Home | History | Annotate | Download | only in LTO
      1 //===-LTO.h - LLVM Link Time Optimizer ------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares functions and classes used to support LTO. It is intended
     11 // to be used both by LTO classes as well as by clients (gold-plugin) that
     12 // don't utilize the LTO code generator interfaces.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_LTO_LTO_H
     17 #define LLVM_LTO_LTO_H
     18 
     19 #include "llvm/ADT/MapVector.h"
     20 #include "llvm/ADT/StringMap.h"
     21 #include "llvm/ADT/StringSet.h"
     22 #include "llvm/IR/DiagnosticInfo.h"
     23 #include "llvm/IR/ModuleSummaryIndex.h"
     24 #include "llvm/LTO/Config.h"
     25 #include "llvm/Linker/IRMover.h"
     26 #include "llvm/Object/IRSymtab.h"
     27 #include "llvm/Support/Error.h"
     28 #include "llvm/Support/ToolOutputFile.h"
     29 #include "llvm/Support/thread.h"
     30 #include "llvm/Target/TargetOptions.h"
     31 #include "llvm/Transforms/IPO/FunctionImport.h"
     32 
     33 namespace llvm {
     34 
     35 class BitcodeModule;
     36 class Error;
     37 class LLVMContext;
     38 class MemoryBufferRef;
     39 class Module;
     40 class Target;
     41 class raw_pwrite_stream;
     42 
     43 /// Resolve Weak and LinkOnce values in the \p Index. Linkage changes recorded
     44 /// in the index and the ThinLTO backends must apply the changes to the Module
     45 /// via thinLTOResolveWeakForLinkerModule.
     46 ///
     47 /// This is done for correctness (if value exported, ensure we always
     48 /// emit a copy), and compile-time optimization (allow drop of duplicates).
     49 void thinLTOResolveWeakForLinkerInIndex(
     50     ModuleSummaryIndex &Index,
     51     function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
     52         isPrevailing,
     53     function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
     54         recordNewLinkage);
     55 
     56 /// Update the linkages in the given \p Index to mark exported values
     57 /// as external and non-exported values as internal. The ThinLTO backends
     58 /// must apply the changes to the Module via thinLTOInternalizeModule.
     59 void thinLTOInternalizeAndPromoteInIndex(
     60     ModuleSummaryIndex &Index,
     61     function_ref<bool(StringRef, GlobalValue::GUID)> isExported);
     62 
     63 namespace lto {
     64 
     65 /// Given the original \p Path to an output file, replace any path
     66 /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the
     67 /// resulting directory if it does not yet exist.
     68 std::string getThinLTOOutputFile(const std::string &Path,
     69                                  const std::string &OldPrefix,
     70                                  const std::string &NewPrefix);
     71 
     72 /// Setup optimization remarks.
     73 Expected<std::unique_ptr<ToolOutputFile>>
     74 setupOptimizationRemarks(LLVMContext &Context, StringRef LTORemarksFilename,
     75                          bool LTOPassRemarksWithHotness, int Count = -1);
     76 
     77 class LTO;
     78 struct SymbolResolution;
     79 class ThinBackendProc;
     80 
     81 /// An input file. This is a symbol table wrapper that only exposes the
     82 /// information that an LTO client should need in order to do symbol resolution.
     83 class InputFile {
     84 public:
     85   class Symbol;
     86 
     87 private:
     88   // FIXME: Remove LTO class friendship once we have bitcode symbol tables.
     89   friend LTO;
     90   InputFile() = default;
     91 
     92   std::vector<BitcodeModule> Mods;
     93   SmallVector<char, 0> Strtab;
     94   std::vector<Symbol> Symbols;
     95 
     96   // [begin, end) for each module
     97   std::vector<std::pair<size_t, size_t>> ModuleSymIndices;
     98 
     99   StringRef TargetTriple, SourceFileName, COFFLinkerOpts;
    100   std::vector<StringRef> ComdatTable;
    101 
    102 public:
    103   ~InputFile();
    104 
    105   /// Create an InputFile.
    106   static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object);
    107 
    108   /// The purpose of this class is to only expose the symbol information that an
    109   /// LTO client should need in order to do symbol resolution.
    110   class Symbol : irsymtab::Symbol {
    111     friend LTO;
    112 
    113   public:
    114     Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {}
    115 
    116     using irsymtab::Symbol::isUndefined;
    117     using irsymtab::Symbol::isCommon;
    118     using irsymtab::Symbol::isWeak;
    119     using irsymtab::Symbol::isIndirect;
    120     using irsymtab::Symbol::getName;
    121     using irsymtab::Symbol::getVisibility;
    122     using irsymtab::Symbol::canBeOmittedFromSymbolTable;
    123     using irsymtab::Symbol::isTLS;
    124     using irsymtab::Symbol::getComdatIndex;
    125     using irsymtab::Symbol::getCommonSize;
    126     using irsymtab::Symbol::getCommonAlignment;
    127     using irsymtab::Symbol::getCOFFWeakExternalFallback;
    128     using irsymtab::Symbol::getSectionName;
    129     using irsymtab::Symbol::isExecutable;
    130   };
    131 
    132   /// A range over the symbols in this InputFile.
    133   ArrayRef<Symbol> symbols() const { return Symbols; }
    134 
    135   /// Returns linker options specified in the input file.
    136   StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; }
    137 
    138   /// Returns the path to the InputFile.
    139   StringRef getName() const;
    140 
    141   /// Returns the input file's target triple.
    142   StringRef getTargetTriple() const { return TargetTriple; }
    143 
    144   /// Returns the source file path specified at compile time.
    145   StringRef getSourceFileName() const { return SourceFileName; }
    146 
    147   // Returns a table with all the comdats used by this file.
    148   ArrayRef<StringRef> getComdatTable() const { return ComdatTable; }
    149 
    150 private:
    151   ArrayRef<Symbol> module_symbols(unsigned I) const {
    152     const auto &Indices = ModuleSymIndices[I];
    153     return {Symbols.data() + Indices.first, Symbols.data() + Indices.second};
    154   }
    155 };
    156 
    157 /// This class wraps an output stream for a native object. Most clients should
    158 /// just be able to return an instance of this base class from the stream
    159 /// callback, but if a client needs to perform some action after the stream is
    160 /// written to, that can be done by deriving from this class and overriding the
    161 /// destructor.
    162 class NativeObjectStream {
    163 public:
    164   NativeObjectStream(std::unique_ptr<raw_pwrite_stream> OS) : OS(std::move(OS)) {}
    165   std::unique_ptr<raw_pwrite_stream> OS;
    166   virtual ~NativeObjectStream() = default;
    167 };
    168 
    169 /// This type defines the callback to add a native object that is generated on
    170 /// the fly.
    171 ///
    172 /// Stream callbacks must be thread safe.
    173 typedef std::function<std::unique_ptr<NativeObjectStream>(unsigned Task)>
    174     AddStreamFn;
    175 
    176 /// This is the type of a native object cache. To request an item from the
    177 /// cache, pass a unique string as the Key. For hits, the cached file will be
    178 /// added to the link and this function will return AddStreamFn(). For misses,
    179 /// the cache will return a stream callback which must be called at most once to
    180 /// produce content for the stream. The native object stream produced by the
    181 /// stream callback will add the file to the link after the stream is written
    182 /// to.
    183 ///
    184 /// Clients generally look like this:
    185 ///
    186 /// if (AddStreamFn AddStream = Cache(Task, Key))
    187 ///   ProduceContent(AddStream);
    188 typedef std::function<AddStreamFn(unsigned Task, StringRef Key)>
    189     NativeObjectCache;
    190 
    191 /// A ThinBackend defines what happens after the thin-link phase during ThinLTO.
    192 /// The details of this type definition aren't important; clients can only
    193 /// create a ThinBackend using one of the create*ThinBackend() functions below.
    194 typedef std::function<std::unique_ptr<ThinBackendProc>(
    195     Config &C, ModuleSummaryIndex &CombinedIndex,
    196     StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
    197     AddStreamFn AddStream, NativeObjectCache Cache)>
    198     ThinBackend;
    199 
    200 /// This ThinBackend runs the individual backend jobs in-process.
    201 ThinBackend createInProcessThinBackend(unsigned ParallelismLevel);
    202 
    203 /// This ThinBackend writes individual module indexes to files, instead of
    204 /// running the individual backend jobs. This backend is for distributed builds
    205 /// where separate processes will invoke the real backends.
    206 ///
    207 /// To find the path to write the index to, the backend checks if the path has a
    208 /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then
    209 /// appends ".thinlto.bc" and writes the index to that path. If
    210 /// ShouldEmitImportsFiles is true it also writes a list of imported files to a
    211 /// similar path with ".imports" appended instead.
    212 /// LinkedObjectsFile is an output stream to write the list of object files for
    213 /// the final ThinLTO linking. Can be nullptr.
    214 /// OnWrite is callback which receives module identifier and notifies LTO user
    215 /// that index file for the module (and optionally imports file) was created.
    216 using IndexWriteCallback = std::function<void(const std::string &)>;
    217 ThinBackend createWriteIndexesThinBackend(std::string OldPrefix,
    218                                           std::string NewPrefix,
    219                                           bool ShouldEmitImportsFiles,
    220                                           raw_fd_ostream *LinkedObjectsFile,
    221                                           IndexWriteCallback OnWrite);
    222 
    223 /// This class implements a resolution-based interface to LLVM's LTO
    224 /// functionality. It supports regular LTO, parallel LTO code generation and
    225 /// ThinLTO. You can use it from a linker in the following way:
    226 /// - Set hooks and code generation options (see lto::Config struct defined in
    227 ///   Config.h), and use the lto::Config object to create an lto::LTO object.
    228 /// - Create lto::InputFile objects using lto::InputFile::create(), then use
    229 ///   the symbols() function to enumerate its symbols and compute a resolution
    230 ///   for each symbol (see SymbolResolution below).
    231 /// - After the linker has visited each input file (and each regular object
    232 ///   file) and computed a resolution for each symbol, take each lto::InputFile
    233 ///   and pass it and an array of symbol resolutions to the add() function.
    234 /// - Call the getMaxTasks() function to get an upper bound on the number of
    235 ///   native object files that LTO may add to the link.
    236 /// - Call the run() function. This function will use the supplied AddStream
    237 ///   and Cache functions to add up to getMaxTasks() native object files to
    238 ///   the link.
    239 class LTO {
    240   friend InputFile;
    241 
    242 public:
    243   /// Create an LTO object. A default constructed LTO object has a reasonable
    244   /// production configuration, but you can customize it by passing arguments to
    245   /// this constructor.
    246   /// FIXME: We do currently require the DiagHandler field to be set in Conf.
    247   /// Until that is fixed, a Config argument is required.
    248   LTO(Config Conf, ThinBackend Backend = nullptr,
    249       unsigned ParallelCodeGenParallelismLevel = 1);
    250   ~LTO();
    251 
    252   /// Add an input file to the LTO link, using the provided symbol resolutions.
    253   /// The symbol resolutions must appear in the enumeration order given by
    254   /// InputFile::symbols().
    255   Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res);
    256 
    257   /// Returns an upper bound on the number of tasks that the client may expect.
    258   /// This may only be called after all IR object files have been added. For a
    259   /// full description of tasks see LTOBackend.h.
    260   unsigned getMaxTasks() const;
    261 
    262   /// Runs the LTO pipeline. This function calls the supplied AddStream
    263   /// function to add native object files to the link.
    264   ///
    265   /// The Cache parameter is optional. If supplied, it will be used to cache
    266   /// native object files and add them to the link.
    267   ///
    268   /// The client will receive at most one callback (via either AddStream or
    269   /// Cache) for each task identifier.
    270   Error run(AddStreamFn AddStream, NativeObjectCache Cache = nullptr);
    271 
    272 private:
    273   Config Conf;
    274 
    275   struct RegularLTOState {
    276     RegularLTOState(unsigned ParallelCodeGenParallelismLevel, Config &Conf);
    277     struct CommonResolution {
    278       uint64_t Size = 0;
    279       unsigned Align = 0;
    280       /// Record if at least one instance of the common was marked as prevailing
    281       bool Prevailing = false;
    282     };
    283     std::map<std::string, CommonResolution> Commons;
    284 
    285     unsigned ParallelCodeGenParallelismLevel;
    286     LTOLLVMContext Ctx;
    287     std::unique_ptr<Module> CombinedModule;
    288     std::unique_ptr<IRMover> Mover;
    289 
    290     // This stores the information about a regular LTO module that we have added
    291     // to the link. It will either be linked immediately (for modules without
    292     // summaries) or after summary-based dead stripping (for modules with
    293     // summaries).
    294     struct AddedModule {
    295       std::unique_ptr<Module> M;
    296       std::vector<GlobalValue *> Keep;
    297     };
    298     std::vector<AddedModule> ModsWithSummaries;
    299   } RegularLTO;
    300 
    301   struct ThinLTOState {
    302     ThinLTOState(ThinBackend Backend);
    303 
    304     ThinBackend Backend;
    305     ModuleSummaryIndex CombinedIndex;
    306     MapVector<StringRef, BitcodeModule> ModuleMap;
    307     DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID;
    308   } ThinLTO;
    309 
    310   // The global resolution for a particular (mangled) symbol name. This is in
    311   // particular necessary to track whether each symbol can be internalized.
    312   // Because any input file may introduce a new cross-partition reference, we
    313   // cannot make any final internalization decisions until all input files have
    314   // been added and the client has called run(). During run() we apply
    315   // internalization decisions either directly to the module (for regular LTO)
    316   // or to the combined index (for ThinLTO).
    317   struct GlobalResolution {
    318     /// The unmangled name of the global.
    319     std::string IRName;
    320 
    321     /// Keep track if the symbol is visible outside of a module with a summary
    322     /// (i.e. in either a regular object or a regular LTO module without a
    323     /// summary).
    324     bool VisibleOutsideSummary = false;
    325 
    326     bool UnnamedAddr = true;
    327 
    328     /// True if module contains the prevailing definition.
    329     bool Prevailing = false;
    330 
    331     /// Returns true if module contains the prevailing definition and symbol is
    332     /// an IR symbol. For example when module-level inline asm block is used,
    333     /// symbol can be prevailing in module but have no IR name.
    334     bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); }
    335 
    336     /// This field keeps track of the partition number of this global. The
    337     /// regular LTO object is partition 0, while each ThinLTO object has its own
    338     /// partition number from 1 onwards.
    339     ///
    340     /// Any global that is defined or used by more than one partition, or that
    341     /// is referenced externally, may not be internalized.
    342     ///
    343     /// Partitions generally have a one-to-one correspondence with tasks, except
    344     /// that we use partition 0 for all parallel LTO code generation partitions.
    345     /// Any partitioning of the combined LTO object is done internally by the
    346     /// LTO backend.
    347     unsigned Partition = Unknown;
    348 
    349     /// Special partition numbers.
    350     enum : unsigned {
    351       /// A partition number has not yet been assigned to this global.
    352       Unknown = -1u,
    353 
    354       /// This global is either used by more than one partition or has an
    355       /// external reference, and therefore cannot be internalized.
    356       External = -2u,
    357 
    358       /// The RegularLTO partition
    359       RegularLTO = 0,
    360     };
    361   };
    362 
    363   // Global mapping from mangled symbol names to resolutions.
    364   StringMap<GlobalResolution> GlobalResolutions;
    365 
    366   void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
    367                             ArrayRef<SymbolResolution> Res, unsigned Partition,
    368                             bool InSummary);
    369 
    370   // These functions take a range of symbol resolutions [ResI, ResE) and consume
    371   // the resolutions used by a single input module by incrementing ResI. After
    372   // these functions return, [ResI, ResE) will refer to the resolution range for
    373   // the remaining modules in the InputFile.
    374   Error addModule(InputFile &Input, unsigned ModI,
    375                   const SymbolResolution *&ResI, const SymbolResolution *ResE);
    376 
    377   Expected<RegularLTOState::AddedModule>
    378   addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
    379                 const SymbolResolution *&ResI, const SymbolResolution *ResE);
    380   Error linkRegularLTO(RegularLTOState::AddedModule Mod,
    381                        bool LivenessFromIndex);
    382 
    383   Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
    384                    const SymbolResolution *&ResI, const SymbolResolution *ResE);
    385 
    386   Error runRegularLTO(AddStreamFn AddStream);
    387   Error runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache);
    388 
    389   mutable bool CalledGetMaxTasks = false;
    390 };
    391 
    392 /// The resolution for a symbol. The linker must provide a SymbolResolution for
    393 /// each global symbol based on its internal resolution of that symbol.
    394 struct SymbolResolution {
    395   SymbolResolution()
    396       : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0),
    397         LinkerRedefined(0) {}
    398 
    399   /// The linker has chosen this definition of the symbol.
    400   unsigned Prevailing : 1;
    401 
    402   /// The definition of this symbol is unpreemptable at runtime and is known to
    403   /// be in this linkage unit.
    404   unsigned FinalDefinitionInLinkageUnit : 1;
    405 
    406   /// The definition of this symbol is visible outside of the LTO unit.
    407   unsigned VisibleToRegularObj : 1;
    408 
    409   /// Linker redefined version of the symbol which appeared in -wrap or -defsym
    410   /// linker option.
    411   unsigned LinkerRedefined : 1;
    412 };
    413 
    414 } // namespace lto
    415 } // namespace llvm
    416 
    417 #endif
    418