Home | History | Annotate | Download | only in Object
      1 //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/Object/IRSymtab.h"
     11 #include "llvm/ADT/ArrayRef.h"
     12 #include "llvm/ADT/DenseMap.h"
     13 #include "llvm/ADT/SmallPtrSet.h"
     14 #include "llvm/ADT/SmallString.h"
     15 #include "llvm/ADT/SmallVector.h"
     16 #include "llvm/ADT/StringRef.h"
     17 #include "llvm/ADT/Triple.h"
     18 #include "llvm/Config/llvm-config.h"
     19 #include "llvm/IR/Comdat.h"
     20 #include "llvm/IR/DataLayout.h"
     21 #include "llvm/IR/GlobalAlias.h"
     22 #include "llvm/IR/GlobalObject.h"
     23 #include "llvm/IR/Mangler.h"
     24 #include "llvm/IR/Metadata.h"
     25 #include "llvm/IR/Module.h"
     26 #include "llvm/Bitcode/BitcodeReader.h"
     27 #include "llvm/MC/StringTableBuilder.h"
     28 #include "llvm/Object/IRObjectFile.h"
     29 #include "llvm/Object/ModuleSymbolTable.h"
     30 #include "llvm/Object/SymbolicFile.h"
     31 #include "llvm/Support/Allocator.h"
     32 #include "llvm/Support/Casting.h"
     33 #include "llvm/Support/Error.h"
     34 #include "llvm/Support/StringSaver.h"
     35 #include "llvm/Support/VCSRevision.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 #include <cassert>
     38 #include <string>
     39 #include <utility>
     40 #include <vector>
     41 
     42 using namespace llvm;
     43 using namespace irsymtab;
     44 
     45 static const char *LibcallRoutineNames[] = {
     46 #define HANDLE_LIBCALL(code, name) name,
     47 #include "llvm/IR/RuntimeLibcalls.def"
     48 #undef HANDLE_LIBCALL
     49 };
     50 
     51 namespace {
     52 
     53 const char *getExpectedProducerName() {
     54   static char DefaultName[] = LLVM_VERSION_STRING
     55 #ifdef LLVM_REVISION
     56       " " LLVM_REVISION
     57 #endif
     58       ;
     59   // Allows for testing of the irsymtab writer and upgrade mechanism. This
     60   // environment variable should not be set by users.
     61   if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER"))
     62     return OverrideName;
     63   return DefaultName;
     64 }
     65 
     66 const char *kExpectedProducerName = getExpectedProducerName();
     67 
     68 /// Stores the temporary state that is required to build an IR symbol table.
     69 struct Builder {
     70   SmallVector<char, 0> &Symtab;
     71   StringTableBuilder &StrtabBuilder;
     72   StringSaver Saver;
     73 
     74   // This ctor initializes a StringSaver using the passed in BumpPtrAllocator.
     75   // The StringTableBuilder does not create a copy of any strings added to it,
     76   // so this provides somewhere to store any strings that we create.
     77   Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder,
     78           BumpPtrAllocator &Alloc)
     79       : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {}
     80 
     81   DenseMap<const Comdat *, int> ComdatMap;
     82   Mangler Mang;
     83   Triple TT;
     84 
     85   std::vector<storage::Comdat> Comdats;
     86   std::vector<storage::Module> Mods;
     87   std::vector<storage::Symbol> Syms;
     88   std::vector<storage::Uncommon> Uncommons;
     89 
     90   std::string COFFLinkerOpts;
     91   raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts};
     92 
     93   void setStr(storage::Str &S, StringRef Value) {
     94     S.Offset = StrtabBuilder.add(Value);
     95     S.Size = Value.size();
     96   }
     97 
     98   template <typename T>
     99   void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) {
    100     R.Offset = Symtab.size();
    101     R.Size = Objs.size();
    102     Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()),
    103                   reinterpret_cast<const char *>(Objs.data() + Objs.size()));
    104   }
    105 
    106   Expected<int> getComdatIndex(const Comdat *C, const Module *M);
    107 
    108   Error addModule(Module *M);
    109   Error addSymbol(const ModuleSymbolTable &Msymtab,
    110                   const SmallPtrSet<GlobalValue *, 8> &Used,
    111                   ModuleSymbolTable::Symbol Sym);
    112 
    113   Error build(ArrayRef<Module *> Mods);
    114 };
    115 
    116 Error Builder::addModule(Module *M) {
    117   if (M->getDataLayoutStr().empty())
    118     return make_error<StringError>("input module has no datalayout",
    119                                    inconvertibleErrorCode());
    120 
    121   SmallPtrSet<GlobalValue *, 8> Used;
    122   collectUsedGlobalVariables(*M, Used, /*CompilerUsed*/ false);
    123 
    124   ModuleSymbolTable Msymtab;
    125   Msymtab.addModule(M);
    126 
    127   storage::Module Mod;
    128   Mod.Begin = Syms.size();
    129   Mod.End = Syms.size() + Msymtab.symbols().size();
    130   Mod.UncBegin = Uncommons.size();
    131   Mods.push_back(Mod);
    132 
    133   if (TT.isOSBinFormatCOFF()) {
    134     if (auto E = M->materializeMetadata())
    135       return E;
    136     if (NamedMDNode *LinkerOptions =
    137             M->getNamedMetadata("llvm.linker.options")) {
    138       for (MDNode *MDOptions : LinkerOptions->operands())
    139         for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
    140           COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString();
    141     }
    142   }
    143 
    144   for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols())
    145     if (Error Err = addSymbol(Msymtab, Used, Msym))
    146       return Err;
    147 
    148   return Error::success();
    149 }
    150 
    151 Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) {
    152   auto P = ComdatMap.insert(std::make_pair(C, Comdats.size()));
    153   if (P.second) {
    154     std::string Name;
    155     if (TT.isOSBinFormatCOFF()) {
    156       const GlobalValue *GV = M->getNamedValue(C->getName());
    157       if (!GV)
    158         return make_error<StringError>("Could not find leader",
    159                                        inconvertibleErrorCode());
    160       // Internal leaders do not affect symbol resolution, therefore they do not
    161       // appear in the symbol table.
    162       if (GV->hasLocalLinkage()) {
    163         P.first->second = -1;
    164         return -1;
    165       }
    166       llvm::raw_string_ostream OS(Name);
    167       Mang.getNameWithPrefix(OS, GV, false);
    168     } else {
    169       Name = C->getName();
    170     }
    171 
    172     storage::Comdat Comdat;
    173     setStr(Comdat.Name, Saver.save(Name));
    174     Comdats.push_back(Comdat);
    175   }
    176 
    177   return P.first->second;
    178 }
    179 
    180 Error Builder::addSymbol(const ModuleSymbolTable &Msymtab,
    181                          const SmallPtrSet<GlobalValue *, 8> &Used,
    182                          ModuleSymbolTable::Symbol Msym) {
    183   Syms.emplace_back();
    184   storage::Symbol &Sym = Syms.back();
    185   Sym = {};
    186 
    187   storage::Uncommon *Unc = nullptr;
    188   auto Uncommon = [&]() -> storage::Uncommon & {
    189     if (Unc)
    190       return *Unc;
    191     Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon;
    192     Uncommons.emplace_back();
    193     Unc = &Uncommons.back();
    194     *Unc = {};
    195     setStr(Unc->COFFWeakExternFallbackName, "");
    196     setStr(Unc->SectionName, "");
    197     return *Unc;
    198   };
    199 
    200   SmallString<64> Name;
    201   {
    202     raw_svector_ostream OS(Name);
    203     Msymtab.printSymbolName(OS, Msym);
    204   }
    205   setStr(Sym.Name, Saver.save(StringRef(Name)));
    206 
    207   auto Flags = Msymtab.getSymbolFlags(Msym);
    208   if (Flags & object::BasicSymbolRef::SF_Undefined)
    209     Sym.Flags |= 1 << storage::Symbol::FB_undefined;
    210   if (Flags & object::BasicSymbolRef::SF_Weak)
    211     Sym.Flags |= 1 << storage::Symbol::FB_weak;
    212   if (Flags & object::BasicSymbolRef::SF_Common)
    213     Sym.Flags |= 1 << storage::Symbol::FB_common;
    214   if (Flags & object::BasicSymbolRef::SF_Indirect)
    215     Sym.Flags |= 1 << storage::Symbol::FB_indirect;
    216   if (Flags & object::BasicSymbolRef::SF_Global)
    217     Sym.Flags |= 1 << storage::Symbol::FB_global;
    218   if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
    219     Sym.Flags |= 1 << storage::Symbol::FB_format_specific;
    220   if (Flags & object::BasicSymbolRef::SF_Executable)
    221     Sym.Flags |= 1 << storage::Symbol::FB_executable;
    222 
    223   Sym.ComdatIndex = -1;
    224   auto *GV = Msym.dyn_cast<GlobalValue *>();
    225   if (!GV) {
    226     // Undefined module asm symbols act as GC roots and are implicitly used.
    227     if (Flags & object::BasicSymbolRef::SF_Undefined)
    228       Sym.Flags |= 1 << storage::Symbol::FB_used;
    229     setStr(Sym.IRName, "");
    230     return Error::success();
    231   }
    232 
    233   setStr(Sym.IRName, GV->getName());
    234 
    235   bool IsBuiltinFunc = false;
    236 
    237   for (const char *LibcallName : LibcallRoutineNames)
    238     if (GV->getName() == LibcallName)
    239       IsBuiltinFunc = true;
    240 
    241   if (Used.count(GV) || IsBuiltinFunc)
    242     Sym.Flags |= 1 << storage::Symbol::FB_used;
    243   if (GV->isThreadLocal())
    244     Sym.Flags |= 1 << storage::Symbol::FB_tls;
    245   if (GV->hasGlobalUnnamedAddr())
    246     Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr;
    247   if (GV->canBeOmittedFromSymbolTable())
    248     Sym.Flags |= 1 << storage::Symbol::FB_may_omit;
    249   Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility;
    250 
    251   if (Flags & object::BasicSymbolRef::SF_Common) {
    252     Uncommon().CommonSize = GV->getParent()->getDataLayout().getTypeAllocSize(
    253         GV->getType()->getElementType());
    254     Uncommon().CommonAlign = GV->getAlignment();
    255   }
    256 
    257   const GlobalObject *Base = GV->getBaseObject();
    258   if (!Base)
    259     return make_error<StringError>("Unable to determine comdat of alias!",
    260                                    inconvertibleErrorCode());
    261   if (const Comdat *C = Base->getComdat()) {
    262     Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent());
    263     if (!ComdatIndexOrErr)
    264       return ComdatIndexOrErr.takeError();
    265     Sym.ComdatIndex = *ComdatIndexOrErr;
    266   }
    267 
    268   if (TT.isOSBinFormatCOFF()) {
    269     emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang);
    270 
    271     if ((Flags & object::BasicSymbolRef::SF_Weak) &&
    272         (Flags & object::BasicSymbolRef::SF_Indirect)) {
    273       auto *Fallback = dyn_cast<GlobalValue>(
    274           cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts());
    275       if (!Fallback)
    276         return make_error<StringError>("Invalid weak external",
    277                                        inconvertibleErrorCode());
    278       std::string FallbackName;
    279       raw_string_ostream OS(FallbackName);
    280       Msymtab.printSymbolName(OS, Fallback);
    281       OS.flush();
    282       setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName));
    283     }
    284   }
    285 
    286   if (!Base->getSection().empty())
    287     setStr(Uncommon().SectionName, Saver.save(Base->getSection()));
    288 
    289   return Error::success();
    290 }
    291 
    292 Error Builder::build(ArrayRef<Module *> IRMods) {
    293   storage::Header Hdr;
    294 
    295   assert(!IRMods.empty());
    296   Hdr.Version = storage::Header::kCurrentVersion;
    297   setStr(Hdr.Producer, kExpectedProducerName);
    298   setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple());
    299   setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName());
    300   TT = Triple(IRMods[0]->getTargetTriple());
    301 
    302   for (auto *M : IRMods)
    303     if (Error Err = addModule(M))
    304       return Err;
    305 
    306   COFFLinkerOptsOS.flush();
    307   setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts));
    308 
    309   // We are about to fill in the header's range fields, so reserve space for it
    310   // and copy it in afterwards.
    311   Symtab.resize(sizeof(storage::Header));
    312   writeRange(Hdr.Modules, Mods);
    313   writeRange(Hdr.Comdats, Comdats);
    314   writeRange(Hdr.Symbols, Syms);
    315   writeRange(Hdr.Uncommons, Uncommons);
    316 
    317   *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr;
    318   return Error::success();
    319 }
    320 
    321 } // end anonymous namespace
    322 
    323 Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
    324                       StringTableBuilder &StrtabBuilder,
    325                       BumpPtrAllocator &Alloc) {
    326   return Builder(Symtab, StrtabBuilder, Alloc).build(Mods);
    327 }
    328 
    329 // Upgrade a vector of bitcode modules created by an old version of LLVM by
    330 // creating an irsymtab for them in the current format.
    331 static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) {
    332   FileContents FC;
    333 
    334   LLVMContext Ctx;
    335   std::vector<Module *> Mods;
    336   std::vector<std::unique_ptr<Module>> OwnedMods;
    337   for (auto BM : BMs) {
    338     Expected<std::unique_ptr<Module>> MOrErr =
    339         BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true,
    340                          /*IsImporting*/ false);
    341     if (!MOrErr)
    342       return MOrErr.takeError();
    343 
    344     Mods.push_back(MOrErr->get());
    345     OwnedMods.push_back(std::move(*MOrErr));
    346   }
    347 
    348   StringTableBuilder StrtabBuilder(StringTableBuilder::RAW);
    349   BumpPtrAllocator Alloc;
    350   if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc))
    351     return std::move(E);
    352 
    353   StrtabBuilder.finalizeInOrder();
    354   FC.Strtab.resize(StrtabBuilder.getSize());
    355   StrtabBuilder.write((uint8_t *)FC.Strtab.data());
    356 
    357   FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()},
    358                   {FC.Strtab.data(), FC.Strtab.size()}};
    359   return std::move(FC);
    360 }
    361 
    362 Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) {
    363   if (BFC.Mods.empty())
    364     return make_error<StringError>("Bitcode file does not contain any modules",
    365                                    inconvertibleErrorCode());
    366 
    367   if (BFC.StrtabForSymtab.empty() ||
    368       BFC.Symtab.size() < sizeof(storage::Header))
    369     return upgrade(BFC.Mods);
    370 
    371   // We cannot use the regular reader to read the version and producer, because
    372   // it will expect the header to be in the current format. The only thing we
    373   // can rely on is that the version and producer will be present as the first
    374   // struct elements.
    375   auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data());
    376   unsigned Version = Hdr->Version;
    377   StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab);
    378   if (Version != storage::Header::kCurrentVersion ||
    379       Producer != kExpectedProducerName)
    380     return upgrade(BFC.Mods);
    381 
    382   FileContents FC;
    383   FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()},
    384                   {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}};
    385 
    386   // Finally, make sure that the number of modules in the symbol table matches
    387   // the number of modules in the bitcode file. If they differ, it may mean that
    388   // the bitcode file was created by binary concatenation, so we need to create
    389   // a new symbol table from scratch.
    390   if (FC.TheReader.getNumModules() != BFC.Mods.size())
    391     return upgrade(std::move(BFC.Mods));
    392 
    393   return std::move(FC);
    394 }
    395