Home | History | Annotate | Download | only in tool
      1 /*
      2  * [The "BSD license"]
      3  *  Copyright (c) 2010 Terence Parr
      4  *  All rights reserved.
      5  *
      6  *  Redistribution and use in source and binary forms, with or without
      7  *  modification, are permitted provided that the following conditions
      8  *  are met:
      9  *  1. Redistributions of source code must retain the above copyright
     10  *      notice, this list of conditions and the following disclaimer.
     11  *  2. Redistributions in binary form must reproduce the above copyright
     12  *      notice, this list of conditions and the following disclaimer in the
     13  *      documentation and/or other materials provided with the distribution.
     14  *  3. The name of the author may not be used to endorse or promote products
     15  *      derived from this software without specific prior written permission.
     16  *
     17  *  THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  *  IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  *  OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  *  NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 package org.antlr.tool;
     29 
     30 import org.antlr.Tool;
     31 import org.antlr.analysis.DFA;
     32 import org.antlr.analysis.DFAState;
     33 import org.antlr.analysis.LL1Analyzer;
     34 import org.antlr.analysis.LL1DFA;
     35 import org.antlr.analysis.Label;
     36 import org.antlr.analysis.LookaheadSet;
     37 import org.antlr.analysis.NFA;
     38 import org.antlr.analysis.NFAConversionThread;
     39 import org.antlr.analysis.NFAState;
     40 import org.antlr.analysis.NFAToDFAConverter;
     41 import org.antlr.analysis.SemanticContext;
     42 import org.antlr.analysis.Transition;
     43 import org.antlr.codegen.CodeGenerator;
     44 import org.antlr.codegen.Target;
     45 import org.antlr.grammar.v3.ANTLRLexer;
     46 import org.antlr.grammar.v3.ANTLRParser;
     47 import org.antlr.grammar.v3.ANTLRTreePrinter;
     48 import org.antlr.grammar.v3.ActionAnalysis;
     49 import org.antlr.grammar.v3.DefineGrammarItemsWalker;
     50 import org.antlr.grammar.v3.TreeToNFAConverter;
     51 import org.antlr.misc.Barrier;
     52 import org.antlr.misc.IntSet;
     53 import org.antlr.misc.IntervalSet;
     54 import org.antlr.misc.MultiMap;
     55 import org.antlr.misc.OrderedHashSet;
     56 import org.antlr.misc.Utils;
     57 import org.antlr.runtime.ANTLRReaderStream;
     58 import org.antlr.runtime.ANTLRStringStream;
     59 import org.antlr.runtime.CommonToken;
     60 import org.antlr.runtime.CommonTokenStream;
     61 import org.antlr.runtime.RecognitionException;
     62 import org.antlr.runtime.Token;
     63 import org.antlr.runtime.tree.CommonTreeNodeStream;
     64 import org.stringtemplate.v4.ST;
     65 import org.stringtemplate.v4.STGroup;
     66 import org.stringtemplate.v4.STGroupString;
     67 
     68 import java.io.BufferedReader;
     69 import java.io.File;
     70 import java.io.FileNotFoundException;
     71 import java.io.FileReader;
     72 import java.io.IOException;
     73 import java.io.PrintStream;
     74 import java.io.Reader;
     75 import java.io.StreamTokenizer;
     76 import java.io.StringReader;
     77 import java.util.ArrayList;
     78 import java.util.Arrays;
     79 import java.util.BitSet;
     80 import java.util.Collection;
     81 import java.util.HashMap;
     82 import java.util.HashSet;
     83 import java.util.Iterator;
     84 import java.util.LinkedHashMap;
     85 import java.util.List;
     86 import java.util.Map;
     87 import java.util.Set;
     88 import java.util.Vector;
     89 
     90 /** Represents a grammar in memory. */
     91 public class Grammar {
     92 	public static final String SYNPRED_RULE_PREFIX = "synpred";
     93 
     94 	public static final String GRAMMAR_FILE_EXTENSION = ".g";
     95 
     96 	/** used for generating lexer temp files */
     97 	public static final String LEXER_GRAMMAR_FILE_EXTENSION = ".g";
     98 
     99 	public static final int INITIAL_DECISION_LIST_SIZE = 300;
    100 	public static final int INVALID_RULE_INDEX = -1;
    101 
    102 	// the various kinds of labels. t=type, id=ID, types+=type ids+=ID
    103 	public static final int RULE_LABEL = 1;
    104 	public static final int TOKEN_LABEL = 2;
    105 	public static final int RULE_LIST_LABEL = 3;
    106 	public static final int TOKEN_LIST_LABEL = 4;
    107     public static final int CHAR_LABEL = 5; // used in lexer for x='a'
    108     public static final int WILDCARD_TREE_LABEL = 6; // Used in tree grammar x=.
    109     public static final int WILDCARD_TREE_LIST_LABEL = 7; // Used in tree grammar x+=.
    110 
    111 
    112     public static String[] LabelTypeToString =
    113 		{"<invalid>", "rule", "token", "rule-list", "token-list", "wildcard-tree", "wildcard-tree-list"};
    114 
    115 	public static final String ARTIFICIAL_TOKENS_RULENAME = "Tokens";
    116 	public static final String FRAGMENT_RULE_MODIFIER = "fragment";
    117 
    118 	public static final String SYNPREDGATE_ACTION_NAME = "synpredgate";
    119 
    120 	/** When converting ANTLR char and string literals, here is the
    121 	 *  value set of escape chars.
    122 	 */
    123 	public static int ANTLRLiteralEscapedCharValue[] = new int[255];
    124 
    125 	/** Given a char, we need to be able to show as an ANTLR literal.
    126 	 */
    127 	public static String ANTLRLiteralCharValueEscape[] = new String[255];
    128 
    129 	static {
    130 		ANTLRLiteralEscapedCharValue['n'] = '\n';
    131 		ANTLRLiteralEscapedCharValue['r'] = '\r';
    132 		ANTLRLiteralEscapedCharValue['t'] = '\t';
    133 		ANTLRLiteralEscapedCharValue['b'] = '\b';
    134 		ANTLRLiteralEscapedCharValue['f'] = '\f';
    135 		ANTLRLiteralEscapedCharValue['\\'] = '\\';
    136 		ANTLRLiteralEscapedCharValue['\''] = '\'';
    137 		ANTLRLiteralEscapedCharValue['"'] = '"';
    138 		ANTLRLiteralCharValueEscape['\n'] = "\\n";
    139 		ANTLRLiteralCharValueEscape['\r'] = "\\r";
    140 		ANTLRLiteralCharValueEscape['\t'] = "\\t";
    141 		ANTLRLiteralCharValueEscape['\b'] = "\\b";
    142 		ANTLRLiteralCharValueEscape['\f'] = "\\f";
    143 		ANTLRLiteralCharValueEscape['\\'] = "\\\\";
    144 		ANTLRLiteralCharValueEscape['\''] = "\\'";
    145 	}
    146 
    147 	public static final int LEXER = 1;
    148 	public static final int PARSER = 2;
    149 	public static final int TREE_PARSER = 3;
    150 	public static final int COMBINED = 4;
    151 	public static final String[] grammarTypeToString = new String[] {
    152 		"<invalid>",
    153 		"lexer",
    154 		"parser",
    155 		"tree",
    156 		"combined"
    157 	};
    158 
    159 	public static final String[] grammarTypeToFileNameSuffix = new String[] {
    160 		"<invalid>",
    161 		"Lexer",
    162 		"Parser",
    163 		"", // no suffix for tree grammars
    164 		"Parser" // if combined grammar, gen Parser and Lexer will be done later
    165 	};
    166 
    167 	/** Set of valid imports.  E.g., can only import a tree parser into
    168 	 *  another tree parser.  Maps delegate to set of delegator grammar types.
    169 	 *  validDelegations.get(LEXER) gives list of the kinds of delegators
    170 	 *  that can import lexers.
    171 	 */
    172 	public static MultiMap<Integer,Integer> validDelegations =
    173 		new MultiMap<Integer,Integer>() {
    174 			{
    175 				map(LEXER, LEXER);
    176 				map(LEXER, PARSER);
    177 				map(LEXER, COMBINED);
    178 
    179 				map(PARSER, PARSER);
    180 				map(PARSER, COMBINED);
    181 
    182 				map(TREE_PARSER, TREE_PARSER);
    183 
    184 				// TODO: allow COMBINED
    185 				// map(COMBINED, COMBINED);
    186 			}
    187 		};
    188 
    189 	/** This is the buffer of *all* tokens found in the grammar file
    190 	 *  including whitespace tokens etc...  I use this to extract
    191 	 *  lexer rules from combined grammars.
    192 	 */
    193 	public CommonTokenStream tokenBuffer;
    194 	public static final String IGNORE_STRING_IN_GRAMMAR_FILE_NAME = "__";
    195 	public static final String AUTO_GENERATED_TOKEN_NAME_PREFIX = "T__";
    196 
    197 	public static class Decision {
    198 		public Grammar grammar;
    199 		public int decision;
    200 		public NFAState startState;
    201 		public GrammarAST blockAST;
    202 		public DFA dfa;
    203 	}
    204 
    205 	public class LabelElementPair {
    206 		public Token label;
    207 		public GrammarAST elementRef;
    208 		public String referencedRuleName;
    209 		/** Has an action referenced the label?  Set by ActionAnalysis.g
    210 		 *  Currently only set for rule labels.
    211 		 */
    212 		public boolean actionReferencesLabel;
    213 		public int type; // in {RULE_LABEL,TOKEN_LABEL,RULE_LIST_LABEL,TOKEN_LIST_LABEL}
    214 		public LabelElementPair(Token label, GrammarAST elementRef) {
    215 			this.label = label;
    216 			this.elementRef = elementRef;
    217 			this.referencedRuleName = elementRef.getText();
    218 		}
    219 		public Rule getReferencedRule() {
    220 			return getRule(referencedRuleName);
    221 		}
    222 		@Override
    223 		public String toString() {
    224 			return elementRef.toString();
    225 		}
    226 	}
    227 
    228 	/** What name did the user provide for this grammar? */
    229 	public String name;
    230 
    231 	/** What type of grammar is this: lexer, parser, tree walker */
    232 	public int type;
    233 
    234 	/** A list of options specified at the grammar level such as language=Java.
    235 	 *  The value can be an AST for complicated values such as character sets.
    236 	 *  There may be code generator specific options in here.  I do no
    237 	 *  interpretation of the key/value pairs...they are simply available for
    238 	 *  who wants them.
    239 	 */
    240 	protected Map<String, Object> options;
    241 
    242 	public static final Set<String> legalLexerOptions =
    243 			new HashSet<String>() {
    244 				{
    245 				add("language"); add("tokenVocab");
    246 				add("TokenLabelType");
    247 				add("superClass");
    248 				add("filter");
    249 				add("k");
    250 				add("backtrack");
    251 				add("memoize");
    252 				}
    253 			};
    254 
    255 	public static final Set<String> legalParserOptions =
    256 			new HashSet<String>() {
    257 				{
    258 				add("language"); add("tokenVocab");
    259 				add("output"); add("rewrite"); add("ASTLabelType");
    260 				add("TokenLabelType");
    261 				add("superClass");
    262 				add("k");
    263 				add("backtrack");
    264 				add("memoize");
    265 				}
    266 			};
    267 
    268     public static final Set<String> legalTreeParserOptions =
    269         new HashSet<String>() {
    270             {
    271                 add("language"); add("tokenVocab");
    272                 add("output"); add("rewrite"); add("ASTLabelType");
    273                 add("TokenLabelType");
    274                 add("superClass");
    275                 add("k");
    276                 add("backtrack");
    277                 add("memoize");
    278                 add("filter");
    279             }
    280         };
    281 
    282 	public static final Set<String> doNotCopyOptionsToLexer =
    283 		new HashSet<String>() {
    284 			{
    285 				add("output"); add("ASTLabelType"); add("superClass");
    286 				add("k"); add("backtrack"); add("memoize"); add("rewrite");
    287 			}
    288 		};
    289 
    290 	public static final Map<String, String> defaultOptions =
    291 			new HashMap<String, String>() {
    292 				{
    293 					put("language","Java");
    294 				}
    295 			};
    296 
    297 	public static final Set<String> legalBlockOptions =
    298 			new HashSet<String>() {{add("k"); add("greedy"); add("backtrack"); add("memoize");}};
    299 
    300 	/** What are the default options for a subrule? */
    301 	public static final Map<String, String> defaultBlockOptions =
    302 			new HashMap<String, String>() {{put("greedy","true");}};
    303 
    304 	public static final Map<String, String> defaultLexerBlockOptions =
    305 			new HashMap<String, String>() {{put("greedy","true");}};
    306 
    307 	// Token options are here to avoid contaminating Token object in runtime
    308 
    309 	/** Legal options for terminal refs like ID&lt;node=MyVarNode&gt; */
    310 	public static final Set<String> legalTokenOptions =
    311 		new HashSet<String>() {
    312 			{
    313 				add(defaultTokenOption);
    314 				add("type");
    315 				add("text");
    316 				add("assoc");
    317 			}
    318 		};
    319 
    320 	public static final String defaultTokenOption = "node";
    321 
    322 	/** Is there a global fixed lookahead set for this grammar?
    323 	 *  If 0, nothing specified.  -1 implies we have not looked at
    324 	 *  the options table yet to set k.
    325 	 */
    326 	protected int global_k = -1;
    327 
    328 	/** Map a scope to a map of name:action pairs.
    329 	 *  Map&lt;String, Map&lt;String,GrammarAST&gt;&gt;
    330 	 *  The code generator will use this to fill holes in the output files.
    331 	 *  I track the AST node for the action in case I need the line number
    332 	 *  for errors.
    333 	 */
    334 	private Map<String, Map<String, Object>> actions =
    335 		new HashMap<String, Map<String, Object>>();
    336 
    337 	/** The NFA that represents the grammar with edges labelled with tokens
    338 	 *  or epsilon.  It is more suitable to analysis than an AST representation.
    339 	 */
    340 	public NFA nfa;
    341 
    342 	protected NFAFactory factory;
    343 
    344 	/** If this grammar is part of a larger composite grammar via delegate
    345 	 *  statement, then this points at the composite.  The composite holds
    346 	 *  a global list of rules, token types, decision numbers, etc...
    347 	 */
    348 	public CompositeGrammar composite;
    349 
    350 	/** A pointer back into grammar tree.  Needed so we can add delegates. */
    351 	public CompositeGrammarTree compositeTreeNode;
    352 
    353 	/** If this is a delegate of another grammar, this is the label used
    354 	 *  as an instance var by that grammar to point at this grammar. null
    355 	 *  if no label was specified in the delegate statement.
    356 	 */
    357 	public String label;
    358 
    359 	/** TODO: hook this to the charVocabulary option */
    360 	protected IntSet charVocabulary = null;
    361 
    362 	/** For ANTLRWorks, we want to be able to map a line:col to a specific
    363 	 *  decision DFA so it can display DFA.
    364 	 */
    365 	Map<String, DFA> lineColumnToLookaheadDFAMap = new HashMap<String, DFA>();
    366 
    367 	public Tool tool;
    368 
    369 	/** The unique set of all rule references in any rule; set of tree node
    370 	 *  objects so two refs to same rule can exist but at different line/position.
    371 	 */
    372 	protected Set<GrammarAST> ruleRefs = new HashSet<GrammarAST>();
    373 
    374 	protected Set<GrammarAST> scopedRuleRefs = new HashSet<GrammarAST>();
    375 
    376 	/** The unique set of all token ID references in any rule */
    377 	protected Set<Token> tokenIDRefs = new HashSet<Token>();
    378 
    379 	/** Be able to assign a number to every decision in grammar;
    380 	 *  decisions in 1..n
    381 	 */
    382 	protected int decisionCount = 0;
    383 
    384 	/** A list of all rules that are in any left-recursive cycle.  There
    385 	 *  could be multiple cycles, but this is a flat list of all problematic
    386 	 *  rules. This is stuff we couldn't refactor to precedence rule.
    387 	 */
    388 	protected Set<Rule> leftRecursiveRules;
    389 
    390 	/** An external tool requests that DFA analysis abort prematurely.  Stops
    391 	 *  at DFA granularity, which are limited to a DFA size and time computation
    392 	 *  as failsafe.
    393 	 */
    394 	protected boolean externalAnalysisAbort;
    395 
    396 	public int numNonLLStar = 0; // hack to track for -report
    397 
    398 	/** When we read in a grammar, we track the list of syntactic predicates
    399 	 *  and build faux rules for them later.  See my blog entry Dec 2, 2005:
    400 	 *  http://www.antlr.org/blog/antlr3/lookahead.tml
    401 	 *  This maps the name (we make up) for a pred to the AST grammar fragment.
    402 	 */
    403 	protected LinkedHashMap<String, GrammarAST> nameToSynpredASTMap;
    404 
    405 	/** Each left-recursive precedence rule must define precedence array
    406 	 *  for binary operators like:
    407 	 *
    408 	 *  	static int[] e_prec = new int[tokenNames.length];
    409 	 *  	static {
    410    	 *  		e_prec[75] = 1;
    411 	 *  	}
    412 	 *  Track and we push into parser later; this is computed
    413 	 *  early when we look for prec rules.
    414 	 */
    415 	public List<String> precRuleInitCodeBlocks = new ArrayList<String>();
    416 
    417     /** At least one rule has memoize=true */
    418     public boolean atLeastOneRuleMemoizes;
    419 
    420     /** At least one backtrack=true in rule or decision or grammar. */
    421     public boolean atLeastOneBacktrackOption;
    422 
    423 	/** Was this created from a COMBINED grammar? */
    424 	public boolean implicitLexer;
    425 
    426 	/** Map a rule to it's Rule object */
    427 	protected LinkedHashMap<String,Rule> nameToRuleMap = new LinkedHashMap<String,Rule>();
    428 
    429 	/** If this rule is a delegate, some rules might be overridden; don't
    430 	 *  want to gen code for them.
    431 	 */
    432 	public Set<String> overriddenRules = new HashSet<String>();
    433 
    434 	/** The list of all rules referenced in this grammar, not defined here,
    435 	 *  and defined in a delegate grammar.  Not all of these will be generated
    436 	 *  in the recognizer for this file; only those that are affected by rule
    437 	 *  definitions in this grammar.  I am not sure the Java target will need
    438 	 *  this but I'm leaving in case other targets need it.
    439 	 *  see NameSpaceChecker.lookForReferencesToUndefinedSymbols()
    440 	 */
    441 	protected Set<Rule> delegatedRuleReferences = new HashSet<Rule>();
    442 
    443 	/** The ANTLRParser tracks lexer rules when reading combined grammars
    444 	 *  so we can build the Tokens rule.
    445 	 */
    446 	public List<String> lexerRuleNamesInCombined = new ArrayList<String>();
    447 
    448 	/** Track the scopes defined outside of rules and the scopes associated
    449 	 *  with all rules (even if empty).
    450 	 */
    451 	protected Map<String, AttributeScope> scopes = new HashMap<String, AttributeScope>();
    452 
    453 	/** An AST that records entire input grammar with all rules.  A simple
    454 	 *  grammar with one rule, "grammar t; a : A | B ;", looks like:
    455 	 * ( grammar t ( rule a ( BLOCK ( ALT A ) ( ALT B ) ) &lt;end-of-rule&gt; ) )
    456 	 */
    457 	protected GrammarAST grammarTree = null;
    458 
    459 	/** Each subrule/rule is a decision point and we must track them so we
    460 	 *  can go back later and build DFA predictors for them.  This includes
    461 	 *  all the rules, subrules, optional blocks, ()+, ()* etc...
    462 	 */
    463 	protected Vector<Decision> indexToDecision =
    464 		new Vector<Decision>(INITIAL_DECISION_LIST_SIZE);
    465 
    466 	/** If non-null, this is the code generator we will use to generate
    467 	 *  recognizers in the target language.
    468 	 */
    469 	protected CodeGenerator generator;
    470 
    471 	public NameSpaceChecker nameSpaceChecker = new NameSpaceChecker(this);
    472 
    473 	public LL1Analyzer ll1Analyzer = new LL1Analyzer(this);
    474 
    475 	/** For merged lexer/parsers, we must construct a separate lexer spec.
    476 	 *  This is the template for lexer; put the literals first then the
    477 	 *  regular rules.  We don't need to specify a token vocab import as
    478 	 *  I make the new grammar import from the old all in memory; don't want
    479 	 *  to force it to read from the disk.  Lexer grammar will have same
    480 	 *  name as original grammar but will be in different filename.  Foo.g
    481 	 *  with combined grammar will have FooParser.java generated and
    482 	 *  Foo__.g with again Foo inside.  It will however generate FooLexer.java
    483 	 *  as it's a lexer grammar.  A bit odd, but autogenerated.  Can tweak
    484 	 *  later if we want.
    485 	 */
    486 	protected String lexerGrammarTemplate =
    487 			"grammar(name, options, imports, actionNames, actions, literals, rules) ::= <<\n" +
    488 			"lexer grammar <name>;\n" +
    489 			"<if(options)>" +
    490 			"options {\n" +
    491 			"  <options:{it | <it.name>=<it.value>;<\\n>}>\n" +
    492 			"}<\\n>\n" +
    493 			"<endif>\n" +
    494 			"<if(imports)>import <imports; separator=\", \">;<endif>\n" +
    495 			"<actionNames,actions:{n,a|@<n> {<a>\\}\n}>\n" +
    496 			"<literals:{it | <it.ruleName> : <it.literal> ;\n}>\n" +
    497 			"<rules>\n" +
    498 			">>\n";
    499 	protected ST lexerGrammarST;
    500 
    501 	/** What file name holds this grammar? */
    502 	protected String fileName;
    503 
    504 	/** How long in ms did it take to build DFAs for this grammar?
    505 	 *  If this grammar is a combined grammar, it only records time for
    506 	 *  the parser grammar component.  This only records the time to
    507 	 *  do the LL(*) work; NFA&rarr;DFA conversion.
    508 	 */
    509 	public long DFACreationWallClockTimeInMS;
    510 
    511 	public int numberOfSemanticPredicates = 0;
    512 	public int numberOfManualLookaheadOptions = 0;
    513 	public Set<Integer> setOfNondeterministicDecisionNumbers = new HashSet<Integer>();
    514 	public Set<Integer> setOfNondeterministicDecisionNumbersResolvedWithPredicates =
    515 		new HashSet<Integer>();
    516 
    517 	/** Track decisions with syn preds specified for reporting.
    518 	 *  This is the a set of BLOCK type AST nodes.
    519 	 */
    520 	public Set<GrammarAST> blocksWithSynPreds = new HashSet<GrammarAST>();
    521 
    522 	/** Track decisions that actually use the syn preds in the DFA.
    523 	 *  Computed during NFA to DFA conversion.
    524 	 */
    525 	public Set<DFA> decisionsWhoseDFAsUsesSynPreds = new HashSet<DFA>();
    526 
    527 	/** Track names of preds so we can avoid generating preds that aren't used
    528 	 *  Computed during NFA to DFA conversion.  Just walk accept states
    529 	 *  and look for synpreds because that is the only state target whose
    530 	 *  incident edges can have synpreds.  Same is try for
    531 	 *  decisionsWhoseDFAsUsesSynPreds.
    532 	 */
    533 	public Set<String> synPredNamesUsedInDFA = new HashSet<String>();
    534 
    535 	/** Track decisions with syn preds specified for reporting.
    536 	 *  This is the a set of BLOCK type AST nodes.
    537 	 */
    538 	public Set<GrammarAST> blocksWithSemPreds = new HashSet<GrammarAST>();
    539 
    540 	/** Track decisions that actually use the syn preds in the DFA. */
    541 	public Set<DFA> decisionsWhoseDFAsUsesSemPreds = new HashSet<DFA>();
    542 
    543 	protected boolean allDecisionDFACreated = false;
    544 
    545 	/** We need a way to detect when a lexer grammar is autogenerated from
    546 	 *  another grammar or we are just sending in a string representing a
    547 	 *  grammar.  We don't want to generate a .tokens file, for example,
    548 	 *  in such cases.
    549 	 */
    550 	protected boolean builtFromString = false;
    551 
    552 	/** Factored out the sanity checking code; delegate to it. */
    553 	GrammarSanity sanity = new GrammarSanity(this);
    554 
    555 	/** Useful for asking questions about target during analysis */
    556 	Target target;
    557 
    558 	/** Create a grammar from file name.  */
    559 	public Grammar(Tool tool, String fileName, CompositeGrammar composite) {
    560 		this.composite = composite;
    561 		setTool(tool);
    562 		setFileName(fileName);
    563 		// ensure we have the composite set to something
    564 		if ( composite.delegateGrammarTreeRoot==null ) {
    565 			composite.setDelegationRoot(this);
    566 		}
    567 		STGroup lexerGrammarSTG = new STGroupString(lexerGrammarTemplate);
    568 		lexerGrammarST = lexerGrammarSTG.getInstanceOf("grammar");
    569 		target = CodeGenerator.loadLanguageTarget((String) getOption("language"));
    570 	}
    571 
    572 	/** Useful for when you are sure that you are not part of a composite
    573 	 *  already.  Used in Interp/RandomPhrase and testing.
    574 	 */
    575 	public Grammar() { this((Tool)null); }
    576 
    577 	public Grammar(Tool tool) {
    578 		setTool(tool);
    579 		builtFromString = true;
    580 		composite = new CompositeGrammar(this);
    581 		STGroup lexerGrammarSTG = new STGroupString(lexerGrammarTemplate);
    582 		lexerGrammarST = lexerGrammarSTG.getInstanceOf("grammar");
    583 		target = CodeGenerator.loadLanguageTarget((String)getOption("language"));
    584 	}
    585 
    586 	/** Used for testing; only useful on noncomposite grammars.*/
    587 	public Grammar(String grammarString)
    588 			throws RecognitionException
    589 	{
    590 		this(null, grammarString);
    591 	}
    592 
    593 	/** Used for testing and Interp/RandomPhrase.  Only useful on
    594 	 *  noncomposite grammars.
    595 	 */
    596 	public Grammar(Tool tool, String grammarString)
    597 		throws RecognitionException
    598 	{
    599 		this(tool);
    600 		setFileName("<string>");
    601 		StringReader r = new StringReader(grammarString);
    602 		parseAndBuildAST(r);
    603 		composite.assignTokenTypes();
    604 		//composite.translateLeftRecursiveRules();
    605 		addRulesForSyntacticPredicates();
    606 		composite.defineGrammarSymbols();
    607 		//composite.createNFAs();
    608 		checkNameSpaceAndActions();
    609 	}
    610 
    611 	public void setFileName(String fileName) {
    612 		this.fileName = fileName;
    613 	}
    614 
    615 	public String getFileName() {
    616 		return fileName;
    617 	}
    618 
    619 	public void setName(String name) {
    620 		if ( name==null ) {
    621 			return;
    622 		}
    623 		// don't error check autogenerated files (those with '__' in them)
    624 		String saneFile = fileName.replace('\\', '/');
    625 		int lastSlash = saneFile.lastIndexOf('/');
    626 		String onlyFileName = saneFile.substring(lastSlash+1, fileName.length());
    627 		if ( !builtFromString ) {
    628 			int lastDot = onlyFileName.lastIndexOf('.');
    629 			String onlyFileNameNoSuffix;
    630 			if ( lastDot < 0 ) {
    631 				ErrorManager.error(ErrorManager.MSG_FILENAME_EXTENSION_ERROR, fileName);
    632 				onlyFileNameNoSuffix = onlyFileName+GRAMMAR_FILE_EXTENSION;
    633 			}
    634 			else {
    635 				onlyFileNameNoSuffix = onlyFileName.substring(0,lastDot);
    636 			}
    637 			if ( !name.equals(onlyFileNameNoSuffix) ) {
    638 				ErrorManager.error(ErrorManager.MSG_FILE_AND_GRAMMAR_NAME_DIFFER,
    639 								   name,
    640 								   fileName);
    641 			}
    642 		}
    643 		this.name = name;
    644 	}
    645 
    646 	public void setGrammarContent(String grammarString) throws RecognitionException {
    647 		StringReader r = new StringReader(grammarString);
    648 		parseAndBuildAST(r);
    649 		composite.assignTokenTypes();
    650 		composite.defineGrammarSymbols();
    651 	}
    652 
    653 	public void parseAndBuildAST()
    654 		throws IOException
    655 	{
    656 		FileReader fr;
    657 		BufferedReader br = null;
    658 		try {
    659 			fr = new FileReader(fileName);
    660 			br = new BufferedReader(fr);
    661 			parseAndBuildAST(br);
    662 			br.close();
    663 			br = null;
    664 		}
    665 		finally {
    666 			if ( br!=null ) {
    667 				br.close();
    668 			}
    669 		}
    670 	}
    671 
    672 	public void parseAndBuildAST(Reader r) {
    673 		// BUILD AST FROM GRAMMAR
    674 		ANTLRLexer lexer;
    675 		try {
    676 			lexer = new ANTLRLexer(new ANTLRReaderStream(r));
    677 		} catch (IOException e) {
    678 			ErrorManager.internalError("unexpected stream error from parsing "+fileName, e);
    679 			return;
    680 		}
    681 
    682 		lexer.setFileName(this.getFileName());
    683 		tokenBuffer = new CommonTokenStream(lexer);
    684 		ANTLRParser parser = ANTLRParser.createParser(tokenBuffer);
    685 		parser.setFileName(this.getFileName());
    686 		ANTLRParser.grammar__return result = null;
    687 		try {
    688 			result = parser.grammar_(this);
    689 		}
    690 		catch (RecognitionException re) {
    691 			ErrorManager.internalError("unexpected parser recognition error from "+fileName, re);
    692 		}
    693 
    694         dealWithTreeFilterMode(); // tree grammar and filter=true?
    695 
    696         if ( lexer.hasASTOperator && !buildAST() ) {
    697 			Object value = getOption("output");
    698 			if ( value == null ) {
    699 				ErrorManager.grammarWarning(ErrorManager.MSG_REWRITE_OR_OP_WITH_NO_OUTPUT_OPTION,
    700 										    this, null);
    701 				setOption("output", "AST", null);
    702 			}
    703 			else {
    704 				ErrorManager.grammarError(ErrorManager.MSG_AST_OP_WITH_NON_AST_OUTPUT_OPTION,
    705 										  this, null, value);
    706 			}
    707 		}
    708 
    709 		setGrammarTree(result.getTree());
    710 
    711 		//if ( grammarTree!=null ) System.out.println("grammar tree: "+grammarTree.toStringTree());
    712 
    713 		grammarTree.setUnknownTokenBoundaries();
    714 
    715 		setFileName(lexer.getFileName()); // the lexer #src might change name
    716 		if ( grammarTree.findFirstType(ANTLRParser.RULE)==null ) {
    717 			ErrorManager.error(ErrorManager.MSG_NO_RULES, getFileName());
    718 		}
    719 	}
    720 
    721     protected void dealWithTreeFilterMode() {
    722         Object filterMode = (String)getOption("filter");
    723         if ( type==TREE_PARSER && filterMode!=null && filterMode.toString().equals("true") ) {
    724             // check for conflicting options
    725             // filter => backtrack=true
    726             // filter&&output=AST => rewrite=true
    727             // filter&&output!=AST => error
    728             // any deviation from valid option set is an error
    729             Object backtrack = (String)getOption("backtrack");
    730             Object output = getOption("output");
    731             Object rewrite = getOption("rewrite");
    732             if ( backtrack!=null && !backtrack.toString().equals("true") ) {
    733                 ErrorManager.error(ErrorManager.MSG_CONFLICTING_OPTION_IN_TREE_FILTER,
    734                                    "backtrack", backtrack);
    735             }
    736             if ( output!=null && !output.toString().equals("AST") ) {
    737                 ErrorManager.error(ErrorManager.MSG_CONFLICTING_OPTION_IN_TREE_FILTER,
    738                                    "output", output);
    739                 setOption("output", "", null);
    740             }
    741             if ( rewrite!=null && !rewrite.toString().equals("true") ) {
    742                 ErrorManager.error(ErrorManager.MSG_CONFLICTING_OPTION_IN_TREE_FILTER,
    743                                    "rewrite", rewrite);
    744             }
    745             // set options properly
    746             setOption("backtrack", "true", null);
    747             if ( output!=null && output.toString().equals("AST") ) {
    748                 setOption("rewrite", "true", null);
    749             }
    750             // @synpredgate set to state.backtracking==1 by code gen when filter=true
    751             // superClass set in template target::treeParser
    752         }
    753     }
    754 
    755 	public void translateLeftRecursiveRule(GrammarAST ruleAST) {
    756 		//System.out.println(ruleAST.toStringTree());
    757 		CommonTreeNodeStream input = new CommonTreeNodeStream(ruleAST);
    758 		LeftRecursiveRuleAnalyzer leftRecursiveRuleWalker =
    759 			new LeftRecursiveRuleAnalyzer(input, this, ruleAST.enclosingRuleName);
    760 		boolean isLeftRec = false;
    761 		try {
    762 			//System.out.println("TESTING "+ruleAST.enclosingRuleName);
    763 			isLeftRec = leftRecursiveRuleWalker.rec_rule(this);
    764 		}
    765 		catch (RecognitionException re) {
    766 			ErrorManager.error(ErrorManager.MSG_BAD_AST_STRUCTURE, re);
    767 		}
    768 		if ( !isLeftRec ) return;
    769 		List<String> rules = new ArrayList<String>();
    770 		rules.add( leftRecursiveRuleWalker.getArtificialPrecStartRule() ) ;
    771 		rules.add( leftRecursiveRuleWalker.getArtificialOpPrecRule() );
    772 		rules.add( leftRecursiveRuleWalker.getArtificialPrimaryRule() );
    773 		for (String r : rules) {
    774 			GrammarAST t = parseArtificialRule(r);
    775 			addRule(grammarTree, t);
    776 			//System.out.println(t.toStringTree());
    777 		}
    778 
    779 		//precRuleInitCodeBlocks.add( precRuleWalker.getOpPrecJavaCode() );
    780 	}
    781 
    782 	public void defineGrammarSymbols() {
    783 		if ( Tool.internalOption_PrintGrammarTree ) {
    784 			System.out.println(grammarTree.toStringList());
    785 		}
    786 
    787 		// DEFINE RULES
    788 		//System.out.println("### define "+name+" rules");
    789 		DefineGrammarItemsWalker defineItemsWalker = new DefineGrammarItemsWalker(new CommonTreeNodeStream(getGrammarTree()));
    790 		try {
    791 			defineItemsWalker.grammar_(this);
    792 		}
    793 		catch (RecognitionException re) {
    794 			ErrorManager.error(ErrorManager.MSG_BAD_AST_STRUCTURE,
    795 							   re);
    796 		}
    797 	}
    798 
    799 	/** ANALYZE ACTIONS, LOOKING FOR LABEL AND ATTR REFS, sanity check */
    800 	public void checkNameSpaceAndActions() {
    801 		examineAllExecutableActions();
    802 		checkAllRulesForUselessLabels();
    803 
    804 		nameSpaceChecker.checkConflicts();
    805 	}
    806 
    807 	/** Many imports are illegal such as lexer into a tree grammar */
    808 	public boolean validImport(Grammar delegate) {
    809 		List<Integer> validDelegators = validDelegations.get(delegate.type);
    810 		return validDelegators!=null && validDelegators.contains(this.type);
    811 	}
    812 
    813 	/** If the grammar is a combined grammar, return the text of the implicit
    814 	 *  lexer grammar.
    815 	 */
    816 	public String getLexerGrammar() {
    817 		if ( lexerGrammarST.getAttribute("literals")==null &&
    818 			 lexerGrammarST.getAttribute("rules")==null )
    819 		{
    820 			// if no rules, return nothing
    821 			return null;
    822 		}
    823 		lexerGrammarST.add("name", name);
    824 		// if there are any actions set for lexer, pass them in
    825 		if ( getActions().get("lexer")!=null ) {
    826 			lexerGrammarST.add("actionNames",
    827 										getActions().get("lexer").keySet());
    828 			lexerGrammarST.add("actions",
    829 										getActions().get("lexer").values());
    830 		}
    831 		// make sure generated grammar has the same options
    832 		if ( options!=null ) {
    833 			for (String optionName : options.keySet()) {
    834 				if ( !doNotCopyOptionsToLexer.contains(optionName) ) {
    835 					Object value = options.get(optionName);
    836 					lexerGrammarST.addAggr("options.{name,value}", optionName, value);
    837 				}
    838 			}
    839 		}
    840 		return lexerGrammarST.render();
    841 	}
    842 
    843 	public String getImplicitlyGeneratedLexerFileName() {
    844 		return name+
    845 			   IGNORE_STRING_IN_GRAMMAR_FILE_NAME +
    846 			   LEXER_GRAMMAR_FILE_EXTENSION;
    847 	}
    848 
    849 	/** Get the name of the generated recognizer; may or may not be same
    850 	 *  as grammar name.
    851 	 *  Recognizer is TParser and TLexer from T if combined, else
    852 	 *  just use T regardless of grammar type.
    853 	 */
    854 	public String getRecognizerName() {
    855 		String suffix = "";
    856 		List<Grammar> grammarsFromRootToMe = composite.getDelegators(this);
    857 		//System.out.println("grammarsFromRootToMe="+grammarsFromRootToMe);
    858 		String qualifiedName = name;
    859 		if ( grammarsFromRootToMe!=null ) {
    860 			StringBuilder buf = new StringBuilder();
    861 			for (Grammar g : grammarsFromRootToMe) {
    862 				buf.append(g.name);
    863 				buf.append('_');
    864 			}
    865 			buf.append(name);
    866 			qualifiedName = buf.toString();
    867 		}
    868 		if ( type==Grammar.COMBINED ||
    869 			 (type==Grammar.LEXER && implicitLexer) )
    870 		{
    871 			suffix = Grammar.grammarTypeToFileNameSuffix[type];
    872 		}
    873 		return qualifiedName+suffix;
    874 	}
    875 
    876 	/** Parse a rule we add artificially that is a list of the other lexer
    877 	 *  rules like this: "Tokens : ID | INT | SEMI ;"  nextToken() will invoke
    878 	 *  this to set the current token.  Add char literals before
    879 	 *  the rule references.
    880 	 *
    881 	 *  If in filter mode, we want every alt to backtrack and we need to
    882 	 *  do k=1 to force the "first token def wins" rule.  Otherwise, the
    883 	 *  longest-match rule comes into play with LL(*).
    884 	 *
    885 	 *  The ANTLRParser antlr.g file now invokes this when parsing a lexer
    886 	 *  grammar, which I think is proper even though it peeks at the info
    887 	 *  that later phases will (re)compute.  It gets a list of lexer rules
    888 	 *  and builds a string representing the rule; then it creates a parser
    889 	 *  and adds the resulting tree to the grammar's tree.
    890 	 */
    891 	public GrammarAST addArtificialMatchTokensRule(GrammarAST grammarAST,
    892 												   List<String> ruleNames,
    893 												   List<String> delegateNames,
    894 												   boolean filterMode) {
    895 		ST matchTokenRuleST;
    896 		if ( filterMode ) {
    897 			matchTokenRuleST = new ST(
    898 					ARTIFICIAL_TOKENS_RULENAME+
    899 					" options {k=1; backtrack=true;} : <rules; separator=\"|\">;");
    900 		}
    901 		else {
    902 			matchTokenRuleST = new ST(
    903 					ARTIFICIAL_TOKENS_RULENAME+" : <rules; separator=\"|\">;");
    904 		}
    905 
    906 		// Now add token rule references
    907 		for (int i = 0; i < ruleNames.size(); i++) {
    908 			String rname = ruleNames.get(i);
    909 			matchTokenRuleST.add("rules", rname);
    910 		}
    911 		for (int i = 0; i < delegateNames.size(); i++) {
    912 			String dname = delegateNames.get(i);
    913 			matchTokenRuleST.add("rules", dname+".Tokens");
    914 		}
    915 		//System.out.println("tokens rule: "+matchTokenRuleST.toString());
    916 		GrammarAST r = parseArtificialRule(matchTokenRuleST.render());
    917 		addRule(grammarAST, r);
    918 		//addRule((GrammarAST)parser.getAST());
    919 		//return (GrammarAST)parser.getAST();
    920 		return r;
    921 	}
    922 
    923 	public GrammarAST parseArtificialRule(String ruleText) {
    924 		ANTLRLexer lexer = new ANTLRLexer(new ANTLRStringStream(ruleText));
    925 		ANTLRParser parser = ANTLRParser.createParser(new CommonTokenStream(lexer));
    926 		parser.setGrammar(this);
    927 		parser.setGrammarType(this.type);
    928 		try {
    929 			ANTLRParser.rule_return result = parser.rule();
    930 			return result.getTree();
    931 		}
    932 		catch (Exception e) {
    933 			ErrorManager.error(ErrorManager.MSG_ERROR_CREATING_ARTIFICIAL_RULE,
    934 							   e);
    935 			return null;
    936 		}
    937 	}
    938 
    939 	public void addRule(GrammarAST grammarTree, GrammarAST t) {
    940 		GrammarAST p = null;
    941 		for (int i = 0; i < grammarTree.getChildCount(); i++ ) {
    942 			p = (GrammarAST)grammarTree.getChild(i);
    943 			if (p == null || p.getType() == ANTLRParser.RULE || p.getType() == ANTLRParser.PREC_RULE) {
    944 				break;
    945 			}
    946 		}
    947 
    948 		if (p != null) {
    949 			grammarTree.addChild(t);
    950 		}
    951 	}
    952 
    953 	/** for any syntactic predicates, we need to define rules for them; they will get
    954 	 *  defined automatically like any other rule. :)
    955 	 */
    956 	protected List<? extends GrammarAST> getArtificialRulesForSyntacticPredicates(LinkedHashMap<String,GrammarAST> nameToSynpredASTMap)
    957 	{
    958 		List<GrammarAST> rules = new ArrayList<GrammarAST>();
    959 		if ( nameToSynpredASTMap==null ) {
    960 			return rules;
    961 		}
    962 		boolean isLexer = grammarTree.getType()==ANTLRParser.LEXER_GRAMMAR;
    963 		for (Map.Entry<String, GrammarAST> entry : nameToSynpredASTMap.entrySet()) {
    964 			String synpredName = entry.getKey();
    965 			GrammarAST fragmentAST = entry.getValue();
    966 			GrammarAST ruleAST =
    967 				ANTLRParser.createSimpleRuleAST(synpredName,
    968 												fragmentAST,
    969 												isLexer);
    970 			rules.add(ruleAST);
    971 		}
    972 		return rules;
    973 	}
    974 
    975 	public void addRulesForSyntacticPredicates() {
    976 		// Get syn pred rules and add to existing tree
    977 		List<? extends GrammarAST> synpredRules =
    978 			getArtificialRulesForSyntacticPredicates(nameToSynpredASTMap);
    979 		for (int i = 0; i < synpredRules.size(); i++) {
    980 			GrammarAST rAST = (GrammarAST) synpredRules.get(i);
    981 			grammarTree.addChild(rAST);
    982 		}
    983 	}
    984 
    985 	/** Walk the list of options, altering this Grammar object according
    986 	 *  to any I recognize.
    987 	protected void processOptions() {
    988 		Iterator optionNames = options.keySet().iterator();
    989 		while (optionNames.hasNext()) {
    990 			String optionName = (String) optionNames.next();
    991 			Object value = options.get(optionName);
    992 			if ( optionName.equals("tokenVocab") ) {
    993 
    994 			}
    995 		}
    996 	}
    997 	 */
    998 
    999 	/** Define all the rule begin/end NFAStates to solve forward reference
   1000 	 *  issues.  Critical for composite grammars too.
   1001 	 *  This is normally called on all root/delegates manually and then
   1002 	 *  buildNFA() is called afterwards because the NFA construction needs
   1003 	 *  to see rule start/stop states from potentially every grammar. Has
   1004 	 *  to be have these created a priori.  Testing routines will often
   1005 	 *  just call buildNFA(), which forces a call to this method if not
   1006 	 *  done already. Works ONLY for single noncomposite grammars.
   1007 	 */
   1008 	public void createRuleStartAndStopNFAStates() {
   1009 		//System.out.println("### createRuleStartAndStopNFAStates "+getGrammarTypeString()+" grammar "+name+" NFAs");
   1010 		if ( nfa!=null ) {
   1011 			return;
   1012 		}
   1013 		nfa = new NFA(this);
   1014 		factory = new NFAFactory(nfa);
   1015 
   1016 		Collection<Rule> rules = getRules();
   1017 		for (Rule r : rules) {
   1018 			String ruleName = r.name;
   1019 			NFAState ruleBeginState = factory.newState();
   1020 			ruleBeginState.setDescription("rule "+ruleName+" start");
   1021 			ruleBeginState.enclosingRule = r;
   1022 			r.startState = ruleBeginState;
   1023 			NFAState ruleEndState = factory.newState();
   1024 			ruleEndState.setDescription("rule "+ruleName+" end");
   1025 			ruleEndState.setAcceptState(true);
   1026 			ruleEndState.enclosingRule = r;
   1027 			r.stopState = ruleEndState;
   1028 		}
   1029 	}
   1030 
   1031 	public void buildNFA() {
   1032 		if ( nfa==null ) {
   1033 			createRuleStartAndStopNFAStates();
   1034 		}
   1035 		if ( nfa.complete ) {
   1036 			// don't let it create more than once; has side-effects
   1037 			return;
   1038 		}
   1039 		//System.out.println("### build "+getGrammarTypeString()+" grammar "+name+" NFAs");
   1040 		if ( getRules().isEmpty() ) {
   1041 			return;
   1042 		}
   1043 
   1044 		CommonTreeNodeStream input = new CommonTreeNodeStream(getGrammarTree());
   1045 		TreeToNFAConverter nfaBuilder = new TreeToNFAConverter(input, this, nfa, factory);
   1046 		try {
   1047 			nfaBuilder.grammar_();
   1048 		}
   1049 		catch (RecognitionException re) {
   1050 			ErrorManager.error(ErrorManager.MSG_BAD_AST_STRUCTURE,
   1051 							   name,
   1052 							   re);
   1053 		}
   1054 		nfa.complete = true;
   1055 	}
   1056 
   1057 	/** For each decision in this grammar, compute a single DFA using the
   1058 	 *  NFA states associated with the decision.  The DFA construction
   1059 	 *  determines whether or not the alternatives in the decision are
   1060 	 *  separable using a regular lookahead language.
   1061 	 *
   1062 	 *  Store the lookahead DFAs in the AST created from the user's grammar
   1063 	 *  so the code generator or whoever can easily access it.
   1064 	 *
   1065 	 *  This is a separate method because you might want to create a
   1066 	 *  Grammar without doing the expensive analysis.
   1067 	 */
   1068 	public void createLookaheadDFAs() {
   1069 		createLookaheadDFAs(true);
   1070 	}
   1071 
   1072 	public void createLookaheadDFAs(boolean wackTempStructures) {
   1073 		if ( nfa==null ) {
   1074 			buildNFA();
   1075 		}
   1076 
   1077 		// CHECK FOR LEFT RECURSION; Make sure we can actually do analysis
   1078 		checkAllRulesForLeftRecursion();
   1079 
   1080 		/*
   1081 		// was there a severe problem while sniffing the grammar?
   1082 		if ( ErrorManager.doNotAttemptAnalysis() ) {
   1083 			return;
   1084 		}
   1085 		*/
   1086 
   1087 		long start = System.currentTimeMillis();
   1088 
   1089 		//System.out.println("### create DFAs");
   1090 		int numDecisions = getNumberOfDecisions();
   1091 		if ( NFAToDFAConverter.SINGLE_THREADED_NFA_CONVERSION ) {
   1092 			for (int decision=1; decision<=numDecisions; decision++) {
   1093 				NFAState decisionStartState = getDecisionNFAStartState(decision);
   1094 				if ( leftRecursiveRules.contains(decisionStartState.enclosingRule) ) {
   1095 					// don't bother to process decisions within left recursive rules.
   1096 					if ( composite.watchNFAConversion ) {
   1097 						System.out.println("ignoring decision "+decision+
   1098 										   " within left-recursive rule "+decisionStartState.enclosingRule.name);
   1099 					}
   1100 					continue;
   1101 				}
   1102 				if ( !externalAnalysisAbort && decisionStartState.getNumberOfTransitions()>1 ) {
   1103 					Rule r = decisionStartState.enclosingRule;
   1104 					if ( r.isSynPred && !synPredNamesUsedInDFA.contains(r.name) ) {
   1105 						continue;
   1106 					}
   1107 					DFA dfa = null;
   1108 					// if k=* or k=1, try LL(1)
   1109 					if ( getUserMaxLookahead(decision)==0 ||
   1110 						 getUserMaxLookahead(decision)==1 )
   1111 					{
   1112 						dfa = createLL_1_LookaheadDFA(decision);
   1113 					}
   1114 					if ( dfa==null ) {
   1115 						if ( composite.watchNFAConversion ) {
   1116 							System.out.println("decision "+decision+
   1117 											   " not suitable for LL(1)-optimized DFA analysis");
   1118 						}
   1119 						dfa = createLookaheadDFA(decision, wackTempStructures);
   1120 					}
   1121 					if ( dfa.startState==null ) {
   1122 						// something went wrong; wipe out DFA
   1123 						setLookaheadDFA(decision, null);
   1124 					}
   1125 					if ( Tool.internalOption_PrintDFA ) {
   1126 						System.out.println("DFA d="+decision);
   1127 						FASerializer serializer = new FASerializer(nfa.grammar);
   1128 						String result = serializer.serialize(dfa.startState);
   1129 						System.out.println(result);
   1130 					}
   1131 				}
   1132 			}
   1133 		}
   1134 		else {
   1135 			ErrorManager.info("two-threaded DFA conversion");
   1136 			// create a barrier expecting n DFA and this main creation thread
   1137 			Barrier barrier = new Barrier(3);
   1138 			// assume 2 CPU for now
   1139 			int midpoint = numDecisions/2;
   1140 			NFAConversionThread t1 =
   1141 				new NFAConversionThread(this, barrier, 1, midpoint);
   1142 			new Thread(t1).start();
   1143 			if ( midpoint == (numDecisions/2) ) {
   1144 				midpoint++;
   1145 			}
   1146 			NFAConversionThread t2 =
   1147 				new NFAConversionThread(this, barrier, midpoint, numDecisions);
   1148 			new Thread(t2).start();
   1149 			// wait for these two threads to finish
   1150 			try {
   1151 				barrier.waitForRelease();
   1152 			}
   1153 			catch(InterruptedException e) {
   1154 				ErrorManager.internalError("what the hell? DFA interruptus", e);
   1155 			}
   1156 		}
   1157 
   1158 		long stop = System.currentTimeMillis();
   1159 		DFACreationWallClockTimeInMS = stop - start;
   1160 
   1161 		// indicate that we've finished building DFA (even if #decisions==0)
   1162 		allDecisionDFACreated = true;
   1163 	}
   1164 
   1165 	public DFA createLL_1_LookaheadDFA(int decision) {
   1166 		Decision d = getDecision(decision);
   1167 		String enclosingRule = d.startState.enclosingRule.name;
   1168 		Rule r = d.startState.enclosingRule;
   1169 		NFAState decisionStartState = getDecisionNFAStartState(decision);
   1170 
   1171 		if ( composite.watchNFAConversion ) {
   1172 			System.out.println("--------------------\nattempting LL(1) DFA (d="
   1173 							   +decisionStartState.getDecisionNumber()+") for "+
   1174 							   decisionStartState.getDescription());
   1175 		}
   1176 
   1177 		if ( r.isSynPred && !synPredNamesUsedInDFA.contains(enclosingRule) ) {
   1178 			return null;
   1179 		}
   1180 
   1181 		// compute lookahead for each alt
   1182 		int numAlts = getNumberOfAltsForDecisionNFA(decisionStartState);
   1183 		LookaheadSet[] altLook = new LookaheadSet[numAlts+1];
   1184 		for (int alt = 1; alt <= numAlts; alt++) {
   1185 			int walkAlt =
   1186 				decisionStartState.translateDisplayAltToWalkAlt(alt);
   1187 			NFAState altLeftEdge = getNFAStateForAltOfDecision(decisionStartState, walkAlt);
   1188 			NFAState altStartState = (NFAState)altLeftEdge.transition[0].target;
   1189 			//System.out.println("alt "+alt+" start state = "+altStartState.stateNumber);
   1190 			altLook[alt] = ll1Analyzer.LOOK(altStartState);
   1191 			//System.out.println("alt "+alt+": "+altLook[alt].toString(this));
   1192 		}
   1193 
   1194 		// compare alt i with alt j for disjointness
   1195 		boolean decisionIsLL_1 = true;
   1196 outer:
   1197 		for (int i = 1; i <= numAlts; i++) {
   1198 			for (int j = i+1; j <= numAlts; j++) {
   1199 				/*
   1200 				System.out.println("compare "+i+", "+j+": "+
   1201 								   altLook[i].toString(this)+" with "+
   1202 								   altLook[j].toString(this));
   1203 				*/
   1204 				LookaheadSet collision = altLook[i].intersection(altLook[j]);
   1205 				if ( !collision.isNil() ) {
   1206 					//System.out.println("collision (non-LL(1)): "+collision.toString(this));
   1207 					decisionIsLL_1 = false;
   1208 					break outer;
   1209 				}
   1210 			}
   1211 		}
   1212 
   1213 		boolean foundConfoundingPredicate =
   1214 			ll1Analyzer.detectConfoundingPredicates(decisionStartState);
   1215 		if ( decisionIsLL_1 && !foundConfoundingPredicate ) {
   1216 			// build an LL(1) optimized DFA with edge for each altLook[i]
   1217 			if ( NFAToDFAConverter.debug ) {
   1218 				System.out.println("decision "+decision+" is simple LL(1)");
   1219 			}
   1220 			DFA lookaheadDFA = new LL1DFA(decision, decisionStartState, altLook);
   1221 			setLookaheadDFA(decision, lookaheadDFA);
   1222 			updateLineColumnToLookaheadDFAMap(lookaheadDFA);
   1223 			return lookaheadDFA;
   1224 		}
   1225 
   1226 		// not LL(1) but perhaps we can solve with simplified predicate search
   1227 		// even if k=1 set manually, only resolve here if we have preds; i.e.,
   1228 		// don't resolve etc...
   1229 
   1230 		/*
   1231 		SemanticContext visiblePredicates =
   1232 			ll1Analyzer.getPredicates(decisionStartState);
   1233 		boolean foundConfoundingPredicate =
   1234 			ll1Analyzer.detectConfoundingPredicates(decisionStartState);
   1235 			*/
   1236 
   1237 		// exit if not forced k=1 or we found a predicate situation we
   1238 		// can't handle: predicates in rules invoked from this decision.
   1239 		if ( getUserMaxLookahead(decision)!=1 || // not manually set to k=1
   1240 			 !getAutoBacktrackMode(decision) ||
   1241 			 foundConfoundingPredicate )
   1242 		{
   1243 			//System.out.println("trying LL(*)");
   1244 			return null;
   1245 		}
   1246 
   1247 		List<IntervalSet> edges = new ArrayList<IntervalSet>();
   1248 		for (int i = 1; i < altLook.length; i++) {
   1249 			LookaheadSet s = altLook[i];
   1250 			edges.add(s.tokenTypeSet);
   1251 		}
   1252 		List<IntervalSet> disjoint = makeEdgeSetsDisjoint(edges);
   1253 		//System.out.println("disjoint="+disjoint);
   1254 
   1255 		MultiMap<IntervalSet, Integer> edgeMap = new MultiMap<IntervalSet, Integer>();
   1256 		for (int i = 0; i < disjoint.size(); i++) {
   1257 			IntervalSet ds = disjoint.get(i);
   1258 			for (int alt = 1; alt < altLook.length; alt++) {
   1259 				LookaheadSet look = altLook[alt];
   1260 				if ( !ds.and(look.tokenTypeSet).isNil() ) {
   1261 					edgeMap.map(ds, alt);
   1262 				}
   1263 			}
   1264 		}
   1265 		//System.out.println("edge map: "+edgeMap);
   1266 
   1267 		// TODO: how do we know we covered stuff?
   1268 
   1269 		// build an LL(1) optimized DFA with edge for each altLook[i]
   1270 		DFA lookaheadDFA = new LL1DFA(decision, decisionStartState, edgeMap);
   1271 		setLookaheadDFA(decision, lookaheadDFA);
   1272 
   1273 		// create map from line:col to decision DFA (for ANTLRWorks)
   1274 		updateLineColumnToLookaheadDFAMap(lookaheadDFA);
   1275 
   1276 		return lookaheadDFA;
   1277 	}
   1278 
   1279 	private void updateLineColumnToLookaheadDFAMap(DFA lookaheadDFA) {
   1280 		GrammarAST decisionAST = nfa.grammar.getDecisionBlockAST(lookaheadDFA.decisionNumber);
   1281 		int line = decisionAST.getLine();
   1282 		int col = decisionAST.getCharPositionInLine();
   1283 		lineColumnToLookaheadDFAMap.put(new StringBuffer().append(line).append(":")
   1284 										.append(col).toString(), lookaheadDFA);
   1285 	}
   1286 
   1287 	protected List<IntervalSet> makeEdgeSetsDisjoint(List<IntervalSet> edges) {
   1288 		OrderedHashSet<IntervalSet> disjointSets = new OrderedHashSet<IntervalSet>();
   1289 		// walk each incoming edge label/set and add to disjoint set
   1290 		int numEdges = edges.size();
   1291 		for (int e = 0; e < numEdges; e++) {
   1292 			IntervalSet t = edges.get(e);
   1293 			if ( disjointSets.contains(t) ) { // exact set present
   1294 				continue;
   1295 			}
   1296 
   1297 			// compare t with set i for disjointness
   1298 			IntervalSet remainder = t; // remainder starts out as whole set to add
   1299 			int numDisjointElements = disjointSets.size();
   1300 			for (int i = 0; i < numDisjointElements; i++) {
   1301 				IntervalSet s_i = disjointSets.get(i);
   1302 
   1303 				if ( t.and(s_i).isNil() ) { // nothing in common
   1304 					continue;
   1305 				}
   1306 				//System.out.println(label+" collides with "+rl);
   1307 
   1308 				// For any (s_i, t) with s_i&t!=nil replace with (s_i-t, s_i&t)
   1309 				// (ignoring s_i-t if nil; don't put in list)
   1310 
   1311 				// Replace existing s_i with intersection since we
   1312 				// know that will always be a non nil character class
   1313 				IntervalSet intersection = s_i.and(t);
   1314 				disjointSets.set(i, intersection);
   1315 
   1316 				// Compute s_i-t to see what is in current set and not in incoming
   1317 				IntervalSet existingMinusNewElements = s_i.subtract(t);
   1318 				//System.out.println(s_i+"-"+t+"="+existingMinusNewElements);
   1319 				if ( !existingMinusNewElements.isNil() ) {
   1320 					// found a new character class, add to the end (doesn't affect
   1321 					// outer loop duration due to n computation a priori.
   1322 					disjointSets.add(existingMinusNewElements);
   1323 				}
   1324 
   1325 				// anything left to add to the reachableLabels?
   1326 				remainder = t.subtract(s_i);
   1327 				if ( remainder.isNil() ) {
   1328 					break; // nothing left to add to set.  done!
   1329 				}
   1330 
   1331 				t = remainder;
   1332 			}
   1333 			if ( !remainder.isNil() ) {
   1334 				disjointSets.add(remainder);
   1335 			}
   1336 		}
   1337 		return disjointSets.elements();
   1338 	}
   1339 
   1340 	public DFA createLookaheadDFA(int decision, boolean wackTempStructures) {
   1341 		Decision d = getDecision(decision);
   1342 		String enclosingRule = d.startState.enclosingRule.name;
   1343 		Rule r = d.startState.enclosingRule;
   1344 
   1345 		//System.out.println("createLookaheadDFA(): "+enclosingRule+" dec "+decision+"; synprednames prev used "+synPredNamesUsedInDFA);
   1346 		NFAState decisionStartState = getDecisionNFAStartState(decision);
   1347 		long startDFA=0,stopDFA;
   1348 		if ( composite.watchNFAConversion ) {
   1349 			System.out.println("--------------------\nbuilding lookahead DFA (d="
   1350 							   +decisionStartState.getDecisionNumber()+") for "+
   1351 							   decisionStartState.getDescription());
   1352 			startDFA = System.currentTimeMillis();
   1353 		}
   1354 
   1355 		DFA lookaheadDFA = new DFA(decision, decisionStartState);
   1356 		// Retry to create a simpler DFA if analysis failed (non-LL(*),
   1357 		// recursion overflow, or time out).
   1358 		boolean failed =
   1359 			lookaheadDFA.probe.isNonLLStarDecision() ||
   1360 			lookaheadDFA.probe.analysisOverflowed();
   1361 		if ( failed && lookaheadDFA.okToRetryDFAWithK1() ) {
   1362 			// set k=1 option and try again.
   1363 			// First, clean up tracking stuff
   1364 			decisionsWhoseDFAsUsesSynPreds.remove(lookaheadDFA);
   1365 			// TODO: clean up synPredNamesUsedInDFA also (harder)
   1366 			d.blockAST.setBlockOption(this, "k", Utils.integer(1));
   1367 			if ( composite.watchNFAConversion ) {
   1368 				System.out.print("trying decision "+decision+
   1369 								 " again with k=1; reason: "+
   1370 								 lookaheadDFA.getReasonForFailure());
   1371 			}
   1372 			lookaheadDFA = null; // make sure other memory is "free" before redoing
   1373 			lookaheadDFA = new DFA(decision, decisionStartState);
   1374 		}
   1375 
   1376 		setLookaheadDFA(decision, lookaheadDFA);
   1377 
   1378 		if ( wackTempStructures ) {
   1379 			for (DFAState s : lookaheadDFA.getUniqueStates().values()) {
   1380 				s.reset();
   1381 			}
   1382 		}
   1383 
   1384 		// create map from line:col to decision DFA (for ANTLRWorks)
   1385 		updateLineColumnToLookaheadDFAMap(lookaheadDFA);
   1386 
   1387 		if ( composite.watchNFAConversion ) {
   1388 			stopDFA = System.currentTimeMillis();
   1389 			System.out.println("cost: "+lookaheadDFA.getNumberOfStates()+
   1390 							   " states, "+(int)(stopDFA-startDFA)+" ms");
   1391 		}
   1392 		//System.out.println("after create DFA; synPredNamesUsedInDFA="+synPredNamesUsedInDFA);
   1393 		return lookaheadDFA;
   1394 	}
   1395 
   1396 	/** Terminate DFA creation (grammar analysis).
   1397 	 */
   1398 	public void externallyAbortNFAToDFAConversion() {
   1399 		externalAnalysisAbort = true;
   1400 	}
   1401 
   1402 	public boolean NFAToDFAConversionExternallyAborted() {
   1403 		return externalAnalysisAbort;
   1404 	}
   1405 
   1406 	/** Return a new unique integer in the token type space */
   1407 	public int getNewTokenType() {
   1408 		composite.maxTokenType++;
   1409 		return composite.maxTokenType;
   1410 	}
   1411 
   1412 	/** Define a token at a particular token type value.  Blast an
   1413 	 *  old value with a new one.  This is called normal grammar processsing
   1414 	 *  and during import vocab operations to set tokens with specific values.
   1415 	 */
   1416 	public void defineToken(String text, int tokenType) {
   1417 		//System.out.println("defineToken("+text+", "+tokenType+")");
   1418 		if ( composite.tokenIDToTypeMap.get(text)!=null ) {
   1419 			// already defined?  Must be predefined one like EOF;
   1420 			// do nothing
   1421 			return;
   1422 		}
   1423 		// the index in the typeToTokenList table is actually shifted to
   1424 		// hold faux labels as you cannot have negative indices.
   1425 		if ( text.charAt(0)=='\'' ) {
   1426 			composite.stringLiteralToTypeMap.put(text, Utils.integer(tokenType));
   1427 			// track in reverse index too
   1428 			if ( tokenType>=composite.typeToStringLiteralList.size() ) {
   1429 				composite.typeToStringLiteralList.setSize(tokenType+1);
   1430 			}
   1431 			composite.typeToStringLiteralList.set(tokenType, text);
   1432 		}
   1433 		else { // must be a label like ID
   1434 			composite.tokenIDToTypeMap.put(text, Utils.integer(tokenType));
   1435 		}
   1436 		int index = Label.NUM_FAUX_LABELS+tokenType-1;
   1437 		//System.out.println("defining "+name+" token "+text+" at type="+tokenType+", index="+index);
   1438 		composite.maxTokenType = Math.max(composite.maxTokenType, tokenType);
   1439 		if ( index>=composite.typeToTokenList.size() ) {
   1440 			composite.typeToTokenList.setSize(index+1);
   1441 		}
   1442 		String prevToken = composite.typeToTokenList.get(index);
   1443 		if ( prevToken==null || prevToken.charAt(0)=='\'' ) {
   1444 			// only record if nothing there before or if thing before was a literal
   1445 			composite.typeToTokenList.set(index, text);
   1446 		}
   1447 	}
   1448 
   1449 	/** Define a new rule.  A new rule index is created by incrementing
   1450 	 *  ruleIndex.
   1451 	 */
   1452 	public void defineRule(Token ruleToken,
   1453 						   String modifier,
   1454 						   Map<String, Object> options,
   1455 						   GrammarAST tree,
   1456 						   GrammarAST argActionAST,
   1457 						   int numAlts)
   1458 	{
   1459 		String ruleName = ruleToken.getText();
   1460 		if ( getLocallyDefinedRule(ruleName)!=null ) {
   1461 			ErrorManager.grammarError(ErrorManager.MSG_RULE_REDEFINITION,
   1462 									  this, ruleToken, ruleName);
   1463 			return;
   1464 		}
   1465 
   1466 		if ( (type==Grammar.PARSER||type==Grammar.TREE_PARSER) &&
   1467 			 Character.isUpperCase(ruleName.charAt(0)) )
   1468 		{
   1469 			ErrorManager.grammarError(ErrorManager.MSG_LEXER_RULES_NOT_ALLOWED,
   1470 									  this, ruleToken, ruleName);
   1471 			return;
   1472 		}
   1473 
   1474 		Rule r = new Rule(this, ruleName, composite.ruleIndex, numAlts);
   1475 		/*
   1476 		System.out.println("defineRule("+ruleName+",modifier="+modifier+
   1477 						   "): index="+r.index+", nalts="+numAlts);
   1478 		*/
   1479 		r.modifier = modifier;
   1480 		nameToRuleMap.put(ruleName, r);
   1481 		setRuleAST(ruleName, tree);
   1482 		r.setOptions(options, ruleToken);
   1483 		r.argActionAST = argActionAST;
   1484 		composite.ruleIndexToRuleList.setSize(composite.ruleIndex+1);
   1485 		composite.ruleIndexToRuleList.set(composite.ruleIndex, r);
   1486 		composite.ruleIndex++;
   1487 		if ( ruleName.startsWith(SYNPRED_RULE_PREFIX) ) {
   1488 			r.isSynPred = true;
   1489 		}
   1490 	}
   1491 
   1492 	/** Define a new predicate and get back its name for use in building
   1493 	 *  a semantic predicate reference to the syn pred.
   1494 	 */
   1495 	public String defineSyntacticPredicate(GrammarAST blockAST,
   1496 										   String currentRuleName)
   1497 	{
   1498 		if ( nameToSynpredASTMap==null ) {
   1499 			nameToSynpredASTMap = new LinkedHashMap<String, GrammarAST>();
   1500 		}
   1501 		String predName =
   1502 			SYNPRED_RULE_PREFIX+(nameToSynpredASTMap.size() + 1)+"_"+name;
   1503 		blockAST.setTreeEnclosingRuleNameDeeply(predName);
   1504 		nameToSynpredASTMap.put(predName, blockAST);
   1505 		return predName;
   1506 	}
   1507 
   1508 	public LinkedHashMap<String, GrammarAST> getSyntacticPredicates() {
   1509 		return nameToSynpredASTMap;
   1510 	}
   1511 
   1512 	public GrammarAST getSyntacticPredicate(String name) {
   1513 		if ( nameToSynpredASTMap==null ) {
   1514 			return null;
   1515 		}
   1516 		return nameToSynpredASTMap.get(name);
   1517 	}
   1518 
   1519 	public void synPredUsedInDFA(DFA dfa, SemanticContext semCtx) {
   1520 		decisionsWhoseDFAsUsesSynPreds.add(dfa);
   1521 		semCtx.trackUseOfSyntacticPredicates(this); // walk ctx looking for preds
   1522 	}
   1523 
   1524 	/*
   1525 	public Set<Rule> getRuleNamesVisitedDuringLOOK() {
   1526 		return rulesSensitiveToOtherRules;
   1527 	}
   1528 	*/
   1529 
   1530 	/** Given @scope::name {action} define it for this grammar.  Later,
   1531 	 *  the code generator will ask for the actions table.  For composite
   1532      *  grammars, make sure header action propogates down to all delegates.
   1533 	 */
   1534 	public void defineNamedAction(GrammarAST ampersandAST,
   1535 								  String scope,
   1536 								  GrammarAST nameAST,
   1537 								  GrammarAST actionAST)
   1538 	{
   1539 		if ( scope==null ) {
   1540 			scope = getDefaultActionScope(type);
   1541 		}
   1542 		//System.out.println("Grammar "+name+" define @"+scope+"::"+nameAST.getText()+"{"+actionAST.getText()+"}");
   1543 		String actionName = nameAST.getText();
   1544 		Map<String, Object> scopeActions = getActions().get(scope);
   1545 		if ( scopeActions==null ) {
   1546 			scopeActions = new HashMap<String, Object>();
   1547 			getActions().put(scope, scopeActions);
   1548 		}
   1549 		Object a = scopeActions.get(actionName);
   1550 		if ( a!=null ) {
   1551 			ErrorManager.grammarError(
   1552 				ErrorManager.MSG_ACTION_REDEFINITION,this,
   1553 				nameAST.getToken(),nameAST.getText());
   1554 		}
   1555 		else {
   1556 			scopeActions.put(actionName,actionAST);
   1557 		}
   1558         // propogate header (regardless of scope (lexer, parser, ...) ?
   1559         if ( this==composite.getRootGrammar() && actionName.equals("header") ) {
   1560             List<Grammar> allgrammars = composite.getRootGrammar().getDelegates();
   1561             for (Grammar delegate : allgrammars) {
   1562 				if ( target.isValidActionScope(delegate.type, scope) ) {
   1563 					//System.out.println("propogate to "+delegate.name);
   1564                 	delegate.defineNamedAction(ampersandAST, scope, nameAST, actionAST);
   1565 				}
   1566             }
   1567         }
   1568     }
   1569 
   1570     public void setSynPredGateIfNotAlready(ST gateST) {
   1571         String scope = getDefaultActionScope(type);
   1572         Map<String, Object> actionsForGrammarScope = getActions().get(scope);
   1573         // if no synpredgate action set by user then set
   1574         if ( (actionsForGrammarScope==null ||
   1575              !actionsForGrammarScope.containsKey(Grammar.SYNPREDGATE_ACTION_NAME)) )
   1576         {
   1577             if ( actionsForGrammarScope==null ) {
   1578                 actionsForGrammarScope=new HashMap<String, Object>();
   1579                 getActions().put(scope, actionsForGrammarScope);
   1580             }
   1581             actionsForGrammarScope.put(Grammar.SYNPREDGATE_ACTION_NAME,
   1582                                        gateST);
   1583         }
   1584     }
   1585 
   1586 	public Map<String, Map<String, Object>> getActions() {
   1587 		return actions;
   1588 	}
   1589 
   1590 	/** Given a grammar type, what should be the default action scope?
   1591 	 *  If I say @members in a COMBINED grammar, for example, the
   1592 	 *  default scope should be "parser".
   1593 	 */
   1594 	public String getDefaultActionScope(int grammarType) {
   1595 		switch (grammarType) {
   1596 			case Grammar.LEXER :
   1597 				return "lexer";
   1598 			case Grammar.PARSER :
   1599 			case Grammar.COMBINED :
   1600 				return "parser";
   1601 			case Grammar.TREE_PARSER :
   1602 				return "treeparser";
   1603 		}
   1604 		return null;
   1605 	}
   1606 
   1607 	public void defineLexerRuleFoundInParser(Token ruleToken,
   1608 											 GrammarAST ruleAST)
   1609 	{
   1610 //		System.out.println("rule tree is:\n"+ruleAST.toStringTree());
   1611 		/*
   1612 		String ruleText = tokenBuffer.toOriginalString(ruleAST.ruleStartTokenIndex,
   1613 											   ruleAST.ruleStopTokenIndex);
   1614 		*/
   1615 		// first, create the text of the rule
   1616 		StringBuilder buf = new StringBuilder();
   1617 		buf.append("// $ANTLR src \"");
   1618 		buf.append(getFileName());
   1619 		buf.append("\" ");
   1620 		buf.append(ruleAST.getLine());
   1621 		buf.append("\n");
   1622 		for (int i=ruleAST.getTokenStartIndex();
   1623 			 i<=ruleAST.getTokenStopIndex() && i<tokenBuffer.size();
   1624 			 i++)
   1625 		{
   1626 			CommonToken t = (CommonToken)tokenBuffer.get(i);
   1627 			// undo the text deletions done by the lexer (ugh)
   1628 			if ( t.getType()==ANTLRParser.BLOCK ) {
   1629 				buf.append("(");
   1630 			}
   1631 			else if ( t.getType()==ANTLRParser.ACTION ) {
   1632 				buf.append("{");
   1633 				buf.append(t.getText());
   1634 				buf.append("}");
   1635 			}
   1636 			else if ( t.getType()==ANTLRParser.SEMPRED ||
   1637 					  t.getType()==ANTLRParser.SYN_SEMPRED ||
   1638 					  t.getType()==ANTLRParser.GATED_SEMPRED ||
   1639 					  t.getType()==ANTLRParser.BACKTRACK_SEMPRED )
   1640 			{
   1641 				buf.append("{");
   1642 				buf.append(t.getText());
   1643 				buf.append("}?");
   1644 			}
   1645 			else if ( t.getType()==ANTLRParser.ARG_ACTION ) {
   1646 				buf.append("[");
   1647 				buf.append(t.getText());
   1648 				buf.append("]");
   1649 			}
   1650 			else {
   1651 				buf.append(t.getText());
   1652 			}
   1653 		}
   1654 		String ruleText = buf.toString();
   1655 		//System.out.println("[["+ruleText+"]]");
   1656 		// now put the rule into the lexer grammar template
   1657 		if ( getGrammarIsRoot() ) { // don't build lexers for delegates
   1658 			lexerGrammarST.add("rules", ruleText);
   1659 		}
   1660 		// track this lexer rule's name
   1661 		composite.lexerRules.add(ruleToken.getText());
   1662 	}
   1663 
   1664 	/** If someone does PLUS='+' in the parser, must make sure we get
   1665 	 *  "PLUS : '+' ;" in lexer not "T73 : '+';"
   1666 	 */
   1667 	public void defineLexerRuleForAliasedStringLiteral(String tokenID,
   1668 													   String literal,
   1669 													   int tokenType)
   1670 	{
   1671 		if ( getGrammarIsRoot() ) { // don't build lexers for delegates
   1672 			//System.out.println("defineLexerRuleForAliasedStringLiteral: "+literal+" "+tokenType);
   1673 			lexerGrammarST.addAggr("literals.{ruleName,type,literal}",
   1674 										tokenID,
   1675 										Utils.integer(tokenType),
   1676 										literal);
   1677 		}
   1678 		// track this lexer rule's name
   1679 		composite.lexerRules.add(tokenID);
   1680 	}
   1681 
   1682 	public void defineLexerRuleForStringLiteral(String literal, int tokenType) {
   1683 		//System.out.println("defineLexerRuleForStringLiteral: "+literal+" "+tokenType);
   1684 		// compute new token name like T237 and define it as having tokenType
   1685 		String tokenID = computeTokenNameFromLiteral(tokenType,literal);
   1686 		defineToken(tokenID, tokenType);
   1687 		// tell implicit lexer to define a rule to match the literal
   1688 		if ( getGrammarIsRoot() ) { // don't build lexers for delegates
   1689 			lexerGrammarST.addAggr("literals.{ruleName,type,literal}",
   1690 										tokenID,
   1691 										Utils.integer(tokenType),
   1692 										literal);
   1693 		}
   1694 	}
   1695 
   1696 	public Rule getLocallyDefinedRule(String ruleName) {
   1697 		Rule r = nameToRuleMap.get(ruleName);
   1698 		return r;
   1699 	}
   1700 
   1701 	public Rule getRule(String ruleName) {
   1702 		Rule r = composite.getRule(ruleName);
   1703 		/*
   1704 		if ( r!=null && r.grammar != this ) {
   1705 			System.out.println(name+".getRule("+ruleName+")="+r);
   1706 		}
   1707 		*/
   1708 		return r;
   1709 	}
   1710 
   1711 	public Rule getRule(String scopeName, String ruleName) {
   1712 		if ( scopeName!=null ) { // scope override
   1713 			Grammar scope = composite.getGrammar(scopeName);
   1714 			if ( scope==null ) {
   1715 				return null;
   1716 			}
   1717 			return scope.getLocallyDefinedRule(ruleName);
   1718 		}
   1719 		return getRule(ruleName);
   1720 	}
   1721 
   1722 	public int getRuleIndex(String scopeName, String ruleName) {
   1723 		Rule r = getRule(scopeName, ruleName);
   1724 		if ( r!=null ) {
   1725 			return r.index;
   1726 		}
   1727 		return INVALID_RULE_INDEX;
   1728 	}
   1729 
   1730 	public int getRuleIndex(String ruleName) {
   1731 		return getRuleIndex(null, ruleName);
   1732 	}
   1733 
   1734 	public String getRuleName(int ruleIndex) {
   1735 		Rule r = composite.ruleIndexToRuleList.get(ruleIndex);
   1736 		if ( r!=null ) {
   1737 			return r.name;
   1738 		}
   1739 		return null;
   1740 	}
   1741 
   1742 	/** Should codegen.g gen rule for ruleName?
   1743 	 * 	If synpred, only gen if used in a DFA.
   1744 	 *  If regular rule, only gen if not overridden in delegator
   1745 	 *  Always gen Tokens rule though.
   1746 	 */
   1747 	public boolean generateMethodForRule(String ruleName) {
   1748 		if ( ruleName.equals(ARTIFICIAL_TOKENS_RULENAME) ) {
   1749 			// always generate Tokens rule to satisfy lexer interface
   1750 			// but it may have no alternatives.
   1751 			return true;
   1752 		}
   1753 		if ( overriddenRules.contains(ruleName) ) {
   1754 			// don't generate any overridden rules
   1755 			return false;
   1756 		}
   1757 		// generate if non-synpred or synpred used in a DFA
   1758 		Rule r = getLocallyDefinedRule(ruleName);
   1759 		return !r.isSynPred ||
   1760 			   (r.isSynPred&&synPredNamesUsedInDFA.contains(ruleName));
   1761 	}
   1762 
   1763 	public AttributeScope defineGlobalScope(String name, Token scopeAction) {
   1764 		AttributeScope scope = new AttributeScope(this, name, scopeAction);
   1765 		scopes.put(name,scope);
   1766 		return scope;
   1767 	}
   1768 
   1769 	public AttributeScope createReturnScope(String ruleName, Token retAction) {
   1770 		AttributeScope scope = new AttributeScope(this, ruleName, retAction);
   1771 		scope.isReturnScope = true;
   1772 		return scope;
   1773 	}
   1774 
   1775 	public AttributeScope createRuleScope(String ruleName, Token scopeAction) {
   1776 		AttributeScope scope = new AttributeScope(this, ruleName, scopeAction);
   1777 		scope.isDynamicRuleScope = true;
   1778 		return scope;
   1779 	}
   1780 
   1781 	public AttributeScope createParameterScope(String ruleName, Token argAction) {
   1782 		AttributeScope scope = new AttributeScope(this, ruleName, argAction);
   1783 		scope.isParameterScope = true;
   1784 		return scope;
   1785 	}
   1786 
   1787 	/** Get a global scope */
   1788 	public AttributeScope getGlobalScope(String name) {
   1789 		return scopes.get(name);
   1790 	}
   1791 
   1792 	public Map<String, AttributeScope> getGlobalScopes() {
   1793 		return scopes;
   1794 	}
   1795 
   1796 	/** Define a label defined in a rule r; check the validity then ask the
   1797 	 *  Rule object to actually define it.
   1798 	 */
   1799 	protected void defineLabel(Rule r, Token label, GrammarAST element, int type) {
   1800 		boolean err = nameSpaceChecker.checkForLabelTypeMismatch(r, label, type);
   1801 		if ( err ) {
   1802 			return;
   1803 		}
   1804 		r.defineLabel(label, element, type);
   1805 	}
   1806 
   1807 	public void defineTokenRefLabel(String ruleName,
   1808 									Token label,
   1809 									GrammarAST tokenRef)
   1810 	{
   1811 		Rule r = getLocallyDefinedRule(ruleName);
   1812 		if ( r!=null ) {
   1813 			if ( type==LEXER &&
   1814 				 (tokenRef.getType()==ANTLRParser.CHAR_LITERAL||
   1815 				  tokenRef.getType()==ANTLRParser.BLOCK||
   1816 				  tokenRef.getType()==ANTLRParser.NOT||
   1817 				  tokenRef.getType()==ANTLRParser.CHAR_RANGE||
   1818 				  tokenRef.getType()==ANTLRParser.WILDCARD))
   1819 			{
   1820 				defineLabel(r, label, tokenRef, CHAR_LABEL);
   1821 			}
   1822             else {
   1823 				defineLabel(r, label, tokenRef, TOKEN_LABEL);
   1824 			}
   1825 		}
   1826 	}
   1827 
   1828     public void defineWildcardTreeLabel(String ruleName,
   1829                                            Token label,
   1830                                            GrammarAST tokenRef)
   1831     {
   1832         Rule r = getLocallyDefinedRule(ruleName);
   1833         if ( r!=null ) {
   1834             defineLabel(r, label, tokenRef, WILDCARD_TREE_LABEL);
   1835         }
   1836     }
   1837 
   1838     public void defineWildcardTreeListLabel(String ruleName,
   1839                                            Token label,
   1840                                            GrammarAST tokenRef)
   1841     {
   1842         Rule r = getLocallyDefinedRule(ruleName);
   1843         if ( r!=null ) {
   1844             defineLabel(r, label, tokenRef, WILDCARD_TREE_LIST_LABEL);
   1845         }
   1846     }
   1847 
   1848     public void defineRuleRefLabel(String ruleName,
   1849 								   Token label,
   1850 								   GrammarAST ruleRef)
   1851 	{
   1852 		Rule r = getLocallyDefinedRule(ruleName);
   1853 		if ( r!=null ) {
   1854 			defineLabel(r, label, ruleRef, RULE_LABEL);
   1855 		}
   1856 	}
   1857 
   1858 	public void defineTokenListLabel(String ruleName,
   1859 									 Token label,
   1860 									 GrammarAST element)
   1861 	{
   1862 		Rule r = getLocallyDefinedRule(ruleName);
   1863 		if ( r!=null ) {
   1864 			defineLabel(r, label, element, TOKEN_LIST_LABEL);
   1865 		}
   1866 	}
   1867 
   1868 	public void defineRuleListLabel(String ruleName,
   1869 									Token label,
   1870 									GrammarAST element)
   1871 	{
   1872 		Rule r = getLocallyDefinedRule(ruleName);
   1873 		if ( r!=null ) {
   1874 			if ( !r.getHasMultipleReturnValues() ) {
   1875 				ErrorManager.grammarError(
   1876 					ErrorManager.MSG_LIST_LABEL_INVALID_UNLESS_RETVAL_STRUCT,this,
   1877 					label,label.getText());
   1878 			}
   1879 			defineLabel(r, label, element, RULE_LIST_LABEL);
   1880 		}
   1881 	}
   1882 
   1883 	/** Given a set of all rewrite elements on right of -&gt;, filter for
   1884 	 *  label types such as Grammar.TOKEN_LABEL, Grammar.TOKEN_LIST_LABEL, ...
   1885 	 *  Return a displayable token type name computed from the GrammarAST.
   1886 	 */
   1887 	public Set<String> getLabels(Set<GrammarAST> rewriteElements, int labelType) {
   1888 		Set<String> labels = new HashSet<String>();
   1889 		for (GrammarAST el : rewriteElements) {
   1890 			if ( el.getType()==ANTLRParser.LABEL ) {
   1891 				String labelName = el.getText();
   1892 				Rule enclosingRule = getLocallyDefinedRule(el.enclosingRuleName);
   1893 				if ( enclosingRule==null ) continue;
   1894 				LabelElementPair pair = enclosingRule.getLabel(labelName);
   1895                 /*
   1896                 // if tree grammar and we have a wildcard, only notice it
   1897                 // when looking for rule labels not token label. x=. should
   1898                 // look like a rule ref since could be subtree.
   1899                 if ( type==TREE_PARSER && pair!=null &&
   1900                      pair.elementRef.getType()==ANTLRParser.WILDCARD )
   1901                 {
   1902                     if ( labelType==WILDCARD_TREE_LABEL ) {
   1903                         labels.add(labelName);
   1904                         continue;
   1905                     }
   1906                     else continue;
   1907                 }
   1908                  */
   1909                 // if valid label and type is what we're looking for
   1910 				// and not ref to old value val $rule, add to list
   1911 				if ( pair!=null && pair.type==labelType &&
   1912 					 !labelName.equals(el.enclosingRuleName) )
   1913 				{
   1914 					labels.add(labelName);
   1915 				}
   1916 			}
   1917 		}
   1918 		return labels;
   1919 	}
   1920 
   1921 	/** Before generating code, we examine all actions that can have
   1922 	 *  $x.y and $y stuff in them because some code generation depends on
   1923 	 *  Rule.referencedPredefinedRuleAttributes.  I need to remove unused
   1924 	 *  rule labels for example.
   1925 	 */
   1926 	protected void examineAllExecutableActions() {
   1927 		Collection<Rule> rules = getRules();
   1928 		for (Rule r : rules) {
   1929 			// walk all actions within the rule elements, args, and exceptions
   1930 			List<GrammarAST> actions = r.getInlineActions();
   1931 			for (int i = 0; i < actions.size(); i++) {
   1932 				GrammarAST actionAST = actions.get(i);
   1933 				ActionAnalysis sniffer =
   1934 					new ActionAnalysis(this, r.name, actionAST);
   1935 				sniffer.analyze();
   1936 			}
   1937 			// walk any named actions like @init, @after
   1938 			Collection<? extends Object> namedActions = r.getActions().values();
   1939 			for (Object namedAction : namedActions) {
   1940 				GrammarAST actionAST = (GrammarAST)namedAction;
   1941 				ActionAnalysis sniffer =
   1942 					new ActionAnalysis(this, r.name, actionAST);
   1943 				sniffer.analyze();
   1944 			}
   1945 		}
   1946 	}
   1947 
   1948 	/** Remove all labels on rule refs whose target rules have no return value.
   1949 	 *  Do this for all rules in grammar.
   1950 	 */
   1951 	public void checkAllRulesForUselessLabels() {
   1952 		if ( type==LEXER ) {
   1953 			return;
   1954 		}
   1955 		Set<String> rules = nameToRuleMap.keySet();
   1956 		for (String ruleName : rules) {
   1957 			Rule r = getRule(ruleName);
   1958 			removeUselessLabels(r.getRuleLabels());
   1959 			removeUselessLabels(r.getRuleListLabels());
   1960 		}
   1961 	}
   1962 
   1963 	/** A label on a rule is useless if the rule has no return value, no
   1964 	 *  tree or template output, and it is not referenced in an action.
   1965 	 */
   1966 	protected void removeUselessLabels(Map<String, LabelElementPair> ruleToElementLabelPairMap) {
   1967 		if ( ruleToElementLabelPairMap==null ) {
   1968 			return;
   1969 		}
   1970 		Collection<LabelElementPair> labels = ruleToElementLabelPairMap.values();
   1971 		List<String> kill = new ArrayList<String>();
   1972 		for (LabelElementPair pair : labels) {
   1973 			Rule refdRule = getRule(pair.elementRef.getText());
   1974 			if ( refdRule!=null && !refdRule.getHasReturnValue() && !pair.actionReferencesLabel ) {
   1975 				//System.out.println(pair.label.getText()+" is useless");
   1976 				kill.add(pair.label.getText());
   1977 			}
   1978 		}
   1979 		for (int i = 0; i < kill.size(); i++) {
   1980 			String labelToKill = kill.get(i);
   1981 			// System.out.println("kill "+labelToKill);
   1982 			ruleToElementLabelPairMap.remove(labelToKill);
   1983 		}
   1984 	}
   1985 
   1986 	/** Track a rule reference within an outermost alt of a rule.  Used
   1987 	 *  at the moment to decide if $ruleref refers to a unique rule ref in
   1988 	 *  the alt.  Rewrite rules force tracking of all rule AST results.
   1989 	 *
   1990 	 *  This data is also used to verify that all rules have been defined.
   1991 	 */
   1992 	public void altReferencesRule(String enclosingRuleName,
   1993 								  GrammarAST refScopeAST,
   1994 								  GrammarAST refAST,
   1995 								  int outerAltNum)
   1996 	{
   1997 		/* Do nothing for now; not sure need; track S.x as x
   1998 		String scope = null;
   1999 		Grammar scopeG = null;
   2000 		if ( refScopeAST!=null ) {
   2001 			if ( !scopedRuleRefs.contains(refScopeAST) ) {
   2002 				scopedRuleRefs.add(refScopeAST);
   2003 			}
   2004 			scope = refScopeAST.getText();
   2005 		}
   2006 		*/
   2007 		Rule r = getRule(enclosingRuleName);
   2008 		if ( r==null ) {
   2009 			return; // no error here; see NameSpaceChecker
   2010 		}
   2011 		r.trackRuleReferenceInAlt(refAST, outerAltNum);
   2012 		Token refToken = refAST.getToken();
   2013 		if ( !ruleRefs.contains(refAST) ) {
   2014 			ruleRefs.add(refAST);
   2015 		}
   2016 	}
   2017 
   2018 	/** Track a token reference within an outermost alt of a rule.  Used
   2019 	 *  to decide if $tokenref refers to a unique token ref in
   2020 	 *  the alt. Does not track literals!
   2021 	 *
   2022 	 *  Rewrite rules force tracking of all tokens.
   2023 	 */
   2024 	public void altReferencesTokenID(String ruleName, GrammarAST refAST, int outerAltNum) {
   2025 		Rule r = getLocallyDefinedRule(ruleName);
   2026 		if ( r==null ) {
   2027 			return;
   2028 		}
   2029 		r.trackTokenReferenceInAlt(refAST, outerAltNum);
   2030 		if ( !tokenIDRefs.contains(refAST.getToken()) ) {
   2031 			tokenIDRefs.add(refAST.getToken());
   2032 		}
   2033 	}
   2034 
   2035 	/** To yield smaller, more readable code, track which rules have their
   2036 	 *  predefined attributes accessed.  If the rule has no user-defined
   2037 	 *  return values, then don't generate the return value scope classes
   2038 	 *  etc...  Make the rule have void return value.  Don't track for lexer
   2039 	 *  rules.
   2040 	 */
   2041 	public void referenceRuleLabelPredefinedAttribute(String ruleName) {
   2042 		Rule r = getRule(ruleName);
   2043 		if ( r!=null && type!=LEXER ) {
   2044 			// indicate that an action ref'd an attr unless it's in a lexer
   2045 			// so that $ID.text refs don't force lexer rules to define
   2046 			// return values...Token objects are created by the caller instead.
   2047 			r.referencedPredefinedRuleAttributes = true;
   2048 		}
   2049 	}
   2050 
   2051 	public List<? extends Collection<? extends Rule>> checkAllRulesForLeftRecursion() {
   2052 		return sanity.checkAllRulesForLeftRecursion();
   2053 	}
   2054 
   2055 	/** Return a list of left-recursive rules; no analysis can be done
   2056 	 *  successfully on these.  Useful to skip these rules then and also
   2057 	 *  for ANTLRWorks to highlight them.
   2058 	 */
   2059 	public Set<Rule> getLeftRecursiveRules() {
   2060 		if ( nfa==null ) {
   2061 			buildNFA();
   2062 		}
   2063 		if ( leftRecursiveRules!=null ) {
   2064 			return leftRecursiveRules;
   2065 		}
   2066 		sanity.checkAllRulesForLeftRecursion();
   2067 		return leftRecursiveRules;
   2068 	}
   2069 
   2070 	public void checkRuleReference(GrammarAST scopeAST,
   2071 								   GrammarAST refAST,
   2072 								   GrammarAST argsAST,
   2073 								   String currentRuleName)
   2074 	{
   2075 		sanity.checkRuleReference(scopeAST, refAST, argsAST, currentRuleName);
   2076 	}
   2077 
   2078 	/** Rules like "a : ;" and "a : {...} ;" should not generate
   2079 	 *  try/catch blocks for RecognitionException.  To detect this
   2080 	 *  it's probably ok to just look for any reference to an atom
   2081 	 *  that can match some input.  W/o that, the rule is unlikey to have
   2082 	 *  any else.
   2083 	 */
   2084 	public boolean isEmptyRule(GrammarAST block) {
   2085 		BitSet nonEmptyTerminals = new BitSet();
   2086 		nonEmptyTerminals.set(ANTLRParser.TOKEN_REF);
   2087 		nonEmptyTerminals.set(ANTLRParser.STRING_LITERAL);
   2088 		nonEmptyTerminals.set(ANTLRParser.CHAR_LITERAL);
   2089 		nonEmptyTerminals.set(ANTLRParser.WILDCARD);
   2090 		nonEmptyTerminals.set(ANTLRParser.RULE_REF);
   2091 		return findFirstTypeOutsideRewrite(block, nonEmptyTerminals) == null;
   2092 	}
   2093 
   2094 	protected GrammarAST findFirstTypeOutsideRewrite(GrammarAST block, BitSet types) {
   2095 		ArrayList<GrammarAST> worklist = new ArrayList<GrammarAST>();
   2096 		worklist.add(block);
   2097 		while (!worklist.isEmpty()) {
   2098 			GrammarAST current = worklist.remove(worklist.size() - 1);
   2099 			if (current.getType() == ANTLRParser.REWRITE) {
   2100 				continue;
   2101 			}
   2102 
   2103 			if (current.getType() >= 0 && types.get(current.getType())) {
   2104 				return current;
   2105 			}
   2106 
   2107 			worklist.addAll(Arrays.asList(current.getChildrenAsArray()));
   2108 		}
   2109 
   2110 		return null;
   2111 	}
   2112 
   2113 	public boolean isAtomTokenType(int ttype) {
   2114 		return ttype == ANTLRParser.WILDCARD||
   2115 			   ttype == ANTLRParser.CHAR_LITERAL||
   2116 			   ttype == ANTLRParser.CHAR_RANGE||
   2117 			   ttype == ANTLRParser.STRING_LITERAL||
   2118 			   ttype == ANTLRParser.NOT||
   2119 			   (type != LEXER && ttype == ANTLRParser.TOKEN_REF);
   2120 	}
   2121 
   2122 	public int getTokenType(String tokenName) {
   2123 		Integer I;
   2124 		if ( tokenName.charAt(0)=='\'') {
   2125 			I = composite.stringLiteralToTypeMap.get(tokenName);
   2126 		}
   2127 		else { // must be a label like ID
   2128 			I = composite.tokenIDToTypeMap.get(tokenName);
   2129 		}
   2130 		int i = (I!=null)? I :Label.INVALID;
   2131 		//System.out.println("grammar type "+type+" "+tokenName+"->"+i);
   2132 		return i;
   2133 	}
   2134 
   2135 	/** Get the list of tokens that are IDs like BLOCK and LPAREN */
   2136 	public Set<String> getTokenIDs() {
   2137 		return composite.tokenIDToTypeMap.keySet();
   2138 	}
   2139 
   2140 	/** Return an ordered integer list of token types that have no
   2141 	 *  corresponding token ID like INT or KEYWORD_BEGIN; for stuff
   2142 	 *  like 'begin'.
   2143 	 */
   2144 	public Collection<Integer> getTokenTypesWithoutID() {
   2145 		List<Integer> types = new ArrayList<Integer>();
   2146 		for (int t =Label.MIN_TOKEN_TYPE; t<=getMaxTokenType(); t++) {
   2147 			String name = getTokenDisplayName(t);
   2148 			if ( name.charAt(0)=='\'' ) {
   2149 				types.add(Utils.integer(t));
   2150 			}
   2151 		}
   2152 		return types;
   2153 	}
   2154 
   2155 	/** Get a list of all token IDs and literals that have an associated
   2156 	 *  token type.
   2157 	 */
   2158 	public Set<String> getTokenDisplayNames() {
   2159 		Set<String> names = new HashSet<String>();
   2160 		for (int t =Label.MIN_TOKEN_TYPE; t <=getMaxTokenType(); t++) {
   2161 			names.add(getTokenDisplayName(t));
   2162 		}
   2163 		return names;
   2164 	}
   2165 
   2166 	/** Given a literal like (the 3 char sequence with single quotes) 'a',
   2167 	 *  return the int value of 'a'. Convert escape sequences here also.
   2168 	 *  ANTLR's antlr.g parser does not convert escape sequences.
   2169 	 *
   2170 	 *  11/26/2005: I changed literals to always be '...' even for strings.
   2171 	 *  This routine still works though.
   2172 	 */
   2173 	public static int getCharValueFromGrammarCharLiteral(String literal) {
   2174 		switch ( literal.length() ) {
   2175 			case 3 :
   2176 				// 'x'
   2177 				return literal.charAt(1); // no escape char
   2178 			case 4 :
   2179 				// '\x'  (antlr lexer will catch invalid char)
   2180 				if ( Character.isDigit(literal.charAt(2)) ) {
   2181 					ErrorManager.error(ErrorManager.MSG_SYNTAX_ERROR,
   2182 									   "invalid char literal: "+literal);
   2183 					return -1;
   2184 				}
   2185 				int escChar = literal.charAt(2);
   2186 				int charVal = ANTLRLiteralEscapedCharValue[escChar];
   2187 				if ( charVal==0 ) {
   2188 					// Unnecessary escapes like '\{' should just yield {
   2189 					return escChar;
   2190 				}
   2191 				return charVal;
   2192 			case 8 :
   2193 				// '\u1234'
   2194 				String unicodeChars = literal.substring(3,literal.length()-1);
   2195 				return Integer.parseInt(unicodeChars, 16);
   2196 			default :
   2197 				ErrorManager.error(ErrorManager.MSG_SYNTAX_ERROR,
   2198 								   "invalid char literal: "+literal);
   2199 				return -1;
   2200 		}
   2201 	}
   2202 
   2203 	/** ANTLR does not convert escape sequences during the parse phase because
   2204 	 *  it could not know how to print String/char literals back out when
   2205 	 *  printing grammars etc...  Someone in China might use the real unicode
   2206 	 *  char in a literal as it will display on their screen; when printing
   2207 	 *  back out, I could not know whether to display or use a unicode escape.
   2208 	 *
   2209 	 *  This routine converts a string literal with possible escape sequences
   2210 	 *  into a pure string of 16-bit char values.  Escapes and unicode \u0000
   2211 	 *  specs are converted to pure chars.  return in a buffer; people may
   2212 	 *  want to walk/manipulate further.
   2213 	 *
   2214 	 *  The NFA construction routine must know the actual char values.
   2215 	 */
   2216 	public static StringBuffer getUnescapedStringFromGrammarStringLiteral(String literal) {
   2217 		//System.out.println("escape: ["+literal+"]");
   2218 		StringBuffer buf = new StringBuffer();
   2219 		int last = literal.length()-1; // skip quotes on outside
   2220 		for (int i=1; i<last; i++) {
   2221 			char c = literal.charAt(i);
   2222 			if ( c=='\\' ) {
   2223 				i++;
   2224 				c = literal.charAt(i);
   2225 				if ( Character.toUpperCase(c)=='U' ) {
   2226 					// \u0000
   2227 					i++;
   2228 					String unicodeChars = literal.substring(i,i+4);
   2229 					// parse the unicode 16 bit hex value
   2230 					int val = Integer.parseInt(unicodeChars, 16);
   2231 					i+=4-1; // loop will inc by 1; only jump 3 then
   2232 					buf.append((char)val);
   2233 				}
   2234 				else if ( Character.isDigit(c) ) {
   2235 					ErrorManager.error(ErrorManager.MSG_SYNTAX_ERROR,
   2236 									   "invalid char literal: "+literal);
   2237 					buf.append("\\").append(c);
   2238 				}
   2239 				else {
   2240 					buf.append((char)ANTLRLiteralEscapedCharValue[c]); // normal \x escape
   2241 				}
   2242 			}
   2243 			else {
   2244 				buf.append(c); // simple char x
   2245 			}
   2246 		}
   2247 		//System.out.println("string: ["+buf.toString()+"]");
   2248 		return buf;
   2249 	}
   2250 
   2251 	/** Pull your token definitions from an existing grammar in memory.
   2252 	 *  You must use Grammar() ctor then this method then setGrammarContent()
   2253 	 *  to make this work.  This was useful primarily for testing and
   2254 	 *  interpreting grammars until I added import grammar functionality.
   2255 	 *  When you import a grammar you implicitly import its vocabulary as well
   2256 	 *  and keep the same token type values.
   2257 	 *
   2258 	 *  Returns the max token type found.
   2259 	 */
   2260 	public int importTokenVocabulary(Grammar importFromGr) {
   2261 		Set<String> importedTokenIDs = importFromGr.getTokenIDs();
   2262 		for (String tokenID : importedTokenIDs) {
   2263 			int tokenType = importFromGr.getTokenType(tokenID);
   2264 			composite.maxTokenType = Math.max(composite.maxTokenType,tokenType);
   2265 			if ( tokenType>=Label.MIN_TOKEN_TYPE ) {
   2266 				//System.out.println("import token from grammar "+tokenID+"="+tokenType);
   2267 				defineToken(tokenID, tokenType);
   2268 			}
   2269 		}
   2270 		return composite.maxTokenType; // return max found
   2271 	}
   2272 
   2273 	/** Import the rules/tokens of a delegate grammar. All delegate grammars are
   2274 	 *  read during the ctor of first Grammar created.
   2275 	 *
   2276 	 *  Do not create NFA here because NFA construction needs to hook up with
   2277 	 *  overridden rules in delegation root grammar.
   2278 	 */
   2279 	public void importGrammar(GrammarAST grammarNameAST, String label) {
   2280 		String grammarName = grammarNameAST.getText();
   2281 		//System.out.println("import "+gfile.getName());
   2282 		String gname = grammarName + GRAMMAR_FILE_EXTENSION;
   2283 		BufferedReader br = null;
   2284 		try {
   2285 			String fullName = tool.getLibraryFile(gname);
   2286 			FileReader fr = new FileReader(fullName);
   2287 			br = new BufferedReader(fr);
   2288 			Grammar delegateGrammar;
   2289 			delegateGrammar = new Grammar(tool, gname, composite);
   2290 			delegateGrammar.label = label;
   2291 
   2292 			addDelegateGrammar(delegateGrammar);
   2293 
   2294 			delegateGrammar.parseAndBuildAST(br);
   2295 			delegateGrammar.addRulesForSyntacticPredicates();
   2296 			if ( !validImport(delegateGrammar) ) {
   2297 				ErrorManager.grammarError(ErrorManager.MSG_INVALID_IMPORT,
   2298 										  this,
   2299 										  grammarNameAST.token,
   2300 										  this,
   2301 										  delegateGrammar);
   2302 				return;
   2303 			}
   2304 			if ( this.type==COMBINED &&
   2305 				 (delegateGrammar.name.equals(this.name+grammarTypeToFileNameSuffix[LEXER])||
   2306 				  delegateGrammar.name.equals(this.name+grammarTypeToFileNameSuffix[PARSER])) )
   2307 			{
   2308 				ErrorManager.grammarError(ErrorManager.MSG_IMPORT_NAME_CLASH,
   2309 										  this,
   2310 										  grammarNameAST.token,
   2311 										  this,
   2312 										  delegateGrammar);
   2313 				return;
   2314 			}
   2315 			if ( delegateGrammar.grammarTree!=null ) {
   2316 				// we have a valid grammar
   2317 				// deal with combined grammars
   2318 				if ( delegateGrammar.type == LEXER && this.type == COMBINED ) {
   2319 					// ooops, we wasted some effort; tell lexer to read it in
   2320 					// later
   2321 					lexerGrammarST.add("imports", grammarName);
   2322 					// but, this parser grammar will need the vocab
   2323 					// so add to composite anyway so we suck in the tokens later
   2324 				}
   2325 			}
   2326 			//System.out.println("Got grammar:\n"+delegateGrammar);
   2327 		}
   2328 		catch (IOException ioe) {
   2329 			ErrorManager.error(ErrorManager.MSG_CANNOT_OPEN_FILE,
   2330 							   gname,
   2331 							   ioe);
   2332 		}
   2333 		finally {
   2334 			if ( br!=null ) {
   2335 				try {
   2336 					br.close();
   2337 				}
   2338 				catch (IOException ioe) {
   2339 					ErrorManager.error(ErrorManager.MSG_CANNOT_CLOSE_FILE,
   2340 									   gname,
   2341 									   ioe);
   2342 				}
   2343 			}
   2344 		}
   2345 	}
   2346 
   2347 	/** add new delegate to composite tree */
   2348 	protected void addDelegateGrammar(Grammar delegateGrammar) {
   2349 		CompositeGrammarTree t = composite.delegateGrammarTreeRoot.findNode(this);
   2350 		t.addChild(new CompositeGrammarTree(delegateGrammar));
   2351 		// make sure new grammar shares this composite
   2352 		delegateGrammar.composite = this.composite;
   2353 	}
   2354 
   2355 	/** Load a vocab file &lt;vocabName&gt;.tokens and return max token type found. */
   2356 	public int importTokenVocabulary(GrammarAST tokenVocabOptionAST,
   2357 									 String vocabName)
   2358 	{
   2359 		if ( !getGrammarIsRoot() ) {
   2360 			ErrorManager.grammarWarning(ErrorManager.MSG_TOKEN_VOCAB_IN_DELEGATE,
   2361 										this,
   2362 										tokenVocabOptionAST.token,
   2363 										name);
   2364 			return composite.maxTokenType;
   2365 		}
   2366 
   2367 		File fullFile = tool.getImportedVocabFile(vocabName);
   2368 		try {
   2369 			FileReader fr = new FileReader(fullFile);
   2370 			BufferedReader br = new BufferedReader(fr);
   2371 			StreamTokenizer tokenizer = new StreamTokenizer(br);
   2372 			tokenizer.parseNumbers();
   2373 			tokenizer.wordChars('_', '_');
   2374 			tokenizer.eolIsSignificant(true);
   2375 			tokenizer.slashSlashComments(true);
   2376 			tokenizer.slashStarComments(true);
   2377 			tokenizer.ordinaryChar('=');
   2378 			tokenizer.quoteChar('\'');
   2379 			tokenizer.whitespaceChars(' ',' ');
   2380 			tokenizer.whitespaceChars('\t','\t');
   2381 			int lineNum = 1;
   2382 			int token = tokenizer.nextToken();
   2383 			while (token != StreamTokenizer.TT_EOF) {
   2384 				String tokenID;
   2385 				if ( token == StreamTokenizer.TT_WORD ) {
   2386 					tokenID = tokenizer.sval;
   2387 				}
   2388 				else if ( token == '\'' ) {
   2389 					tokenID = "'"+tokenizer.sval+"'";
   2390 				}
   2391 				else {
   2392 					ErrorManager.error(ErrorManager.MSG_TOKENS_FILE_SYNTAX_ERROR,
   2393 									   vocabName+CodeGenerator.VOCAB_FILE_EXTENSION,
   2394 									   Utils.integer(lineNum));
   2395 					while ( tokenizer.nextToken() != StreamTokenizer.TT_EOL ) {}
   2396 					token = tokenizer.nextToken();
   2397 					continue;
   2398 				}
   2399 				token = tokenizer.nextToken();
   2400 				if ( token != '=' ) {
   2401 					ErrorManager.error(ErrorManager.MSG_TOKENS_FILE_SYNTAX_ERROR,
   2402 									   vocabName+CodeGenerator.VOCAB_FILE_EXTENSION,
   2403 									   Utils.integer(lineNum));
   2404 					while ( tokenizer.nextToken() != StreamTokenizer.TT_EOL ) {}
   2405 					token = tokenizer.nextToken();
   2406 					continue;
   2407 				}
   2408 				token = tokenizer.nextToken(); // skip '='
   2409 				if ( token != StreamTokenizer.TT_NUMBER ) {
   2410 					ErrorManager.error(ErrorManager.MSG_TOKENS_FILE_SYNTAX_ERROR,
   2411 									   vocabName+CodeGenerator.VOCAB_FILE_EXTENSION,
   2412 									   Utils.integer(lineNum));
   2413 					while ( tokenizer.nextToken() != StreamTokenizer.TT_EOL ) {}
   2414 					token = tokenizer.nextToken();
   2415 					continue;
   2416 				}
   2417 				int tokenType = (int)tokenizer.nval;
   2418 				token = tokenizer.nextToken();
   2419 				//System.out.println("import "+tokenID+"="+tokenType);
   2420 				composite.maxTokenType = Math.max(composite.maxTokenType,tokenType);
   2421 				defineToken(tokenID, tokenType);
   2422 				lineNum++;
   2423 				if ( token != StreamTokenizer.TT_EOL ) {
   2424 					ErrorManager.error(ErrorManager.MSG_TOKENS_FILE_SYNTAX_ERROR,
   2425 									   vocabName+CodeGenerator.VOCAB_FILE_EXTENSION,
   2426 									   Utils.integer(lineNum));
   2427 					while ( tokenizer.nextToken() != StreamTokenizer.TT_EOL ) {}
   2428 					token = tokenizer.nextToken();
   2429 					continue;
   2430 				}
   2431 				token = tokenizer.nextToken(); // skip newline
   2432 			}
   2433 			br.close();
   2434 		}
   2435 		catch (FileNotFoundException fnfe) {
   2436 			ErrorManager.error(ErrorManager.MSG_CANNOT_FIND_TOKENS_FILE,
   2437 							   fullFile);
   2438 		}
   2439 		catch (IOException ioe) {
   2440 			ErrorManager.error(ErrorManager.MSG_ERROR_READING_TOKENS_FILE,
   2441 							   fullFile,
   2442 							   ioe);
   2443 		}
   2444 		catch (Exception e) {
   2445 			ErrorManager.error(ErrorManager.MSG_ERROR_READING_TOKENS_FILE,
   2446 							   fullFile,
   2447 							   e);
   2448 		}
   2449 		return composite.maxTokenType;
   2450 	}
   2451 
   2452 	/** Given a token type, get a meaningful name for it such as the ID
   2453 	 *  or string literal.  If this is a lexer and the ttype is in the
   2454 	 *  char vocabulary, compute an ANTLR-valid (possibly escaped) char literal.
   2455 	 */
   2456 	public String getTokenDisplayName(int ttype) {
   2457 		String tokenName;
   2458 		int index;
   2459 		// inside any target's char range and is lexer grammar?
   2460 		if ( this.type==LEXER &&
   2461 			 ttype >= Label.MIN_CHAR_VALUE && ttype <= Label.MAX_CHAR_VALUE )
   2462 		{
   2463 			return getANTLRCharLiteralForChar(ttype);
   2464 		}
   2465 		// faux label?
   2466 		else if ( ttype<0 ) {
   2467 			tokenName = composite.typeToTokenList.get(Label.NUM_FAUX_LABELS+ttype);
   2468 		}
   2469 		else {
   2470 			// compute index in typeToTokenList for ttype
   2471 			index = ttype-1; // normalize to 0..n-1
   2472 			index += Label.NUM_FAUX_LABELS;     // jump over faux tokens
   2473 
   2474 			if ( index<composite.typeToTokenList.size() ) {
   2475 				tokenName = composite.typeToTokenList.get(index);
   2476 				if ( tokenName!=null &&
   2477 					 tokenName.startsWith(AUTO_GENERATED_TOKEN_NAME_PREFIX) )
   2478 				{
   2479 					tokenName = composite.typeToStringLiteralList.get(ttype);
   2480 				}
   2481 			}
   2482 			else {
   2483 				tokenName = String.valueOf(ttype);
   2484 			}
   2485 		}
   2486 		//System.out.println("getTokenDisplayName ttype="+ttype+", index="+index+", name="+tokenName);
   2487 		return tokenName;
   2488 	}
   2489 
   2490 	/** Get the list of ANTLR String literals */
   2491 	public Set<String> getStringLiterals() {
   2492 		return composite.stringLiteralToTypeMap.keySet();
   2493 	}
   2494 
   2495 	public String getGrammarTypeString() {
   2496 		return grammarTypeToString[type];
   2497 	}
   2498 
   2499 	public int getGrammarMaxLookahead() {
   2500 		if ( global_k>=0 ) {
   2501 			return global_k;
   2502 		}
   2503 		Object k = getOption("k");
   2504 		if ( k==null ) {
   2505 			global_k = 0;
   2506 		}
   2507 		else if (k instanceof Integer) {
   2508 			Integer kI = (Integer)k;
   2509 			global_k = kI;
   2510 		}
   2511 		else {
   2512 			// must be String "*"
   2513 			if ( k.equals("*") ) {  // this the default anyway
   2514 				global_k = 0;
   2515 			}
   2516 		}
   2517 		return global_k;
   2518 	}
   2519 
   2520 	/** Save the option key/value pair and process it; return the key
   2521 	 *  or null if invalid option.
   2522 	 */
   2523 	public String setOption(String key, Object value, Token optionsStartToken) {
   2524 		if ( legalOption(key) ) {
   2525 			ErrorManager.grammarError(ErrorManager.MSG_ILLEGAL_OPTION,
   2526 									  this,
   2527 									  optionsStartToken,
   2528 									  key);
   2529 			return null;
   2530 		}
   2531 		if ( !optionIsValid(key, value) ) {
   2532 			return null;
   2533 		}
   2534         if ( key.equals("backtrack") && value.toString().equals("true") ) {
   2535             composite.getRootGrammar().atLeastOneBacktrackOption = true;
   2536         }
   2537         if ( options==null ) {
   2538 			options = new HashMap<String, Object>();
   2539 		}
   2540 		options.put(key, value);
   2541 		return key;
   2542 	}
   2543 
   2544 	public boolean legalOption(String key) {
   2545 		switch ( type ) {
   2546 			case LEXER :
   2547 				return !legalLexerOptions.contains(key);
   2548 			case PARSER :
   2549 				return !legalParserOptions.contains(key);
   2550 			case TREE_PARSER :
   2551 				return !legalTreeParserOptions.contains(key);
   2552 			default :
   2553 				return !legalParserOptions.contains(key);
   2554 		}
   2555 	}
   2556 
   2557 	public void setOptions(Map<String, Object> options, Token optionsStartToken) {
   2558 		if ( options==null ) {
   2559 			this.options = null;
   2560 			return;
   2561 		}
   2562 		Set<String> keys = options.keySet();
   2563 		for (Iterator<String> it = keys.iterator(); it.hasNext();) {
   2564 			String optionName = it.next();
   2565 			Object optionValue = options.get(optionName);
   2566 			String stored=setOption(optionName, optionValue, optionsStartToken);
   2567 			if ( stored==null ) {
   2568 				it.remove();
   2569 			}
   2570 		}
   2571 	}
   2572 
   2573 	public Object getOption(String key) {
   2574 		return composite.getOption(key);
   2575 	}
   2576 
   2577 	public Object getLocallyDefinedOption(String key) {
   2578 		Object value = null;
   2579 		if ( options!=null ) {
   2580 			value = options.get(key);
   2581 		}
   2582 		if ( value==null ) {
   2583 			value = defaultOptions.get(key);
   2584 		}
   2585 		return value;
   2586 	}
   2587 
   2588 	public Object getBlockOption(GrammarAST blockAST, String key) {
   2589 		String v = (String)blockAST.getBlockOption(key);
   2590 		if ( v!=null ) {
   2591 			return v;
   2592 		}
   2593 		if ( type==Grammar.LEXER ) {
   2594 			return defaultLexerBlockOptions.get(key);
   2595 		}
   2596 		return defaultBlockOptions.get(key);
   2597 	}
   2598 
   2599 	public int getUserMaxLookahead(int decision) {
   2600 		int user_k = 0;
   2601 		GrammarAST blockAST = nfa.grammar.getDecisionBlockAST(decision);
   2602 		Object k = blockAST.getBlockOption("k");
   2603 		if ( k==null ) {
   2604 			user_k = nfa.grammar.getGrammarMaxLookahead();
   2605 			return user_k;
   2606 		}
   2607 		if (k instanceof Integer) {
   2608 			Integer kI = (Integer)k;
   2609 			user_k = kI;
   2610 		}
   2611 		else {
   2612 			// must be String "*"
   2613 			if ( k.equals("*") ) {
   2614 				user_k = 0;
   2615 			}
   2616 		}
   2617 		return user_k;
   2618 	}
   2619 
   2620 	public boolean getAutoBacktrackMode(int decision) {
   2621 		NFAState decisionNFAStartState = getDecisionNFAStartState(decision);
   2622 		String autoBacktrack =
   2623 			(String)getBlockOption(decisionNFAStartState.associatedASTNode, "backtrack");
   2624 
   2625 		if ( autoBacktrack==null ) {
   2626 			autoBacktrack = (String)nfa.grammar.getOption("backtrack");
   2627 		}
   2628 		return autoBacktrack!=null&&autoBacktrack.equals("true");
   2629 	}
   2630 
   2631 	public boolean optionIsValid(String key, Object value) {
   2632 		return true;
   2633 	}
   2634 
   2635 	public boolean buildAST() {
   2636 		String outputType = (String)getOption("output");
   2637 		if ( outputType!=null ) {
   2638 			return outputType.toString().equals("AST");
   2639 		}
   2640 		return false;
   2641 	}
   2642 
   2643 	public boolean rewriteMode() {
   2644 		Object outputType = getOption("rewrite");
   2645 		if ( outputType!=null ) {
   2646 			return outputType.toString().equals("true");
   2647 		}
   2648 		return false;
   2649 	}
   2650 
   2651 	public boolean isBuiltFromString() {
   2652 		return builtFromString;
   2653 	}
   2654 
   2655 	public boolean buildTemplate() {
   2656 		String outputType = (String)getOption("output");
   2657 		if ( outputType!=null ) {
   2658 			return outputType.toString().equals("template");
   2659 		}
   2660 		return false;
   2661 	}
   2662 
   2663 	public Collection<Rule> getRules() {
   2664 		return nameToRuleMap.values();
   2665 	}
   2666 
   2667 	/** Get the set of Rules that need to have manual delegations
   2668 	 *  like "void rule() { importedGrammar.rule(); }"
   2669 	 *
   2670 	 *  If this grammar is master, get list of all rule definitions from all
   2671 	 *  delegate grammars.  Only master has complete interface from combined
   2672 	 *  grammars...we will generated delegates as helper objects.
   2673 	 *
   2674 	 *  Composite grammars that are not the root/master do not have complete
   2675 	 *  interfaces.  It is not my intention that people use subcomposites.
   2676 	 *  Only the outermost grammar should be used from outside code.  The
   2677 	 *  other grammar components are specifically generated to work only
   2678 	 *  with the master/root.
   2679 	 *
   2680 	 *  delegatedRules = imported - overridden
   2681 	 */
   2682 	public Set<? extends Rule> getDelegatedRules() {
   2683 		return composite.getDelegatedRules(this);
   2684 	}
   2685 
   2686 	/** Get set of all rules imported from all delegate grammars even if
   2687 	 *  indirectly delegated.
   2688 	 */
   2689 	public Set<? extends Rule> getAllImportedRules() {
   2690 		return composite.getAllImportedRules(this);
   2691 	}
   2692 
   2693 	/** Get list of all delegates from all grammars directly or indirectly
   2694 	 *  imported into this grammar.
   2695 	 */
   2696 	public List<Grammar> getDelegates() {
   2697 		return composite.getDelegates(this);
   2698 	}
   2699 
   2700 	public boolean getHasDelegates() {
   2701 	   return !getDelegates().isEmpty();
   2702 	}
   2703 
   2704 	public List<String> getDelegateNames() {
   2705 		// compute delegates:{Grammar g | return g.name;}
   2706 		List<String> names = new ArrayList<String>();
   2707 		List<Grammar> delegates = composite.getDelegates(this);
   2708 		if ( delegates!=null ) {
   2709 			for (Grammar g : delegates) {
   2710 				names.add(g.name);
   2711 			}
   2712 		}
   2713 		return names;
   2714 	}
   2715 
   2716 	public List<Grammar> getDirectDelegates() {
   2717 		return composite.getDirectDelegates(this);
   2718 	}
   2719 
   2720 	/** Get delegates below direct delegates */
   2721 	public List<Grammar> getIndirectDelegates() {
   2722 		return composite.getIndirectDelegates(this);
   2723 	}
   2724 
   2725 	/** Get list of all delegators.  This amounts to the grammars on the path
   2726 	 *  to the root of the delegation tree.
   2727 	 */
   2728 	public List<Grammar> getDelegators() {
   2729 		return composite.getDelegators(this);
   2730 	}
   2731 
   2732 	/** Who's my direct parent grammar? */
   2733 	public Grammar getDelegator() {
   2734 		return composite.getDelegator(this);
   2735 	}
   2736 
   2737 	public Set<Rule> getDelegatedRuleReferences() {
   2738 		return delegatedRuleReferences;
   2739 	}
   2740 
   2741 	public boolean getGrammarIsRoot() {
   2742 		return composite.delegateGrammarTreeRoot.grammar == this;
   2743 	}
   2744 
   2745 	public void setRuleAST(String ruleName, GrammarAST t) {
   2746 		Rule r = getLocallyDefinedRule(ruleName);
   2747 		if ( r!=null ) {
   2748 			r.tree = t;
   2749 			r.EORNode = t.getLastChild();
   2750 		}
   2751 	}
   2752 
   2753 	public NFAState getRuleStartState(String ruleName) {
   2754 		return getRuleStartState(null, ruleName);
   2755 	}
   2756 
   2757 	public NFAState getRuleStartState(String scopeName, String ruleName) {
   2758 		Rule r = getRule(scopeName, ruleName);
   2759 		if ( r!=null ) {
   2760 			//System.out.println("getRuleStartState("+scopeName+", "+ruleName+")="+r.startState);
   2761 			return r.startState;
   2762 		}
   2763 		//System.out.println("getRuleStartState("+scopeName+", "+ruleName+")=null");
   2764 		return null;
   2765 	}
   2766 
   2767 	public String getRuleModifier(String ruleName) {
   2768 		Rule r = getRule(ruleName);
   2769 		if ( r!=null ) {
   2770 			return r.modifier;
   2771 		}
   2772 		return null;
   2773 	}
   2774 
   2775 	public NFAState getRuleStopState(String ruleName) {
   2776 		Rule r = getRule(ruleName);
   2777 		if ( r!=null ) {
   2778 			return r.stopState;
   2779 		}
   2780 		return null;
   2781 	}
   2782 
   2783 	public int assignDecisionNumber(NFAState state) {
   2784 		decisionCount++;
   2785 		state.setDecisionNumber(decisionCount);
   2786 		return decisionCount;
   2787 	}
   2788 
   2789 	protected Decision getDecision(int decision) {
   2790 		int index = decision-1;
   2791 		if ( index >= indexToDecision.size() ) {
   2792 			return null;
   2793 		}
   2794 		Decision d = indexToDecision.get(index);
   2795 		return d;
   2796 	}
   2797 
   2798 	public List<Decision> getDecisions() {
   2799 		return indexToDecision;
   2800 	}
   2801 
   2802 	protected Decision createDecision(int decision) {
   2803 		int index = decision-1;
   2804 		if ( index < indexToDecision.size() ) {
   2805 			return getDecision(decision); // don't recreate
   2806 		}
   2807 		Decision d = new Decision();
   2808 		d.decision = decision;
   2809 		d.grammar = this;
   2810 		indexToDecision.setSize(getNumberOfDecisions());
   2811 		indexToDecision.set(index, d);
   2812 		return d;
   2813 	}
   2814 
   2815 	public List<NFAState> getDecisionNFAStartStateList() {
   2816 		List<NFAState> states = new ArrayList<NFAState>(100);
   2817 		for (int d = 0; d < indexToDecision.size(); d++) {
   2818 			Decision dec = indexToDecision.get(d);
   2819 			states.add(dec.startState);
   2820 		}
   2821 		return states;
   2822 	}
   2823 
   2824 	public NFAState getDecisionNFAStartState(int decision) {
   2825 		Decision d = getDecision(decision);
   2826 		if ( d==null ) {
   2827 			return null;
   2828 		}
   2829 		return d.startState;
   2830 	}
   2831 
   2832 	public DFA getLookaheadDFA(int decision) {
   2833 		Decision d = getDecision(decision);
   2834 		if ( d==null ) {
   2835 			return null;
   2836 		}
   2837 		return d.dfa;
   2838 	}
   2839 
   2840 	public GrammarAST getDecisionBlockAST(int decision) {
   2841 		Decision d = getDecision(decision);
   2842 		if ( d==null ) {
   2843 			return null;
   2844 		}
   2845 		return d.blockAST;
   2846 	}
   2847 
   2848 	/** returns a list of column numbers for all decisions
   2849 	 *  on a particular line so ANTLRWorks choose the decision
   2850 	 *  depending on the location of the cursor (otherwise,
   2851 	 *  ANTLRWorks has to give the *exact* location which
   2852 	 *  is not easy from the user point of view).
   2853 	 *
   2854 	 *  This is not particularly fast as it walks entire line:col&rarr;DFA map
   2855 	 *  looking for a prefix of "line:".
   2856 	 */
   2857 	public List<Integer> getLookaheadDFAColumnsForLineInFile(int line) {
   2858 		String prefix = line+":";
   2859 		List<Integer> columns = new ArrayList<Integer>();
   2860 		for (String key : lineColumnToLookaheadDFAMap.keySet()) {
   2861 			if(key.startsWith(prefix)) {
   2862 				columns.add(Integer.valueOf(key.substring(prefix.length())));
   2863 			}
   2864 		}
   2865 		return columns;
   2866 	}
   2867 
   2868 	/** Useful for ANTLRWorks to map position in file to the DFA for display */
   2869 	public DFA getLookaheadDFAFromPositionInFile(int line, int col) {
   2870 		return lineColumnToLookaheadDFAMap.get(
   2871 			new StringBuffer().append(line).append(":").append(col).toString());
   2872 	}
   2873 
   2874 	public Map<String, DFA> getLineColumnToLookaheadDFAMap() {
   2875 		return lineColumnToLookaheadDFAMap;
   2876 	}
   2877 
   2878 	/*
   2879 	public void setDecisionOptions(int decision, Map options) {
   2880 		Decision d = createDecision(decision);
   2881 		d.options = options;
   2882 	}
   2883 
   2884 	public void setDecisionOption(int decision, String name, Object value) {
   2885 		Decision d = getDecision(decision);
   2886 		if ( d!=null ) {
   2887 			if ( d.options==null ) {
   2888 				d.options = new HashMap();
   2889 			}
   2890 			d.options.put(name,value);
   2891 		}
   2892 	}
   2893 
   2894 	public Map getDecisionOptions(int decision) {
   2895 		Decision d = getDecision(decision);
   2896 		if ( d==null ) {
   2897 			return null;
   2898 		}
   2899 		return d.options;
   2900     }
   2901     */
   2902 
   2903 	public int getNumberOfDecisions() {
   2904 		return decisionCount;
   2905 	}
   2906 
   2907 	public int getNumberOfCyclicDecisions() {
   2908 		int n = 0;
   2909 		for (int i=1; i<=getNumberOfDecisions(); i++) {
   2910 			Decision d = getDecision(i);
   2911 			if ( d.dfa!=null && d.dfa.isCyclic() ) {
   2912 				n++;
   2913 			}
   2914 		}
   2915 		return n;
   2916 	}
   2917 
   2918 	/** Set the lookahead DFA for a particular decision.  This means
   2919 	 *  that the appropriate AST node must updated to have the new lookahead
   2920 	 *  DFA.  This method could be used to properly set the DFAs without
   2921 	 *  using the createLookaheadDFAs() method.  You could do this
   2922 	 *
   2923 	 *    Grammar g = new Grammar("...");
   2924 	 *    g.setLookahead(1, dfa1);
   2925 	 *    g.setLookahead(2, dfa2);
   2926 	 *    ...
   2927 	 */
   2928 	public void setLookaheadDFA(int decision, DFA lookaheadDFA) {
   2929 		Decision d = createDecision(decision);
   2930 		d.dfa = lookaheadDFA;
   2931 		GrammarAST ast = d.startState.associatedASTNode;
   2932 		ast.setLookaheadDFA(lookaheadDFA);
   2933 	}
   2934 
   2935 	public void setDecisionNFA(int decision, NFAState state) {
   2936 		Decision d = createDecision(decision);
   2937 		d.startState = state;
   2938 	}
   2939 
   2940 	public void setDecisionBlockAST(int decision, GrammarAST blockAST) {
   2941 		//System.out.println("setDecisionBlockAST("+decision+", "+blockAST.token);
   2942 		Decision d = createDecision(decision);
   2943 		d.blockAST = blockAST;
   2944 	}
   2945 
   2946 	public boolean allDecisionDFAHaveBeenCreated() {
   2947 		return allDecisionDFACreated;
   2948 	}
   2949 
   2950 	/** How many token types have been allocated so far? */
   2951 	public int getMaxTokenType() {
   2952 		return composite.maxTokenType;
   2953 	}
   2954 
   2955 	/** What is the max char value possible for this grammar's target?  Use
   2956 	 *  unicode max if no target defined.
   2957 	 */
   2958 	public int getMaxCharValue() {
   2959 		if ( generator!=null ) {
   2960 			return generator.target.getMaxCharValue(generator);
   2961 		}
   2962 		else {
   2963 			return Label.MAX_CHAR_VALUE;
   2964 		}
   2965 	}
   2966 
   2967 	/** Return a set of all possible token or char types for this grammar */
   2968 	public IntSet getTokenTypes() {
   2969 		if ( type==LEXER ) {
   2970 			return getAllCharValues();
   2971 		}
   2972 		return IntervalSet.of(Label.MIN_TOKEN_TYPE, getMaxTokenType());
   2973 	}
   2974 
   2975 	/** If there is a char vocabulary, use it; else return min to max char
   2976 	 *  as defined by the target.  If no target, use max unicode char value.
   2977 	 */
   2978 	public IntSet getAllCharValues() {
   2979 		if ( charVocabulary!=null ) {
   2980 			return charVocabulary;
   2981 		}
   2982 		IntSet allChar = IntervalSet.of(Label.MIN_CHAR_VALUE, getMaxCharValue());
   2983 		return allChar;
   2984 	}
   2985 
   2986 	/** Return a string representing the escaped char for code c.  E.g., If c
   2987 	 *  has value 0x100, you will get "\u0100".  ASCII gets the usual
   2988 	 *  char (non-hex) representation.  Control characters are spit out
   2989 	 *  as unicode.  While this is specially set up for returning Java strings,
   2990 	 *  it can be used by any language target that has the same syntax. :)
   2991 	 *
   2992 	 *  11/26/2005: I changed this to use double quotes, consistent with antlr.g
   2993 	 *  12/09/2005: I changed so everything is single quotes
   2994 	 */
   2995 	public static String getANTLRCharLiteralForChar(int c) {
   2996 		if ( c<Label.MIN_CHAR_VALUE ) {
   2997 			ErrorManager.internalError("invalid char value "+c);
   2998 			return "'<INVALID>'";
   2999 		}
   3000 		if ( c<ANTLRLiteralCharValueEscape.length && ANTLRLiteralCharValueEscape[c]!=null ) {
   3001 			return '\''+ANTLRLiteralCharValueEscape[c]+'\'';
   3002 		}
   3003 		if ( Character.UnicodeBlock.of((char)c)==Character.UnicodeBlock.BASIC_LATIN &&
   3004 			 !Character.isISOControl((char)c) ) {
   3005 			if ( c=='\\' ) {
   3006 				return "'\\\\'";
   3007 			}
   3008 			if ( c=='\'') {
   3009 				return "'\\''";
   3010 			}
   3011 			return '\''+Character.toString((char)c)+'\'';
   3012 		}
   3013 		// turn on the bit above max "\uFFFF" value so that we pad with zeros
   3014 		// then only take last 4 digits
   3015 		String hex = Integer.toHexString(c|0x10000).toUpperCase().substring(1,5);
   3016 		String unicodeStr = "'\\u"+hex+"'";
   3017 		return unicodeStr;
   3018 	}
   3019 
   3020 	/** For lexer grammars, return everything in unicode not in set.
   3021 	 *  For parser and tree grammars, return everything in token space
   3022 	 *  from MIN_TOKEN_TYPE to last valid token type or char value.
   3023 	 */
   3024 	public IntSet complement(IntSet set) {
   3025 		//System.out.println("complement "+set.toString(this));
   3026 		//System.out.println("vocabulary "+getTokenTypes().toString(this));
   3027 		IntSet c = set.complement(getTokenTypes());
   3028 		//System.out.println("result="+c.toString(this));
   3029 		return c;
   3030 	}
   3031 
   3032 	public IntSet complement(int atom) {
   3033 		return complement(IntervalSet.of(atom));
   3034 	}
   3035 
   3036 	/** Given set tree like ( SET A B ), check that A and B
   3037 	 *  are both valid sets themselves, else we must tree like a BLOCK
   3038 	 */
   3039 	public boolean isValidSet(TreeToNFAConverter nfabuilder, GrammarAST t) {
   3040 		boolean valid;
   3041 		try {
   3042 			//System.out.println("parse BLOCK as set tree: "+t.toStringTree());
   3043 			int alts = nfabuilder.testBlockAsSet(t);
   3044 			valid = alts > 1;
   3045 		}
   3046 		catch (RecognitionException re) {
   3047 			// The rule did not parse as a set, return null; ignore exception
   3048 			valid = false;
   3049 		}
   3050 		//System.out.println("valid? "+valid);
   3051 		return valid;
   3052 	}
   3053 
   3054 	/** Get the set equivalent (if any) of the indicated rule from this
   3055 	 *  grammar.  Mostly used in the lexer to do ~T for some fragment rule
   3056 	 *  T.  If the rule AST has a SET use that.  If the rule is a single char
   3057 	 *  convert it to a set and return.  If rule is not a simple set (w/o actions)
   3058 	 *  then return null.
   3059 	 *  Rules have AST form:
   3060 	 *
   3061 	 *		^( RULE ID modifier ARG RET SCOPE block EOR )
   3062 	 */
   3063 	public IntSet getSetFromRule(TreeToNFAConverter nfabuilder, String ruleName)
   3064 		throws RecognitionException
   3065 	{
   3066 		Rule r = getRule(ruleName);
   3067 		if ( r==null ) {
   3068 			return null;
   3069 		}
   3070 		IntSet elements;
   3071 		//System.out.println("parsed tree: "+r.tree.toStringTree());
   3072 		elements = nfabuilder.setRule(r.tree);
   3073 		//System.out.println("elements="+elements);
   3074 		return elements;
   3075 	}
   3076 
   3077 	/** Decisions are linked together with transition(1).  Count how
   3078 	 *  many there are.  This is here rather than in NFAState because
   3079 	 *  a grammar decides how NFAs are put together to form a decision.
   3080 	 */
   3081 	public int getNumberOfAltsForDecisionNFA(NFAState decisionState) {
   3082 		if ( decisionState==null ) {
   3083 			return 0;
   3084 		}
   3085 		int n = 1;
   3086 		NFAState p = decisionState;
   3087 		while ( p.transition[1] !=null ) {
   3088 			n++;
   3089 			p = (NFAState)p.transition[1].target;
   3090 		}
   3091 		return n;
   3092 	}
   3093 
   3094 	/** Get the ith alternative (1..n) from a decision; return null when
   3095 	 *  an invalid alt is requested.  I must count in to find the right
   3096 	 *  alternative number.  For (A|B), you get NFA structure (roughly):
   3097 	 *
   3098 	 *  o-&gt;o-A-&gt;o
   3099 	 *  |
   3100 	 *  o-&gt;o-B-&gt;o
   3101 	 *
   3102 	 *  This routine returns the leftmost state for each alt.  So alt=1, returns
   3103 	 *  the upperleft most state in this structure.
   3104 	 */
   3105 	public NFAState getNFAStateForAltOfDecision(NFAState decisionState, int alt) {
   3106 		if ( decisionState==null || alt<=0 ) {
   3107 			return null;
   3108 		}
   3109 		int n = 1;
   3110 		NFAState p = decisionState;
   3111 		while ( p!=null ) {
   3112 			if ( n==alt ) {
   3113 				return p;
   3114 			}
   3115 			n++;
   3116 			Transition next = p.transition[1];
   3117 			p = null;
   3118 			if ( next!=null ) {
   3119 				p = (NFAState)next.target;
   3120 			}
   3121 		}
   3122 		return null;
   3123 	}
   3124 
   3125 	/*
   3126 	public void computeRuleFOLLOWSets() {
   3127 		if ( getNumberOfDecisions()==0 ) {
   3128 			createNFAs();
   3129 		}
   3130 		for (Iterator it = getRules().iterator(); it.hasNext();) {
   3131 			Rule r = (Rule)it.next();
   3132 			if ( r.isSynPred ) {
   3133 				continue;
   3134 			}
   3135 			LookaheadSet s = ll1Analyzer.FOLLOW(r);
   3136 			System.out.println("FOLLOW("+r.name+")="+s);
   3137 		}
   3138 	}
   3139 	*/
   3140 
   3141 	public LookaheadSet FIRST(NFAState s) {
   3142 		return ll1Analyzer.FIRST(s);
   3143 	}
   3144 
   3145 	public LookaheadSet LOOK(NFAState s) {
   3146 		return ll1Analyzer.LOOK(s);
   3147 	}
   3148 
   3149 	public void setCodeGenerator(CodeGenerator generator) {
   3150 		this.generator = generator;
   3151 	}
   3152 
   3153 	public CodeGenerator getCodeGenerator() {
   3154 		return generator;
   3155 	}
   3156 
   3157 	public GrammarAST getGrammarTree() {
   3158 		return grammarTree;
   3159 	}
   3160 
   3161 	public void setGrammarTree(GrammarAST value) {
   3162 		grammarTree = value;
   3163 	}
   3164 
   3165 	public Tool getTool() {
   3166 		return tool;
   3167 	}
   3168 
   3169 	public void setTool(Tool tool) {
   3170 		this.tool = tool;
   3171 	}
   3172 
   3173 	/** given a token type and the text of the literal, come up with a
   3174 	 *  decent token type label.  For now it's just T&lt;type&gt;.  Actually,
   3175 	 *  if there is an aliased name from tokens like PLUS='+', use it.
   3176 	 */
   3177 	public String computeTokenNameFromLiteral(int tokenType, String literal) {
   3178 		return AUTO_GENERATED_TOKEN_NAME_PREFIX +tokenType;
   3179 	}
   3180 
   3181 	@Override
   3182 	public String toString() {
   3183 	//	return "FFFFFFFFFFFFFF";
   3184 		return grammarTreeToString(grammarTree);
   3185 	}
   3186 
   3187 	public String grammarTreeToString(GrammarAST t) {
   3188 		return grammarTreeToString(t, true);
   3189 	}
   3190 
   3191 	public String grammarTreeToString(GrammarAST t, boolean showActions) {
   3192 		String s;
   3193 		try {
   3194 			s = t.getLine()+":"+(t.getCharPositionInLine()+1)+": ";
   3195 			s += new ANTLRTreePrinter(new CommonTreeNodeStream(t)).toString(this, showActions);
   3196 		}
   3197 		catch (Exception e) {
   3198 			s = "<invalid or missing tree structure>";
   3199 		}
   3200 		return s;
   3201 	}
   3202 
   3203 	public void printGrammar(PrintStream output) {
   3204 		ANTLRTreePrinter printer = new ANTLRTreePrinter(new CommonTreeNodeStream(getGrammarTree()));
   3205 		try {
   3206 			String g = printer.toString(this, false);
   3207 			output.println(g);
   3208 		}
   3209 		catch (RecognitionException re) {
   3210 			ErrorManager.error(ErrorManager.MSG_SYNTAX_ERROR,re);
   3211 		}
   3212 	}
   3213 
   3214 }
   3215