    270 
    271 unsigned Parser::ParseAttributeArgsCommon(
    272     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
    273     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
    274     SourceLocation ScopeLoc, AttributeList::Syntax Syntax) {
    275   // Ignore the left paren location for now.
    276   ConsumeParen();
    277 
    278   ArgsVector ArgExprs;
    279   if (Tok.is(tok::identifier)) {
    280     // If this attribute wants an 'identifier' argument, make it so.
    281     bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName);
    282     AttributeList::Kind AttrKind =
    283         AttributeList::getKind(AttrName, ScopeName, Syntax);
    284 
    285     // If we don't know how to parse this attribute, but this is the only
    286     // token in this argument, assume it's meant to be an identifier.
    287     if (AttrKind == AttributeList::UnknownAttribute ||
    288         AttrKind == AttributeList::IgnoredAttribute) {
    289       const Token &Next = NextToken();
    290       IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
    291     }
    292 
    293     if (IsIdentifierArg)
    294       ArgExprs.push_back(ParseIdentifierLoc());
    295   }
    296 
    297   if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
    298     // Eat the comma.
    299     if (!ArgExprs.empty())
    300       ConsumeToken();
    301 
    302     // Parse the non-empty comma-separated list of expressions.
    303     do {
    304       std::unique_ptr<EnterExpressionEvaluationContext> Unevaluated;
    305       if (attributeParsedArgsUnevaluated(*AttrName))
    306         Unevaluated.reset(
    307             new EnterExpressionEvaluationContext(Actions, Sema::Unevaluated));
    308 
    309       ExprResult ArgExpr(
    310           Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
    311       if (ArgExpr.isInvalid()) {
    312         SkipUntil(tok::r_paren, StopAtSemi);
    313         return 0;
    314       }
    315       ArgExprs.push_back(ArgExpr.get());
    316       // Eat the comma, move to the next argument
    317     } while (TryConsumeToken(tok::comma));
    318   }
    319 
    320   SourceLocation RParen = Tok.getLocation();
    321   if (!ExpectAndConsume(tok::r_paren)) {
    322     SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
    323     Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
    324                  ArgExprs.data(), ArgExprs.size(), Syntax);
    325   }
    326 
    327   if (EndLoc)
    328     *EndLoc = RParen;
    329 
    330   return static_cast<unsigned>(ArgExprs.size());
    331 }
    332 
    333 /// Parse the arguments to a parameterized GNU attribute or
    334 /// a C++11 attribute in "gnu" namespace.
    335 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
    336                                    SourceLocation AttrNameLoc,
    337                                    ParsedAttributes &Attrs,
    338                                    SourceLocation *EndLoc,
    339                                    IdentifierInfo *ScopeName,
    340                                    SourceLocation ScopeLoc,
    341                                    AttributeList::Syntax Syntax,
    342                                    Declarator *D) {
    343 
    344   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
    345 
    346   AttributeList::Kind AttrKind =
    347       AttributeList::getKind(AttrName, ScopeName, Syntax);
    348 
    349   if (AttrKind == AttributeList::AT_Availability) {
    350     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
    351                                ScopeLoc, Syntax);
    352     return;
    353   } else if (AttrKind == AttributeList::AT_ObjCBridgeRelated) {
    354     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
    355                                     ScopeName, ScopeLoc, Syntax);
    356     return;
    357   } else if (AttrKind == AttributeList::AT_TypeTagForDatatype) {
    358     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
    359                                      ScopeName, ScopeLoc, Syntax);
    360     return;
    361   } else if (attributeIsTypeArgAttr(*AttrName)) {
    362     ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
    363                               ScopeLoc, Syntax);
    364     return;
    365   }
    366 
    367   // These may refer to the function arguments, but need to be parsed early to
    368   // participate in determining whether it's a redeclaration.
    369   std::unique_ptr<ParseScope> PrototypeScope;
    370   if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
    371       D && D->isFunctionDeclarator()) {
    372     DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
    373     PrototypeScope.reset(new ParseScope(this, Scope::FunctionPrototypeScope |
    374                                         Scope::FunctionDeclarationScope |
    375                                         Scope::DeclScope));
    376     for (unsigned i = 0; i != FTI.NumParams; ++i) {
    377       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
    378       Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
    379     }
    380   }
    381 
    382   ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
    383                            ScopeLoc, Syntax);
    384 }
    385 
    386 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
    387                                         SourceLocation AttrNameLoc,
    388                                         ParsedAttributes &Attrs) {
    389   // If the attribute isn't known, we will not attempt to parse any
    390   // arguments.
    391   if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
    392                     getTargetInfo(), getLangOpts())) {
    393     // Eat the left paren, then skip to the ending right paren.
    394     ConsumeParen();
    395     SkipUntil(tok::r_paren);
    396     return false;
    397   }
    398 
    399   SourceLocation OpenParenLoc = Tok.getLocation();
    400 
    401   if (AttrName->getName() == "property") {
    402     // The property declspec is more complex in that it can take one or two
    403     // assignment expressions as a parameter, but the lhs of the assignment
    404     // must be named get or put.
    405 
    406     BalancedDelimiterTracker T(*this, tok::l_paren);
    407     T.expectAndConsume(diag::err_expected_lparen_after,
    408                        AttrName->getNameStart(), tok::r_paren);
    409 
    410     enum AccessorKind {
    411       AK_Invalid = -1,
    412       AK_Put = 0,
    413       AK_Get = 1 // indices into AccessorNames
    414     };
    415     IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
    416     bool HasInvalidAccessor = false;
    417 
    418     // Parse the accessor specifications.
    419     while (true) {
    420       // Stop if this doesn't look like an accessor spec.
    421       if (!Tok.is(tok::identifier)) {
    422         // If the user wrote a completely empty list, use a special diagnostic.
    423         if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
    424             AccessorNames[AK_Put] == nullptr &&
    425             AccessorNames[AK_Get] == nullptr) {
    426           Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
    427           break;
    428         }
    429 
    430         Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
    431         break;
    432       }
    433 
    434       AccessorKind Kind;
    435       SourceLocation KindLoc = Tok.getLocation();
    436       StringRef KindStr = Tok.getIdentifierInfo()->getName();
    437       if (KindStr == "get") {
    438         Kind = AK_Get;
    439       } else if (KindStr == "put") {
    440         Kind = AK_Put;
    441 
    442         // Recover from the common mistake of using 'set' instead of 'put'.
    443       } else if (KindStr == "set") {
    444         Diag(KindLoc, diag::err_ms_property_has_set_accessor)
    445             << FixItHint::CreateReplacement(KindLoc, "put");
    446         Kind = AK_Put;
    447 
    448         // Handle the mistake of forgetting the accessor kind by skipping
    449         // this accessor.
    450       } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
    451         Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
    452         ConsumeToken();
    453         HasInvalidAccessor = true;
    454         goto next_property_accessor;
    455 
    456         // Otherwise, complain about the unknown accessor kind.
    457       } else {
    458         Diag(KindLoc, diag::err_ms_property_unknown_accessor);
    459         HasInvalidAccessor = true;
    460         Kind = AK_Invalid;
    461 
    462         // Try to keep parsing unless it doesn't look like an accessor spec.
    463         if (!NextToken().is(tok::equal))
    464           break;
    465       }
    466 
    467       // Consume the identifier.
    468       ConsumeToken();
    469 
    470       // Consume the '='.
    471       if (!TryConsumeToken(tok::equal)) {
    472         Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
    473             << KindStr;
    474         break;
    475       }
    476 
    477       // Expect the method name.
    478       if (!Tok.is(tok::identifier)) {
    479         Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
    480         break;
    481       }
    482 
    483       if (Kind == AK_Invalid) {
    484         // Just drop invalid accessors.
    485       } else if (AccessorNames[Kind] != nullptr) {
    486         // Complain about the repeated accessor, ignore it, and keep parsing.
    487         Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
    488       } else {
    489         AccessorNames[Kind] = Tok.getIdentifierInfo();
    490       }
    491       ConsumeToken();
    492 
    493     next_property_accessor:
    494       // Keep processing accessors until we run out.
    495       if (TryConsumeToken(tok::comma))
    496         continue;
    497 
    498       // If we run into the ')', stop without consuming it.
    499       if (Tok.is(tok::r_paren))
    500         break;
    501 
    502       Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
    503       break;
    504     }
    505 
    506     // Only add the property attribute if it was well-formed.
    507     if (!HasInvalidAccessor)
    508       Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
    509                                AccessorNames[AK_Get], AccessorNames[AK_Put],
    510                                AttributeList::AS_Declspec);
    511     T.skipToEnd();
    512     return !HasInvalidAccessor;
    513   }
    514 
    515   unsigned NumArgs =
    516       ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
    517                                SourceLocation(), AttributeList::AS_Declspec);
    518 
    519   // If this attribute's args were parsed, and it was expected to have
    520   // arguments but none were provided, emit a diagnostic.
    521   const AttributeList *Attr = Attrs.getList();
    522   if (Attr && Attr->getMaxArgs() && !NumArgs) {
    523     Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
    524     return false;
    525   }
    526   return true;
    527 }
    528 
    529 /// [MS] decl-specifier:
    530 ///             __declspec ( extended-decl-modifier-seq )
    531 ///
    532 /// [MS] extended-decl-modifier-seq:
    533 ///             extended-decl-modifier[opt]
    534 ///             extended-decl-modifier extended-decl-modifier-seq
    535 void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs,
    536                                      SourceLocation *End) {
    537   assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
    538   assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
    539 
    540   while (Tok.is(tok::kw___declspec)) {
    541     ConsumeToken();
    542     BalancedDelimiterTracker T(*this, tok::l_paren);
    543     if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
    544                            tok::r_paren))
    545       return;
    546 
    547     // An empty declspec is perfectly legal and should not warn.  Additionally,
    548     // you can specify multiple attributes per declspec.
    549     while (Tok.isNot(tok::r_paren)) {
    550       // Attribute not present.
    551       if (TryConsumeToken(tok::comma))
    552         continue;
    553 
    554       // We expect either a well-known identifier or a generic string.  Anything
    555       // else is a malformed declspec.
    556       bool IsString = Tok.getKind() == tok::string_literal;
    557       if (!IsString && Tok.getKind() != tok::identifier &&
    558           Tok.getKind() != tok::kw_restrict) {
    559         Diag(Tok, diag::err_ms_declspec_type);
    560         T.skipToEnd();
    561         return;
    562       }
    563 
    564       IdentifierInfo *AttrName;
    565       SourceLocation AttrNameLoc;
    566       if (IsString) {
    567         SmallString<8> StrBuffer;
    568         bool Invalid = false;
    569         StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
    570         if (Invalid) {
    571           T.skipToEnd();
    572           return;
    573         }
    574         AttrName = PP.getIdentifierInfo(Str);
    575         AttrNameLoc = ConsumeStringToken();
    576       } else {
    577         AttrName = Tok.getIdentifierInfo();
    578         AttrNameLoc = ConsumeToken();
    579       }
    580 
    581       bool AttrHandled = false;
    582 
    583       // Parse attribute arguments.
    584       if (Tok.is(tok::l_paren))
    585         AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
    586       else if (AttrName->getName() == "property")
    587         // The property attribute must have an argument list.
    588         Diag(Tok.getLocation(), diag::err_expected_lparen_after)
    589             << AttrName->getName();
    590 
    591       if (!AttrHandled)
    592         Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
    593                      AttributeList::AS_Declspec);
    594     }
    595     T.consumeClose();
    596     if (End)
    597       *End = T.getCloseLocation();
    598   }
    599 }
    600 
    601 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
    602   // Treat these like attributes
    603   while (true) {
    604     switch (Tok.getKind()) {
    605     case tok::kw___fastcall:
    606     case tok::kw___stdcall:
    607     case tok::kw___thiscall:
    608     case tok::kw___cdecl:
    609     case tok::kw___vectorcall:
    610     case tok::kw___ptr64:
    611     case tok::kw___w64:
    612     case tok::kw___ptr32:
    613     case tok::kw___sptr:
    614     case tok::kw___uptr: {
    615       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    616       SourceLocation AttrNameLoc = ConsumeToken();
    617       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
    618                    AttributeList::AS_Keyword);
    619       break;
    620     }
    621     default:
    622       return;
    623     }
    624   }
    625 }
    626 
    627 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
    628   SourceLocation StartLoc = Tok.getLocation();
    629   SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
    630 
    631   if (EndLoc.isValid()) {
    632     SourceRange Range(StartLoc, EndLoc);
    633     Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
    634   }
    635 }
    636 
    637 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
    638   SourceLocation EndLoc;
    639 
    640   while (true) {
    641     switch (Tok.getKind()) {
    642     case tok::kw_const:
    643     case tok::kw_volatile:
    644     case tok::kw___fastcall:
    645     case tok::kw___stdcall:
    646     case tok::kw___thiscall:
    647     case tok::kw___cdecl:
    648     case tok::kw___vectorcall:
    649     case tok::kw___ptr32:
    650     case tok::kw___ptr64:
    651     case tok::kw___w64:
    652     case tok::kw___unaligned:
    653     case tok::kw___sptr:
    654     case tok::kw___uptr:
    655       EndLoc = ConsumeToken();
    656       break;
    657     default:
    658       return EndLoc;
    659     }
    660   }
    661 }
    662 
    663 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
    664   // Treat these like attributes
    665   while (Tok.is(tok::kw___pascal)) {
    666     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    667     SourceLocation AttrNameLoc = ConsumeToken();
    668     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
    669                  AttributeList::AS_Keyword);
    670   }
    671 }
    672 
    673 void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) {
    674   // Treat these like attributes
    675   while (Tok.is(tok::kw___kernel)) {
    676     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    677     SourceLocation AttrNameLoc = ConsumeToken();
    678     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
    679                  AttributeList::AS_Keyword);
    680   }
    681 }
    682 
    683 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
    684   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    685   SourceLocation AttrNameLoc = Tok.getLocation();
    686   Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
    687                AttributeList::AS_Keyword);
    688 }
    689 
    690 void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
    691   // Treat these like attributes, even though they're type specifiers.
    692   while (true) {
    693     switch (Tok.getKind()) {
    694     case tok::kw__Nonnull:
    695     case tok::kw__Nullable:
    696     case tok::kw__Null_unspecified: {
    697       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
    698       SourceLocation AttrNameLoc = ConsumeToken();
    699       if (!getLangOpts().ObjC1)
    700         Diag(AttrNameLoc, diag::ext_nullability)
    701           << AttrName;
    702       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
    703                    AttributeList::AS_Keyword);
    704       break;
    705     }
    706     default:
    707       return;
    708     }
    709   }
    710 }
    711 
    712 static bool VersionNumberSeparator(const char Separator) {
    713   return (Separator == '.' || Separator == '_');
    714 }
    715 
    716 /// \brief Parse a version number.
    717 ///
    718 /// version:
    719 ///   simple-integer
    720 ///   simple-integer ',' simple-integer
    721 ///   simple-integer ',' simple-integer ',' simple-integer
    722 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
    723   Range = Tok.getLocation();
    724 
    725   if (!Tok.is(tok::numeric_constant)) {
    726     Diag(Tok, diag::err_expected_version);
    727     SkipUntil(tok::comma, tok::r_paren,
    728               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
    729     return VersionTuple();
    730   }
    731 
    732   // Parse the major (and possibly minor and subminor) versions, which
    733   // are stored in the numeric constant. We utilize a quirk of the
    734   // lexer, which is that it handles something like 1.2.3 as a single
    735   // numeric constant, rather than two separate tokens.
    736   SmallString<512> Buffer;
    737   Buffer.resize(Tok.getLength()+1);
    738   const char *ThisTokBegin = &Buffer[0];
    739 
    740   // Get the spelling of the token, which eliminates trigraphs, etc.
    741   bool Invalid = false;
    742   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
    743   if (Invalid)
    744     return VersionTuple();
    745 
    746   // Parse the major version.
    747   unsigned AfterMajor = 0;
    748   unsigned Major = 0;
    749   while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
    750     Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
    751     ++AfterMajor;
    752   }
    753 
    754   if (AfterMajor == 0) {
    755     Diag(Tok, diag::err_expected_version);
    756     SkipUntil(tok::comma, tok::r_paren,
    757               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
    758     return VersionTuple();
    759   }
    760 
    761   if (AfterMajor == ActualLength) {
    762     ConsumeToken();
    763 
    764     // We only had a single version component.
    765     if (Major == 0) {
    766       Diag(Tok, diag::err_zero_version);
    767       return VersionTuple();
    768     }
    769 
    770     return VersionTuple(Major);
    771   }
    772 
    773   const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
    774   if (!VersionNumberSeparator(AfterMajorSeparator)
    775       || (AfterMajor + 1 == ActualLength)) {
    776     Diag(Tok, diag::err_expected_version);
    777     SkipUntil(tok::comma, tok::r_paren,
    778               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
    779     return VersionTuple();
    780   }
    781 
    782   // Parse the minor version.
    783   unsigned AfterMinor = AfterMajor + 1;
    784   unsigned Minor = 0;
    785   while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
    786     Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
    787     ++AfterMinor;
    788   }
    789 
    790   if (AfterMinor == ActualLength) {
    791     ConsumeToken();
    792 
    793     // We had major.minor.
    794     if (Major == 0 && Minor == 0) {
    795       Diag(Tok, diag::err_zero_version);
    796       return VersionTuple();
    797     }
    798 
    799     return VersionTuple(Major, Minor, (AfterMajorSeparator == '_'));
    800   }
    801 
    802   const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
    803   // If what follows is not a '.' or '_', we have a problem.
    804   if (!VersionNumberSeparator(AfterMinorSeparator)) {
    805     Diag(Tok, diag::err_expected_version);
    806     SkipUntil(tok::comma, tok::r_paren,
    807               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
    808     return VersionTuple();
    809   }
    810 
    811   // Warn if separators, be it '.' or '_', do not match.
    812   if (AfterMajorSeparator != AfterMinorSeparator)
    813     Diag(Tok, diag::warn_expected_consistent_version_separator);
    814 
    815   // Parse the subminor version.
    816   unsigned AfterSubminor = AfterMinor + 1;
    817   unsigned Subminor = 0;
    818   while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
    819     Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
    820     ++AfterSubminor;
    821   }
    822 
    823   if (AfterSubminor != ActualLength) {
    824     Diag(Tok, diag::err_expected_version);
    825     SkipUntil(tok::comma, tok::r_paren,
    826               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
    827     return VersionTuple();
    828   }
    829   ConsumeToken();
    830   return VersionTuple(Major, Minor, Subminor, (AfterMajorSeparator == '_'));
    831 }
    832 
    833 /// \brief Parse the contents of the "availability" attribute.
    834 ///
    835 /// availability-attribute:
    836 ///   'availability' '(' platform ',' opt-strict version-arg-list,
    837 ///                      opt-replacement, opt-message')'
    838 ///
    839 /// platform:
    840 ///   identifier
    841 ///
    842 /// opt-strict:
    843 ///   'strict' ','
    844 ///
    845 /// version-arg-list:
    846 ///   version-arg
    847 ///   version-arg ',' version-arg-list
    848 ///
    849 /// version-arg:
    850 ///   'introduced' '=' version
    851 ///   'deprecated' '=' version
    852 ///   'obsoleted' = version
    853 ///   'unavailable'
    854 /// opt-replacement:
    855 ///   'replacement' '=' <string>
    856 /// opt-message:
    857 ///   'message' '=' <string>
    858 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
    859                                         SourceLocation AvailabilityLoc,
    860                                         ParsedAttributes &attrs,
    861                                         SourceLocation *endLoc,
    862                                         IdentifierInfo *ScopeName,
    863                                         SourceLocation ScopeLoc,
    864                                         AttributeList::Syntax Syntax) {
    865   enum { Introduced, Deprecated, Obsoleted, Unknown };
    866   AvailabilityChange Changes[Unknown];
    867   ExprResult MessageExpr, ReplacementExpr;
    868 
    869   // Opening '('.
    870   BalancedDelimiterTracker T(*this, tok::l_paren);
    871   if (T.consumeOpen()) {
    872     Diag(Tok, diag::err_expected) << tok::l_paren;
    873     return;
    874   }
    875 
    876   // Parse the platform name.
    877   if (Tok.isNot(tok::identifier)) {
    878     Diag(Tok, diag::err_availability_expected_platform);
    879     SkipUntil(tok::r_paren, StopAtSemi);
    880     return;
    881   }
    882   IdentifierLoc *Platform = ParseIdentifierLoc();
    883   // Canonicalize platform name from "macosx" to "macos".
    884   if (Platform->Ident && Platform->Ident->getName() == "macosx")
    885     Platform->Ident = PP.getIdentifierInfo("macos");
    886   // Canonicalize platform name from "macosx_app_extension" to
    887   // "macos_app_extension".
    888   if (Platform->Ident && Platform->Ident->getName() == "macosx_app_extension")
    889     Platform->Ident = PP.getIdentifierInfo("macos_app_extension");
    890 
    891   // Parse the ',' following the platform name.
    892   if (ExpectAndConsume(tok::comma)) {
    893     SkipUntil(tok::r_paren, StopAtSemi);
    894     return;
    895   }
    896 
    897   // If we haven't grabbed the pointers for the identifiers
    898   // "introduced", "deprecated", and "obsoleted", do so now.
    899   if (!Ident_introduced) {
    900     Ident_introduced = PP.getIdentifierInfo("introduced");
    901     Ident_deprecated = PP.getIdentifierInfo("deprecated");
    902     Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
    903     Ident_unavailable = PP.getIdentifierInfo("unavailable");
    904     Ident_message = PP.getIdentifierInfo("message");
    905     Ident_strict = PP.getIdentifierInfo("strict");
    906     Ident_replacement = PP.getIdentifierInfo("replacement");
    907   }
    908 
    909   // Parse the optional "strict", the optional "replacement" and the set of
    910   // introductions/deprecations/removals.
    911   SourceLocation UnavailableLoc, StrictLoc;
    912   do {
    913     if (Tok.isNot(tok::identifier)) {
    914       Diag(Tok, diag::err_availability_expected_change);
    915       SkipUntil(tok::r_paren, StopAtSemi);
    916       return;
    917     }
    918     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
    919     SourceLocation KeywordLoc = ConsumeToken();
    920 
    921     if (Keyword == Ident_strict) {
    922       if (StrictLoc.isValid()) {
    923         Diag(KeywordLoc, diag::err_availability_redundant)
    924           << Keyword << SourceRange(StrictLoc);
    925       }
    926       StrictLoc = KeywordLoc;
    927       continue;
    928     }
    929 
    930     if (Keyword == Ident_unavailable) {
    931       if (UnavailableLoc.isValid()) {
    932         Diag(KeywordLoc, diag::err_availability_redundant)
    933           << Keyword << SourceRange(UnavailableLoc);
    934       }
    935       UnavailableLoc = KeywordLoc;
    936       continue;
    937     }
    938 
    939     if (Tok.isNot(tok::equal)) {
    940       Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
    941       SkipUntil(tok::r_paren, StopAtSemi);
    942       return;
    943     }
    944     ConsumeToken();
    945     if (Keyword == Ident_message || Keyword == Ident_replacement) {
    946       if (Tok.isNot(tok::string_literal)) {
    947         Diag(Tok, diag::err_expected_string_literal)
    948           << /*Source='availability attribute'*/2;
    949         SkipUntil(tok::r_paren, StopAtSemi);
    950         return;
    951       }
    952       if (Keyword == Ident_message)
    953         MessageExpr = ParseStringLiteralExpression();
    954       else
    955         ReplacementExpr = ParseStringLiteralExpression();
    956       // Also reject wide string literals.
    957       if (StringLiteral *MessageStringLiteral =
    958               cast_or_null<StringLiteral>(MessageExpr.get())) {
    959         if (MessageStringLiteral->getCharByteWidth() != 1) {
    960           Diag(MessageStringLiteral->getSourceRange().getBegin(),
    961                diag::err_expected_string_literal)
    962             << /*Source='availability attribute'*/ 2;
    963           SkipUntil(tok::r_paren, StopAtSemi);
    964           return;
    965         }
    966       }
    967       if (Keyword == Ident_message)
    968         break;
    969       else
    970         continue;
    971     }
    972 
    973     // Special handling of 'NA' only when applied to introduced or
    974     // deprecated.
    975     if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
    976         Tok.is(tok::identifier)) {
    977       IdentifierInfo *NA = Tok.getIdentifierInfo();
    978       if (NA->getName() == "NA") {
    979         ConsumeToken();
    980         if (Keyword == Ident_introduced)
    981           UnavailableLoc = KeywordLoc;
    982         continue;
    983       }
    984     }
    985 
    986     SourceRange VersionRange;
    987     VersionTuple Version = ParseVersionTuple(VersionRange);
    988 
    989     if (Version.empty()) {
    990       SkipUntil(tok::r_paren, StopAtSemi);
    991       return;
    992     }
    993 
    994     unsigned Index;
    995     if (Keyword == Ident_introduced)
    996       Index = Introduced;
    997     else if (Keyword == Ident_deprecated)
    998       Index = Deprecated;
    999     else if (Keyword == Ident_obsoleted)
   1000       Index = Obsoleted;
   1001     else
   1002       Index = Unknown;
   1003 
   1004     if (Index < Unknown) {
   1005       if (!Changes[Index].KeywordLoc.isInvalid()) {
   1006         Diag(KeywordLoc, diag::err_availability_redundant)
   1007           << Keyword
   1008           << SourceRange(Changes[Index].KeywordLoc,
   1009                          Changes[Index].VersionRange.getEnd());
   1010       }
   1011 
   1012       Changes[Index].KeywordLoc = KeywordLoc;
   1013       Changes[Index].Version = Version;
   1014       Changes[Index].VersionRange = VersionRange;
   1015     } else {
   1016       Diag(KeywordLoc, diag::err_availability_unknown_change)
   1017         << Keyword << VersionRange;
   1018     }
   1019 
   1020   } while (TryConsumeToken(tok::comma));
   1021 
   1022   // Closing ')'.
   1023   if (T.consumeClose())
   1024     return;
   1025 
   1026   if (endLoc)
   1027     *endLoc = T.getCloseLocation();
   1028 
   1029   // The 'unavailable' availability cannot be combined with any other
   1030   // availability changes. Make sure that hasn't happened.
   1031   if (UnavailableLoc.isValid()) {
   1032     bool Complained = false;
   1033     for (unsigned Index = Introduced; Index != Unknown; ++Index) {
   1034       if (Changes[Index].KeywordLoc.isValid()) {
   1035         if (!Complained) {
   1036           Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
   1037             << SourceRange(Changes[Index].KeywordLoc,
   1038                            Changes[Index].VersionRange.getEnd());
   1039           Complained = true;
   1040         }
   1041 
   1042         // Clear out the availability.
   1043         Changes[Index] = AvailabilityChange();
   1044       }
   1045     }
   1046   }
   1047 
   1048   // Record this attribute
   1049   attrs.addNew(&Availability,
   1050                SourceRange(AvailabilityLoc, T.getCloseLocation()),
   1051                ScopeName, ScopeLoc,
   1052                Platform,
   1053                Changes[Introduced],
   1054                Changes[Deprecated],
   1055                Changes[Obsoleted],
   1056                UnavailableLoc, MessageExpr.get(),
   1057                Syntax, StrictLoc, ReplacementExpr.get());
   1058 }
   1059 
   1060 /// \brief Parse the contents of the "objc_bridge_related" attribute.
   1061 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
   1062 /// related_class:
   1063 ///     Identifier
   1064 ///
   1065 /// opt-class_method:
   1066 ///     Identifier: | <empty>
   1067 ///
   1068 /// opt-instance_method:
   1069 ///     Identifier | <empty>
   1070 ///
   1071 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
   1072                                 SourceLocation ObjCBridgeRelatedLoc,
   1073                                 ParsedAttributes &attrs,
   1074                                 SourceLocation *endLoc,
   1075                                 IdentifierInfo *ScopeName,
   1076                                 SourceLocation ScopeLoc,
   1077                                 AttributeList::Syntax Syntax) {
   1078   // Opening '('.
   1079   BalancedDelimiterTracker T(*this, tok::l_paren);
   1080   if (T.consumeOpen()) {
   1081     Diag(Tok, diag::err_expected) << tok::l_paren;
   1082     return;
   1083   }
   1084 
   1085   // Parse the related class name.
   1086   if (Tok.isNot(tok::identifier)) {
   1087     Diag(Tok, diag::err_objcbridge_related_expected_related_class);
   1088     SkipUntil(tok::r_paren, StopAtSemi);
   1089     return;
   1090   }
   1091   IdentifierLoc *RelatedClass = ParseIdentifierLoc();
   1092   if (ExpectAndConsume(tok::comma)) {
   1093     SkipUntil(tok::r_paren, StopAtSemi);
   1094     return;
   1095   }
   1096 
   1097   // Parse optional class method name.
   1098   IdentifierLoc *ClassMethod = nullptr;
   1099   if (Tok.is(tok::identifier)) {
   1100     ClassMethod = ParseIdentifierLoc();
   1101     if (!TryConsumeToken(tok::colon)) {
   1102       Diag(Tok, diag::err_objcbridge_related_selector_name);
   1103       SkipUntil(tok::r_paren, StopAtSemi);
   1104       return;
   1105     }
   1106   }
   1107   if (!TryConsumeToken(tok::comma)) {
   1108     if (Tok.is(tok::colon))
   1109       Diag(Tok, diag::err_objcbridge_related_selector_name);
   1110     else
   1111       Diag(Tok, diag::err_expected) << tok::comma;
   1112     SkipUntil(tok::r_paren, StopAtSemi);
   1113     return;
   1114   }
   1115 
   1116   // Parse optional instance method name.
   1117   IdentifierLoc *InstanceMethod = nullptr;
   1118   if (Tok.is(tok::identifier))
   1119     InstanceMethod = ParseIdentifierLoc();
   1120   else if (Tok.isNot(tok::r_paren)) {
   1121     Diag(Tok, diag::err_expected) << tok::r_paren;
   1122     SkipUntil(tok::r_paren, StopAtSemi);
   1123     return;
   1124   }
   1125 
   1126   // Closing ')'.
   1127   if (T.consumeClose())
   1128     return;
   1129 
   1130   if (endLoc)
   1131     *endLoc = T.getCloseLocation();
   1132 
   1133   // Record this attribute
   1134   attrs.addNew(&ObjCBridgeRelated,
   1135                SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
   1136                ScopeName, ScopeLoc,
   1137                RelatedClass,
   1138                ClassMethod,
   1139                InstanceMethod,
   1140                Syntax);
   1141 }
   1142 
   1143 // Late Parsed Attributes:
   1144 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
   1145 
   1146 void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
   1147 
   1148 void Parser::LateParsedClass::ParseLexedAttributes() {
   1149   Self->ParseLexedAttributes(*Class);
   1150 }
   1151 
   1152 void Parser::LateParsedAttribute::ParseLexedAttributes() {
   1153   Self->ParseLexedAttribute(*this, true, false);
   1154 }
   1155 
   1156 /// Wrapper class which calls ParseLexedAttribute, after setting up the
   1157 /// scope appropriately.
   1158 void Parser::ParseLexedAttributes(ParsingClass &Class) {
   1159   // Deal with templates
   1160   // FIXME: Test cases to make sure this does the right thing for templates.
   1161   bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
   1162   ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
   1163                                 HasTemplateScope);
   1164   if (HasTemplateScope)
   1165     Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
   1166 
   1167   // Set or update the scope flags.
   1168   bool AlreadyHasClassScope = Class.TopLevelClass;
   1169   unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
   1170   ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
   1171   ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
   1172 
   1173   // Enter the scope of nested classes
   1174   if (!AlreadyHasClassScope)
   1175     Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
   1176                                                 Class.TagOrTemplate);
   1177   if (!Class.LateParsedDeclarations.empty()) {
   1178     for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
   1179       Class.LateParsedDeclarations[i]->ParseLexedAttributes();
   1180     }
   1181   }
   1182 
   1183   if (!AlreadyHasClassScope)
   1184     Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
   1185                                                  Class.TagOrTemplate);
   1186 }
   1187 
   1188 /// \brief Parse all attributes in LAs, and attach them to Decl D.
   1189 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
   1190                                      bool EnterScope, bool OnDefinition) {
   1191   assert(LAs.parseSoon() &&
   1192          "Attribute list should be marked for immediate parsing.");
   1193   for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
   1194     if (D)
   1195       LAs[i]->addDecl(D);
   1196     ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
   1197     delete LAs[i];
   1198   }
   1199   LAs.clear();
   1200 }
   1201 
   1202 /// \brief Finish parsing an attribute for which parsing was delayed.
   1203 /// This will be called at the end of parsing a class declaration
   1204 /// for each LateParsedAttribute. We consume the saved tokens and
   1205 /// create an attribute with the arguments filled in. We add this
   1206 /// to the Attribute list for the decl.
   1207 void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
   1208                                  bool EnterScope, bool OnDefinition) {
   1209   // Create a fake EOF so that attribute parsing won't go off the end of the
   1210   // attribute.
   1211   Token AttrEnd;
   1212   AttrEnd.startToken();
   1213   AttrEnd.setKind(tok::eof);
   1214   AttrEnd.setLocation(Tok.getLocation());
   1215   AttrEnd.setEofData(LA.Toks.data());
   1216   LA.Toks.push_back(AttrEnd);
   1217 
   1218   // Append the current token at the end of the new token stream so that it
   1219   // doesn't get lost.
   1220   LA.Toks.push_back(Tok);
   1221   PP.EnterTokenStream(LA.Toks, true);
   1222   // Consume the previously pushed token.
   1223   ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
   1224 
   1225   ParsedAttributes Attrs(AttrFactory);
   1226   SourceLocation endLoc;
   1227 
   1228   if (LA.Decls.size() > 0) {
   1229     Decl *D = LA.Decls[0];
   1230     NamedDecl *ND  = dyn_cast<NamedDecl>(D);
   1231     RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
   1232 
   1233     // Allow 'this' within late-parsed attributes.
   1234     Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
   1235                                      ND && ND->isCXXInstanceMember());
   1236 
   1237     if (LA.Decls.size() == 1) {
   1238       // If the Decl is templatized, add template parameters to scope.
   1239       bool HasTemplateScope = EnterScope && D->isTemplateDecl();
   1240       ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
   1241       if (HasTemplateScope)
   1242         Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
   1243 
   1244       // If the Decl is on a function, add function parameters to the scope.
   1245       bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
   1246       ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunScope);
   1247       if (HasFunScope)
   1248         Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
   1249 
   1250       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
   1251                             nullptr, SourceLocation(), AttributeList::AS_GNU,
   1252                             nullptr);
   1253 
   1254       if (HasFunScope) {
   1255         Actions.ActOnExitFunctionContext();
   1256         FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
   1257       }
   1258       if (HasTemplateScope) {
   1259         TempScope.Exit();
   1260       }
   1261     } else {
   1262       // If there are multiple decls, then the decl cannot be within the
   1263       // function scope.
   1264       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
   1265                             nullptr, SourceLocation(), AttributeList::AS_GNU,
   1266                             nullptr);
   1267     }
   1268   } else {
   1269     Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
   1270   }
   1271 
   1272   const AttributeList *AL = Attrs.getList();
   1273   if (OnDefinition && AL && !AL->isCXX11Attribute() &&
   1274       AL->isKnownToGCC())
   1275     Diag(Tok, diag::warn_attribute_on_function_definition)
   1276       << &LA.AttrName;
   1277 
   1278   for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
   1279     Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
   1280 
   1281   // Due to a parsing error, we either went over the cached tokens or
   1282   // there are still cached tokens left, so we skip the leftover tokens.
   1283   while (Tok.isNot(tok::eof))
   1284     ConsumeAnyToken();
   1285 
   1286   if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
   1287     ConsumeAnyToken();
   1288 }
   1289 
   1290 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
   1291                                               SourceLocation AttrNameLoc,
   1292                                               ParsedAttributes &Attrs,
   1293                                               SourceLocation *EndLoc,
   1294                                               IdentifierInfo *ScopeName,
   1295                                               SourceLocation ScopeLoc,
   1296                                               AttributeList::Syntax Syntax) {
   1297   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
   1298 
   1299   BalancedDelimiterTracker T(*this, tok::l_paren);
   1300   T.consumeOpen();
   1301 
   1302   if (Tok.isNot(tok::identifier)) {
   1303     Diag(Tok, diag::err_expected) << tok::identifier;
   1304     T.skipToEnd();
   1305     return;
   1306   }
   1307   IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
   1308 
   1309   if (ExpectAndConsume(tok::comma)) {
   1310     T.skipToEnd();
   1311     return;
   1312   }
   1313 
   1314   SourceRange MatchingCTypeRange;
   1315   TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
   1316   if (MatchingCType.isInvalid()) {
   1317     T.skipToEnd();
   1318     return;
   1319   }
   1320 
   1321   bool LayoutCompatible = false;
   1322   bool MustBeNull = false;
   1323   while (TryConsumeToken(tok::comma)) {
   1324     if (Tok.isNot(tok::identifier)) {
   1325       Diag(Tok, diag::err_expected) << tok::identifier;
   1326       T.skipToEnd();
   1327       return;
   1328     }
   1329     IdentifierInfo *Flag = Tok.getIdentifierInfo();
   1330     if (Flag->isStr("layout_compatible"))
   1331       LayoutCompatible = true;
   1332     else if (Flag->isStr("must_be_null"))
   1333       MustBeNull = true;
   1334     else {
   1335       Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
   1336       T.skipToEnd();
   1337       return;
   1338     }
   1339     ConsumeToken(); // consume flag
   1340   }
   1341 
   1342   if (!T.consumeClose()) {
   1343     Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
   1344                                    ArgumentKind, MatchingCType.get(),
   1345                                    LayoutCompatible, MustBeNull, Syntax);
   1346   }
   1347 
   1348   if (EndLoc)
   1349     *EndLoc = T.getCloseLocation();
   1350 }
   1351 
   1352 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
   1353 /// of a C++11 attribute-specifier in a location where an attribute is not
   1354 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
   1355 /// situation.
   1356 ///
   1357 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
   1358 /// this doesn't appear to actually be an attribute-specifier, and the caller
   1359 /// should try to parse it.
   1360 bool Parser::DiagnoseProhibitedCXX11Attribute() {
   1361   assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
   1362 
   1363   switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
   1364   case CAK_NotAttributeSpecifier:
   1365     // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
   1366     return false;
   1367 
   1368   case CAK_InvalidAttributeSpecifier:
   1369     Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
   1370     return false;
   1371 
   1372   case CAK_AttributeSpecifier:
   1373     // Parse and discard the attributes.
   1374     SourceLocation BeginLoc = ConsumeBracket();
   1375     ConsumeBracket();
   1376     SkipUntil(tok::r_square);
   1377     assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
   1378     SourceLocation EndLoc = ConsumeBracket();
   1379     Diag(BeginLoc, diag::err_attributes_not_allowed)
   1380       << SourceRange(BeginLoc, EndLoc);
   1381     return true;
   1382   }
   1383   llvm_unreachable("All cases handled above.");
   1384 }
   1385 
   1386 /// \brief We have found the opening square brackets of a C++11
   1387 /// attribute-specifier in a location where an attribute is not permitted, but
   1388 /// we know where the attributes ought to be written. Parse them anyway, and
   1389 /// provide a fixit moving them to the right place.
   1390 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
   1391                                              SourceLocation CorrectLocation) {
   1392   assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
   1393          Tok.is(tok::kw_alignas));
   1394 
   1395   // Consume the attributes.
   1396   SourceLocation Loc = Tok.getLocation();
   1397   ParseCXX11Attributes(Attrs);
   1398   CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
   1399 
   1400   Diag(Loc, diag::err_attributes_not_allowed)
   1401     << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
   1402     << FixItHint::CreateRemoval(AttrRange);
   1403 }
   1404 
   1405 void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
   1406   Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
   1407     << attrs.Range;
   1408 }
   1409 
   1410 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &attrs) {
   1411   AttributeList *AttrList = attrs.getList();
   1412   while (AttrList) {
   1413     if (AttrList->isCXX11Attribute()) {
   1414       Diag(AttrList->getLoc(), diag::err_attribute_not_type_attr)
   1415         << AttrList->getName();
   1416       AttrList->setInvalid();
   1417     }
   1418     AttrList = AttrList->getNext();
   1419   }
   1420 }
   1421 
   1422 // As an exception to the rule, __declspec(align(...)) before the
   1423 // class-key affects the type instead of the variable.
   1424 void Parser::handleDeclspecAlignBeforeClassKey(ParsedAttributesWithRange &Attrs,
   1425                                                DeclSpec &DS,
   1426                                                Sema::TagUseKind TUK) {
   1427   if (TUK == Sema::TUK_Reference)
   1428     return;
   1429 
   1430   ParsedAttributes &PA = DS.getAttributes();
   1431   AttributeList *AL = PA.getList();
   1432   AttributeList *Prev = nullptr;
   1433   while (AL) {
   1434     AttributeList *Next = AL->getNext();
   1435 
   1436     // We only consider attributes using the appropriate '__declspec' spelling.
   1437     // This behavior doesn't extend to any other spellings.
   1438     if (AL->getKind() == AttributeList::AT_Aligned &&
   1439         AL->isDeclspecAttribute()) {
   1440       // Stitch the attribute into the tag's attribute list.
   1441       AL->setNext(nullptr);
   1442       Attrs.add(AL);
   1443 
   1444       // Remove the attribute from the variable's attribute list.
   1445       if (Prev) {
   1446         // Set the last variable attribute's next attribute to be the attribute
   1447         // after the current one.
   1448         Prev->setNext(Next);
   1449       } else {
   1450         // Removing the head of the list requires us to reset the head to the
   1451         // next attribute.
   1452         PA.set(Next);
   1453       }
   1454     } else {
   1455       Prev = AL;
   1456     }
   1457 
   1458     AL = Next;
   1459   }
   1460 }
   1461 
   1462 /// ParseDeclaration - Parse a full 'declaration', which consists of
   1463 /// declaration-specifiers, some number of declarators, and a semicolon.
   1464 /// 'Context' should be a Declarator::TheContext value.  This returns the
   1465 /// location of the semicolon in DeclEnd.
   1466 ///
   1467 ///       declaration: [C99 6.7]
   1468 ///         block-declaration ->
   1469 ///           simple-declaration
   1470 ///           others                   [FIXME]
   1471 /// [C++]   template-declaration
   1472 /// [C++]   namespace-definition
   1473 /// [C++]   using-directive
   1474 /// [C++]   using-declaration
   1475 /// [C++11/C11] static_assert-declaration
   1476 ///         others... [FIXME]
   1477 ///
   1478 Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
   1479                                                 SourceLocation &DeclEnd,
   1480                                           ParsedAttributesWithRange &attrs) {
   1481   ParenBraceBracketBalancer BalancerRAIIObj(*this);
   1482   // Must temporarily exit the objective-c container scope for
   1483   // parsing c none objective-c decls.
   1484   ObjCDeclContextSwitch ObjCDC(*this);
   1485 
   1486   Decl *SingleDecl = nullptr;
   1487   Decl *OwnedType = nullptr;
   1488   switch (Tok.getKind()) {
   1489   case tok::kw_template:
   1490   case tok::kw_export:
   1491     ProhibitAttributes(attrs);
   1492     SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
   1493     break;
   1494   case tok::kw_inline:
   1495     // Could be the start of an inline namespace. Allowed as an ext in C++03.
   1496     if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
   1497       ProhibitAttributes(attrs);
   1498       SourceLocation InlineLoc = ConsumeToken();
   1499       return ParseNamespace(Context, DeclEnd, InlineLoc);
   1500     }
   1501     return ParseSimpleDeclaration(Context, DeclEnd, attrs,
   1502                                   true);
   1503   case tok::kw_namespace:
   1504     ProhibitAttributes(attrs);
   1505     return ParseNamespace(Context, DeclEnd);
   1506   case tok::kw_using:
   1507     SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
   1508                                                   DeclEnd, attrs, &OwnedType);
   1509     break;
   1510   case tok::kw_static_assert:
   1511   case tok::kw__Static_assert:
   1512     ProhibitAttributes(attrs);
   1513     SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
   1514     break;
   1515   default:
   1516     return ParseSimpleDeclaration(Context, DeclEnd, attrs, true);
   1517   }
   1518 
   1519   // This routine returns a DeclGroup, if the thing we parsed only contains a
   1520   // single decl, convert it now. Alias declarations can also declare a type;
   1521   // include that too if it is present.
   1522   return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
   1523 }
   1524 
   1525 ///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
   1526 ///         declaration-specifiers init-declarator-list[opt] ';'
   1527 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
   1528 ///             init-declarator-list ';'
   1529 ///[C90/C++]init-declarator-list ';'                             [TODO]
   1530 /// [OMP]   threadprivate-directive                              [TODO]
   1531 ///
   1532 ///       for-range-declaration: [C++11 6.5p1: stmt.ranged]
   1533 ///         attribute-specifier-seq[opt] type-specifier-seq declarator
   1534 ///
   1535 /// If RequireSemi is false, this does not check for a ';' at the end of the
   1536 /// declaration.  If it is true, it checks for and eats it.
   1537 ///
   1538 /// If FRI is non-null, we might be parsing a for-range-declaration instead
   1539 /// of a simple-declaration. If we find that we are, we also parse the
   1540 /// for-range-initializer, and place it here.
   1541 Parser::DeclGroupPtrTy
   1542 Parser::ParseSimpleDeclaration(unsigned Context,
   1543                                SourceLocation &DeclEnd,
   1544                                ParsedAttributesWithRange &Attrs,
   1545                                bool RequireSemi, ForRangeInit *FRI) {
   1546   // Parse the common declaration-specifiers piece.
   1547   ParsingDeclSpec DS(*this);
   1548 
   1549   DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
   1550   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
   1551 
   1552   // If we had a free-standing type definition with a missing semicolon, we
   1553   // may get this far before the problem becomes obvious.
   1554   if (DS.hasTagDefinition() &&
   1555       DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
   1556     return nullptr;
   1557 
   1558   // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
   1559   // declaration-specifiers init-declarator-list[opt] ';'
   1560   if (Tok.is(tok::semi)) {
   1561     ProhibitAttributes(Attrs);
   1562     DeclEnd = Tok.getLocation();
   1563     if (RequireSemi) ConsumeToken();
   1564     RecordDecl *AnonRecord = nullptr;
   1565     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
   1566                                                        DS, AnonRecord);
   1567     DS.complete(TheDecl);
   1568     if (AnonRecord) {
   1569       Decl* decls[] = {AnonRecord, TheDecl};
   1570       return Actions.BuildDeclaratorGroup(decls, /*TypeMayContainAuto=*/false);
   1571     }
   1572     return Actions.ConvertDeclToDeclGroup(TheDecl);
   1573   }
   1574 
   1575   DS.takeAttributesFrom(Attrs);
   1576   return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
   1577 }
   1578 
   1579 /// Returns true if this might be the start of a declarator, or a common typo
   1580 /// for a declarator.
   1581 bool Parser::MightBeDeclarator(unsigned Context) {
   1582   switch (Tok.getKind()) {
   1583   case tok::annot_cxxscope:
   1584   case tok::annot_template_id:
   1585   case tok::caret:
   1586   case tok::code_completion:
   1587   case tok::coloncolon:
   1588   case tok::ellipsis:
   1589   case tok::kw___attribute:
   1590   case tok::kw_operator:
   1591   case tok::l_paren:
   1592   case tok::star:
   1593     return true;
   1594 
   1595   case tok::amp:
   1596   case tok::ampamp:
   1597     return getLangOpts().CPlusPlus;
   1598 
   1599   case tok::l_square: // Might be an attribute on an unnamed bit-field.
   1600     return Context == Declarator::MemberContext && getLangOpts().CPlusPlus11 &&
   1601            NextToken().is(tok::l_square);
   1602 
   1603   case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
   1604     return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
   1605 
   1606   case tok::identifier:
   1607     switch (NextToken().getKind()) {
   1608     case tok::code_completion:
   1609     case tok::coloncolon:
   1610     case tok::comma:
   1611     case tok::equal:
   1612     case tok::equalequal: // Might be a typo for '='.
   1613     case tok::kw_alignas:
   1614     case tok::kw_asm:
   1615     case tok::kw___attribute:
   1616     case tok::l_brace:
   1617     case tok::l_paren:
   1618     case tok::l_square:
   1619     case tok::less:
   1620     case tok::r_brace:
   1621     case tok::r_paren:
   1622     case tok::r_square:
   1623     case tok::semi:
   1624       return true;
   1625 
   1626     case tok::colon:
   1627       // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
   1628       // and in block scope it's probably a label. Inside a class definition,
   1629       // this is a bit-field.
   1630       return Context == Declarator::MemberContext ||
   1631              (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
   1632 
   1633     case tok::identifier: // Possible virt-specifier.
   1634       return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
   1635 
   1636     default:
   1637       return false;
   1638     }
   1639 
   1640   default:
   1641     return false;
   1642   }
   1643 }
   1644 
   1645 /// Skip until we reach something which seems like a sensible place to pick
   1646 /// up parsing after a malformed declaration. This will sometimes stop sooner
   1647 /// than SkipUntil(tok::r_brace) would, but will never stop later.
   1648 void Parser::SkipMalformedDecl() {
   1649   while (true) {
   1650     switch (Tok.getKind()) {
   1651     case tok::l_brace:
   1652       // Skip until matching }, then stop. We've probably skipped over
   1653       // a malformed class or function definition or similar.
   1654       ConsumeBrace();
   1655       SkipUntil(tok::r_brace);
   1656       if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
   1657         // This declaration isn't over yet. Keep skipping.
   1658         continue;
   1659       }
   1660       TryConsumeToken(tok::semi);
   1661       return;
   1662 
   1663     case tok::l_square:
   1664       ConsumeBracket();
   1665       SkipUntil(tok::r_square);
   1666       continue;
   1667 
   1668     case tok::l_paren:
   1669       ConsumeParen();
   1670       SkipUntil(tok::r_paren);
   1671       continue;
   1672 
   1673     case tok::r_brace:
   1674       return;
   1675 
   1676     case tok::semi:
   1677       ConsumeToken();
   1678       return;
   1679 
   1680     case tok::kw_inline:
   1681       // 'inline namespace' at the start of a line is almost certainly
   1682       // a good place to pick back up parsing, except in an Objective-C
   1683       // @interface context.
   1684       if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
   1685           (!ParsingInObjCContainer || CurParsedObjCImpl))
   1686         return;
   1687       break;
   1688 
   1689     case tok::kw_namespace:
   1690       // 'namespace' at the start of a line is almost certainly a good
   1691       // place to pick back up parsing, except in an Objective-C
   1692       // @interface context.
   1693       if (Tok.isAtStartOfLine() &&
   1694           (!ParsingInObjCContainer || CurParsedObjCImpl))
   1695         return;
   1696       break;
   1697 
   1698     case tok::at:
   1699       // @end is very much like } in Objective-C contexts.
   1700       if (NextToken().isObjCAtKeyword(tok::objc_end) &&
   1701           ParsingInObjCContainer)
   1702         return;
   1703       break;
   1704 
   1705     case tok::minus:
   1706     case tok::plus:
   1707       // - and + probably start new method declarations in Objective-C contexts.
   1708       if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
   1709         return;
   1710       break;
   1711 
   1712     case tok::eof:
   1713     case tok::annot_module_begin:
   1714     case tok::annot_module_end:
   1715     case tok::annot_module_include:
   1716       return;
   1717 
   1718     default:
   1719       break;
   1720     }
   1721 
   1722     ConsumeAnyToken();
   1723   }
   1724 }
   1725 
   1726 /// ParseDeclGroup - Having concluded that this is either a function
   1727 /// definition or a group of object declarations, actually parse the
   1728 /// result.
   1729 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
   1730                                               unsigned Context,
   1731                                               SourceLocation *DeclEnd,
   1732                                               ForRangeInit *FRI) {
   1733   // Parse the first declarator.
   1734   ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
   1735   ParseDeclarator(D);
   1736 
   1737   // Bail out if the first declarator didn't seem well-formed.
   1738   if (!D.hasName() && !D.mayOmitIdentifier()) {
   1739     SkipMalformedDecl();
   1740     return nullptr;
   1741   }
   1742 
   1743   // Save late-parsed attributes for now; they need to be parsed in the
   1744   // appropriate function scope after the function Decl has been constructed.
   1745   // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
   1746   LateParsedAttrList LateParsedAttrs(true);
   1747   if (D.isFunctionDeclarator()) {
   1748     MaybeParseGNUAttributes(D, &LateParsedAttrs);
   1749 
   1750     // The _Noreturn keyword can't appear here, unlike the GNU noreturn
   1751     // attribute. If we find the keyword here, tell the user to put it
   1752     // at the start instead.
   1753     if (Tok.is(tok::kw__Noreturn)) {
   1754       SourceLocation Loc = ConsumeToken();
   1755       const char *PrevSpec;
   1756       unsigned DiagID;
   1757 
   1758       // We can offer a fixit if it's valid to mark this function as _Noreturn
   1759       // and we don't have any other declarators in this declaration.
   1760       bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
   1761       MaybeParseGNUAttributes(D, &LateParsedAttrs);
   1762       Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
   1763 
   1764       Diag(Loc, diag::err_c11_noreturn_misplaced)
   1765           << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
   1766           << (Fixit ? FixItHint::CreateInsertion(D.getLocStart(), "_Noreturn ")
   1767                     : FixItHint());
   1768     }
   1769   }
   1770 
   1771   // Check to see if we have a function *definition* which must have a body.
   1772   if (D.isFunctionDeclarator() &&
   1773       // Look at the next token to make sure that this isn't a function
   1774       // declaration.  We have to check this because __attribute__ might be the
   1775       // start of a function definition in GCC-extended K&R C.
   1776       !isDeclarationAfterDeclarator()) {
   1777 
   1778     // Function definitions are only allowed at file scope and in C++ classes.
   1779     // The C++ inline method definition case is handled elsewhere, so we only
   1780     // need to handle the file scope definition case.
   1781     if (Context == Declarator::FileContext) {
   1782       if (isStartOfFunctionDefinition(D)) {
   1783         if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
   1784           Diag(Tok, diag::err_function_declared_typedef);
   1785 
   1786           // Recover by treating the 'typedef' as spurious.
   1787           DS.ClearStorageClassSpecs();
   1788         }
   1789 
   1790         Decl *TheDecl =
   1791           ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
   1792         return Actions.ConvertDeclToDeclGroup(TheDecl);
   1793       }
   1794 
   1795       if (isDeclarationSpecifier()) {
   1796         // If there is an invalid declaration specifier right after the
   1797         // function prototype, then we must be in a missing semicolon case
   1798         // where this isn't actually a body.  Just fall through into the code
   1799         // that handles it as a prototype, and let the top-level code handle
   1800         // the erroneous declspec where it would otherwise expect a comma or
   1801         // semicolon.
   1802       } else {
   1803         Diag(Tok, diag::err_expected_fn_body);
   1804         SkipUntil(tok::semi);
   1805         return nullptr;
   1806       }
   1807     } else {
   1808       if (Tok.is(tok::l_brace)) {
   1809         Diag(Tok, diag::err_function_definition_not_allowed);
   1810         SkipMalformedDecl();
   1811         return nullptr;
   1812       }
   1813     }
   1814   }
   1815 
   1816   if (ParseAsmAttributesAfterDeclarator(D))
   1817     return nullptr;
   1818 
   1819   // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
   1820   // must parse and analyze the for-range-initializer before the declaration is
   1821   // analyzed.
   1822   //
   1823   // Handle the Objective-C for-in loop variable similarly, although we
   1824   // don't need to parse the container in advance.
   1825   if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
   1826     bool IsForRangeLoop = false;
   1827     if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
   1828       IsForRangeLoop = true;
   1829       if (Tok.is(tok::l_brace))
   1830         FRI->RangeExpr = ParseBraceInitializer();
   1831       else
   1832         FRI->RangeExpr = ParseExpression();
   1833     }
   1834 
   1835     Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
   1836     if (IsForRangeLoop)
   1837       Actions.ActOnCXXForRangeDecl(ThisDecl);
   1838     Actions.FinalizeDeclaration(ThisDecl);
   1839     D.complete(ThisDecl);
   1840     return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
   1841   }
   1842 
   1843   SmallVector<Decl *, 8> DeclsInGroup;
   1844   Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
   1845       D, ParsedTemplateInfo(), FRI);
   1846   if (LateParsedAttrs.size() > 0)
   1847     ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
   1848   D.complete(FirstDecl);
   1849   if (FirstDecl)
   1850     DeclsInGroup.push_back(FirstDecl);
   1851 
   1852   bool ExpectSemi = Context != Declarator::ForContext;
   1853 
   1854   // If we don't have a comma, it is either the end of the list (a ';') or an
   1855   // error, bail out.
   1856   SourceLocation CommaLoc;
   1857   while (TryConsumeToken(tok::comma, CommaLoc)) {
   1858     if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
   1859       // This comma was followed by a line-break and something which can't be
   1860       // the start of a declarator. The comma was probably a typo for a
   1861       // semicolon.
   1862       Diag(CommaLoc, diag::err_expected_semi_declaration)
   1863         << FixItHint::CreateReplacement(CommaLoc, ";");
   1864       ExpectSemi = false;
   1865       break;
   1866     }
   1867 
   1868     // Parse the next declarator.
   1869     D.clear();
   1870     D.setCommaLoc(CommaLoc);
   1871 
   1872     // Accept attributes in an init-declarator.  In the first declarator in a
   1873     // declaration, these would be part of the declspec.  In subsequent
   1874     // declarators, they become part of the declarator itself, so that they
   1875     // don't apply to declarators after *this* one.  Examples:
   1876     //    short __attribute__((common)) var;    -> declspec
   1877     //    short var __attribute__((common));    -> declarator
   1878     //    short x, __attribute__((common)) var;    -> declarator
   1879     MaybeParseGNUAttributes(D);
   1880 
   1881     // MSVC parses but ignores qualifiers after the comma as an extension.
   1882     if (getLangOpts().MicrosoftExt)
   1883       DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
   1884 
   1885     ParseDeclarator(D);
   1886     if (!D.isInvalidType()) {
   1887       Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
   1888       D.complete(ThisDecl);
   1889       if (ThisDecl)
   1890         DeclsInGroup.push_back(ThisDecl);
   1891     }
   1892   }
   1893 
   1894   if (DeclEnd)
   1895     *DeclEnd = Tok.getLocation();
   1896 
   1897   if (ExpectSemi &&
   1898       ExpectAndConsumeSemi(Context == Declarator::FileContext
   1899                            ? diag::err_invalid_token_after_toplevel_declarator
   1900                            : diag::err_expected_semi_declaration)) {
   1901     // Okay, there was no semicolon and one was expected.  If we see a
   1902     // declaration specifier, just assume it was missing and continue parsing.
   1903     // Otherwise things are very confused and we skip to recover.
   1904     if (!isDeclarationSpecifier()) {
   1905       SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
   1906       TryConsumeToken(tok::semi);
   1907     }
   1908   }
   1909 
   1910   return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
   1911 }
   1912 
   1913 /// Parse an optional simple-asm-expr and attributes, and attach them to a
   1914 /// declarator. Returns true on an error.
   1915 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
   1916   // If a simple-asm-expr is present, parse it.
   1917   if (Tok.is(tok::kw_asm)) {
   1918     SourceLocation Loc;
   1919     ExprResult AsmLabel(ParseSimpleAsm(&Loc));
   1920     if (AsmLabel.isInvalid()) {
   1921       SkipUntil(tok::semi, StopBeforeMatch);
   1922       return true;
   1923     }
   1924 
   1925     D.setAsmLabel(AsmLabel.get());
   1926     D.SetRangeEnd(Loc);
   1927   }
   1928 
   1929   MaybeParseGNUAttributes(D);
   1930   return false;
   1931 }
   1932 
   1933 /// \brief Parse 'declaration' after parsing 'declaration-specifiers
   1934 /// declarator'. This method parses the remainder of the declaration
   1935 /// (including any attributes or initializer, among other things) and
   1936 /// finalizes the declaration.
   1937 ///
   1938 ///       init-declarator: [C99 6.7]
   1939 ///         declarator
   1940 ///         declarator '=' initializer
   1941 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
   1942 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
   1943 /// [C++]   declarator initializer[opt]
   1944 ///
   1945 /// [C++] initializer:
   1946 /// [C++]   '=' initializer-clause
   1947 /// [C++]   '(' expression-list ')'
   1948 /// [C++0x] '=' 'default'                                                [TODO]
   1949 /// [C++0x] '=' 'delete'
   1950 /// [C++0x] braced-init-list
   1951 ///
   1952 /// According to the standard grammar, =default and =delete are function
   1953 /// definitions, but that definitely doesn't fit with the parser here.
   1954 ///
   1955 Decl *Parser::ParseDeclarationAfterDeclarator(
   1956     Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
   1957   if (ParseAsmAttributesAfterDeclarator(D))
   1958     return nullptr;
   1959 
   1960   return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
   1961 }
   1962 
   1963 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
   1964     Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
   1965   // Inform the current actions module that we just parsed this declarator.
   1966   Decl *ThisDecl = nullptr;
   1967   switch (TemplateInfo.Kind) {
   1968   case ParsedTemplateInfo::NonTemplate:
   1969     ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
   1970     break;
   1971 
   1972   case ParsedTemplateInfo::Template:
   1973   case ParsedTemplateInfo::ExplicitSpecialization: {
   1974     ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
   1975                                                *TemplateInfo.TemplateParams,
   1976                                                D);
   1977     if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
   1978       // Re-direct this decl to refer to the templated decl so that we can
   1979       // initialize it.
   1980       ThisDecl = VT->getTemplatedDecl();
   1981     break;
   1982   }
   1983   case ParsedTemplateInfo::ExplicitInstantiation: {
   1984     if (Tok.is(tok::semi)) {
   1985       DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
   1986           getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
   1987       if (ThisRes.isInvalid()) {
   1988         SkipUntil(tok::semi, StopBeforeMatch);
   1989         return nullptr;
   1990       }
   1991       ThisDecl = ThisRes.get();
   1992     } else {
   1993       // FIXME: This check should be for a variable template instantiation only.
   1994 
   1995       // Check that this is a valid instantiation
   1996       if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
   1997         // If the declarator-id is not a template-id, issue a diagnostic and
   1998         // recover by ignoring the 'template' keyword.
   1999         Diag(Tok, diag::err_template_defn_explicit_instantiation)
   2000             << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
   2001         ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
   2002       } else {
   2003         SourceLocation LAngleLoc =
   2004             PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
   2005         Diag(D.getIdentifierLoc(),
   2006              diag::err_explicit_instantiation_with_definition)
   2007             << SourceRange(TemplateInfo.TemplateLoc)
   2008             << FixItHint::CreateInsertion(LAngleLoc, "<>");
   2009 
   2010         // Recover as if it were an explicit specialization.
   2011         TemplateParameterLists FakedParamLists;
   2012         FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
   2013             0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None,
   2014             LAngleLoc, nullptr));
   2015 
   2016         ThisDecl =
   2017             Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
   2018       }
   2019     }
   2020     break;
   2021     }
   2022   }
   2023 
   2024   bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
   2025 
   2026   // Parse declarator '=' initializer.
   2027   // If a '==' or '+=' is found, suggest a fixit to '='.
   2028   if (isTokenEqualOrEqualTypo()) {
   2029     SourceLocation EqualLoc = ConsumeToken();
   2030 
   2031     if (Tok.is(tok::kw_delete)) {
   2032       if (D.isFunctionDeclarator())
   2033         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
   2034           << 1 /* delete */;
   2035       else
   2036         Diag(ConsumeToken(), diag::err_deleted_non_function);
   2037     } else if (Tok.is(tok::kw_default)) {
   2038       if (D.isFunctionDeclarator())
   2039         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
   2040           << 0 /* default */;
   2041       else
   2042         Diag(ConsumeToken(), diag::err_default_special_members);
   2043     } else {
   2044       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
   2045         EnterScope(0);
   2046         Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
   2047       }
   2048 
   2049       if (Tok.is(tok::code_completion)) {
   2050         Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
   2051         Actions.FinalizeDeclaration(ThisDecl);
   2052         cutOffParsing();
   2053         return nullptr;
   2054       }
   2055 
   2056       ExprResult Init(ParseInitializer());
   2057 
   2058       // If this is the only decl in (possibly) range based for statement,
   2059       // our best guess is that the user meant ':' instead of '='.
   2060       if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
   2061         Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
   2062             << FixItHint::CreateReplacement(EqualLoc, ":");
   2063         // We are trying to stop parser from looking for ';' in this for
   2064         // statement, therefore preventing spurious errors to be issued.
   2065         FRI->ColonLoc = EqualLoc;
   2066         Init = ExprError();
   2067         FRI->RangeExpr = Init;
   2068       }
   2069 
   2070       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
   2071         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
   2072         ExitScope();
   2073       }
   2074 
   2075       if (Init.isInvalid()) {
   2076         SmallVector<tok::TokenKind, 2> StopTokens;
   2077         StopTokens.push_back(tok::comma);
   2078         if (D.getContext() == Declarator::ForContext ||
   2079             D.getContext() == Declarator::InitStmtContext)
   2080           StopTokens.push_back(tok::r_paren);
   2081         SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
   2082         Actions.ActOnInitializerError(ThisDecl);
   2083       } else
   2084         Actions.AddInitializerToDecl(ThisDecl, Init.get(),
   2085                                      /*DirectInit=*/false, TypeContainsAuto);
   2086     }
   2087   } else if (Tok.is(tok::l_paren)) {
   2088     // Parse C++ direct initializer: '(' expression-list ')'
   2089     BalancedDelimiterTracker T(*this, tok::l_paren);
   2090     T.consumeOpen();
   2091 
   2092     ExprVector Exprs;
   2093     CommaLocsTy CommaLocs;
   2094 
   2095     if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
   2096       EnterScope(0);
   2097       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
   2098     }
   2099 
   2100     if (ParseExpressionList(Exprs, CommaLocs, [&] {
   2101           Actions.CodeCompleteConstructor(getCurScope(),
   2102                  cast<VarDecl>(ThisDecl)->getType()->getCanonicalTypeInternal(),
   2103                                           ThisDecl->getLocation(), Exprs);
   2104        })) {
   2105       Actions.ActOnInitializerError(ThisDecl);
   2106       SkipUntil(tok::r_paren, StopAtSemi);
   2107 
   2108       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
   2109         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
   2110         ExitScope();
   2111       }
   2112     } else {
   2113       // Match the ')'.
   2114       T.consumeClose();
   2115 
   2116       assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
   2117              "Unexpected number of commas!");
   2118 
   2119       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
   2120         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
   2121         ExitScope();
   2122       }
   2123 
   2124       ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
   2125                                                           T.getCloseLocation(),
   2126                                                           Exprs);
   2127       Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
   2128                                    /*DirectInit=*/true, TypeContainsAuto);
   2129     }
   2130   } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
   2131              (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
   2132     // Parse C++0x braced-init-list.
   2133     Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
   2134 
   2135     if (D.getCXXScopeSpec().isSet()) {
   2136       EnterScope(0);
   2137       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
   2138     }
   2139 
   2140     ExprResult Init(ParseBraceInitializer());
   2141 
   2142     if (D.getCXXScopeSpec().isSet()) {
   2143       Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
   2144       ExitScope();
   2145     }
   2146 
   2147     if (Init.isInvalid()) {
   2148       Actions.ActOnInitializerError(ThisDecl);
   2149     } else
   2150       Actions.AddInitializerToDecl(ThisDecl, Init.get(),
   2151                                    /*DirectInit=*/true, TypeContainsAuto);
   2152 
   2153   } else {
   2154     Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
   2155   }
   2156 
   2157   Actions.FinalizeDeclaration(ThisDecl);
   2158 
   2159   return ThisDecl;
   2160 }
   2161 
   2162 /// ParseSpecifierQualifierList
   2163 ///        specifier-qualifier-list:
   2164 ///          type-specifier specifier-qualifier-list[opt]
   2165 ///          type-qualifier specifier-qualifier-list[opt]
   2166 /// [GNU]    attributes     specifier-qualifier-list[opt]
   2167 ///
   2168 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
   2169                                          DeclSpecContext DSC) {
   2170   /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
   2171   /// parse declaration-specifiers and complain about extra stuff.
   2172   /// TODO: diagnose attribute-specifiers and alignment-specifiers.
   2173   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
   2174 
   2175   // Validate declspec for type-name.
   2176   unsigned Specs = DS.getParsedSpecifiers();
   2177   if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
   2178     Diag(Tok, diag::err_expected_type);
   2179     DS.SetTypeSpecError();
   2180   } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
   2181     Diag(Tok, diag::err_typename_requires_specqual);
   2182     if (!DS.hasTypeSpecifier())
   2183       DS.SetTypeSpecError();
   2184   }
   2185 
   2186   // Issue diagnostic and remove storage class if present.
   2187   if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
   2188     if (DS.getStorageClassSpecLoc().isValid())
   2189       Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
   2190     else
   2191       Diag(DS.getThreadStorageClassSpecLoc(),
   2192            diag::err_typename_invalid_storageclass);
   2193     DS.ClearStorageClassSpecs();
   2194   }
   2195 
   2196   // Issue diagnostic and remove function specifier if present.
   2197   if (Specs & DeclSpec::PQ_FunctionSpecifier) {
   2198     if (DS.isInlineSpecified())
   2199       Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
   2200     if (DS.isVirtualSpecified())
   2201       Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
   2202     if (DS.isExplicitSpecified())
   2203       Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
   2204     DS.ClearFunctionSpecs();
   2205   }
   2206 
   2207   // Issue diagnostic and remove constexpr specfier if present.
   2208   if (DS.isConstexprSpecified() && DSC != DSC_condition) {
   2209     Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
   2210     DS.ClearConstexprSpec();
   2211   }
   2212 }
   2213 
   2214 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
   2215 /// specified token is valid after the identifier in a declarator which
   2216 /// immediately follows the declspec.  For example, these things are valid:
   2217 ///
   2218 ///      int x   [             4];         // direct-declarator
   2219 ///      int x   (             int y);     // direct-declarator
   2220 ///  int(int x   )                         // direct-declarator
   2221 ///      int x   ;                         // simple-declaration
   2222 ///      int x   =             17;         // init-declarator-list
   2223 ///      int x   ,             y;          // init-declarator-list
   2224 ///      int x   __asm__       ("foo");    // init-declarator-list
   2225 ///      int x   :             4;          // struct-declarator
   2226 ///      int x   {             5};         // C++'0x unified initializers
   2227 ///
   2228 /// This is not, because 'x' does not immediately follow the declspec (though
   2229 /// ')' happens to be valid anyway).
   2230 ///    int (x)
   2231 ///
   2232 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
   2233   return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
   2234                    tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
   2235                    tok::colon);
   2236 }
   2237 
   2238 /// ParseImplicitInt - This method is called when we have an non-typename
   2239 /// identifier in a declspec (which normally terminates the decl spec) when
   2240 /// the declspec has no type specifier.  In this case, the declspec is either
   2241 /// malformed or is "implicit int" (in K&R and C89).
   2242 ///
   2243 /// This method handles diagnosing this prettily and returns false if the
   2244 /// declspec is done being processed.  If it recovers and thinks there may be
   2245 /// other pieces of declspec after it, it returns true.
   2246 ///
   2247 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
   2248                               const ParsedTemplateInfo &TemplateInfo,
   2249                               AccessSpecifier AS, DeclSpecContext DSC,
   2250                               ParsedAttributesWithRange &Attrs) {
   2251   assert(Tok.is(tok::identifier) && "should have identifier");
   2252 
   2253   SourceLocation Loc = Tok.getLocation();
   2254   // If we see an identifier that is not a type name, we normally would
   2255   // parse it as the identifer being declared.  However, when a typename
   2256   // is typo'd or the definition is not included, this will incorrectly
   2257   // parse the typename as the identifier name and fall over misparsing
   2258   // later parts of the diagnostic.
   2259   //
   2260   // As such, we try to do some look-ahead in cases where this would
   2261   // otherwise be an "implicit-int" case to see if this is invalid.  For
   2262   // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
   2263   // an identifier with implicit int, we'd get a parse error because the
   2264   // next token is obviously invalid for a type.  Parse these as a case
   2265   // with an invalid type specifier.
   2266   assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
   2267 
   2268   // Since we know that this either implicit int (which is rare) or an
   2269   // error, do lookahead to try to do better recovery. This never applies
   2270   // within a type specifier. Outside of C++, we allow this even if the
   2271   // language doesn't "officially" support implicit int -- we support
   2272   // implicit int as an extension in C99 and C11.
   2273   if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
   2274       isValidAfterIdentifierInDeclarator(NextToken())) {
   2275     // If this token is valid for implicit int, e.g. "static x = 4", then
   2276     // we just avoid eating the identifier, so it will be parsed as the
   2277     // identifier in the declarator.
   2278     return false;
   2279   }
   2280 
   2281   if (getLangOpts().CPlusPlus &&
   2282       DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
   2283     // Don't require a type specifier if we have the 'auto' storage class
   2284     // specifier in C++98 -- we'll promote it to a type specifier.
   2285     if (SS)
   2286       AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
   2287     return false;
   2288   }
   2289 
   2290   if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) &&
   2291       getLangOpts().MSVCCompat) {
   2292     // Lookup of an unqualified type name has failed in MSVC compatibility mode.
   2293     // Give Sema a chance to recover if we are in a template with dependent base
   2294     // classes.
   2295     if (ParsedType T = Actions.ActOnMSVCUnknownTypeName(
   2296             *Tok.getIdentifierInfo(), Tok.getLocation(),
   2297             DSC == DSC_template_type_arg)) {
   2298       const char *PrevSpec;
   2299       unsigned DiagID;
   2300       DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
   2301                          Actions.getASTContext().getPrintingPolicy());
   2302       DS.SetRangeEnd(Tok.getLocation());
   2303       ConsumeToken();
   2304       return false;
   2305     }
   2306   }
   2307 
   2308   // Otherwise, if we don't consume this token, we are going to emit an
   2309   // error anyway.  Try to recover from various common problems.  Check
   2310   // to see if this was a reference to a tag name without a tag specified.
   2311   // This is a common problem in C (saying 'foo' instead of 'struct foo').
   2312   //
   2313   // C++ doesn't need this, and isTagName doesn't take SS.
   2314   if (SS == nullptr) {
   2315     const char *TagName = nullptr, *FixitTagName = nullptr;
   2316     tok::TokenKind TagKind = tok::unknown;
   2317 
   2318     switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
   2319       default: break;
   2320       case DeclSpec::TST_enum:
   2321         TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
   2322       case DeclSpec::TST_union:
   2323         TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
   2324       case DeclSpec::TST_struct:
   2325         TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
   2326       case DeclSpec::TST_interface:
   2327         TagName="__interface"; FixitTagName = "__interface ";
   2328         TagKind=tok::kw___interface;break;
   2329       case DeclSpec::TST_class:
   2330         TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
   2331     }
   2332 
   2333     if (TagName) {
   2334       IdentifierInfo *TokenName = Tok.getIdentifierInfo();
   2335       LookupResult R(Actions, TokenName, SourceLocation(),
   2336                      Sema::LookupOrdinaryName);
   2337 
   2338       Diag(Loc, diag::err_use_of_tag_name_without_tag)
   2339         << TokenName << TagName << getLangOpts().CPlusPlus
   2340         << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
   2341 
   2342       if (Actions.LookupParsedName(R, getCurScope(), SS)) {
   2343         for (LookupResult::iterator I = R.begin(), IEnd = R.end();
   2344              I != IEnd; ++I)
   2345           Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
   2346             << TokenName << TagName;
   2347       }
   2348 
   2349       // Parse this as a tag as if the missing tag were present.
   2350       if (TagKind == tok::kw_enum)
   2351         ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
   2352       else
   2353         ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
   2354                             /*EnteringContext*/ false, DSC_normal, Attrs);
   2355       return true;
   2356     }
   2357   }
   2358 
   2359   // Determine whether this identifier could plausibly be the name of something
   2360   // being declared (with a missing type).
   2361   if (!isTypeSpecifier(DSC) &&
   2362       (!SS || DSC == DSC_top_level || DSC == DSC_class)) {
   2363     // Look ahead to the next token to try to figure out what this declaration
   2364     // was supposed to be.
   2365     switch (NextToken().getKind()) {
   2366     case tok::l_paren: {
   2367       // static x(4); // 'x' is not a type
   2368       // x(int n);    // 'x' is not a type
   2369       // x (*p)[];    // 'x' is a type
   2370       //
   2371       // Since we're in an error case, we can afford to perform a tentative
   2372       // parse to determine which case we're in.
   2373       TentativeParsingAction PA(*this);
   2374       ConsumeToken();
   2375       TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
   2376       PA.Revert();
   2377 
   2378       if (TPR != TPResult::False) {
   2379         // The identifier is followed by a parenthesized declarator.
   2380         // It's supposed to be a type.
   2381         break;
   2382       }
   2383 
   2384       // If we're in a context where we could be declaring a constructor,
   2385       // check whether this is a constructor declaration with a bogus name.
   2386       if (DSC == DSC_class || (DSC == DSC_top_level && SS)) {
   2387         IdentifierInfo *II = Tok.getIdentifierInfo();
   2388         if (Actions.isCurrentClassNameTypo(II, SS)) {
   2389           Diag(Loc, diag::err_constructor_bad_name)
   2390             << Tok.getIdentifierInfo() << II
   2391             << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
   2392           Tok.setIdentifierInfo(II);
   2393         }
   2394       }
   2395       // Fall through.
   2396     }
   2397     case tok::comma:
   2398     case tok::equal:
   2399     case tok::kw_asm:
   2400     case tok::l_brace:
   2401     case tok::l_square:
   2402     case tok::semi:
   2403       // This looks like a variable or function declaration. The type is
   2404       // probably missing. We're done parsing decl-specifiers.
   2405       if (SS)
   2406         AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
   2407       return false;
   2408 
   2409     default:
   2410       // This is probably supposed to be a type. This includes cases like:
   2411       //   int f(itn);
   2412       //   struct S { unsinged : 4; };
   2413       break;
   2414     }
   2415   }
   2416 
   2417   // This is almost certainly an invalid type name. Let Sema emit a diagnostic
   2418   // and attempt to recover.
   2419   ParsedType T;
   2420   IdentifierInfo *II = Tok.getIdentifierInfo();
   2421   Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
   2422                                   getLangOpts().CPlusPlus &&
   2423                                       NextToken().is(tok::less));
   2424   if (T) {
   2425     // The action has suggested that the type T could be used. Set that as
   2426     // the type in the declaration specifiers, consume the would-be type
   2427     // name token, and we're done.
   2428     const char *PrevSpec;
   2429     unsigned DiagID;
   2430     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
   2431                        Actions.getASTContext().getPrintingPolicy());
   2432     DS.SetRangeEnd(Tok.getLocation());
   2433     ConsumeToken();
   2434     // There may be other declaration specifiers after this.
   2435     return true;
   2436   } else if (II != Tok.getIdentifierInfo()) {
   2437     // If no type was suggested, the correction is to a keyword
   2438     Tok.setKind(II->getTokenID());
   2439     // There may be other declaration specifiers after this.
   2440     return true;
   2441   }
   2442 
   2443   // Otherwise, the action had no suggestion for us.  Mark this as an error.
   2444   DS.SetTypeSpecError();
   2445   DS.SetRangeEnd(Tok.getLocation());
   2446   ConsumeToken();
   2447 
   2448   // TODO: Could inject an invalid typedef decl in an enclosing scope to
   2449   // avoid rippling error messages on subsequent uses of the same type,
   2450   // could be useful if #include was forgotten.
   2451   return false;
   2452 }
   2453 
   2454 /// \brief Determine the declaration specifier context from the declarator
   2455 /// context.
   2456 ///
   2457 /// \param Context the declarator context, which is one of the
   2458 /// Declarator::TheContext enumerator values.
   2459 Parser::DeclSpecContext
   2460 Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
   2461   if (Context == Declarator::MemberContext)
   2462     return DSC_class;
   2463   if (Context == Declarator::FileContext)
   2464     return DSC_top_level;
   2465   if (Context == Declarator::TemplateTypeArgContext)
   2466     return DSC_template_type_arg;
   2467   if (Context == Declarator::TrailingReturnContext)
   2468     return DSC_trailing;
   2469   if (Context == Declarator::AliasDeclContext ||
   2470       Context == Declarator::AliasTemplateContext)
   2471     return DSC_alias_declaration;
   2472   return DSC_normal;
   2473 }
   2474 
   2475 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
   2476 ///
   2477 /// FIXME: Simply returns an alignof() expression if the argument is a
   2478 /// type. Ideally, the type should be propagated directly into Sema.
   2479 ///
   2480 /// [C11]   type-id
   2481 /// [C11]   constant-expression
   2482 /// [C++0x] type-id ...[opt]
   2483 /// [C++0x] assignment-expression ...[opt]
   2484 ExprResult Parser::ParseAlignArgument(SourceLocation Start,
   2485                                       SourceLocation &EllipsisLoc) {
   2486   ExprResult ER;
   2487   if (isTypeIdInParens()) {
   2488     SourceLocation TypeLoc = Tok.getLocation();
   2489     ParsedType Ty = ParseTypeName().get();
   2490     SourceRange TypeRange(Start, Tok.getLocation());
   2491     ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
   2492                                                Ty.getAsOpaquePtr(), TypeRange);
   2493   } else
   2494     ER = ParseConstantExpression();
   2495 
   2496   if (getLangOpts().CPlusPlus11)
   2497     TryConsumeToken(tok::ellipsis, EllipsisLoc);
   2498 
   2499   return ER;
   2500 }
   2501 
   2502 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
   2503 /// attribute to Attrs.
   2504 ///
   2505 /// alignment-specifier:
   2506 /// [C11]   '_Alignas' '(' type-id ')'
   2507 /// [C11]   '_Alignas' '(' constant-expression ')'
   2508 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
   2509 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
   2510 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
   2511                                      SourceLocation *EndLoc) {
   2512   assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
   2513          "Not an alignment-specifier!");
   2514 
   2515   IdentifierInfo *KWName = Tok.getIdentifierInfo();
   2516   SourceLocation KWLoc = ConsumeToken();
   2517 
   2518   BalancedDelimiterTracker T(*this, tok::l_paren);
   2519   if (T.expectAndConsume())
   2520     return;
   2521 
   2522   SourceLocation EllipsisLoc;
   2523   ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
   2524   if (ArgExpr.isInvalid()) {
   2525     T.skipToEnd();
   2526     return;
   2527   }
   2528 
   2529   T.consumeClose();
   2530   if (EndLoc)
   2531     *EndLoc = T.getCloseLocation();
   2532 
   2533   ArgsVector ArgExprs;
   2534   ArgExprs.push_back(ArgExpr.get());
   2535   Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
   2536                AttributeList::AS_Keyword, EllipsisLoc);
   2537 }
   2538 
   2539 /// Determine whether we're looking at something that might be a declarator
   2540 /// in a simple-declaration. If it can't possibly be a declarator, maybe
   2541 /// diagnose a missing semicolon after a prior tag definition in the decl
   2542 /// specifier.
   2543 ///
   2544 /// \return \c true if an error occurred and this can't be any kind of
   2545 /// declaration.
   2546 bool
   2547 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
   2548                                               DeclSpecContext DSContext,
   2549                                               LateParsedAttrList *LateAttrs) {
   2550   assert(DS.hasTagDefinition() && "shouldn't call this");
   2551 
   2552   bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
   2553 
   2554   if (getLangOpts().CPlusPlus &&
   2555       Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
   2556                   tok::annot_template_id) &&
   2557       TryAnnotateCXXScopeToken(EnteringContext)) {
   2558     SkipMalformedDecl();
   2559     return true;
   2560   }
   2561 
   2562   bool HasScope = Tok.is(tok::annot_cxxscope);
   2563   // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
   2564   Token AfterScope = HasScope ? NextToken() : Tok;
   2565 
   2566   // Determine whether the following tokens could possibly be a
   2567   // declarator.
   2568   bool MightBeDeclarator = true;
   2569   if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
   2570     // A declarator-id can't start with 'typename'.
   2571     MightBeDeclarator = false;
   2572   } else if (AfterScope.is(tok::annot_template_id)) {
   2573     // If we have a type expressed as a template-id, this cannot be a
   2574     // declarator-id (such a type cannot be redeclared in a simple-declaration).
   2575     TemplateIdAnnotation *Annot =
   2576         static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
   2577     if (Annot->Kind == TNK_Type_template)
   2578       MightBeDeclarator = false;
   2579   } else if (AfterScope.is(tok::identifier)) {
   2580     const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
   2581 
   2582     // These tokens cannot come after the declarator-id in a
   2583     // simple-declaration, and are likely to come after a type-specifier.
   2584     if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
   2585                      tok::annot_cxxscope, tok::coloncolon)) {
   2586       // Missing a semicolon.
   2587       MightBeDeclarator = false;
   2588     } else if (HasScope) {
   2589       // If the declarator-id has a scope specifier, it must redeclare a
   2590       // previously-declared entity. If that's a type (and this is not a
   2591       // typedef), that's an error.
   2592       CXXScopeSpec SS;
   2593       Actions.RestoreNestedNameSpecifierAnnotation(
   2594           Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
   2595       IdentifierInfo *Name = AfterScope.getIdentifierInfo();
   2596       Sema::NameClassification Classification = Actions.ClassifyName(
   2597           getCurScope(), SS, Name, AfterScope.getLocation(), Next,
   2598           /*IsAddressOfOperand*/false);
   2599       switch (Classification.getKind()) {
   2600       case Sema::NC_Error:
   2601         SkipMalformedDecl();
   2602         return true;
   2603 
   2604       case Sema::NC_Keyword:
   2605       case Sema::NC_NestedNameSpecifier:
   2606         llvm_unreachable("typo correction and nested name specifiers not "
   2607                          "possible here");
   2608 
   2609       case Sema::NC_Type:
   2610       case Sema::NC_TypeTemplate:
   2611         // Not a previously-declared non-type entity.
   2612         MightBeDeclarator = false;
   2613         break;
   2614 
   2615       case Sema::NC_Unknown:
   2616       case Sema::NC_Expression:
   2617       case Sema::NC_VarTemplate:
   2618       case Sema::NC_FunctionTemplate:
   2619         // Might be a redeclaration of a prior entity.
   2620         break;
   2621       }
   2622     }
   2623   }
   2624 
   2625   if (MightBeDeclarator)
   2626     return false;
   2627 
   2628   const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
   2629   Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getLocEnd()),
   2630        diag::err_expected_after)
   2631       << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
   2632 
   2633   // Try to recover from the typo, by dropping the tag definition and parsing
   2634   // the problematic tokens as a type.
   2635   //
   2636   // FIXME: Split the DeclSpec into pieces for the standalone
   2637   // declaration and pieces for the following declaration, instead
   2638   // of assuming that all the other pieces attach to new declaration,
   2639   // and call ParsedFreeStandingDeclSpec as appropriate.
   2640   DS.ClearTypeSpecType();
   2641   ParsedTemplateInfo NotATemplate;
   2642   ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
   2643   return false;
   2644 }
   2645 
   2646 /// ParseDeclarationSpecifiers
   2647 ///       declaration-specifiers: [C99 6.7]
   2648 ///         storage-class-specifier declaration-specifiers[opt]
   2649 ///         type-specifier declaration-specifiers[opt]
   2650 /// [C99]   function-specifier declaration-specifiers[opt]
   2651 /// [C11]   alignment-specifier declaration-specifiers[opt]
   2652 /// [GNU]   attributes declaration-specifiers[opt]
   2653 /// [Clang] '__module_private__' declaration-specifiers[opt]
   2654 /// [ObjC1] '__kindof' declaration-specifiers[opt]
   2655 ///
   2656 ///       storage-class-specifier: [C99 6.7.1]
   2657 ///         'typedef'
   2658 ///         'extern'
   2659 ///         'static'
   2660 ///         'auto'
   2661 ///         'register'
   2662 /// [C++]   'mutable'
   2663 /// [C++11] 'thread_local'
   2664 /// [C11]   '_Thread_local'
   2665 /// [GNU]   '__thread'
   2666 ///       function-specifier: [C99 6.7.4]
   2667 /// [C99]   'inline'
   2668 /// [C++]   'virtual'
   2669 /// [C++]   'explicit'
   2670 /// [OpenCL] '__kernel'
   2671 ///       'friend': [C++ dcl.friend]
   2672 ///       'constexpr': [C++0x dcl.constexpr]
   2673 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
   2674                                         const ParsedTemplateInfo &TemplateInfo,
   2675                                         AccessSpecifier AS,
   2676                                         DeclSpecContext DSContext,
   2677                                         LateParsedAttrList *LateAttrs) {
   2678   if (DS.getSourceRange().isInvalid()) {
   2679     // Start the range at the current token but make the end of the range
   2680     // invalid.  This will make the entire range invalid unless we successfully
   2681     // consume a token.
   2682     DS.SetRangeStart(Tok.getLocation());
   2683     DS.SetRangeEnd(SourceLocation());
   2684   }
   2685 
   2686   bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
   2687   bool AttrsLastTime = false;
   2688   ParsedAttributesWithRange attrs(AttrFactory);
   2689   // We use Sema's policy to get bool macros right.
   2690   PrintingPolicy Policy = Actions.getPrintingPolicy();
   2691   while (1) {
   2692     bool isInvalid = false;
   2693     bool isStorageClass = false;
   2694     const char *PrevSpec = nullptr;
   2695     unsigned DiagID = 0;
   2696 
   2697     // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
   2698     // implementation for VS2013 uses _Atomic as an identifier for one of the
   2699     // classes in <atomic>.
   2700     //
   2701     // A typedef declaration containing _Atomic<...> is among the places where
   2702     // the class is used.  If we are currently parsing such a declaration, treat
   2703     // the token as an identifier.
   2704     if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
   2705         DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef &&
   2706         !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
   2707       Tok.setKind(tok::identifier);
   2708 
   2709     SourceLocation Loc = Tok.getLocation();
   2710 
   2711     switch (Tok.getKind()) {
   2712     default:
   2713     DoneWithDeclSpec:
   2714       if (!AttrsLastTime)
   2715         ProhibitAttributes(attrs);
   2716       else {
   2717         // Reject C++11 attributes that appertain to decl specifiers as
   2718         // we don't support any C++11 attributes that appertain to decl
   2719         // specifiers. This also conforms to what g++ 4.8 is doing.
   2720         ProhibitCXX11Attributes(attrs);
   2721 
   2722         DS.takeAttributesFrom(attrs);
   2723       }
   2724 
   2725       // If this is not a declaration specifier token, we're done reading decl
   2726       // specifiers.  First verify that DeclSpec's are consistent.
   2727       DS.Finish(Actions, Policy);
   2728       return;
   2729 
   2730     case tok::l_square:
   2731     case tok::kw_alignas:
   2732       if (!getLangOpts().CPlusPlus11 || !isCXX11AttributeSpecifier())
   2733         goto DoneWithDeclSpec;
   2734 
   2735       ProhibitAttributes(attrs);
   2736       // FIXME: It would be good to recover by accepting the attributes,
   2737       //        but attempting to do that now would cause serious
   2738       //        madness in terms of diagnostics.
   2739       attrs.clear();
   2740       attrs.Range = SourceRange();
   2741 
   2742       ParseCXX11Attributes(attrs);
   2743       AttrsLastTime = true;
   2744       continue;
   2745 
   2746     case tok::code_completion: {
   2747       Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
   2748       if (DS.hasTypeSpecifier()) {
   2749         bool AllowNonIdentifiers
   2750           = (getCurScope()->getFlags() & (Scope::ControlScope |
   2751                                           Scope::BlockScope |
   2752                                           Scope::TemplateParamScope |
   2753                                           Scope::FunctionPrototypeScope |
   2754                                           Scope::AtCatchScope)) == 0;
   2755         bool AllowNestedNameSpecifiers
   2756           = DSContext == DSC_top_level ||
   2757             (DSContext == DSC_class && DS.isFriendSpecified());
   2758 
   2759         Actions.CodeCompleteDeclSpec(getCurScope(), DS,
   2760                                      AllowNonIdentifiers,
   2761                                      AllowNestedNameSpecifiers);
   2762         return cutOffParsing();
   2763       }
   2764 
   2765       if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
   2766         CCC = Sema::PCC_LocalDeclarationSpecifiers;
   2767       else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
   2768         CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
   2769                                     : Sema::PCC_Template;
   2770       else if (DSContext == DSC_class)
   2771         CCC = Sema::PCC_Class;
   2772       else if (CurParsedObjCImpl)
   2773         CCC = Sema::PCC_ObjCImplementation;
   2774 
   2775       Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
   2776       return cutOffParsing();
   2777     }
   2778 
   2779     case tok::coloncolon: // ::foo::bar
   2780       // C++ scope specifier.  Annotate and loop, or bail out on error.
   2781       if (TryAnnotateCXXScopeToken(EnteringContext)) {
   2782         if (!DS.hasTypeSpecifier())
   2783           DS.SetTypeSpecError();
   2784         goto DoneWithDeclSpec;
   2785       }
   2786       if (Tok.is(tok::coloncolon)) // ::new or ::delete
   2787         goto DoneWithDeclSpec;
   2788       continue;
   2789 
   2790     case tok::annot_cxxscope: {
   2791       if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
   2792         goto DoneWithDeclSpec;
   2793 
   2794       CXXScopeSpec SS;
   2795       Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
   2796                                                    Tok.getAnnotationRange(),
   2797                                                    SS);
   2798 
   2799       // We are looking for a qualified typename.
   2800       Token Next = NextToken();
   2801       if (Next.is(tok::annot_template_id) &&
   2802           static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
   2803             ->Kind == TNK_Type_template) {
   2804         // We have a qualified template-id, e.g., N::A<int>
   2805 
   2806         // C++ [class.qual]p2:
   2807         //   In a lookup in which the constructor is an acceptable lookup
   2808         //   result and the nested-name-specifier nominates a class C:
   2809         //
   2810         //     - if the name specified after the
   2811         //       nested-name-specifier, when looked up in C, is the
   2812         //       injected-class-name of C (Clause 9), or
   2813         //
   2814         //     - if the name specified after the nested-name-specifier
   2815         //       is the same as the identifier or the
   2816         //       simple-template-id's template-name in the last
   2817         //       component of the nested-name-specifier,
   2818         //
   2819         //   the name is instead considered to name the constructor of
   2820         //   class C.
   2821         //
   2822         // Thus, if the template-name is actually the constructor
   2823         // name, then the code is ill-formed; this interpretation is
   2824         // reinforced by the NAD status of core issue 635.
   2825         TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
   2826         if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
   2827             TemplateId->Name &&
   2828             Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
   2829           if (isConstructorDeclarator(/*Unqualified*/false)) {
   2830             // The user meant this to be an out-of-line constructor
   2831             // definition, but template arguments are not allowed
   2832             // there.  Just allow this as a constructor; we'll
   2833             // complain about it later.
   2834             goto DoneWithDeclSpec;
   2835           }
   2836 
   2837           // The user meant this to name a type, but it actually names
   2838           // a constructor with some extraneous template
   2839           // arguments. Complain, then parse it as a type as the user
   2840           // intended.
   2841           Diag(TemplateId->TemplateNameLoc,
   2842                diag::err_out_of_line_template_id_type_names_constructor)
   2843             << TemplateId->Name << 0 /* template name */;
   2844         }
   2845 
   2846         DS.getTypeSpecScope() = SS;
   2847         ConsumeToken(); // The C++ scope.
   2848         assert(Tok.is(tok::annot_template_id) &&
   2849                "ParseOptionalCXXScopeSpecifier not working");
   2850         AnnotateTemplateIdTokenAsType();
   2851         continue;
   2852       }
   2853 
   2854       if (Next.is(tok::annot_typename)) {
   2855         DS.getTypeSpecScope() = SS;
   2856         ConsumeToken(); // The C++ scope.
   2857         if (Tok.getAnnotationValue()) {
   2858           ParsedType T = getTypeAnnotation(Tok);
   2859           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
   2860                                          Tok.getAnnotationEndLoc(),
   2861                                          PrevSpec, DiagID, T, Policy);
   2862           if (isInvalid)
   2863             break;
   2864         }
   2865         else
   2866           DS.SetTypeSpecError();
   2867         DS.SetRangeEnd(Tok.getAnnotationEndLoc());
   2868         ConsumeToken(); // The typename
   2869       }
   2870 
   2871       if (Next.isNot(tok::identifier))
   2872         goto DoneWithDeclSpec;
   2873 
   2874       // If we're in a context where the identifier could be a class name,
   2875       // check whether this is a constructor declaration.
   2876       if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
   2877           Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
   2878                                      &SS)) {
   2879         if (isConstructorDeclarator(/*Unqualified*/false))
   2880           goto DoneWithDeclSpec;
   2881 
   2882         // As noted in C++ [class.qual]p2 (cited above), when the name
   2883         // of the class is qualified in a context where it could name
   2884         // a constructor, its a constructor name. However, we've
   2885         // looked at the declarator, and the user probably meant this
   2886         // to be a type. Complain that it isn't supposed to be treated
   2887         // as a type, then proceed to parse it as a type.
   2888         Diag(Next.getLocation(),
   2889              diag::err_out_of_line_template_id_type_names_constructor)
   2890           << Next.getIdentifierInfo() << 1 /* type */;
   2891       }
   2892 
   2893       ParsedType TypeRep =
   2894           Actions.getTypeName(*Next.getIdentifierInfo(), Next.getLocation(),
   2895                               getCurScope(), &SS, false, false, nullptr,
   2896                               /*IsCtorOrDtorName=*/false,
   2897                               /*NonTrivialSourceInfo=*/true);
   2898 
   2899       // If the referenced identifier is not a type, then this declspec is
   2900       // erroneous: We already checked about that it has no type specifier, and
   2901       // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
   2902       // typename.
   2903       if (!TypeRep) {
   2904         ConsumeToken();   // Eat the scope spec so the identifier is current.
   2905         ParsedAttributesWithRange Attrs(AttrFactory);
   2906         if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
   2907           if (!Attrs.empty()) {
   2908             AttrsLastTime = true;
   2909             attrs.takeAllFrom(Attrs);
   2910           }
   2911           continue;
   2912         }
   2913         goto DoneWithDeclSpec;
   2914       }
   2915 
   2916       DS.getTypeSpecScope() = SS;
   2917       ConsumeToken(); // The C++ scope.
   2918 
   2919       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
   2920                                      DiagID, TypeRep, Policy);
   2921       if (isInvalid)
   2922         break;
   2923 
   2924       DS.SetRangeEnd(Tok.getLocation());
   2925       ConsumeToken(); // The typename.
   2926 
   2927       continue;
   2928     }
   2929 
   2930     case tok::annot_typename: {
   2931       // If we've previously seen a tag definition, we were almost surely
   2932       // missing a semicolon after it.
   2933       if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
   2934         goto DoneWithDeclSpec;
   2935 
   2936       if (Tok.getAnnotationValue()) {
   2937         ParsedType T = getTypeAnnotation(Tok);
   2938         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
   2939                                        DiagID, T, Policy);
   2940       } else
   2941         DS.SetTypeSpecError();
   2942 
   2943       if (isInvalid)
   2944         break;
   2945 
   2946       DS.SetRangeEnd(Tok.getAnnotationEndLoc());
   2947       ConsumeToken(); // The typename
   2948 
   2949       continue;
   2950     }
   2951 
   2952     case tok::kw___is_signed:
   2953       // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
   2954       // typically treats it as a trait. If we see __is_signed as it appears
   2955       // in libstdc++, e.g.,
   2956       //
   2957       //   static const bool __is_signed;
   2958       //
   2959       // then treat __is_signed as an identifier rather than as a keyword.
   2960       if (DS.getTypeSpecType() == TST_bool &&
   2961           DS.getTypeQualifiers() == DeclSpec::TQ_const &&
   2962           DS.getStorageClassSpec() == DeclSpec::SCS_static)
   2963         TryKeywordIdentFallback(true);
   2964 
   2965       // We're done with the declaration-specifiers.
   2966       goto DoneWithDeclSpec;
   2967 
   2968       // typedef-name
   2969     case tok::kw___super:
   2970     case tok::kw_decltype:
   2971     case tok::identifier: {
   2972       // This identifier can only be a typedef name if we haven't already seen
   2973       // a type-specifier.  Without this check we misparse:
   2974       //  typedef int X; struct Y { short X; };  as 'short int'.
   2975       if (DS.hasTypeSpecifier())
   2976         goto DoneWithDeclSpec;
   2977 
   2978       // In C++, check to see if this is a scope specifier like foo::bar::, if
   2979       // so handle it as such.  This is important for ctor parsing.
   2980       if (getLangOpts().CPlusPlus) {
   2981         if (TryAnnotateCXXScopeToken(EnteringContext)) {
   2982           DS.SetTypeSpecError();
   2983           goto DoneWithDeclSpec;
   2984         }
   2985         if (!Tok.is(tok::identifier))
   2986           continue;
   2987       }
   2988 
   2989       // Check for need to substitute AltiVec keyword tokens.
   2990       if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
   2991         break;
   2992 
   2993       // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
   2994       //                allow the use of a typedef name as a type specifier.
   2995       if (DS.isTypeAltiVecVector())
   2996         goto DoneWithDeclSpec;
   2997 
   2998       if (DSContext == DSC_objc_method_result && isObjCInstancetype()) {
   2999         ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc);
   3000         assert(TypeRep);
   3001         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
   3002                                        DiagID, TypeRep, Policy);
   3003         if (isInvalid)
   3004           break;
   3005 
   3006         DS.SetRangeEnd(Loc);
   3007         ConsumeToken();
   3008         continue;
   3009       }
   3010 
   3011       ParsedType TypeRep =
   3012         Actions.getTypeName(*Tok.getIdentifierInfo(),
   3013                             Tok.getLocation(), getCurScope());
   3014 
   3015       // If this is not a typedef name, don't parse it as part of the declspec,
   3016       // it must be an implicit int or an error.
   3017       if (!TypeRep) {
   3018         ParsedAttributesWithRange Attrs(AttrFactory);
   3019         if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
   3020           if (!Attrs.empty()) {
   3021             AttrsLastTime = true;
   3022             attrs.takeAllFrom(Attrs);
   3023           }
   3024           continue;
   3025         }
   3026         goto DoneWithDeclSpec;
   3027       }
   3028 
   3029       // If we're in a context where the identifier could be a class name,
   3030       // check whether this is a constructor declaration.
   3031       if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
   3032           Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
   3033           isConstructorDeclarator(/*Unqualified*/true))
   3034         goto DoneWithDeclSpec;
   3035 
   3036       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
   3037                                      DiagID, TypeRep, Policy);
   3038       if (isInvalid)
   3039         break;
   3040 
   3041       DS.SetRangeEnd(Tok.getLocation());
   3042       ConsumeToken(); // The identifier
   3043 
   3044       // Objective-C supports type arguments and protocol references
   3045       // following an Objective-C object or object pointer
   3046       // type. Handle either one of them.
   3047       if (Tok.is(tok::less) && getLangOpts().ObjC1) {
   3048         SourceLocation NewEndLoc;
   3049         TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
   3050                                   Loc, TypeRep, /*consumeLastToken=*/true,
   3051                                   NewEndLoc);
   3052         if (NewTypeRep.isUsable()) {
   3053           DS.UpdateTypeRep(NewTypeRep.get());
   3054           DS.SetRangeEnd(NewEndLoc);
   3055         }
   3056       }
   3057 
   3058       // Need to support trailing type qualifiers (e.g. "id<p> const").
   3059       // If a type specifier follows, it will be diagnosed elsewhere.
   3060       continue;
   3061     }
   3062 
   3063       // type-name
   3064     case tok::annot_template_id: {
   3065       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
   3066       if (TemplateId->Kind != TNK_Type_template) {
   3067         // This template-id does not refer to a type name, so we're
   3068         // done with the type-specifiers.
   3069         goto DoneWithDeclSpec;
   3070       }
   3071 
   3072       // If we're in a context where the template-id could be a
   3073       // constructor name or specialization, check whether this is a
   3074       // constructor declaration.
   3075       if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
   3076           Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
   3077           isConstructorDeclarator(TemplateId->SS.isEmpty()))
   3078         goto DoneWithDeclSpec;
   3079 
   3080       // Turn the template-id annotation token into a type annotation
   3081       // token, then try again to parse it as a type-specifier.
   3082       AnnotateTemplateIdTokenAsType();
   3083       continue;
   3084     }
   3085 
   3086     // GNU attributes support.
   3087     case tok::kw___attribute:
   3088       ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
   3089       continue;
   3090 
   3091     // Microsoft declspec support.
   3092     case tok::kw___declspec:
   3093       ParseMicrosoftDeclSpecs(DS.getAttributes());
   3094       continue;
   3095 
   3096     // Microsoft single token adornments.
   3097     case tok::kw___forceinline: {
   3098       isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
   3099       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
   3100       SourceLocation AttrNameLoc = Tok.getLocation();
   3101       DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
   3102                                 nullptr, 0, AttributeList::AS_Keyword);
   3103       break;
   3104     }
   3105 
   3106     case tok::kw___unaligned:
   3107       isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
   3108                                  getLangOpts());
   3109       break;
   3110 
   3111     case tok::kw___sptr:
   3112     case tok::kw___uptr:
   3113     case tok::kw___ptr64:
   3114     case tok::kw___ptr32:
   3115     case tok::kw___w64:
   3116     case tok::kw___cdecl:
   3117     case tok::kw___stdcall:
   3118     case tok::kw___fastcall:
   3119     case tok::kw___thiscall:
   3120     case tok::kw___vectorcall:
   3121       ParseMicrosoftTypeAttributes(DS.getAttributes());
   3122       continue;
   3123 
   3124     // Borland single token adornments.
   3125     case tok::kw___pascal:
   3126       ParseBorlandTypeAttributes(DS.getAttributes());
   3127       continue;
   3128 
   3129     // OpenCL single token adornments.
   3130     case tok::kw___kernel:
   3131       ParseOpenCLKernelAttributes(DS.getAttributes());
   3132       continue;
   3133 
   3134     // Nullability type specifiers.
   3135     case tok::kw__Nonnull:
   3136     case tok::kw__Nullable:
   3137     case tok::kw__Null_unspecified:
   3138       ParseNullabilityTypeSpecifiers(DS.getAttributes());
   3139       continue;
   3140 
   3141     // Objective-C 'kindof' types.
   3142     case tok::kw___kindof:
   3143       DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
   3144                                 nullptr, 0, AttributeList::AS_Keyword);
   3145       (void)ConsumeToken();
   3146       continue;
   3147 
   3148     // storage-class-specifier
   3149     case tok::kw_typedef:
   3150       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
   3151                                          PrevSpec, DiagID, Policy);
   3152       isStorageClass = true;
   3153       break;
   3154     case tok::kw_extern:
   3155       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
   3156         Diag(Tok, diag::ext_thread_before) << "extern";
   3157       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
   3158                                          PrevSpec, DiagID, Policy);
   3159       isStorageClass = true;
   3160       break;
   3161     case tok::kw___private_extern__:
   3162       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
   3163                                          Loc, PrevSpec, DiagID, Policy);
   3164       isStorageClass = true;
   3165       break;
   3166     case tok::kw_static:
   3167       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
   3168         Diag(Tok, diag::ext_thread_before) << "static";
   3169       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
   3170                                          PrevSpec, DiagID, Policy);
   3171       isStorageClass = true;
   3172       break;
   3173     case tok::kw_auto:
   3174       if (getLangOpts().CPlusPlus11) {
   3175         if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
   3176           isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
   3177                                              PrevSpec, DiagID, Policy);
   3178           if (!isInvalid)
   3179             Diag(Tok, diag::ext_auto_storage_class)
   3180               << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
   3181         } else
   3182           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
   3183                                          DiagID, Policy);
   3184       } else
   3185         isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
   3186                                            PrevSpec, DiagID, Policy);
   3187       isStorageClass = true;
   3188       break;
   3189     case tok::kw___auto_type:
   3190       Diag(Tok, diag::ext_auto_type);
   3191       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec,
   3192                                      DiagID, Policy);
   3193       break;
   3194     case tok::kw_register:
   3195       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
   3196                                          PrevSpec, DiagID, Policy);
   3197       isStorageClass = true;
   3198       break;
   3199     case tok::kw_mutable:
   3200       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
   3201                                          PrevSpec, DiagID, Policy);
   3202       isStorageClass = true;
   3203       break;
   3204     case tok::kw___thread:
   3205       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
   3206                                                PrevSpec, DiagID);
   3207       isStorageClass = true;
   3208       break;
   3209     case tok::kw_thread_local:
   3210       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
   3211                                                PrevSpec, DiagID);
   3212       break;
   3213     case tok::kw__Thread_local:
   3214       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
   3215                                                Loc, PrevSpec, DiagID);
   3216       isStorageClass = true;
   3217       break;
   3218 
   3219     // function-specifier
   3220     case tok::kw_inline:
   3221       isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
   3222       break;
   3223     case tok::kw_virtual:
   3224       isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
   3225       break;
   3226     case tok::kw_explicit:
   3227       isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID);
   3228       break;
   3229     case tok::kw__Noreturn:
   3230       if (!getLangOpts().C11)
   3231         Diag(Loc, diag::ext_c11_noreturn);
   3232       isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
   3233       break;
   3234 
   3235     // alignment-specifier
   3236     case tok::kw__Alignas:
   3237       if (!getLangOpts().C11)
   3238         Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
   3239       ParseAlignmentSpecifier(DS.getAttributes());
   3240       continue;
   3241 
   3242     // friend
   3243     case tok::kw_friend:
   3244       if (DSContext == DSC_class)
   3245         isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
   3246       else {
   3247         PrevSpec = ""; // not actually used by the diagnostic
   3248         DiagID = diag::err_friend_invalid_in_context;
   3249         isInvalid = true;
   3250       }
   3251       break;
   3252 
   3253     // Modules
   3254     case tok::kw___module_private__:
   3255       isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
   3256       break;
   3257 
   3258     // constexpr
   3259     case tok::kw_constexpr:
   3260       isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
   3261       break;
   3262 
   3263     // concept
   3264     case tok::kw_concept:
   3265       isInvalid = DS.SetConceptSpec(Loc, PrevSpec, DiagID);
   3266       break;
   3267 
   3268     // type-specifier
   3269     case tok::kw_short:
   3270       isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
   3271                                       DiagID, Policy);
   3272       break;
   3273     case tok::kw_long:
   3274       if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
   3275         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
   3276                                         DiagID, Policy);
   3277       else
   3278         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
   3279                                         DiagID, Policy);
   3280       break;
   3281     case tok::kw___int64:
   3282         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
   3283                                         DiagID, Policy);
   3284       break;
   3285     case tok::kw_signed:
   3286       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
   3287                                      DiagID);
   3288       break;
   3289     case tok::kw_unsigned:
   3290       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
   3291                                      DiagID);
   3292       break;
   3293     case tok::kw__Complex:
   3294       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
   3295                                         DiagID);
   3296       break;
   3297     case tok::kw__Imaginary:
   3298       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
   3299                                         DiagID);
   3300       break;
   3301     case tok::kw_void:
   3302       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
   3303                                      DiagID, Policy);
   3304       break;
   3305     case tok::kw_char:
   3306       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
   3307                                      DiagID, Policy);
   3308       break;
   3309     case tok::kw_int:
   3310       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
   3311                                      DiagID, Policy);
   3312       break;
   3313     case tok::kw___int128:
   3314       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
   3315                                      DiagID, Policy);
   3316       break;
   3317     case tok::kw_half:
   3318       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
   3319                                      DiagID, Policy);
   3320       break;
   3321     case tok::kw_float:
   3322       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
   3323                                      DiagID, Policy);
   3324       break;
   3325     case tok::kw_double:
   3326       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
   3327                                      DiagID, Policy);
   3328       break;
   3329     case tok::kw___float128:
   3330       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec,
   3331                                      DiagID, Policy);
   3332       break;
   3333     case tok::kw_wchar_t:
   3334       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
   3335                                      DiagID, Policy);
   3336       break;
   3337     case tok::kw_char16_t:
   3338       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
   3339                                      DiagID, Policy);
   3340       break;
   3341     case tok::kw_char32_t:
   3342       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
   3343                                      DiagID, Policy);
   3344       break;
   3345     case tok::kw_bool:
   3346     case tok::kw__Bool:
   3347       if (Tok.is(tok::kw_bool) &&
   3348           DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
   3349           DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
   3350         PrevSpec = ""; // Not used by the diagnostic.
   3351         DiagID = diag::err_bool_redeclaration;
   3352         // For better error recovery.
   3353         Tok.setKind(tok::identifier);
   3354         isInvalid = true;
   3355       } else {
   3356         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
   3357                                        DiagID, Policy);
   3358       }
   3359       break;
   3360     case tok::kw__Decimal32:
   3361       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
   3362                                      DiagID, Policy);
   3363       break;
   3364     case tok::kw__Decimal64:
   3365       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
   3366                                      DiagID, Policy);
   3367       break;
   3368     case tok::kw__Decimal128:
   3369       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
   3370                                      DiagID, Policy);
   3371       break;
   3372     case tok::kw___vector:
   3373       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
   3374       break;
   3375     case tok::kw___pixel:
   3376       isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
   3377       break;
   3378     case tok::kw___bool:
   3379       isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
   3380       break;
   3381     case tok::kw_pipe:
   3382       if (!getLangOpts().OpenCL || (getLangOpts().OpenCLVersion < 200)) {
   3383         // OpenCL 2.0 defined this keyword. OpenCL 1.2 and earlier should
   3384         // support the "pipe" word as identifier.
   3385         Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
   3386         goto DoneWithDeclSpec;
   3387       }
   3388       isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy);
   3389       break;
   3390 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
   3391   case tok::kw_##ImgType##_t: \
   3392     isInvalid = DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, \
   3393                                    DiagID, Policy); \
   3394     break;
   3395 #include "clang/Basic/OpenCLImageTypes.def"
   3396     case tok::kw___unknown_anytype:
   3397       isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
   3398                                      PrevSpec, DiagID, Policy);
   3399       break;
   3400 
   3401     // class-specifier:
   3402     case tok::kw_class:
   3403     case tok::kw_struct:
   3404     case tok::kw___interface:
   3405     case tok::kw_union: {
   3406       tok::TokenKind Kind = Tok.getKind();
   3407       ConsumeToken();
   3408 
   3409       // These are attributes following class specifiers.
   3410       // To produce better diagnostic, we parse them when
   3411       // parsing class specifier.
   3412       ParsedAttributesWithRange Attributes(AttrFactory);
   3413       ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
   3414                           EnteringContext, DSContext, Attributes);
   3415 
   3416       // If there are attributes following class specifier,
   3417       // take them over and handle them here.
   3418       if (!Attributes.empty()) {
   3419         AttrsLastTime = true;
   3420         attrs.takeAllFrom(Attributes);
   3421       }
   3422       continue;
   3423     }
   3424 
   3425     // enum-specifier:
   3426     case tok::kw_enum:
   3427       ConsumeToken();
   3428       ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
   3429       continue;
   3430 
   3431     // cv-qualifier:
   3432     case tok::kw_const:
   3433       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
   3434                                  getLangOpts());
   3435       break;
   3436     case tok::kw_volatile:
   3437       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
   3438                                  getLangOpts());
   3439       break;
   3440     case tok::kw_restrict:
   3441       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
   3442                                  getLangOpts());
   3443       break;
   3444 
   3445     // C++ typename-specifier:
   3446     case tok::kw_typename:
   3447       if (TryAnnotateTypeOrScopeToken()) {
   3448         DS.SetTypeSpecError();
   3449         goto DoneWithDeclSpec;
   3450       }
   3451       if (!Tok.is(tok::kw_typename))
   3452         continue;
   3453       break;
   3454 
   3455     // GNU typeof support.
   3456     case tok::kw_typeof:
   3457       ParseTypeofSpecifier(DS);
   3458       continue;
   3459 
   3460     case tok::annot_decltype:
   3461       ParseDecltypeSpecifier(DS);
   3462       continue;
   3463 
   3464     case tok::annot_pragma_pack:
   3465       HandlePragmaPack();
   3466       continue;
   3467 
   3468     case tok::annot_pragma_ms_pragma:
   3469       HandlePragmaMSPragma();
   3470       continue;
   3471 
   3472     case tok::annot_pragma_ms_vtordisp:
   3473       HandlePragmaMSVtorDisp();
   3474       continue;
   3475 
   3476     case tok::annot_pragma_ms_pointers_to_members:
   3477       HandlePragmaMSPointersToMembers();
   3478       continue;
   3479 
   3480     case tok::kw___underlying_type:
   3481       ParseUnderlyingTypeSpecifier(DS);
   3482       continue;
   3483 
   3484     case tok::kw__Atomic:
   3485       // C11 6.7.2.4/4:
   3486       //   If the _Atomic keyword is immediately followed by a left parenthesis,
   3487       //   it is interpreted as a type specifier (with a type name), not as a
   3488       //   type qualifier.
   3489       if (NextToken().is(tok::l_paren)) {
   3490         ParseAtomicSpecifier(DS);
   3491         continue;
   3492       }
   3493       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
   3494                                  getLangOpts());
   3495       break;
   3496 
   3497     // OpenCL qualifiers:
   3498     case tok::kw___generic:
   3499       // generic address space is introduced only in OpenCL v2.0
   3500       // see OpenCL C Spec v2.0 s6.5.5
   3501       if (Actions.getLangOpts().OpenCLVersion < 200) {
   3502         DiagID = diag::err_opencl_unknown_type_specifier;
   3503         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
   3504         isInvalid = true;
   3505         break;
   3506       };
   3507     case tok::kw___private:
   3508     case tok::kw___global:
   3509     case tok::kw___local:
   3510     case tok::kw___constant:
   3511     case tok::kw___read_only:
   3512     case tok::kw___write_only:
   3513     case tok::kw___read_write:
   3514       ParseOpenCLQualifiers(DS.getAttributes());
   3515       break;
   3516 
   3517     case tok::less:
   3518       // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
   3519       // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
   3520       // but we support it.
   3521       if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
   3522         goto DoneWithDeclSpec;
   3523 
   3524       SourceLocation StartLoc = Tok.getLocation();
   3525       SourceLocation EndLoc;
   3526       TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
   3527       if (Type.isUsable()) {
   3528         if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
   3529                                PrevSpec, DiagID, Type.get(),
   3530                                Actions.getASTContext().getPrintingPolicy()))
   3531           Diag(StartLoc, DiagID) << PrevSpec;
   3532 
   3533         DS.SetRangeEnd(EndLoc);
   3534       } else {
   3535         DS.SetTypeSpecError();
   3536       }
   3537 
   3538       // Need to support trailing type qualifiers (e.g. "id<p> const").
   3539       // If a type specifier follows, it will be diagnosed elsewhere.
   3540       continue;
   3541     }
   3542     // If the specifier wasn't legal, issue a diagnostic.
   3543     if (isInvalid) {
   3544       assert(PrevSpec && "Method did not return previous specifier!");
   3545       assert(DiagID);
   3546 
   3547       if (DiagID == diag::ext_duplicate_declspec)
   3548         Diag(Tok, DiagID)
   3549           << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
   3550       else if (DiagID == diag::err_opencl_unknown_type_specifier) {
   3551         const int OpenCLVer = getLangOpts().OpenCLVersion;
   3552         std::string VerSpec = llvm::to_string(OpenCLVer / 100) +
   3553                               std::string (".") +
   3554                               llvm::to_string((OpenCLVer % 100) / 10);
   3555         Diag(Tok, DiagID) << VerSpec << PrevSpec << isStorageClass;
   3556       } else
   3557         Diag(Tok, DiagID) << PrevSpec;
   3558     }
   3559 
   3560     DS.SetRangeEnd(Tok.getLocation());
   3561     if (DiagID != diag::err_bool_redeclaration)
   3562       ConsumeToken();
   3563 
   3564     AttrsLastTime = false;
   3565   }
   3566 }
   3567 
   3568 /// ParseStructDeclaration - Parse a struct declaration without the terminating
   3569 /// semicolon.
   3570 ///
   3571 ///       struct-declaration:
   3572 ///         specifier-qualifier-list struct-declarator-list
   3573 /// [GNU]   __extension__ struct-declaration
   3574 /// [GNU]   specifier-qualifier-list
   3575 ///       struct-declarator-list:
   3576 ///         struct-declarator
   3577 ///         struct-declarator-list ',' struct-declarator
   3578 /// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
   3579 ///       struct-declarator:
   3580 ///         declarator
   3581 /// [GNU]   declarator attributes[opt]
   3582 ///         declarator[opt] ':' constant-expression
   3583 /// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
   3584 ///
   3585 void Parser::ParseStructDeclaration(
   3586     ParsingDeclSpec &DS,
   3587     llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
   3588 
   3589   if (Tok.is(tok::kw___extension__)) {
   3590     // __extension__ silences extension warnings in the subexpression.
   3591     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
   3592     ConsumeToken();
   3593     return ParseStructDeclaration(DS, FieldsCallback);
   3594   }
   3595 
   3596   // Parse the common specifier-qualifiers-list piece.
   3597   ParseSpecifierQualifierList(DS);
   3598 
   3599   // If there are no declarators, this is a free-standing declaration
   3600   // specifier. Let the actions module cope with it.
   3601   if (Tok.is(tok::semi)) {
   3602     RecordDecl *AnonRecord = nullptr;
   3603     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
   3604                                                        DS, AnonRecord);
   3605     assert(!AnonRecord && "Did not expect anonymous struct or union here");
   3606     DS.complete(TheDecl);
   3607     return;
   3608   }
   3609 
   3610   // Read struct-declarators until we find the semicolon.
   3611   bool FirstDeclarator = true;
   3612   SourceLocation CommaLoc;
   3613   while (1) {
   3614     ParsingFieldDeclarator DeclaratorInfo(*this, DS);
   3615     DeclaratorInfo.D.setCommaLoc(CommaLoc);
   3616 
   3617     // Attributes are only allowed here on successive declarators.
   3618     if (!FirstDeclarator)
   3619       MaybeParseGNUAttributes(DeclaratorInfo.D);
   3620 
   3621     /// struct-declarator: declarator
   3622     /// struct-declarator: declarator[opt] ':' constant-expression
   3623     if (Tok.isNot(tok::colon)) {
   3624       // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
   3625       ColonProtectionRAIIObject X(*this);
   3626       ParseDeclarator(DeclaratorInfo.D);
   3627     } else
   3628       DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
   3629 
   3630     if (TryConsumeToken(tok::colon)) {
   3631       ExprResult Res(ParseConstantExpression());
   3632       if (Res.isInvalid())
   3633         SkipUntil(tok::semi, StopBeforeMatch);
   3634       else
   3635         DeclaratorInfo.BitfieldSize = Res.get();
   3636     }
   3637 
   3638     // If attributes exist after the declarator, parse them.
   3639     MaybeParseGNUAttributes(DeclaratorInfo.D);
   3640 
   3641     // We're done with this declarator;  invoke the callback.
   3642     FieldsCallback(DeclaratorInfo);
   3643 
   3644     // If we don't have a comma, it is either the end of the list (a ';')
   3645     // or an error, bail out.
   3646     if (!TryConsumeToken(tok::comma, CommaLoc))
   3647       return;
   3648 
   3649     FirstDeclarator = false;
   3650   }
   3651 }
   3652 
   3653 /// ParseStructUnionBody
   3654 ///       struct-contents:
   3655 ///         struct-declaration-list
   3656 /// [EXT]   empty
   3657 /// [GNU]   "struct-declaration-list" without terminatoring ';'
   3658 ///       struct-declaration-list:
   3659 ///         struct-declaration
   3660 ///         struct-declaration-list struct-declaration
   3661 /// [OBC]   '@' 'defs' '(' class-name ')'
   3662 ///
   3663 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
   3664                                   unsigned TagType, Decl *TagDecl) {
   3665   PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
   3666                                       "parsing struct/union body");
   3667   assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
   3668 
   3669   BalancedDelimiterTracker T(*this, tok::l_brace);
   3670   if (T.consumeOpen())
   3671     return;
   3672 
   3673   ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
   3674   Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
   3675 
   3676   SmallVector<Decl *, 32> FieldDecls;
   3677 
   3678   // While we still have something to read, read the declarations in the struct.
   3679   while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
   3680          Tok.isNot(tok::eof)) {
   3681     // Each iteration of this loop reads one struct-declaration.
   3682 
   3683     // Check for extraneous top-level semicolon.
   3684     if (Tok.is(tok::semi)) {
   3685       ConsumeExtraSemi(InsideStruct, TagType);
   3686       continue;
   3687     }
   3688 
   3689     // Parse _Static_assert declaration.
   3690     if (Tok.is(tok::kw__Static_assert)) {
   3691       SourceLocation DeclEnd;
   3692       ParseStaticAssertDeclaration(DeclEnd);
   3693       continue;
   3694     }
   3695 
   3696     if (Tok.is(tok::annot_pragma_pack)) {
   3697       HandlePragmaPack();
   3698       continue;
   3699     }
   3700 
   3701     if (Tok.is(tok::annot_pragma_align)) {
   3702       HandlePragmaAlign();
   3703       continue;
   3704     }
   3705 
   3706     if (Tok.is(tok::annot_pragma_openmp)) {
   3707       // Result can be ignored, because it must be always empty.
   3708       AccessSpecifier AS = AS_none;
   3709       ParsedAttributesWithRange Attrs(AttrFactory);
   3710       (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs);
   3711       continue;
   3712     }
   3713 
   3714     if (!Tok.is(tok::at)) {
   3715       auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
   3716         // Install the declarator into the current TagDecl.
   3717         Decl *Field =
   3718             Actions.ActOnField(getCurScope(), TagDecl,
   3719                                FD.D.getDeclSpec().getSourceRange().getBegin(),
   3720                                FD.D, FD.BitfieldSize);
   3721         FieldDecls.push_back(Field);
   3722         FD.complete(Field);
   3723       };
   3724 
   3725       // Parse all the comma separated declarators.
   3726       ParsingDeclSpec DS(*this);
   3727       ParseStructDeclaration(DS, CFieldCallback);
   3728     } else { // Handle @defs
   3729       ConsumeToken();
   3730       if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
   3731         Diag(Tok, diag::err_unexpected_at);
   3732         SkipUntil(tok::semi);
   3733         continue;
   3734       }
   3735       ConsumeToken();
   3736       ExpectAndConsume(tok::l_paren);
   3737       if (!Tok.is(tok::identifier)) {
   3738         Diag(Tok, diag::err_expected) << tok::identifier;
   3739         SkipUntil(tok::semi);
   3740         continue;
   3741       }
   3742       SmallVector<Decl *, 16> Fields;
   3743       Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
   3744                         Tok.getIdentifierInfo(), Fields);
   3745       FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
   3746       ConsumeToken();
   3747       ExpectAndConsume(tok::r_paren);
   3748     }
   3749 
   3750     if (TryConsumeToken(tok::semi))
   3751       continue;
   3752 
   3753     if (Tok.is(tok::r_brace)) {
   3754       ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
   3755       break;
   3756     }
   3757 
   3758     ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
   3759     // Skip to end of block or statement to avoid ext-warning on extra ';'.
   3760     SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
   3761     // If we stopped at a ';', eat it.
   3762     TryConsumeToken(tok::semi);
   3763   }
   3764 
   3765   T.consumeClose();
   3766 
   3767   ParsedAttributes attrs(AttrFactory);
   3768   // If attributes exist after struct contents, parse them.
   3769   MaybeParseGNUAttributes(attrs);
   3770 
   3771   Actions.ActOnFields(getCurScope(),
   3772                       RecordLoc, TagDecl, FieldDecls,
   3773                       T.getOpenLocation(), T.getCloseLocation(),
   3774                       attrs.getList());
   3775   StructScope.Exit();
   3776   Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
   3777                                    T.getCloseLocation());
   3778 }
   3779 
   3780 /// ParseEnumSpecifier
   3781 ///       enum-specifier: [C99 6.7.2.2]
   3782 ///         'enum' identifier[opt] '{' enumerator-list '}'
   3783 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
   3784 /// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
   3785 ///                                                 '}' attributes[opt]
   3786 /// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
   3787 ///                                                 '}'
   3788 ///         'enum' identifier
   3789 /// [GNU]   'enum' attributes[opt] identifier
   3790 ///
   3791 /// [C++11] enum-head '{' enumerator-list[opt] '}'
   3792 /// [C++11] enum-head '{' enumerator-list ','  '}'
   3793 ///
   3794 ///       enum-head: [C++11]
   3795 ///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
   3796 ///         enum-key attribute-specifier-seq[opt] nested-name-specifier
   3797 ///             identifier enum-base[opt]
   3798 ///
   3799 ///       enum-key: [C++11]
   3800 ///         'enum'
   3801 ///         'enum' 'class'
   3802 ///         'enum' 'struct'
   3803 ///
   3804 ///       enum-base: [C++11]
   3805 ///         ':' type-specifier-seq
   3806 ///
   3807 /// [C++] elaborated-type-specifier:
   3808 /// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
   3809 ///
   3810 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
   3811                                 const ParsedTemplateInfo &TemplateInfo,
   3812                                 AccessSpecifier AS, DeclSpecContext DSC) {
   3813   // Parse the tag portion of this.
   3814   if (Tok.is(tok::code_completion)) {
   3815     // Code completion for an enum name.
   3816     Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
   3817     return cutOffParsing();
   3818   }
   3819 
   3820   // If attributes exist after tag, parse them.
   3821   ParsedAttributesWithRange attrs(AttrFactory);
   3822   MaybeParseGNUAttributes(attrs);
   3823   MaybeParseCXX11Attributes(attrs);
   3824   MaybeParseMicrosoftDeclSpecs(attrs);
   3825 
   3826   SourceLocation ScopedEnumKWLoc;
   3827   bool IsScopedUsingClassTag = false;
   3828 
   3829   // In C++11, recognize 'enum class' and 'enum struct'.
   3830   if (Tok.isOneOf(tok::kw_class, tok::kw_struct)) {
   3831     Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
   3832                                         : diag::ext_scoped_enum);
   3833     IsScopedUsingClassTag = Tok.is(tok::kw_class);
   3834     ScopedEnumKWLoc = ConsumeToken();
   3835 
   3836     // Attributes are not allowed between these keywords.  Diagnose,
   3837     // but then just treat them like they appeared in the right place.
   3838     ProhibitAttributes(attrs);
   3839 
   3840     // They are allowed afterwards, though.
   3841     MaybeParseGNUAttributes(attrs);
   3842     MaybeParseCXX11Attributes(attrs);
   3843     MaybeParseMicrosoftDeclSpecs(attrs);
   3844   }
   3845 
   3846   // C++11 [temp.explicit]p12:
   3847   //   The usual access controls do not apply to names used to specify
   3848   //   explicit instantiations.
   3849   // We extend this to also cover explicit specializations.  Note that
   3850   // we don't suppress if this turns out to be an elaborated type
   3851   // specifier.
   3852   bool shouldDelayDiagsInTag =
   3853     (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
   3854      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
   3855   SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
   3856 
   3857   // Enum definitions should not be parsed in a trailing-return-type.
   3858   bool AllowDeclaration = DSC != DSC_trailing;
   3859 
   3860   bool AllowFixedUnderlyingType = AllowDeclaration &&
   3861     (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
   3862      getLangOpts().ObjC2);
   3863 
   3864   CXXScopeSpec &SS = DS.getTypeSpecScope();
   3865   if (getLangOpts().CPlusPlus) {
   3866     // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
   3867     // if a fixed underlying type is allowed.
   3868     ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
   3869 
   3870     CXXScopeSpec Spec;
   3871     if (ParseOptionalCXXScopeSpecifier(Spec, nullptr,
   3872                                        /*EnteringContext=*/true))
   3873       return;
   3874 
   3875     if (Spec.isSet() && Tok.isNot(tok::identifier)) {
   3876       Diag(Tok, diag::err_expected) << tok::identifier;
   3877       if (Tok.isNot(tok::l_brace)) {
   3878         // Has no name and is not a definition.
   3879         // Skip the rest of this declarator, up until the comma or semicolon.
   3880         SkipUntil(tok::comma, StopAtSemi);
   3881         return;
   3882       }
   3883     }
   3884 
   3885     SS = Spec;
   3886   }
   3887 
   3888   // Must have either 'enum name' or 'enum {...}'.
   3889   if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
   3890       !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
   3891     Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
   3892 
   3893     // Skip the rest of this declarator, up until the comma or semicolon.
   3894     SkipUntil(tok::comma, StopAtSemi);
   3895     return;
   3896   }
   3897 
   3898   // If an identifier is present, consume and remember it.
   3899   IdentifierInfo *Name = nullptr;
   3900   SourceLocation NameLoc;
   3901   if (Tok.is(tok::identifier)) {
   3902     Name = Tok.getIdentifierInfo();
   3903     NameLoc = ConsumeToken();
   3904   }
   3905 
   3906   if (!Name && ScopedEnumKWLoc.isValid()) {
   3907     // C++0x 7.2p2: The optional identifier shall not be omitted in the
   3908     // declaration of a scoped enumeration.
   3909     Diag(Tok, diag::err_scoped_enum_missing_identifier);
   3910     ScopedEnumKWLoc = SourceLocation();
   3911     IsScopedUsingClassTag = false;
   3912   }
   3913 
   3914   // Okay, end the suppression area.  We'll decide whether to emit the
   3915   // diagnostics in a second.
   3916   if (shouldDelayDiagsInTag)
   3917     diagsFromTag.done();
   3918 
   3919   TypeResult BaseType;
   3920 
   3921   // Parse the fixed underlying type.
   3922   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
   3923   if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
   3924     bool PossibleBitfield = false;
   3925     if (CanBeBitfield) {
   3926       // If we're in class scope, this can either be an enum declaration with
   3927       // an underlying type, or a declaration of a bitfield member. We try to
   3928       // use a simple disambiguation scheme first to catch the common cases
   3929       // (integer literal, sizeof); if it's still ambiguous, we then consider
   3930       // anything that's a simple-type-specifier followed by '(' as an
   3931       // expression. This suffices because function types are not valid
   3932       // underlying types anyway.
   3933       EnterExpressionEvaluationContext Unevaluated(Actions,
   3934                                                    Sema::ConstantEvaluated);
   3935       TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
   3936       // If the next token starts an expression, we know we're parsing a
   3937       // bit-field. This is the common case.
   3938       if (TPR == TPResult::True)
   3939         PossibleBitfield = true;
   3940       // If the next token starts a type-specifier-seq, it may be either a
   3941       // a fixed underlying type or the start of a function-style cast in C++;
   3942       // lookahead one more token to see if it's obvious that we have a
   3943       // fixed underlying type.
   3944       else if (TPR == TPResult::False &&
   3945                GetLookAheadToken(2).getKind() == tok::semi) {
   3946         // Consume the ':'.
   3947         ConsumeToken();
   3948       } else {
   3949         // We have the start of a type-specifier-seq, so we have to perform
   3950         // tentative parsing to determine whether we have an expression or a
   3951         // type.
   3952         TentativeParsingAction TPA(*this);
   3953 
   3954         // Consume the ':'.
   3955         ConsumeToken();
   3956 
   3957         // If we see a type specifier followed by an open-brace, we have an
   3958         // ambiguity between an underlying type and a C++11 braced
   3959         // function-style cast. Resolve this by always treating it as an
   3960         // underlying type.
   3961         // FIXME: The standard is not entirely clear on how to disambiguate in
   3962         // this case.
   3963         if ((getLangOpts().CPlusPlus &&
   3964              isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
   3965             (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
   3966           // We'll parse this as a bitfield later.
   3967           PossibleBitfield = true;
   3968           TPA.Revert();
   3969         } else {
   3970           // We have a type-specifier-seq.
   3971           TPA.Commit();
   3972         }
   3973       }
   3974     } else {
   3975       // Consume the ':'.
   3976       ConsumeToken();
   3977     }
   3978 
   3979     if (!PossibleBitfield) {
   3980       SourceRange Range;
   3981       BaseType = ParseTypeName(&Range);
   3982 
   3983       if (getLangOpts().CPlusPlus11) {
   3984         Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
   3985       } else if (!getLangOpts().ObjC2) {
   3986         if (getLangOpts().CPlusPlus)
   3987           Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
   3988         else
   3989           Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
   3990       }
   3991     }
   3992   }
   3993 
   3994   // There are four options here.  If we have 'friend enum foo;' then this is a
   3995   // friend declaration, and cannot have an accompanying definition. If we have
   3996   // 'enum foo;', then this is a forward declaration.  If we have
   3997   // 'enum foo {...' then this is a definition. Otherwise we have something
   3998   // like 'enum foo xyz', a reference.
   3999   //
   4000   // This is needed to handle stuff like this right (C99 6.7.2.3p11):
   4001   // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
   4002   // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
   4003   //
   4004   Sema::TagUseKind TUK;
   4005   if (!AllowDeclaration) {
   4006     TUK = Sema::TUK_Reference;
   4007   } else if (Tok.is(tok::l_brace)) {
   4008     if (DS.isFriendSpecified()) {
   4009       Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
   4010         << SourceRange(DS.getFriendSpecLoc());
   4011       ConsumeBrace();
   4012       SkipUntil(tok::r_brace, StopAtSemi);
   4013       TUK = Sema::TUK_Friend;
   4014     } else {
   4015       TUK = Sema::TUK_Definition;
   4016     }
   4017   } else if (!isTypeSpecifier(DSC) &&
   4018              (Tok.is(tok::semi) ||
   4019               (Tok.isAtStartOfLine() &&
   4020                !isValidAfterTypeSpecifier(CanBeBitfield)))) {
   4021     TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
   4022     if (Tok.isNot(tok::semi)) {
   4023       // A semicolon was missing after this declaration. Diagnose and recover.
   4024       ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
   4025       PP.EnterToken(Tok);
   4026       Tok.setKind(tok::semi);
   4027     }
   4028   } else {
   4029     TUK = Sema::TUK_Reference;
   4030   }
   4031 
   4032   // If this is an elaborated type specifier, and we delayed
   4033   // diagnostics before, just merge them into the current pool.
   4034   if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
   4035     diagsFromTag.redelay();
   4036   }
   4037 
   4038   MultiTemplateParamsArg TParams;
   4039   if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
   4040       TUK != Sema::TUK_Reference) {
   4041     if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
   4042       // Skip the rest of this declarator, up until the comma or semicolon.
   4043       Diag(Tok, diag::err_enum_template);
   4044       SkipUntil(tok::comma, StopAtSemi);
   4045       return;
   4046     }
   4047 
   4048     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
   4049       // Enumerations can't be explicitly instantiated.
   4050       DS.SetTypeSpecError();
   4051       Diag(StartLoc, diag::err_explicit_instantiation_enum);
   4052       return;
   4053     }
   4054 
   4055     assert(TemplateInfo.TemplateParams && "no template parameters");
   4056     TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
   4057                                      TemplateInfo.TemplateParams->size());
   4058   }
   4059 
   4060   if (TUK == Sema::TUK_Reference)
   4061     ProhibitAttributes(attrs);
   4062 
   4063   if (!Name && TUK != Sema::TUK_Definition) {
   4064     Diag(Tok, diag::err_enumerator_unnamed_no_def);
   4065 
   4066     // Skip the rest of this declarator, up until the comma or semicolon.
   4067     SkipUntil(tok::comma, StopAtSemi);
   4068     return;
   4069   }
   4070 
   4071   handleDeclspecAlignBeforeClassKey(attrs, DS, TUK);
   4072 
   4073   Sema::SkipBodyInfo SkipBody;
   4074   if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) &&
   4075       NextToken().is(tok::identifier))
   4076     SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
   4077                                               NextToken().getIdentifierInfo(),
   4078                                               NextToken().getLocation());
   4079 
   4080   bool Owned = false;
   4081   bool IsDependent = false;
   4082   const char *PrevSpec = nullptr;
   4083   unsigned DiagID;
   4084   Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
   4085                                    StartLoc, SS, Name, NameLoc, attrs.getList(),
   4086                                    AS, DS.getModulePrivateSpecLoc(), TParams,
   4087                                    Owned, IsDependent, ScopedEnumKWLoc,
   4088                                    IsScopedUsingClassTag, BaseType,
   4089                                    DSC == DSC_type_specifier, &SkipBody);
   4090 
   4091   if (SkipBody.ShouldSkip) {
   4092     assert(TUK == Sema::TUK_Definition && "can only skip a definition");
   4093 
   4094     BalancedDelimiterTracker T(*this, tok::l_brace);
   4095     T.consumeOpen();
   4096     T.skipToEnd();
   4097 
   4098     if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
   4099                            NameLoc.isValid() ? NameLoc : StartLoc,
   4100                            PrevSpec, DiagID, TagDecl, Owned,
   4101                            Actions.getASTContext().getPrintingPolicy()))
   4102       Diag(StartLoc, DiagID) << PrevSpec;
   4103     return;
   4104   }
   4105 
   4106   if (IsDependent) {
   4107     // This enum has a dependent nested-name-specifier. Handle it as a
   4108     // dependent tag.
   4109     if (!Name) {
   4110       DS.SetTypeSpecError();
   4111       Diag(Tok, diag::err_expected_type_name_after_typename);
   4112       return;
   4113     }
   4114 
   4115     TypeResult Type = Actions.ActOnDependentTag(
   4116         getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
   4117     if (Type.isInvalid()) {
   4118       DS.SetTypeSpecError();
   4119       return;
   4120     }
   4121 
   4122     if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
   4123                            NameLoc.isValid() ? NameLoc : StartLoc,
   4124                            PrevSpec, DiagID, Type.get(),
   4125                            Actions.getASTContext().getPrintingPolicy()))
   4126       Diag(StartLoc, DiagID) << PrevSpec;
   4127 
   4128     return;
   4129   }
   4130 
   4131   if (!TagDecl) {
   4132     // The action failed to produce an enumeration tag. If this is a
   4133     // definition, consume the entire definition.
   4134     if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
   4135       ConsumeBrace();
   4136       SkipUntil(tok::r_brace, StopAtSemi);
   4137     }
   4138 
   4139     DS.SetTypeSpecError();
   4140     return;
   4141   }
   4142 
   4143   if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference)
   4144     ParseEnumBody(StartLoc, TagDecl);
   4145 
   4146   if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
   4147                          NameLoc.isValid() ? NameLoc : StartLoc,
   4148                          PrevSpec, DiagID, TagDecl, Owned,
   4149                          Actions.getASTContext().getPrintingPolicy()))
   4150     Diag(StartLoc, DiagID) << PrevSpec;
   4151 }
   4152 
   4153 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
   4154 ///       enumerator-list:
   4155 ///         enumerator
   4156 ///         enumerator-list ',' enumerator
   4157 ///       enumerator:
   4158 ///         enumeration-constant attributes[opt]
   4159 ///         enumeration-constant attributes[opt] '=' constant-expression
   4160 ///       enumeration-constant:
   4161 ///         identifier
   4162 ///
   4163 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
   4164   // Enter the scope of the enum body and start the definition.
   4165   ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
   4166   Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
   4167 
   4168   BalancedDelimiterTracker T(*this, tok::l_brace);
   4169   T.consumeOpen();
   4170 
   4171   // C does not allow an empty enumerator-list, C++ does [dcl.enum].
   4172   if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
   4173     Diag(Tok, diag::error_empty_enum);
   4174 
   4175   SmallVector<Decl *, 32> EnumConstantDecls;
   4176   SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
   4177 
   4178   Decl *LastEnumConstDecl = nullptr;
   4179 
   4180   // Parse the enumerator-list.
   4181   while (Tok.isNot(tok::r_brace)) {
   4182     // Parse enumerator. If failed, try skipping till the start of the next
   4183     // enumerator definition.
   4184     if (Tok.isNot(tok::identifier)) {
   4185       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
   4186       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
   4187           TryConsumeToken(tok::comma))
   4188         continue;
   4189       break;
   4190     }
   4191     IdentifierInfo *Ident = Tok.getIdentifierInfo();
   4192     SourceLocation IdentLoc = ConsumeToken();
   4193 
   4194     // If attributes exist after the enumerator, parse them.
   4195     ParsedAttributesWithRange attrs(AttrFactory);
   4196     MaybeParseGNUAttributes(attrs);
   4197     ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
   4198     if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier()) {
   4199       if (!getLangOpts().CPlusPlus1z)
   4200         Diag(Tok.getLocation(), diag::warn_cxx14_compat_attribute)
   4201             << 1 /*enumerator*/;
   4202       ParseCXX11Attributes(attrs);
   4203     }
   4204 
   4205     SourceLocation EqualLoc;
   4206     ExprResult AssignedVal;
   4207     EnumAvailabilityDiags.emplace_back(*this);
   4208 
   4209     if (TryConsumeToken(tok::equal, EqualLoc)) {
   4210       AssignedVal = ParseConstantExpression();
   4211       if (AssignedVal.isInvalid())
   4212         SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
   4213     }
   4214 
   4215     // Install the enumerator constant into EnumDecl.
   4216     Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
   4217                                                     LastEnumConstDecl,
   4218                                                     IdentLoc, Ident,
   4219                                                     attrs.getList(), EqualLoc,
   4220                                                     AssignedVal.get());
   4221     EnumAvailabilityDiags.back().done();
   4222 
   4223     EnumConstantDecls.push_back(EnumConstDecl);
   4224     LastEnumConstDecl = EnumConstDecl;
   4225 
   4226     if (Tok.is(tok::identifier)) {
   4227       // We're missing a comma between enumerators.
   4228       SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
   4229       Diag(Loc, diag::err_enumerator_list_missing_comma)
   4230         << FixItHint::CreateInsertion(Loc, ", ");
   4231       continue;
   4232     }
   4233 
   4234     // Emumerator definition must be finished, only comma or r_brace are
   4235     // allowed here.
   4236     SourceLocation CommaLoc;
   4237     if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
   4238       if (EqualLoc.isValid())
   4239         Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
   4240                                                            << tok::comma;
   4241       else
   4242         Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
   4243       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
   4244         if (TryConsumeToken(tok::comma, CommaLoc))
   4245           continue;
   4246       } else {
   4247         break;
   4248       }
   4249     }
   4250 
   4251     // If comma is followed by r_brace, emit appropriate warning.
   4252     if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
   4253       if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
   4254         Diag(CommaLoc, getLangOpts().CPlusPlus ?
   4255                diag::ext_enumerator_list_comma_cxx :
   4256                diag::ext_enumerator_list_comma_c)
   4257           << FixItHint::CreateRemoval(CommaLoc);
   4258       else if (getLangOpts().CPlusPlus11)
   4259         Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
   4260           << FixItHint::CreateRemoval(CommaLoc);
   4261       break;
   4262     }
   4263   }
   4264 
   4265   // Eat the }.
   4266   T.consumeClose();
   4267 
   4268   // If attributes exist after the identifier list, parse them.
   4269   ParsedAttributes attrs(AttrFactory);
   4270   MaybeParseGNUAttributes(attrs);
   4271 
   4272   Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
   4273                         EnumDecl, EnumConstantDecls,
   4274                         getCurScope(),
   4275                         attrs.getList());
   4276 
   4277   // Now handle enum constant availability diagnostics.
   4278   assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
   4279   for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
   4280     ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
   4281     EnumAvailabilityDiags[i].redelay();
   4282     PD.complete(EnumConstantDecls[i]);
   4283   }
   4284 
   4285   EnumScope.Exit();
   4286   Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
   4287                                    T.getCloseLocation());
   4288 
   4289   // The next token must be valid after an enum definition. If not, a ';'
   4290   // was probably forgotten.
   4291   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
   4292   if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
   4293     ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
   4294     // Push this token back into the preprocessor and change our current token
   4295     // to ';' so that the rest of the code recovers as though there were an
   4296     // ';' after the definition.
   4297     PP.EnterToken(Tok);
   4298     Tok.setKind(tok::semi);
   4299   }
   4300 }
   4301 
   4302 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
   4303 /// is definitely a type-specifier.  Return false if it isn't part of a type
   4304 /// specifier or if we're not sure.
   4305 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
   4306   switch (Tok.getKind()) {
   4307   default: return false;
   4308     // type-specifiers
   4309   case tok::kw_short:
   4310   case tok::kw_long:
   4311   case tok::kw___int64:
   4312   case tok::kw___int128:
   4313   case tok::kw_signed:
   4314   case tok::kw_unsigned:
   4315   case tok::kw__Complex:
   4316   case tok::kw__Imaginary:
   4317   case tok::kw_void:
   4318   case tok::kw_char:
   4319   case tok::kw_wchar_t:
   4320   case tok::kw_char16_t:
   4321   case tok::kw_char32_t:
   4322   case tok::kw_int:
   4323   case tok::kw_half:
   4324   case tok::kw_float:
   4325   case tok::kw_double:
   4326   case tok::kw___float128:
   4327   case tok::kw_bool:
   4328   case tok::kw__Bool:
   4329   case tok::kw__Decimal32:
   4330   case tok::kw__Decimal64:
   4331   case tok::kw__Decimal128:
   4332   case tok::kw___vector:
   4333 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
   4334 #include "clang/Basic/OpenCLImageTypes.def"
   4335 
   4336     // struct-or-union-specifier (C99) or class-specifier (C++)
   4337   case tok::kw_class:
   4338   case tok::kw_struct:
   4339   case tok::kw___interface:
   4340   case tok::kw_union:
   4341     // enum-specifier
   4342   case tok::kw_enum:
   4343 
   4344     // typedef-name
   4345   case tok::annot_typename:
   4346     return true;
   4347   }
   4348 }
   4349 
   4350 /// isTypeSpecifierQualifier - Return true if the current token could be the
   4351 /// start of a specifier-qualifier-list.
   4352 bool Parser::isTypeSpecifierQualifier() {
   4353   switch (Tok.getKind()) {
   4354   default: return false;
   4355 
   4356   case tok::identifier:   // foo::bar
   4357     if (TryAltiVecVectorToken())
   4358       return true;
   4359     // Fall through.
   4360   case tok::kw_typename:  // typename T::type
   4361     // Annotate typenames and C++ scope specifiers.  If we get one, just
   4362     // recurse to handle whatever we get.
   4363     if (TryAnnotateTypeOrScopeToken())
   4364       return true;
   4365     if (Tok.is(tok::identifier))
   4366       return false;
   4367     return isTypeSpecifierQualifier();
   4368 
   4369   case tok::coloncolon:   // ::foo::bar
   4370     if (NextToken().is(tok::kw_new) ||    // ::new
   4371         NextToken().is(tok::kw_delete))   // ::delete
   4372       return false;
   4373 
   4374     if (TryAnnotateTypeOrScopeToken())
   4375       return true;
   4376     return isTypeSpecifierQualifier();
   4377 
   4378     // GNU attributes support.
   4379   case tok::kw___attribute:
   4380     // GNU typeof support.
   4381   case tok::kw_typeof:
   4382 
   4383     // type-specifiers
   4384   case tok::kw_short:
   4385   case tok::kw_long:
   4386   case tok::kw___int64:
   4387   case tok::kw___int128:
   4388   case tok::kw_signed:
   4389   case tok::kw_unsigned:
   4390   case tok::kw__Complex:
   4391   case tok::kw__Imaginary:
   4392   case tok::kw_void:
   4393   case tok::kw_char:
   4394   case tok::kw_wchar_t:
   4395   case tok::kw_char16_t:
   4396   case tok::kw_char32_t:
   4397   case tok::kw_int:
   4398   case tok::kw_half:
   4399   case tok::kw_float:
   4400   case tok::kw_double:
   4401   case tok::kw___float128:
   4402   case tok::kw_bool:
   4403   case tok::kw__Bool:
   4404   case tok::kw__Decimal32:
   4405   case tok::kw__Decimal64:
   4406   case tok::kw__Decimal128:
   4407   case tok::kw___vector:
   4408 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
   4409 #include "clang/Basic/OpenCLImageTypes.def"
   4410 
   4411     // struct-or-union-specifier (C99) or class-specifier (C++)
   4412   case tok::kw_class:
   4413   case tok::kw_struct:
   4414   case tok::kw___interface:
   4415   case tok::kw_union:
   4416     // enum-specifier
   4417   case tok::kw_enum:
   4418 
   4419     // type-qualifier
   4420   case tok::kw_const:
   4421   case tok::kw_volatile:
   4422   case tok::kw_restrict:
   4423 
   4424     // Debugger support.
   4425   case tok::kw___unknown_anytype:
   4426 
   4427     // typedef-name
   4428   case tok::annot_typename:
   4429     return true;
   4430 
   4431     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
   4432   case tok::less:
   4433     return getLangOpts().ObjC1;
   4434 
   4435   case tok::kw___cdecl:
   4436   case tok::kw___stdcall:
   4437   case tok::kw___fastcall:
   4438   case tok::kw___thiscall:
   4439   case tok::kw___vectorcall:
   4440   case tok::kw___w64:
   4441   case tok::kw___ptr64:
   4442   case tok::kw___ptr32:
   4443   case tok::kw___pascal:
   4444   case tok::kw___unaligned:
   4445 
   4446   case tok::kw__Nonnull:
   4447   case tok::kw__Nullable:
   4448   case tok::kw__Null_unspecified:
   4449 
   4450   case tok::kw___kindof:
   4451 
   4452   case tok::kw___private:
   4453   case tok::kw___local:
   4454   case tok::kw___global:
   4455   case tok::kw___constant:
   4456   case tok::kw___generic:
   4457   case tok::kw___read_only:
   4458   case tok::kw___read_write:
   4459   case tok::kw___write_only:
   4460 
   4461     return true;
   4462 
   4463   // C11 _Atomic
   4464   case tok::kw__Atomic:
   4465     return true;
   4466   }
   4467 }
   4468 
   4469 /// isDeclarationSpecifier() - Return true if the current token is part of a
   4470 /// declaration specifier.
   4471 ///
   4472 /// \param DisambiguatingWithExpression True to indicate that the purpose of
   4473 /// this check is to disambiguate between an expression and a declaration.
   4474 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
   4475   switch (Tok.getKind()) {
   4476   default: return false;
   4477 
   4478   case tok::kw_pipe:
   4479     return getLangOpts().OpenCL && (getLangOpts().OpenCLVersion >= 200);
   4480 
   4481   case tok::identifier:   // foo::bar
   4482     // Unfortunate hack to support "Class.factoryMethod" notation.
   4483     if (getLangOpts().ObjC1 && NextToken().is(tok::period))
   4484       return false;
   4485     if (TryAltiVecVectorToken())
   4486       return true;
   4487     // Fall through.
   4488   case tok::kw_decltype: // decltype(T())::type
   4489   case tok::kw_typename: // typename T::type
   4490     // Annotate typenames and C++ scope specifiers.  If we get one, just
   4491     // recurse to handle whatever we get.
   4492     if (TryAnnotateTypeOrScopeToken())
   4493       return true;
   4494     if (Tok.is(tok::identifier))
   4495       return false;
   4496 
   4497     // If we're in Objective-C and we have an Objective-C class type followed
   4498     // by an identifier and then either ':' or ']', in a place where an
   4499     // expression is permitted, then this is probably a class message send
   4500     // missing the initial '['. In this case, we won't consider this to be
   4501     // the start of a declaration.
   4502     if (DisambiguatingWithExpression &&
   4503         isStartOfObjCClassMessageMissingOpenBracket())
   4504       return false;
   4505 
   4506     return isDeclarationSpecifier();
   4507 
   4508   case tok::coloncolon:   // ::foo::bar
   4509     if (NextToken().is(tok::kw_new) ||    // ::new
   4510         NextToken().is(tok::kw_delete))   // ::delete
   4511       return false;
   4512 
   4513     // Annotate typenames and C++ scope specifiers.  If we get one, just
   4514     // recurse to handle whatever we get.
   4515     if (TryAnnotateTypeOrScopeToken())
   4516       return true;
   4517     return isDeclarationSpecifier();
   4518 
   4519     // storage-class-specifier
   4520   case tok::kw_typedef:
   4521   case tok::kw_extern:
   4522   case tok::kw___private_extern__:
   4523   case tok::kw_static:
   4524   case tok::kw_auto:
   4525   case tok::kw___auto_type:
   4526   case tok::kw_register:
   4527   case tok::kw___thread:
   4528   case tok::kw_thread_local:
   4529   case tok::kw__Thread_local:
   4530 
   4531     // Modules
   4532   case tok::kw___module_private__:
   4533 
   4534     // Debugger support
   4535   case tok::kw___unknown_anytype:
   4536 
   4537     // type-specifiers
   4538   case tok::kw_short:
   4539   case tok::kw_long:
   4540   case tok::kw___int64:
   4541   case tok::kw___int128:
   4542   case tok::kw_signed:
   4543   case tok::kw_unsigned:
   4544   case tok::kw__Complex:
   4545   case tok::kw__Imaginary:
   4546   case tok::kw_void:
   4547   case tok::kw_char:
   4548   case tok::kw_wchar_t:
   4549   case tok::kw_char16_t:
   4550   case tok::kw_char32_t:
   4551 
   4552   case tok::kw_int:
   4553   case tok::kw_half:
   4554   case tok::kw_float:
   4555   case tok::kw_double:
   4556   case tok::kw___float128:
   4557   case tok::kw_bool:
   4558   case tok::kw__Bool:
   4559   case tok::kw__Decimal32:
   4560   case tok::kw__Decimal64:
   4561   case tok::kw__Decimal128:
   4562   case tok::kw___vector:
   4563 
   4564     // struct-or-union-specifier (C99) or class-specifier (C++)
   4565   case tok::kw_class:
   4566   case tok::kw_struct:
   4567   case tok::kw_union:
   4568   case tok::kw___interface:
   4569     // enum-specifier
   4570   case tok::kw_enum:
   4571 
   4572     // type-qualifier
   4573   case tok::kw_const:
   4574   case tok::kw_volatile:
   4575   case tok::kw_restrict:
   4576 
   4577     // function-specifier
   4578   case tok::kw_inline:
   4579   case tok::kw_virtual:
   4580   case tok::kw_explicit:
   4581   case tok::kw__Noreturn:
   4582 
   4583     // alignment-specifier
   4584   case tok::kw__Alignas:
   4585 
   4586     // friend keyword.
   4587   case tok::kw_friend:
   4588 
   4589     // static_assert-declaration
   4590   case tok::kw__Static_assert:
   4591 
   4592     // GNU typeof support.
   4593   case tok::kw_typeof:
   4594 
   4595     // GNU attributes.
   4596   case tok::kw___attribute:
   4597 
   4598     // C++11 decltype and constexpr.
   4599   case tok::annot_decltype:
   4600   case tok::kw_constexpr:
   4601 
   4602     // C++ Concepts TS - concept
   4603   case tok::kw_concept:
   4604 
   4605     // C11 _Atomic
   4606   case tok::kw__Atomic:
   4607     return true;
   4608 
   4609     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
   4610   case tok::less:
   4611     return getLangOpts().ObjC1;
   4612 
   4613     // typedef-name
   4614   case tok::annot_typename:
   4615     return !DisambiguatingWithExpression ||
   4616            !isStartOfObjCClassMessageMissingOpenBracket();
   4617 
   4618   case tok::kw___declspec:
   4619   case tok::kw___cdecl:
   4620   case tok::kw___stdcall:
   4621   case tok::kw___fastcall:
   4622   case tok::kw___thiscall:
   4623   case tok::kw___vectorcall:
   4624   case tok::kw___w64:
   4625   case tok::kw___sptr:
   4626   case tok::kw___uptr:
   4627   case tok::kw___ptr64:
   4628   case tok::kw___ptr32:
   4629   case tok::kw___forceinline:
   4630   case tok::kw___pascal:
   4631   case tok::kw___unaligned:
   4632 
   4633   case tok::kw__Nonnull:
   4634   case tok::kw__Nullable:
   4635   case tok::kw__Null_unspecified:
   4636 
   4637   case tok::kw___kindof:
   4638 
   4639   case tok::kw___private:
   4640   case tok::kw___local:
   4641   case tok::kw___global:
   4642   case tok::kw___constant:
   4643   case tok::kw___generic:
   4644   case tok::kw___read_only:
   4645   case tok::kw___read_write:
   4646   case tok::kw___write_only:
   4647 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
   4648 #include "clang/Basic/OpenCLImageTypes.def"
   4649 
   4650     return true;
   4651   }
   4652 }
   4653 
   4654 bool Parser::isConstructorDeclarator(bool IsUnqualified) {
   4655   TentativeParsingAction TPA(*this);
   4656 
   4657   // Parse the C++ scope specifier.
   4658   CXXScopeSpec SS;
   4659   if (ParseOptionalCXXScopeSpecifier(SS, nullptr,
   4660                                      /*EnteringContext=*/true)) {
   4661     TPA.Revert();
   4662     return false;
   4663   }
   4664 
   4665   // Parse the constructor name.
   4666   if (Tok.isOneOf(tok::identifier, tok::annot_template_id)) {
   4667     // We already know that we have a constructor name; just consume
   4668     // the token.
   4669     ConsumeToken();
   4670   } else {
   4671     TPA.Revert();
   4672     return false;
   4673   }
   4674 
   4675   // Current class name must be followed by a left parenthesis.
   4676   if (Tok.isNot(tok::l_paren)) {
   4677     TPA.Revert();
   4678     return false;
   4679   }
   4680   ConsumeParen();
   4681 
   4682   // A right parenthesis, or ellipsis followed by a right parenthesis signals
   4683   // that we have a constructor.
   4684   if (Tok.is(tok::r_paren) ||
   4685       (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
   4686     TPA.Revert();
   4687     return true;
   4688   }
   4689 
   4690   // A C++11 attribute here signals that we have a constructor, and is an
   4691   // attribute on the first constructor parameter.
   4692   if (getLangOpts().CPlusPlus11 &&
   4693       isCXX11AttributeSpecifier(/*Disambiguate*/ false,
   4694                                 /*OuterMightBeMessageSend*/ true)) {
   4695     TPA.Revert();
   4696     return true;
   4697   }
   4698 
   4699   // If we need to, enter the specified scope.
   4700   DeclaratorScopeObj DeclScopeObj(*this, SS);
   4701   if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
   4702     DeclScopeObj.EnterDeclaratorScope();
   4703 
   4704   // Optionally skip Microsoft attributes.
   4705   ParsedAttributes Attrs(AttrFactory);
   4706   MaybeParseMicrosoftAttributes(Attrs);
   4707 
   4708   // Check whether the next token(s) are part of a declaration
   4709   // specifier, in which case we have the start of a parameter and,
   4710   // therefore, we know that this is a constructor.
   4711   bool IsConstructor = false;
   4712   if (isDeclarationSpecifier())
   4713     IsConstructor = true;
   4714   else if (Tok.is(tok::identifier) ||
   4715            (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
   4716     // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
   4717     // This might be a parenthesized member name, but is more likely to
   4718     // be a constructor declaration with an invalid argument type. Keep
   4719     // looking.
   4720     if (Tok.is(tok::annot_cxxscope))
   4721       ConsumeToken();
   4722     ConsumeToken();
   4723 
   4724     // If this is not a constructor, we must be parsing a declarator,
   4725     // which must have one of the following syntactic forms (see the
   4726     // grammar extract at the start of ParseDirectDeclarator):
   4727     switch (Tok.getKind()) {
   4728     case tok::l_paren:
   4729       // C(X   (   int));
   4730     case tok::l_square:
   4731       // C(X   [   5]);
   4732       // C(X   [   [attribute]]);
   4733     case tok::coloncolon:
   4734       // C(X   ::   Y);
   4735       // C(X   ::   *p);
   4736       // Assume this isn't a constructor, rather than assuming it's a
   4737       // constructor with an unnamed parameter of an ill-formed type.
   4738       break;
   4739 
   4740     case tok::r_paren:
   4741       // C(X   )
   4742       if (NextToken().is(tok::colon) || NextToken().is(tok::kw_try)) {
   4743         // Assume these were meant to be constructors:
   4744         //   C(X)   :    (the name of a bit-field cannot be parenthesized).
   4745         //   C(X)   try  (this is otherwise ill-formed).
   4746         IsConstructor = true;
   4747       }
   4748       if (NextToken().is(tok::semi) || NextToken().is(tok::l_brace)) {
   4749         // If we have a constructor name within the class definition,
   4750         // assume these were meant to be constructors:
   4751         //   C(X)   {
   4752         //   C(X)   ;
   4753         // ... because otherwise we would be declaring a non-static data
   4754         // member that is ill-formed because it's of the same type as its
   4755         // surrounding class.
   4756         //
   4757         // FIXME: We can actually do this whether or not the name is qualified,
   4758         // because if it is qualified in this context it must be being used as
   4759         // a constructor name. However, we do not implement that rule correctly
   4760         // currently, so we're somewhat conservative here.
   4761         IsConstructor = IsUnqualified;
   4762       }
   4763       break;
   4764 
   4765     default:
   4766       IsConstructor = true;
   4767       break;
   4768     }
   4769   }
   4770 
   4771   TPA.Revert();
   4772   return IsConstructor;
   4773 }
   4774 
   4775 /// ParseTypeQualifierListOpt
   4776 ///          type-qualifier-list: [C99 6.7.5]
   4777 ///            type-qualifier
   4778 /// [vendor]   attributes
   4779 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
   4780 ///            type-qualifier-list type-qualifier
   4781 /// [vendor]   type-qualifier-list attributes
   4782 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
   4783 /// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
   4784 ///              [ only if AttReqs & AR_CXX11AttributesParsed ]
   4785 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
   4786 /// AttrRequirements bitmask values.
   4787 void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, unsigned AttrReqs,
   4788                                        bool AtomicAllowed,
   4789                                        bool IdentifierRequired) {
   4790   if (getLangOpts().CPlusPlus11 && (AttrReqs & AR_CXX11AttributesParsed) &&
   4791       isCXX11AttributeSpecifier()) {
   4792     ParsedAttributesWithRange attrs(AttrFactory);
   4793     ParseCXX11Attributes(attrs);
   4794     DS.takeAttributesFrom(attrs);
   4795   }
   4796 
   4797   SourceLocation EndLoc;
   4798 
   4799   while (1) {
   4800     bool isInvalid = false;
   4801     const char *PrevSpec = nullptr;
   4802     unsigned DiagID = 0;
   4803     SourceLocation Loc = Tok.getLocation();
   4804 
   4805     switch (Tok.getKind()) {
   4806     case tok::code_completion:
   4807       Actions.CodeCompleteTypeQualifiers(DS);
   4808       return cutOffParsing();
   4809 
   4810     case tok::kw_const:
   4811       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
   4812                                  getLangOpts());
   4813       break;
   4814     case tok::kw_volatile:
   4815       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
   4816                                  getLangOpts());
   4817       break;
   4818     case tok::kw_restrict:
   4819       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
   4820                                  getLangOpts());
   4821       break;
   4822     case tok::kw__Atomic:
   4823       if (!AtomicAllowed)
   4824         goto DoneWithTypeQuals;
   4825       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
   4826                                  getLangOpts());
   4827       break;
   4828 
   4829     // OpenCL qualifiers:
   4830     case tok::kw___private:
   4831     case tok::kw___global:
   4832     case tok::kw___local:
   4833     case tok::kw___constant:
   4834     case tok::kw___generic:
   4835     case tok::kw___read_only:
   4836     case tok::kw___write_only:
   4837     case tok::kw___read_write:
   4838       ParseOpenCLQualifiers(DS.getAttributes());
   4839       break;
   4840 
   4841     case tok::kw___unaligned:
   4842       isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
   4843                                  getLangOpts());
   4844       break;
   4845     case tok::kw___uptr:
   4846       // GNU libc headers in C mode use '__uptr' as an identifer which conflicts
   4847       // with the MS modifier keyword.
   4848       if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
   4849           IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
   4850         if (TryKeywordIdentFallback(false))
   4851           continue;
   4852       }
   4853     case tok::kw___sptr:
   4854     case tok::kw___w64:
   4855     case tok::kw___ptr64:
   4856     case tok::kw___ptr32:
   4857     case tok::kw___cdecl:
   4858     case tok::kw___stdcall:
   4859     case tok::kw___fastcall:
   4860     case tok::kw___thiscall:
   4861     case tok::kw___vectorcall:
   4862       if (AttrReqs & AR_DeclspecAttributesParsed) {
   4863         ParseMicrosoftTypeAttributes(DS.getAttributes());
   4864         continue;
   4865       }
   4866       goto DoneWithTypeQuals;
   4867     case tok::kw___pascal:
   4868       if (AttrReqs & AR_VendorAttributesParsed) {
   4869         ParseBorlandTypeAttributes(DS.getAttributes());
   4870         continue;
   4871       }
   4872       goto DoneWithTypeQuals;
   4873 
   4874     // Nullability type specifiers.
   4875     case tok::kw__Nonnull:
   4876     case tok::kw__Nullable:
   4877     case tok::kw__Null_unspecified:
   4878       ParseNullabilityTypeSpecifiers(DS.getAttributes());
   4879       continue;
   4880 
   4881     // Objective-C 'kindof' types.
   4882     case tok::kw___kindof:
   4883       DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
   4884                                 nullptr, 0, AttributeList::AS_Keyword);
   4885       (void)ConsumeToken();
   4886       continue;
   4887 
   4888     case tok::kw___attribute:
   4889       if (AttrReqs & AR_GNUAttributesParsedAndRejected)
   4890         // When GNU attributes are expressly forbidden, diagnose their usage.
   4891         Diag(Tok, diag::err_attributes_not_allowed);
   4892 
   4893       // Parse the attributes even if they are rejected to ensure that error
   4894       // recovery is graceful.
   4895       if (AttrReqs & AR_GNUAttributesParsed ||
   4896           AttrReqs & AR_GNUAttributesParsedAndRejected) {
   4897         ParseGNUAttributes(DS.getAttributes());
   4898         continue; // do *not* consume the next token!
   4899       }
   4900       // otherwise, FALL THROUGH!
   4901     default:
   4902       DoneWithTypeQuals:
   4903       // If this is not a type-qualifier token, we're done reading type
   4904       // qualifiers.  First verify that DeclSpec's are consistent.
   4905       DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
   4906       if (EndLoc.isValid())
   4907         DS.SetRangeEnd(EndLoc);
   4908       return;
   4909     }
   4910 
   4911     // If the specifier combination wasn't legal, issue a diagnostic.
   4912     if (isInvalid) {
   4913       assert(PrevSpec && "Method did not return previous specifier!");
   4914       Diag(Tok, DiagID) << PrevSpec;
   4915     }
   4916     EndLoc = ConsumeToken();
   4917   }
   4918 }
   4919 
   4920 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
   4921 ///
   4922 void Parser::ParseDeclarator(Declarator &D) {
   4923   /// This implements the 'declarator' production in the C grammar, then checks
   4924   /// for well-formedness and issues diagnostics.
   4925   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
   4926 }
   4927 
   4928 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
   4929                                unsigned TheContext) {
   4930   if (Kind == tok::star || Kind == tok::caret)
   4931     return true;
   4932 
   4933   if ((Kind == tok::kw_pipe) && Lang.OpenCL && (Lang.OpenCLVersion >= 200))
   4934     return true;
   4935 
   4936   if (!Lang.CPlusPlus)
   4937     return false;
   4938 
   4939   if (Kind == tok::amp)
   4940     return true;
   4941 
   4942   // We parse rvalue refs in C++03, because otherwise the errors are scary.
   4943   // But we must not parse them in conversion-type-ids and new-type-ids, since
   4944   // those can be legitimately followed by a && operator.
   4945   // (The same thing can in theory happen after a trailing-return-type, but
   4946   // since those are a C++11 feature, there is no rejects-valid issue there.)
   4947   if (Kind == tok::ampamp)
   4948     return Lang.CPlusPlus11 || (TheContext != Declarator::ConversionIdContext &&
   4949                                 TheContext != Declarator::CXXNewContext);
   4950 
   4951   return false;
   4952 }
   4953 
   4954 // Indicates whether the given declarator is a pipe declarator.
   4955 static bool isPipeDeclerator(const Declarator &D) {
   4956   const unsigned NumTypes = D.getNumTypeObjects();
   4957 
   4958   for (unsigned Idx = 0; Idx != NumTypes; ++Idx)
   4959     if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind)
   4960       return true;
   4961 
   4962   return false;
   4963 }
   4964 
   4965 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
   4966 /// is parsed by the function passed to it. Pass null, and the direct-declarator
   4967 /// isn't parsed at all, making this function effectively parse the C++
   4968 /// ptr-operator production.
   4969 ///
   4970 /// If the grammar of this construct is extended, matching changes must also be
   4971 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
   4972 /// isConstructorDeclarator.
   4973 ///
   4974 ///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
   4975 /// [C]     pointer[opt] direct-declarator
   4976 /// [C++]   direct-declarator
   4977 /// [C++]   ptr-operator declarator
   4978 ///
   4979 ///       pointer: [C99 6.7.5]
   4980 ///         '*' type-qualifier-list[opt]
   4981 ///         '*' type-qualifier-list[opt] pointer
   4982 ///
   4983 ///       ptr-operator:
   4984 ///         '*' cv-qualifier-seq[opt]
   4985 ///         '&'
   4986 /// [C++0x] '&&'
   4987 /// [GNU]   '&' restrict[opt] attributes[opt]
   4988 /// [GNU?]  '&&' restrict[opt] attributes[opt]
   4989 ///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
   4990 void Parser::ParseDeclaratorInternal(Declarator &D,
   4991                                      DirectDeclParseFunction DirectDeclParser) {
   4992   if (Diags.hasAllExtensionsSilenced())
   4993     D.setExtension();
   4994 
   4995   // C++ member pointers start with a '::' or a nested-name.
   4996   // Member pointers get special handling, since there's no place for the
   4997   // scope spec in the generic path below.
   4998   if (getLangOpts().CPlusPlus &&
   4999       (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) ||
   5000        (Tok.is(tok::identifier) &&
   5001         (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
   5002        Tok.is(tok::annot_cxxscope))) {
   5003     bool EnteringContext = D.getContext() == Declarator::FileContext ||
   5004                            D.getContext() == Declarator::MemberContext;
   5005     CXXScopeSpec SS;
   5006     ParseOptionalCXXScopeSpecifier(SS, nullptr, EnteringContext);
   5007 
   5008     if (SS.isNotEmpty()) {
   5009       if (Tok.isNot(tok::star)) {
   5010         // The scope spec really belongs to the direct-declarator.
   5011         if (D.mayHaveIdentifier())
   5012           D.getCXXScopeSpec() = SS;
   5013         else
   5014           AnnotateScopeToken(SS, true);
   5015 
   5016         if (DirectDeclParser)
   5017           (this->*DirectDeclParser)(D);
   5018         return;
   5019       }
   5020 
   5021       SourceLocation Loc = ConsumeToken();
   5022       D.SetRangeEnd(Loc);
   5023       DeclSpec DS(AttrFactory);
   5024       ParseTypeQualifierListOpt(DS);
   5025       D.ExtendWithDeclSpec(DS);
   5026 
   5027       // Recurse to parse whatever is left.
   5028       ParseDeclaratorInternal(D, DirectDeclParser);
   5029 
   5030       // Sema will have to catch (syntactically invalid) pointers into global
   5031       // scope. It has to catch pointers into namespace scope anyway.
   5032       D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
   5033                                                       DS.getLocEnd()),
   5034                     DS.getAttributes(),
   5035                     /* Don't replace range end. */SourceLocation());
   5036       return;
   5037     }
   5038   }
   5039 
   5040   tok::TokenKind Kind = Tok.getKind();
   5041 
   5042   if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclerator(D)) {
   5043     DeclSpec DS(AttrFactory);
   5044     ParseTypeQualifierListOpt(DS);
   5045 
   5046     D.AddTypeInfo(
   5047         DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()),
   5048         DS.getAttributes(), SourceLocation());
   5049   }
   5050 
   5051   // Not a pointer, C++ reference, or block.
   5052   if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
   5053     if (DirectDeclParser)
   5054       (this->*DirectDeclParser)(D);
   5055     return;
   5056   }
   5057 
   5058   // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
   5059   // '&&' -> rvalue reference
   5060   SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
   5061   D.SetRangeEnd(Loc);
   5062 
   5063   if (Kind == tok::star || Kind == tok::caret) {
   5064     // Is a pointer.
   5065     DeclSpec DS(AttrFactory);
   5066 
   5067     // GNU attributes are not allowed here in a new-type-id, but Declspec and
   5068     // C++11 attributes are allowed.
   5069     unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
   5070                             ((D.getContext() != Declarator::CXXNewContext)
   5071                                  ? AR_GNUAttributesParsed
   5072                                  : AR_GNUAttributesParsedAndRejected);
   5073     ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
   5074     D.ExtendWithDeclSpec(DS);
   5075 
   5076     // Recursively parse the declarator.
   5077     ParseDeclaratorInternal(D, DirectDeclParser);
   5078     if (Kind == tok::star)
   5079       // Remember that we parsed a pointer type, and remember the type-quals.
   5080       D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
   5081                                                 DS.getConstSpecLoc(),
   5082                                                 DS.getVolatileSpecLoc(),
   5083                                                 DS.getRestrictSpecLoc(),
   5084                                                 DS.getAtomicSpecLoc(),
   5085                                                 DS.getUnalignedSpecLoc()),
   5086                     DS.getAttributes(),
   5087                     SourceLocation());
   5088     else
   5089       // Remember that we parsed a Block type, and remember the type-quals.
   5090       D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
   5091                                                      Loc),
   5092                     DS.getAttributes(),
   5093                     SourceLocation());
   5094   } else {
   5095     // Is a reference
   5096     DeclSpec DS(AttrFactory);
   5097 
   5098     // Complain about rvalue references in C++03, but then go on and build
   5099     // the declarator.
   5100     if (Kind == tok::ampamp)
   5101       Diag(Loc, getLangOpts().CPlusPlus11 ?
   5102            diag::warn_cxx98_compat_rvalue_reference :
   5103            diag::ext_rvalue_reference);
   5104 
   5105     // GNU-style and C++11 attributes are allowed here, as is restrict.
   5106     ParseTypeQualifierListOpt(DS);
   5107     D.ExtendWithDeclSpec(DS);
   5108 
   5109     // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
   5110     // cv-qualifiers are introduced through the use of a typedef or of a
   5111     // template type argument, in which case the cv-qualifiers are ignored.
   5112     if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
   5113       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
   5114         Diag(DS.getConstSpecLoc(),
   5115              diag::err_invalid_reference_qualifier_application) << "const";
   5116       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
   5117         Diag(DS.getVolatileSpecLoc(),
   5118              diag::err_invalid_reference_qualifier_application) << "volatile";
   5119       // 'restrict' is permitted as an extension.
   5120       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
   5121         Diag(DS.getAtomicSpecLoc(),
   5122              diag::err_invalid_reference_qualifier_application) << "_Atomic";
   5123     }
   5124 
   5125     // Recursively parse the declarator.
   5126     ParseDeclaratorInternal(D, DirectDeclParser);
   5127 
   5128     if (D.getNumTypeObjects() > 0) {
   5129       // C++ [dcl.ref]p4: There shall be no references to references.
   5130       DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
   5131       if (InnerChunk.Kind == DeclaratorChunk::Reference) {
   5132         if (const IdentifierInfo *II = D.getIdentifier())
   5133           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
   5134            << II;
   5135         else
   5136           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
   5137             << "type name";
   5138 
   5139         // Once we've complained about the reference-to-reference, we
   5140         // can go ahead and build the (technically ill-formed)
   5141         // declarator: reference collapsing will take care of it.
   5142       }
   5143     }
   5144 
   5145     // Remember that we parsed a reference type.
   5146     D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
   5147                                                 Kind == tok::amp),
   5148                   DS.getAttributes(),
   5149                   SourceLocation());
   5150   }
   5151 }
   5152 
   5153 // When correcting from misplaced brackets before the identifier, the location
   5154 // is saved inside the declarator so that other diagnostic messages can use
   5155 // them.  This extracts and returns that location, or returns the provided
   5156 // location if a stored location does not exist.
   5157 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
   5158                                                 SourceLocation Loc) {
   5159   if (D.getName().StartLocation.isInvalid() &&
   5160       D.getName().EndLocation.isValid())
   5161     return D.getName().EndLocation;
   5162 
   5163   return Loc;
   5164 }
   5165 
   5166 /// ParseDirectDeclarator
   5167 ///       direct-declarator: [C99 6.7.5]
   5168 /// [C99]   identifier
   5169 ///         '(' declarator ')'
   5170 /// [GNU]   '(' attributes declarator ')'
   5171 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
   5172 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
   5173 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
   5174 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
   5175 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
   5176 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
   5177 ///                    attribute-specifier-seq[opt]
   5178 ///         direct-declarator '(' parameter-type-list ')'
   5179 ///         direct-declarator '(' identifier-list[opt] ')'
   5180 /// [GNU]   direct-declarator '(' parameter-forward-declarations
   5181 ///                    parameter-type-list[opt] ')'
   5182 /// [C++]   direct-declarator '(' parameter-declaration-clause ')'
   5183 ///                    cv-qualifier-seq[opt] exception-specification[opt]
   5184 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
   5185 ///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
   5186 ///                    ref-qualifier[opt] exception-specification[opt]
   5187 /// [C++]   declarator-id
   5188 /// [C++11] declarator-id attribute-specifier-seq[opt]
   5189 ///
   5190 ///       declarator-id: [C++ 8]
   5191 ///         '...'[opt] id-expression
   5192 ///         '::'[opt] nested-name-specifier[opt] type-name
   5193 ///
   5194 ///       id-expression: [C++ 5.1]
   5195 ///         unqualified-id
   5196 ///         qualified-id
   5197 ///
   5198 ///       unqualified-id: [C++ 5.1]
   5199 ///         identifier
   5200 ///         operator-function-id
   5201 ///         conversion-function-id
   5202 ///          '~' class-name
   5203 ///         template-id
   5204 ///
   5205 /// Note, any additional constructs added here may need corresponding changes
   5206 /// in isConstructorDeclarator.
   5207 void Parser::ParseDirectDeclarator(Declarator &D) {
   5208   DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
   5209 
   5210   if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
   5211     // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
   5212     // this context it is a bitfield. Also in range-based for statement colon
   5213     // may delimit for-range-declaration.
   5214     ColonProtectionRAIIObject X(*this,
   5215                                 D.getContext() == Declarator::MemberContext ||
   5216                                     (D.getContext() == Declarator::ForContext &&
   5217                                      getLangOpts().CPlusPlus11));
   5218 
   5219     // ParseDeclaratorInternal might already have parsed the scope.
   5220     if (D.getCXXScopeSpec().isEmpty()) {
   5221       bool EnteringContext = D.getContext() == Declarator::FileContext ||
   5222                              D.getContext() == Declarator::MemberContext;
   5223       ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), nullptr,
   5224                                      EnteringContext);
   5225     }
   5226 
   5227     if (D.getCXXScopeSpec().isValid()) {
   5228       if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
   5229                                              D.getCXXScopeSpec()))
   5230         // Change the declaration context for name lookup, until this function
   5231         // is exited (and the declarator has been parsed).
   5232         DeclScopeObj.EnterDeclaratorScope();
   5233     }
   5234 
   5235     // C++0x [dcl.fct]p14:
   5236     //   There is a syntactic ambiguity when an ellipsis occurs at the end of a
   5237     //   parameter-declaration-clause without a preceding comma. In this case,
   5238     //   the ellipsis is parsed as part of the abstract-declarator if the type
   5239     //   of the parameter either names a template parameter pack that has not
   5240     //   been expanded or contains auto; otherwise, it is parsed as part of the
   5241     //   parameter-declaration-clause.
   5242     if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
   5243         !((D.getContext() == Declarator::PrototypeContext ||
   5244            D.getContext() == Declarator::LambdaExprParameterContext ||
   5245            D.getContext() == Declarator::BlockLiteralContext) &&
   5246           NextToken().is(tok::r_paren) &&
   5247           !D.hasGroupingParens() &&
   5248           !Actions.containsUnexpandedParameterPacks(D) &&
   5249           D.getDeclSpec().getTypeSpecType() != TST_auto)) {
   5250       SourceLocation EllipsisLoc = ConsumeToken();
   5251       if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
   5252         // The ellipsis was put in the wrong place. Recover, and explain to
   5253         // the user what they should have done.
   5254         ParseDeclarator(D);
   5255         if (EllipsisLoc.isValid())
   5256           DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
   5257         return;
   5258       } else
   5259         D.setEllipsisLoc(EllipsisLoc);
   5260 
   5261       // The ellipsis can't be followed by a parenthesized declarator. We
   5262       // check for that in ParseParenDeclarator, after we have disambiguated
   5263       // the l_paren token.
   5264     }
   5265 
   5266     if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
   5267                     tok::tilde)) {
   5268       // We found something that indicates the start of an unqualified-id.
   5269       // Parse that unqualified-id.
   5270       bool AllowConstructorName;
   5271       if (D.getDeclSpec().hasTypeSpecifier())
   5272         AllowConstructorName = false;
   5273       else if (D.getCXXScopeSpec().isSet())
   5274         AllowConstructorName =
   5275           (D.getContext() == Declarator::FileContext ||
   5276            D.getContext() == Declarator::MemberContext);
   5277       else
   5278         AllowConstructorName = (D.getContext() == Declarator::MemberContext);
   5279 
   5280       SourceLocation TemplateKWLoc;
   5281       bool HadScope = D.getCXXScopeSpec().isValid();
   5282       if (ParseUnqualifiedId(D.getCXXScopeSpec(),
   5283                              /*EnteringContext=*/true,
   5284                              /*AllowDestructorName=*/true, AllowConstructorName,
   5285                              nullptr, TemplateKWLoc, D.getName()) ||
   5286           // Once we're past the identifier, if the scope was bad, mark the
   5287           // whole declarator bad.
   5288           D.getCXXScopeSpec().isInvalid()) {
   5289         D.SetIdentifier(nullptr, Tok.getLocation());
   5290         D.setInvalidType(true);
   5291       } else {
   5292         // ParseUnqualifiedId might have parsed a scope specifier during error
   5293         // recovery. If it did so, enter that scope.
   5294         if (!HadScope && D.getCXXScopeSpec().isValid() &&
   5295             Actions.ShouldEnterDeclaratorScope(getCurScope(),
   5296                                                D.getCXXScopeSpec()))
   5297           DeclScopeObj.EnterDeclaratorScope();
   5298 
   5299         // Parsed the unqualified-id; update range information and move along.
   5300         if (D.getSourceRange().getBegin().isInvalid())
   5301           D.SetRangeBegin(D.getName().getSourceRange().getBegin());
   5302         D.SetRangeEnd(D.getName().getSourceRange().getEnd());
   5303       }
   5304       goto PastIdentifier;
   5305     }
   5306 
   5307     if (D.getCXXScopeSpec().isNotEmpty()) {
   5308       // We have a scope specifier but no following unqualified-id.
   5309       Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
   5310            diag::err_expected_unqualified_id)
   5311           << /*C++*/1;
   5312       D.SetIdentifier(nullptr, Tok.getLocation());
   5313       goto PastIdentifier;
   5314     }
   5315   } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
   5316     assert(!getLangOpts().CPlusPlus &&
   5317            "There's a C++-specific check for tok::identifier above");
   5318     assert(Tok.getIdentifierInfo() && "Not an identifier?");
   5319     D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
   5320     D.SetRangeEnd(Tok.getLocation());
   5321     ConsumeToken();
   5322     goto PastIdentifier;
   5323   } else if (Tok.is(tok::identifier) && D.diagnoseIdentifier()) {
   5324     // A virt-specifier isn't treated as an identifier if it appears after a
   5325     // trailing-return-type.
   5326     if (D.getContext() != Declarator::TrailingReturnContext ||
   5327         !isCXX11VirtSpecifier(Tok)) {
   5328       Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
   5329         << FixItHint::CreateRemoval(Tok.getLocation());
   5330       D.SetIdentifier(nullptr, Tok.getLocation());
   5331       ConsumeToken();
   5332       goto PastIdentifier;
   5333     }
   5334   }
   5335 
   5336   if (Tok.is(tok::l_paren)) {
   5337     // direct-declarator: '(' declarator ')'
   5338     // direct-declarator: '(' attributes declarator ')'
   5339     // Example: 'char (*X)'   or 'int (*XX)(void)'
   5340     ParseParenDeclarator(D);
   5341 
   5342     // If the declarator was parenthesized, we entered the declarator
   5343     // scope when parsing the parenthesized declarator, then exited
   5344     // the scope already. Re-enter the scope, if we need to.
   5345     if (D.getCXXScopeSpec().isSet()) {
   5346       // If there was an error parsing parenthesized declarator, declarator
   5347       // scope may have been entered before. Don't do it again.
   5348       if (!D.isInvalidType() &&
   5349           Actions.ShouldEnterDeclaratorScope(getCurScope(),
   5350                                              D.getCXXScopeSpec()))
   5351         // Change the declaration context for name lookup, until this function
   5352         // is exited (and the declarator has been parsed).
   5353         DeclScopeObj.EnterDeclaratorScope();
   5354     }
   5355   } else if (D.mayOmitIdentifier()) {
   5356     // This could be something simple like "int" (in which case the declarator
   5357     // portion is empty), if an abstract-declarator is allowed.
   5358     D.SetIdentifier(nullptr, Tok.getLocation());
   5359 
   5360     // The grammar for abstract-pack-declarator does not allow grouping parens.
   5361     // FIXME: Revisit this once core issue 1488 is resolved.
   5362     if (D.hasEllipsis() && D.hasGroupingParens())
   5363       Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
   5364            diag::ext_abstract_pack_declarator_parens);
   5365   } else {
   5366     if (Tok.getKind() == tok::annot_pragma_parser_crash)
   5367       LLVM_BUILTIN_TRAP;
   5368     if (Tok.is(tok::l_square))
   5369       return ParseMisplacedBracketDeclarator(D);
   5370     if (D.getContext() == Declarator::MemberContext) {
   5371       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
   5372            diag::err_expected_member_name_or_semi)
   5373           << (D.getDeclSpec().isEmpty() ? SourceRange()
   5374                                         : D.getDeclSpec().getSourceRange());
   5375     } else if (getLangOpts().CPlusPlus) {
   5376       if (Tok.isOneOf(tok::period, tok::arrow))
   5377         Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
   5378       else {
   5379         SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
   5380         if (Tok.isAtStartOfLine() && Loc.isValid())
   5381           Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
   5382               << getLangOpts().CPlusPlus;
   5383         else
   5384           Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
   5385                diag::err_expected_unqualified_id)
   5386               << getLangOpts().CPlusPlus;
   5387       }
   5388     } else {
   5389       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
   5390            diag::err_expected_either)
   5391           << tok::identifier << tok::l_paren;
   5392     }
   5393     D.SetIdentifier(nullptr, Tok.getLocation());
   5394     D.setInvalidType(true);
   5395   }
   5396 
   5397  PastIdentifier:
   5398   assert(D.isPastIdentifier() &&
   5399          "Haven't past the location of the identifier yet?");
   5400 
   5401   // Don't parse attributes unless we have parsed an unparenthesized name.
   5402   if (D.hasName() && !D.getNumTypeObjects())
   5403     MaybeParseCXX11Attributes(D);
   5404 
   5405   while (1) {
   5406     if (Tok.is(tok::l_paren)) {
   5407       // Enter function-declaration scope, limiting any declarators to the
   5408       // function prototype scope, including parameter declarators.
   5409       ParseScope PrototypeScope(this,
   5410                                 Scope::FunctionPrototypeScope|Scope::DeclScope|
   5411                                 (D.isFunctionDeclaratorAFunctionDeclaration()
   5412                                    ? Scope::FunctionDeclarationScope : 0));
   5413 
   5414       // The paren may be part of a C++ direct initializer, eg. "int x(1);".
   5415       // In such a case, check if we actually have a function declarator; if it
   5416       // is not, the declarator has been fully parsed.
   5417       bool IsAmbiguous = false;
   5418       if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
   5419         // The name of the declarator, if any, is tentatively declared within
   5420         // a possible direct initializer.
   5421         TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
   5422         bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
   5423         TentativelyDeclaredIdentifiers.pop_back();
   5424         if (!IsFunctionDecl)
   5425           break;
   5426       }
   5427       ParsedAttributes attrs(AttrFactory);
   5428       BalancedDelimiterTracker T(*this, tok::l_paren);
   5429       T.consumeOpen();
   5430       ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
   5431       PrototypeScope.Exit();
   5432     } else if (Tok.is(tok::l_square)) {
   5433       ParseBracketDeclarator(D);
   5434     } else {
   5435       break;
   5436     }
   5437   }
   5438 }
   5439 
   5440 /// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
   5441 /// only called before the identifier, so these are most likely just grouping
   5442 /// parens for precedence.  If we find that these are actually function
   5443 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
   5444 ///
   5445 ///       direct-declarator:
   5446 ///         '(' declarator ')'
   5447 /// [GNU]   '(' attributes declarator ')'
   5448 ///         direct-declarator '(' parameter-type-list ')'
   5449 ///         direct-declarator '(' identifier-list[opt] ')'
   5450 /// [GNU]   direct-declarator '(' parameter-forward-declarations
   5451 ///                    parameter-type-list[opt] ')'
   5452 ///
   5453 void Parser::ParseParenDeclarator(Declarator &D) {
   5454   BalancedDelimiterTracker T(*this, tok::l_paren);
   5455   T.consumeOpen();
   5456 
   5457   assert(!D.isPastIdentifier() && "Should be called before passing identifier");
   5458 
   5459   // Eat any attributes before we look at whether this is a grouping or function
   5460   // declarator paren.  If this is a grouping paren, the attribute applies to
   5461   // the type being built up, for example:
   5462   //     int (__attribute__(()) *x)(long y)
   5463   // If this ends up not being a grouping paren, the attribute applies to the
   5464   // first argument, for example:
   5465   //     int (__attribute__(()) int x)
   5466   // In either case, we need to eat any attributes to be able to determine what
   5467   // sort of paren this is.
   5468   //
   5469   ParsedAttributes attrs(AttrFactory);
   5470   bool RequiresArg = false;
   5471   if (Tok.is(tok::kw___attribute)) {
   5472     ParseGNUAttributes(attrs);
   5473 
   5474     // We require that the argument list (if this is a non-grouping paren) be
   5475     // present even if the attribute list was empty.
   5476     RequiresArg = true;
   5477   }
   5478 
   5479   // Eat any Microsoft extensions.
   5480   ParseMicrosoftTypeAttributes(attrs);
   5481 
   5482   // Eat any Borland extensions.
   5483   if  (Tok.is(tok::kw___pascal))
   5484     ParseBorlandTypeAttributes(attrs);
   5485 
   5486   // If we haven't past the identifier yet (or where the identifier would be
   5487   // stored, if this is an abstract declarator), then this is probably just
   5488   // grouping parens. However, if this could be an abstract-declarator, then
   5489   // this could also be the start of function arguments (consider 'void()').
   5490   bool isGrouping;
   5491 
   5492   if (!D.mayOmitIdentifier()) {
   5493     // If this can't be an abstract-declarator, this *must* be a grouping
   5494     // paren, because we haven't seen the identifier yet.
   5495     isGrouping = true;
   5496   } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
   5497              (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
   5498               NextToken().is(tok::r_paren)) || // C++ int(...)
   5499              isDeclarationSpecifier() ||       // 'int(int)' is a function.
   5500              isCXX11AttributeSpecifier()) {    // 'int([[]]int)' is a function.
   5501     // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
   5502     // considered to be a type, not a K&R identifier-list.
   5503     isGrouping = false;
   5504   } else {
   5505     // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
   5506     isGrouping = true;
   5507   }
   5508 
   5509   // If this is a grouping paren, handle:
   5510   // direct-declarator: '(' declarator ')'
   5511   // direct-declarator: '(' attributes declarator ')'
   5512   if (isGrouping) {
   5513     SourceLocation EllipsisLoc = D.getEllipsisLoc();
   5514     D.setEllipsisLoc(SourceLocation());
   5515 
   5516     bool hadGroupingParens = D.hasGroupingParens();
   5517     D.setGroupingParens(true);
   5518     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
   5519     // Match the ')'.
   5520     T.consumeClose();
   5521     D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
   5522                                             T.getCloseLocation()),
   5523                   attrs, T.getCloseLocation());
   5524 
   5525     D.setGroupingParens(hadGroupingParens);
   5526 
   5527     // An ellipsis cannot be placed outside parentheses.
   5528     if (EllipsisLoc.isValid())
   5529       DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
   5530 
   5531     return;
   5532   }
   5533 
   5534   // Okay, if this wasn't a grouping paren, it must be the start of a function
   5535   // argument list.  Recognize that this declarator will never have an
   5536   // identifier (and remember where it would have been), then call into
   5537   // ParseFunctionDeclarator to handle of argument list.
   5538   D.SetIdentifier(nullptr, Tok.getLocation());
   5539 
   5540   // Enter function-declaration scope, limiting any declarators to the
   5541   // function prototype scope, including parameter declarators.
   5542   ParseScope PrototypeScope(this,
   5543                             Scope::FunctionPrototypeScope | Scope::DeclScope |
   5544                             (D.isFunctionDeclaratorAFunctionDeclaration()
   5545                                ? Scope::FunctionDeclarationScope : 0));
   5546   ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
   5547   PrototypeScope.Exit();
   5548 }
   5549 
   5550 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
   5551 /// declarator D up to a paren, which indicates that we are parsing function
   5552 /// arguments.
   5553 ///
   5554 /// If FirstArgAttrs is non-null, then the caller parsed those arguments
   5555 /// immediately after the open paren - they should be considered to be the
   5556 /// first argument of a parameter.
   5557 ///
   5558 /// If RequiresArg is true, then the first argument of the function is required
   5559 /// to be present and required to not be an identifier list.
   5560 ///
   5561 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
   5562 /// (C++11) ref-qualifier[opt], exception-specification[opt],
   5563 /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
   5564 ///
   5565 /// [C++11] exception-specification:
   5566 ///           dynamic-exception-specification
   5567 ///           noexcept-specification
   5568 ///
   5569 void Parser::ParseFunctionDeclarator(Declarator &D,
   5570                                      ParsedAttributes &FirstArgAttrs,
   5571                                      BalancedDelimiterTracker &Tracker,
   5572                                      bool IsAmbiguous,
   5573                                      bool RequiresArg) {
   5574   assert(getCurScope()->isFunctionPrototypeScope() &&
   5575          "Should call from a Function scope");
   5576   // lparen is already consumed!
   5577   assert(D.isPastIdentifier() && "Should not call before identifier!");
   5578 
   5579   // This should be true when the function has typed arguments.
   5580   // Otherwise, it is treated as a K&R-style function.
   5581   bool HasProto = false;
   5582   // Build up an array of information about the parsed arguments.
   5583   SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
   5584   // Remember where we see an ellipsis, if any.
   5585   SourceLocation EllipsisLoc;
   5586 
   5587   DeclSpec DS(AttrFactory);
   5588   bool RefQualifierIsLValueRef = true;
   5589   SourceLocation RefQualifierLoc;
   5590   SourceLocation ConstQualifierLoc;
   5591   SourceLocation VolatileQualifierLoc;
   5592   SourceLocation RestrictQualifierLoc;
   5593   ExceptionSpecificationType ESpecType = EST_None;
   5594   SourceRange ESpecRange;
   5595   SmallVector<ParsedType, 2> DynamicExceptions;
   5596   SmallVector<SourceRange, 2> DynamicExceptionRanges;
   5597   ExprResult NoexceptExpr;
   5598   CachedTokens *ExceptionSpecTokens = nullptr;
   5599   ParsedAttributes FnAttrs(AttrFactory);
   5600   TypeResult TrailingReturnType;
   5601 
   5602   /* LocalEndLoc is the end location for the local FunctionTypeLoc.
   5603      EndLoc is the end location for the function declarator.
   5604      They differ for trailing return types. */
   5605   SourceLocation StartLoc, LocalEndLoc, EndLoc;
   5606   SourceLocation LParenLoc, RParenLoc;
   5607   LParenLoc = Tracker.getOpenLocation();
   5608   StartLoc = LParenLoc;
   5609 
   5610   if (isFunctionDeclaratorIdentifierList()) {
   5611     if (RequiresArg)
   5612       Diag(Tok, diag::err_argument_required_after_attribute);
   5613 
   5614     ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
   5615 
   5616     Tracker.consumeClose();
   5617     RParenLoc = Tracker.getCloseLocation();
   5618     LocalEndLoc = RParenLoc;
   5619     EndLoc = RParenLoc;
   5620   } else {
   5621     if (Tok.isNot(tok::r_paren))
   5622       ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo,
   5623                                       EllipsisLoc);
   5624     else if (RequiresArg)
   5625       Diag(Tok, diag::err_argument_required_after_attribute);
   5626 
   5627     HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
   5628 
   5629     // If we have the closing ')', eat it.
   5630     Tracker.consumeClose();
   5631     RParenLoc = Tracker.getCloseLocation();
   5632     LocalEndLoc = RParenLoc;
   5633     EndLoc = RParenLoc;
   5634 
   5635     if (getLangOpts().CPlusPlus) {
   5636       // FIXME: Accept these components in any order, and produce fixits to
   5637       // correct the order if the user gets it wrong. Ideally we should deal
   5638       // with the pure-specifier in the same way.
   5639 
   5640       // Parse cv-qualifier-seq[opt].
   5641       ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
   5642                                 /*AtomicAllowed*/ false);
   5643       if (!DS.getSourceRange().getEnd().isInvalid()) {
   5644         EndLoc = DS.getSourceRange().getEnd();
   5645         ConstQualifierLoc = DS.getConstSpecLoc();
   5646         VolatileQualifierLoc = DS.getVolatileSpecLoc();
   5647         RestrictQualifierLoc = DS.getRestrictSpecLoc();
   5648       }
   5649 
   5650       // Parse ref-qualifier[opt].
   5651       if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
   5652         EndLoc = RefQualifierLoc;
   5653 
   5654       // C++11 [expr.prim.general]p3:
   5655       //   If a declaration declares a member function or member function
   5656       //   template of a class X, the expression this is a prvalue of type
   5657       //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
   5658       //   and the end of the function-definition, member-declarator, or
   5659       //   declarator.
   5660       // FIXME: currently, "static" case isn't handled correctly.
   5661       bool IsCXX11MemberFunction =
   5662         getLangOpts().CPlusPlus11 &&
   5663         D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
   5664         (D.getContext() == Declarator::MemberContext
   5665          ? !D.getDeclSpec().isFriendSpecified()
   5666          : D.getContext() == Declarator::FileContext &&
   5667            D.getCXXScopeSpec().isValid() &&
   5668            Actions.CurContext->isRecord());
   5669       Sema::CXXThisScopeRAII ThisScope(Actions,
   5670                                dyn_cast<CXXRecordDecl>(Actions.CurContext),
   5671                                DS.getTypeQualifiers() |
   5672                                (D.getDeclSpec().isConstexprSpecified() &&
   5673                                 !getLangOpts().CPlusPlus14
   5674                                   ? Qualifiers::Const : 0),
   5675                                IsCXX11MemberFunction);
   5676 
   5677       // Parse exception-specification[opt].
   5678       bool Delayed = D.isFirstDeclarationOfMember() &&
   5679                      D.isFunctionDeclaratorAFunctionDeclaration();
   5680       if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
   5681           GetLookAheadToken(0).is(tok::kw_noexcept) &&
   5682           GetLookAheadToken(1).is(tok::l_paren) &&
   5683           GetLookAheadToken(2).is(tok::kw_noexcept) &&
   5684           GetLookAheadToken(3).is(tok::l_paren) &&
   5685           GetLookAheadToken(4).is(tok::identifier) &&
   5686           GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
   5687         // HACK: We've got an exception-specification
   5688         //   noexcept(noexcept(swap(...)))
   5689         // or
   5690         //   noexcept(noexcept(swap(...)) && noexcept(swap(...)))
   5691         // on a 'swap' member function. This is a libstdc++ bug; the lookup
   5692         // for 'swap' will only find the function we're currently declaring,
   5693         // whereas it expects to find a non-member swap through ADL. Turn off
   5694         // delayed parsing to give it a chance to find what it expects.
   5695         Delayed = false;
   5696       }
   5697       ESpecType = tryParseExceptionSpecification(Delayed,
   5698                                                  ESpecRange,
   5699                                                  DynamicExceptions,
   5700                                                  DynamicExceptionRanges,
   5701                                                  NoexceptExpr,
   5702                                                  ExceptionSpecTokens);
   5703       if (ESpecType != EST_None)
   5704         EndLoc = ESpecRange.getEnd();
   5705 
   5706       // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
   5707       // after the exception-specification.
   5708       MaybeParseCXX11Attributes(FnAttrs);
   5709 
   5710       // Parse trailing-return-type[opt].
   5711       LocalEndLoc = EndLoc;
   5712       if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
   5713         Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
   5714         if (D.getDeclSpec().getTypeSpecType() == TST_auto)
   5715           StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
   5716         LocalEndLoc = Tok.getLocation();
   5717         SourceRange Range;
   5718         TrailingReturnType = ParseTrailingReturnType(Range);
   5719         EndLoc = Range.getEnd();
   5720       }
   5721     }
   5722   }
   5723 
   5724   // Remember that we parsed a function type, and remember the attributes.
   5725   D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
   5726                                              IsAmbiguous,
   5727                                              LParenLoc,
   5728                                              ParamInfo.data(), ParamInfo.size(),
   5729                                              EllipsisLoc, RParenLoc,
   5730                                              DS.getTypeQualifiers(),
   5731                                              RefQualifierIsLValueRef,
   5732                                              RefQualifierLoc, ConstQualifierLoc,
   5733                                              VolatileQualifierLoc,
   5734                                              RestrictQualifierLoc,
   5735                                              /*MutableLoc=*/SourceLocation(),
   5736                                              ESpecType, ESpecRange,
   5737                                              DynamicExceptions.data(),
   5738                                              DynamicExceptionRanges.data(),
   5739                                              DynamicExceptions.size(),
   5740                                              NoexceptExpr.isUsable() ?
   5741                                                NoexceptExpr.get() : nullptr,
   5742                                              ExceptionSpecTokens,
   5743                                              StartLoc, LocalEndLoc, D,
   5744                                              TrailingReturnType),
   5745                 FnAttrs, EndLoc);
   5746 }
   5747 
   5748 /// ParseRefQualifier - Parses a member function ref-qualifier. Returns
   5749 /// true if a ref-qualifier is found.
   5750 bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
   5751                                SourceLocation &RefQualifierLoc) {
   5752   if (Tok.isOneOf(tok::amp, tok::ampamp)) {
   5753     Diag(Tok, getLangOpts().CPlusPlus11 ?
   5754          diag::warn_cxx98_compat_ref_qualifier :
   5755          diag::ext_ref_qualifier);
   5756 
   5757     RefQualifierIsLValueRef = Tok.is(tok::amp);
   5758     RefQualifierLoc = ConsumeToken();
   5759     return true;
   5760   }
   5761   return false;
   5762 }
   5763 
   5764 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
   5765 /// identifier list form for a K&R-style function:  void foo(a,b,c)
   5766 ///
   5767 /// Note that identifier-lists are only allowed for normal declarators, not for
   5768 /// abstract-declarators.
   5769 bool Parser::isFunctionDeclaratorIdentifierList() {
   5770   return !getLangOpts().CPlusPlus
   5771          && Tok.is(tok::identifier)
   5772          && !TryAltiVecVectorToken()
   5773          // K&R identifier lists can't have typedefs as identifiers, per C99
   5774          // 6.7.5.3p11.
   5775          && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
   5776          // Identifier lists follow a really simple grammar: the identifiers can
   5777          // be followed *only* by a ", identifier" or ")".  However, K&R
   5778          // identifier lists are really rare in the brave new modern world, and
   5779          // it is very common for someone to typo a type in a non-K&R style
   5780          // list.  If we are presented with something like: "void foo(intptr x,
   5781          // float y)", we don't want to start parsing the function declarator as
   5782          // though it is a K&R style declarator just because intptr is an
   5783          // invalid type.
   5784          //
   5785          // To handle this, we check to see if the token after the first
   5786          // identifier is a "," or ")".  Only then do we parse it as an
   5787          // identifier list.
   5788          && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
   5789 }
   5790 
   5791 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
   5792 /// we found a K&R-style identifier list instead of a typed parameter list.
   5793 ///
   5794 /// After returning, ParamInfo will hold the parsed parameters.
   5795 ///
   5796 ///       identifier-list: [C99 6.7.5]
   5797 ///         identifier
   5798 ///         identifier-list ',' identifier
   5799 ///
   5800 void Parser::ParseFunctionDeclaratorIdentifierList(
   5801        Declarator &D,
   5802        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
   5803   // If there was no identifier specified for the declarator, either we are in
   5804   // an abstract-declarator, or we are in a parameter declarator which was found
   5805   // to be abstract.  In abstract-declarators, identifier lists are not valid:
   5806   // diagnose this.
   5807   if (!D.getIdentifier())
   5808     Diag(Tok, diag::ext_ident_list_in_param);
   5809 
   5810   // Maintain an efficient lookup of params we have seen so far.
   5811   llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
   5812 
   5813   do {
   5814     // If this isn't an identifier, report the error and skip until ')'.
   5815     if (Tok.isNot(tok::identifier)) {
   5816       Diag(Tok, diag::err_expected) << tok::identifier;
   5817       SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
   5818       // Forget we parsed anything.
   5819       ParamInfo.clear();
   5820       return;
   5821     }
   5822 
   5823     IdentifierInfo *ParmII = Tok.getIdentifierInfo();
   5824 
   5825     // Reject 'typedef int y; int test(x, y)', but continue parsing.
   5826     if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
   5827       Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
   5828 
   5829     // Verify that the argument identifier has not already been mentioned.
   5830     if (!ParamsSoFar.insert(ParmII).second) {
   5831       Diag(Tok, diag::err_param_redefinition) << ParmII;
   5832     } else {
   5833       // Remember this identifier in ParamInfo.
   5834       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
   5835                                                      Tok.getLocation(),
   5836                                                      nullptr));
   5837     }
   5838 
   5839     // Eat the identifier.
   5840     ConsumeToken();
   5841     // The list continues if we see a comma.
   5842   } while (TryConsumeToken(tok::comma));
   5843 }
   5844 
   5845 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
   5846 /// after the opening parenthesis. This function will not parse a K&R-style
   5847 /// identifier list.
   5848 ///
   5849 /// D is the declarator being parsed.  If FirstArgAttrs is non-null, then the
   5850 /// caller parsed those arguments immediately after the open paren - they should
   5851 /// be considered to be part of the first parameter.
   5852 ///
   5853 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
   5854 /// be the location of the ellipsis, if any was parsed.
   5855 ///
   5856 ///       parameter-type-list: [C99 6.7.5]
   5857 ///         parameter-list
   5858 ///         parameter-list ',' '...'
   5859 /// [C++]   parameter-list '...'
   5860 ///
   5861 ///       parameter-list: [C99 6.7.5]
   5862 ///         parameter-declaration
   5863 ///         parameter-list ',' parameter-declaration
   5864 ///
   5865 ///       parameter-declaration: [C99 6.7.5]
   5866 ///         declaration-specifiers declarator
   5867 /// [C++]   declaration-specifiers declarator '=' assignment-expression
   5868 /// [C++11]                                       initializer-clause
   5869 /// [GNU]   declaration-specifiers declarator attributes
   5870 ///         declaration-specifiers abstract-declarator[opt]
   5871 /// [C++]   declaration-specifiers abstract-declarator[opt]
   5872 ///           '=' assignment-expression
   5873 /// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
   5874 /// [C++11] attribute-specifier-seq parameter-declaration
   5875 ///
   5876 void Parser::ParseParameterDeclarationClause(
   5877        Declarator &D,
   5878        ParsedAttributes &FirstArgAttrs,
   5879        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
   5880        SourceLocation &EllipsisLoc) {
   5881   do {
   5882     // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
   5883     // before deciding this was a parameter-declaration-clause.
   5884     if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
   5885       break;
   5886 
   5887     // Parse the declaration-specifiers.
   5888     // Just use the ParsingDeclaration "scope" of the declarator.
   5889     DeclSpec DS(AttrFactory);
   5890 
   5891     // Parse any C++11 attributes.
   5892     MaybeParseCXX11Attributes(DS.getAttributes());
   5893 
   5894     // Skip any Microsoft attributes before a param.
   5895     MaybeParseMicrosoftAttributes(DS.getAttributes());
   5896 
   5897     SourceLocation DSStart = Tok.getLocation();
   5898 
   5899     // If the caller parsed attributes for the first argument, add them now.
   5900     // Take them so that we only apply the attributes to the first parameter.
   5901     // FIXME: If we can leave the attributes in the token stream somehow, we can
   5902     // get rid of a parameter (FirstArgAttrs) and this statement. It might be
   5903     // too much hassle.
   5904     DS.takeAttributesFrom(FirstArgAttrs);
   5905 
   5906     ParseDeclarationSpecifiers(DS);
   5907 
   5908 
   5909     // Parse the declarator.  This is "PrototypeContext" or
   5910     // "LambdaExprParameterContext", because we must accept either
   5911     // 'declarator' or 'abstract-declarator' here.
   5912     Declarator ParmDeclarator(DS,
   5913               D.getContext() == Declarator::LambdaExprContext ?
   5914                                   Declarator::LambdaExprParameterContext :
   5915                                                 Declarator::PrototypeContext);
   5916     ParseDeclarator(ParmDeclarator);
   5917 
   5918     // Parse GNU attributes, if present.
   5919     MaybeParseGNUAttributes(ParmDeclarator);
   5920 
   5921     // Remember this parsed parameter in ParamInfo.
   5922     IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
   5923 
   5924     // DefArgToks is used when the parsing of default arguments needs
   5925     // to be delayed.
   5926     CachedTokens *DefArgToks = nullptr;
   5927 
   5928     // If no parameter was specified, verify that *something* was specified,
   5929     // otherwise we have a missing type and identifier.
   5930     if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
   5931         ParmDeclarator.getNumTypeObjects() == 0) {
   5932       // Completely missing, emit error.
   5933       Diag(DSStart, diag::err_missing_param);
   5934     } else {
   5935       // Otherwise, we have something.  Add it and let semantic analysis try
   5936       // to grok it and add the result to the ParamInfo we are building.
   5937 
   5938       // Last chance to recover from a misplaced ellipsis in an attempted
   5939       // parameter pack declaration.
   5940       if (Tok.is(tok::ellipsis) &&
   5941           (NextToken().isNot(tok::r_paren) ||
   5942            (!ParmDeclarator.getEllipsisLoc().isValid() &&
   5943             !Actions.isUnexpandedParameterPackPermitted())) &&
   5944           Actions.containsUnexpandedParameterPacks(ParmDeclarator))
   5945         DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
   5946 
   5947       // Inform the actions module about the parameter declarator, so it gets
   5948       // added to the current scope.
   5949       Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
   5950       // Parse the default argument, if any. We parse the default
   5951       // arguments in all dialects; the semantic analysis in
   5952       // ActOnParamDefaultArgument will reject the default argument in
   5953       // C.
   5954       if (Tok.is(tok::equal)) {
   5955         SourceLocation EqualLoc = Tok.getLocation();
   5956 
   5957         // Parse the default argument
   5958         if (D.getContext() == Declarator::MemberContext) {
   5959           // If we're inside a class definition, cache the tokens
   5960           // corresponding to the default argument. We'll actually parse
   5961           // them when we see the end of the class definition.
   5962           // FIXME: Can we use a smart pointer for Toks?
   5963           DefArgToks = new CachedTokens;
   5964 
   5965           SourceLocation ArgStartLoc = NextToken().getLocation();
   5966           if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
   5967             delete DefArgToks;
   5968             DefArgToks = nullptr;
   5969             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
   5970           } else {
   5971             Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
   5972                                                       ArgStartLoc);
   5973           }
   5974         } else {
   5975           // Consume the '='.
   5976           ConsumeToken();
   5977 
   5978           // The argument isn't actually potentially evaluated unless it is
   5979           // used.
   5980           EnterExpressionEvaluationContext Eval(Actions,
   5981                                               Sema::PotentiallyEvaluatedIfUsed,
   5982                                                 Param);
   5983 
   5984           ExprResult DefArgResult;
   5985           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
   5986             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
   5987             DefArgResult = ParseBraceInitializer();
   5988           } else
   5989             DefArgResult = ParseAssignmentExpression();
   5990           DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
   5991           if (DefArgResult.isInvalid()) {
   5992             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
   5993             SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
   5994           } else {
   5995             // Inform the actions module about the default argument
   5996             Actions.ActOnParamDefaultArgument(Param, EqualLoc,
   5997                                               DefArgResult.get());
   5998           }
   5999         }
   6000       }
   6001 
   6002       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
   6003                                           ParmDeclarator.getIdentifierLoc(),
   6004                                           Param, DefArgToks));
   6005     }
   6006 
   6007     if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
   6008       if (!getLangOpts().CPlusPlus) {
   6009         // We have ellipsis without a preceding ',', which is ill-formed
   6010         // in C. Complain and provide the fix.
   6011         Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
   6012             << FixItHint::CreateInsertion(EllipsisLoc, ", ");
   6013       } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
   6014                  Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
   6015         // It looks like this was supposed to be a parameter pack. Warn and
   6016         // point out where the ellipsis should have gone.
   6017         SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
   6018         Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
   6019           << ParmEllipsis.isValid() << ParmEllipsis;
   6020         if (ParmEllipsis.isValid()) {
   6021           Diag(ParmEllipsis,
   6022                diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
   6023         } else {
   6024           Diag(ParmDeclarator.getIdentifierLoc(),
   6025                diag::note_misplaced_ellipsis_vararg_add_ellipsis)
   6026             << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
   6027                                           "...")
   6028             << !ParmDeclarator.hasName();
   6029         }
   6030         Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
   6031           << FixItHint::CreateInsertion(EllipsisLoc, ", ");
   6032       }
   6033 
   6034       // We can't have any more parameters after an ellipsis.
   6035       break;
   6036     }
   6037 
   6038     // If the next token is a comma, consume it and keep reading arguments.
   6039   } while (TryConsumeToken(tok::comma));
   6040 }
   6041 
   6042 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
   6043 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
   6044 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
   6045 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
   6046 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
   6047 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
   6048 ///                           attribute-specifier-seq[opt]
   6049 void Parser::ParseBracketDeclarator(Declarator &D) {
   6050   if (CheckProhibitedCXX11Attribute())
   6051     return;
   6052 
   6053   BalancedDelimiterTracker T(*this, tok::l_square);
   6054   T.consumeOpen();
   6055 
   6056   // C array syntax has many features, but by-far the most common is [] and [4].
   6057   // This code does a fast path to handle some of the most obvious cases.
   6058   if (Tok.getKind() == tok::r_square) {
   6059     T.consumeClose();
   6060     ParsedAttributes attrs(AttrFactory);
   6061     MaybeParseCXX11Attributes(attrs);
   6062 
   6063     // Remember that we parsed the empty array type.
   6064     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
   6065                                             T.getOpenLocation(),
   6066                                             T.getCloseLocation()),
   6067                   attrs, T.getCloseLocation());
   6068     return;
   6069   } else if (Tok.getKind() == tok::numeric_constant &&
   6070              GetLookAheadToken(1).is(tok::r_square)) {
   6071     // [4] is very common.  Parse the numeric constant expression.
   6072     ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
   6073     ConsumeToken();
   6074 
   6075     T.consumeClose();
   6076     ParsedAttributes attrs(AttrFactory);
   6077     MaybeParseCXX11Attributes(attrs);
   6078 
   6079     // Remember that we parsed a array type, and remember its features.
   6080     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false,
   6081                                             ExprRes.get(),
   6082                                             T.getOpenLocation(),
   6083                                             T.getCloseLocation()),
   6084                   attrs, T.getCloseLocation());
   6085     return;
   6086   } else if (Tok.getKind() == tok::code_completion) {
   6087     Actions.CodeCompleteBracketDeclarator(getCurScope());
   6088     return cutOffParsing();
   6089   }
   6090 
   6091   // If valid, this location is the position where we read the 'static' keyword.
   6092   SourceLocation StaticLoc;
   6093   TryConsumeToken(tok::kw_static, StaticLoc);
   6094 
   6095   // If there is a type-qualifier-list, read it now.
   6096   // Type qualifiers in an array subscript are a C99 feature.
   6097   DeclSpec DS(AttrFactory);
   6098   ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
   6099 
   6100   // If we haven't already read 'static', check to see if there is one after the
   6101   // type-qualifier-list.
   6102   if (!StaticLoc.isValid())
   6103     TryConsumeToken(tok::kw_static, StaticLoc);
   6104 
   6105   // Handle "direct-declarator [ type-qual-list[opt] * ]".
   6106   bool isStar = false;
   6107   ExprResult NumElements;
   6108 
   6109   // Handle the case where we have '[*]' as the array size.  However, a leading
   6110   // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
   6111   // the token after the star is a ']'.  Since stars in arrays are
   6112   // infrequent, use of lookahead is not costly here.
   6113   if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
   6114     ConsumeToken();  // Eat the '*'.
   6115 
   6116     if (StaticLoc.isValid()) {
   6117       Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
   6118       StaticLoc = SourceLocation();  // Drop the static.
   6119     }
   6120     isStar = true;
   6121   } else if (Tok.isNot(tok::r_square)) {
   6122     // Note, in C89, this production uses the constant-expr production instead
   6123     // of assignment-expr.  The only difference is that assignment-expr allows
   6124     // things like '=' and '*='.  Sema rejects these in C89 mode because they
   6125     // are not i-c-e's, so we don't need to distinguish between the two here.
   6126 
   6127     // Parse the constant-expression or assignment-expression now (depending
   6128     // on dialect).
   6129     if (getLangOpts().CPlusPlus) {
   6130       NumElements = ParseConstantExpression();
   6131     } else {
   6132       EnterExpressionEvaluationContext Unevaluated(Actions,
   6133                                                    Sema::ConstantEvaluated);
   6134       NumElements =
   6135           Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
   6136     }
   6137   } else {
   6138     if (StaticLoc.isValid()) {
   6139       Diag(StaticLoc, diag::err_unspecified_size_with_static);
   6140       StaticLoc = SourceLocation();  // Drop the static.
   6141     }
   6142   }
   6143 
   6144   // If there was an error parsing the assignment-expression, recover.
   6145   if (NumElements.isInvalid()) {
   6146     D.setInvalidType(true);
   6147     // If the expression was invalid, skip it.
   6148     SkipUntil(tok::r_square, StopAtSemi);
   6149     return;
   6150   }
   6151 
   6152   T.consumeClose();
   6153 
   6154   ParsedAttributes attrs(AttrFactory);
   6155   MaybeParseCXX11Attributes(attrs);
   6156 
   6157   // Remember that we parsed a array type, and remember its features.
   6158   D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
   6159                                           StaticLoc.isValid(), isStar,
   6160                                           NumElements.get(),
   6161                                           T.getOpenLocation(),
   6162                                           T.getCloseLocation()),
   6163                 attrs, T.getCloseLocation());
   6164 }
   6165 
   6166 /// Diagnose brackets before an identifier.
   6167 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
   6168   assert(Tok.is(tok::l_square) && "Missing opening bracket");
   6169   assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
   6170 
   6171   SourceLocation StartBracketLoc = Tok.getLocation();
   6172   Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
   6173 
   6174   while (Tok.is(tok::l_square)) {
   6175     ParseBracketDeclarator(TempDeclarator);
   6176   }
   6177 
   6178   // Stuff the location of the start of the brackets into the Declarator.
   6179   // The diagnostics from ParseDirectDeclarator will make more sense if
   6180   // they use this location instead.
   6181   if (Tok.is(tok::semi))
   6182     D.getName().EndLocation = StartBracketLoc;
   6183 
   6184   SourceLocation SuggestParenLoc = Tok.getLocation();
   6185 
   6186   // Now that the brackets are removed, try parsing the declarator again.
   6187   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
   6188 
   6189   // Something went wrong parsing the brackets, in which case,
   6190   // ParseBracketDeclarator has emitted an error, and we don't need to emit
   6191   // one here.
   6192   if (TempDeclarator.getNumTypeObjects() == 0)
   6193     return;
   6194 
   6195   // Determine if parens will need to be suggested in the diagnostic.
   6196   bool NeedParens = false;
   6197   if (D.getNumTypeObjects() != 0) {
   6198     switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
   6199     case DeclaratorChunk::Pointer:
   6200     case DeclaratorChunk::Reference:
   6201     case DeclaratorChunk::BlockPointer:
   6202     case DeclaratorChunk::MemberPointer:
   6203     case DeclaratorChunk::Pipe:
   6204       NeedParens = true;
   6205       break;
   6206     case DeclaratorChunk::Array:
   6207     case DeclaratorChunk::Function:
   6208     case DeclaratorChunk::Paren:
   6209       break;
   6210     }
   6211   }
   6212 
   6213   if (NeedParens) {
   6214     // Create a DeclaratorChunk for the inserted parens.
   6215     ParsedAttributes attrs(AttrFactory);
   6216     SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
   6217     D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), attrs,
   6218                   SourceLocation());
   6219   }
   6220 
   6221   // Adding back the bracket info to the end of the Declarator.
   6222   for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
   6223     const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
   6224     ParsedAttributes attrs(AttrFactory);
   6225     attrs.set(Chunk.Common.AttrList);
   6226     D.AddTypeInfo(Chunk, attrs, SourceLocation());
   6227   }
   6228 
   6229   // The missing identifier would have been diagnosed in ParseDirectDeclarator.
   6230   // If parentheses are required, always suggest them.
   6231   if (!D.getIdentifier() && !NeedParens)
   6232     return;
   6233 
   6234   SourceLocation EndBracketLoc = TempDeclarator.getLocEnd();
   6235 
   6236   // Generate the move bracket error message.
   6237   SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
   6238   SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
   6239 
   6240   if (NeedParens) {
   6241     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
   6242         << getLangOpts().CPlusPlus
   6243         << FixItHint::CreateInsertion(SuggestParenLoc, "(")
   6244         << FixItHint::CreateInsertion(EndLoc, ")")
   6245         << FixItHint::CreateInsertionFromRange(
   6246                EndLoc, CharSourceRange(BracketRange, true))
   6247         << FixItHint::CreateRemoval(BracketRange);
   6248   } else {
   6249     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
   6250         << getLangOpts().CPlusPlus
   6251         << FixItHint::CreateInsertionFromRange(
   6252                EndLoc, CharSourceRange(BracketRange, true))
   6253         << FixItHint::CreateRemoval(BracketRange);
   6254   }
   6255 }
   6256 
   6257 /// [GNU]   typeof-specifier:
   6258 ///           typeof ( expressions )
   6259 ///           typeof ( type-name )
   6260 /// [GNU/C++] typeof unary-expression
   6261 ///
   6262 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
   6263   assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
   6264   Token OpTok = Tok;
   6265   SourceLocation StartLoc = ConsumeToken();
   6266 
   6267   const bool hasParens = Tok.is(tok::l_paren);
   6268 
   6269   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
   6270                                                Sema::ReuseLambdaContextDecl);
   6271 
   6272   bool isCastExpr;
   6273   ParsedType CastTy;
   6274   SourceRange CastRange;
   6275   ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
   6276       ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
   6277   if (hasParens)
   6278     DS.setTypeofParensRange(CastRange);
   6279 
   6280   if (CastRange.getEnd().isInvalid())
   6281     // FIXME: Not accurate, the range gets one token more than it should.
   6282     DS.SetRangeEnd(Tok.getLocation());
   6283   else
   6284     DS.SetRangeEnd(CastRange.getEnd());
   6285 
   6286   if (isCastExpr) {
   6287     if (!CastTy) {
   6288       DS.SetTypeSpecError();
   6289       return;
   6290     }
   6291 
   6292     const char *PrevSpec = nullptr;
   6293     unsigned DiagID;
   6294     // Check for duplicate type specifiers (e.g. "int typeof(int)").
   6295     if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
   6296                            DiagID, CastTy,
   6297                            Actions.getASTContext().getPrintingPolicy()))
   6298       Diag(StartLoc, DiagID) << PrevSpec;
   6299     return;
   6300   }
   6301 
   6302   // If we get here, the operand to the typeof was an expresion.
   6303   if (Operand.isInvalid()) {
   6304     DS.SetTypeSpecError();
   6305     return;
   6306   }
   6307 
   6308   // We might need to transform the operand if it is potentially evaluated.
   6309   Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
   6310   if (Operand.isInvalid()) {
   6311     DS.SetTypeSpecError();
   6312     return;
   6313   }
   6314 
   6315   const char *PrevSpec = nullptr;
   6316   unsigned DiagID;
   6317   // Check for duplicate type specifiers (e.g. "int typeof(int)").
   6318   if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
   6319                          DiagID, Operand.get(),
   6320                          Actions.getASTContext().getPrintingPolicy()))
   6321     Diag(StartLoc, DiagID) << PrevSpec;
   6322 }
   6323 
   6324 /// [C11]   atomic-specifier:
   6325 ///           _Atomic ( type-name )
   6326 ///
   6327 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
   6328   assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
   6329          "Not an atomic specifier");
   6330 
   6331   SourceLocation StartLoc = ConsumeToken();
   6332   BalancedDelimiterTracker T(*this, tok::l_paren);
   6333   if (T.consumeOpen())
   6334     return;
   6335 
   6336   TypeResult Result = ParseTypeName();
   6337   if (Result.isInvalid()) {
   6338     SkipUntil(tok::r_paren, StopAtSemi);
   6339     return;
   6340   }
   6341 
   6342   // Match the ')'
   6343   T.consumeClose();
   6344 
   6345   if (T.getCloseLocation().isInvalid())
   6346     return;
   6347 
   6348   DS.setTypeofParensRange(T.getRange());
   6349   DS.SetRangeEnd(T.getCloseLocation());
   6350 
   6351   const char *PrevSpec = nullptr;
   6352   unsigned DiagID;
   6353   if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
   6354                          DiagID, Result.get(),
   6355                          Actions.getASTContext().getPrintingPolicy()))
   6356     Diag(StartLoc, DiagID) << PrevSpec;
   6357 }
   6358 
   6359 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
   6360 /// from TryAltiVecVectorToken.
   6361 bool Parser::TryAltiVecVectorTokenOutOfLine() {
   6362   Token Next = NextToken();
   6363   switch (Next.getKind()) {
   6364   default: return false;
   6365   case tok::kw_short:
   6366   case tok::kw_long:
   6367   case tok::kw_signed:
   6368   case tok::kw_unsigned:
   6369   case tok::kw_void:
   6370   case tok::kw_char:
   6371   case tok::kw_int:
   6372   case tok::kw_float:
   6373   case tok::kw_double:
   6374   case tok::kw_bool:
   6375   case tok::kw___bool:
   6376   case tok::kw___pixel:
   6377     Tok.setKind(tok::kw___vector);
   6378     return true;
   6379   case tok::identifier:
   6380     if (Next.getIdentifierInfo() == Ident_pixel) {
   6381       Tok.setKind(tok::kw___vector);
   6382       return true;
   6383     }
   6384     if (Next.getIdentifierInfo() == Ident_bool) {
   6385       Tok.setKind(tok::kw___vector);
   6386       return true;
   6387     }
   6388     return false;
   6389   }
   6390 }
   6391 
   6392 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
   6393                                       const char *&PrevSpec, unsigned &DiagID,
   6394                                       bool &isInvalid) {
   6395   const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
   6396   if (Tok.getIdentifierInfo() == Ident_vector) {
   6397     Token Next = NextToken();
   6398     switch (Next.getKind()) {
   6399     case tok::kw_short:
   6400     case tok::kw_long:
   6401     case tok::kw_signed:
   6402     case tok::kw_unsigned:
   6403     case tok::kw_void:
   6404     case tok::kw_char:
   6405     case tok::kw_int:
   6406     case tok::kw_float:
   6407     case tok::kw_double:
   6408     case tok::kw_bool:
   6409     case tok::kw___bool:
   6410     case tok::kw___pixel:
   6411       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
   6412       return true;
   6413     case tok::identifier:
   6414       if (Next.getIdentifierInfo() == Ident_pixel) {
   6415         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
   6416         return true;
   6417       }
   6418       if (Next.getIdentifierInfo() == Ident_bool) {
   6419         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
   6420         return true;
   6421       }
   6422       break;
   6423     default:
   6424       break;
   6425     }
   6426   } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
   6427              DS.isTypeAltiVecVector()) {
   6428     isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
   6429     return true;
   6430   } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
   6431              DS.isTypeAltiVecVector()) {
   6432     isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
   6433     return true;
   6434   }
   6435   return false;
   6436 }
   6437