Home | History | Annotate | Download | only in arm
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_ARM_CONSTANTS_ARM_H_
      6 #define V8_ARM_CONSTANTS_ARM_H_
      7 
      8 #include <stdint.h>
      9 
     10 #include "src/base/logging.h"
     11 #include "src/base/macros.h"
     12 #include "src/boxed-float.h"
     13 #include "src/globals.h"
     14 #include "src/utils.h"
     15 
     16 // ARM EABI is required.
     17 #if defined(__arm__) && !defined(__ARM_EABI__)
     18 #error ARM EABI support is required.
     19 #endif
     20 
     21 namespace v8 {
     22 namespace internal {
     23 
     24 // Constant pool marker.
     25 // Use UDF, the permanently undefined instruction.
     26 const int kConstantPoolMarkerMask = 0xfff000f0;
     27 const int kConstantPoolMarker = 0xe7f000f0;
     28 const int kConstantPoolLengthMaxMask = 0xffff;
     29 inline int EncodeConstantPoolLength(int length) {
     30   DCHECK((length & kConstantPoolLengthMaxMask) == length);
     31   return ((length & 0xfff0) << 4) | (length & 0xf);
     32 }
     33 inline int DecodeConstantPoolLength(int instr) {
     34   DCHECK_EQ(instr & kConstantPoolMarkerMask, kConstantPoolMarker);
     35   return ((instr >> 4) & 0xfff0) | (instr & 0xf);
     36 }
     37 
     38 // Number of registers in normal ARM mode.
     39 const int kNumRegisters = 16;
     40 
     41 // VFP support.
     42 const int kNumVFPSingleRegisters = 32;
     43 const int kNumVFPDoubleRegisters = 32;
     44 const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
     45 
     46 // PC is register 15.
     47 const int kPCRegister = 15;
     48 const int kNoRegister = -1;
     49 
     50 // Used in embedded constant pool builder - max reach in bits for
     51 // various load instructions (unsigned)
     52 const int kLdrMaxReachBits = 12;
     53 const int kVldrMaxReachBits = 10;
     54 
     55 // Actual value of root register is offset from the root array's start
     56 // to take advantage of negative displacement values. Loads allow a uint12
     57 // value with a separate sign bit (range [-4095, +4095]), so the first root
     58 // is still addressable with a single load instruction.
     59 constexpr int kRootRegisterBias = 4095;
     60 
     61 // -----------------------------------------------------------------------------
     62 // Conditions.
     63 
     64 // Defines constants and accessor classes to assemble, disassemble and
     65 // simulate ARM instructions.
     66 //
     67 // Section references in the code refer to the "ARM Architecture Reference
     68 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
     69 //
     70 // Constants for specific fields are defined in their respective named enums.
     71 // General constants are in an anonymous enum in class Instr.
     72 
     73 // Values for the condition field as defined in section A3.2
     74 enum Condition {
     75   kNoCondition = -1,
     76 
     77   eq =  0 << 28,                 // Z set            Equal.
     78   ne =  1 << 28,                 // Z clear          Not equal.
     79   cs =  2 << 28,                 // C set            Unsigned higher or same.
     80   cc =  3 << 28,                 // C clear          Unsigned lower.
     81   mi =  4 << 28,                 // N set            Negative.
     82   pl =  5 << 28,                 // N clear          Positive or zero.
     83   vs =  6 << 28,                 // V set            Overflow.
     84   vc =  7 << 28,                 // V clear          No overflow.
     85   hi =  8 << 28,                 // C set, Z clear   Unsigned higher.
     86   ls =  9 << 28,                 // C clear or Z set Unsigned lower or same.
     87   ge = 10 << 28,                 // N == V           Greater or equal.
     88   lt = 11 << 28,                 // N != V           Less than.
     89   gt = 12 << 28,                 // Z clear, N == V  Greater than.
     90   le = 13 << 28,                 // Z set or N != V  Less then or equal
     91   al = 14 << 28,                 //                  Always.
     92 
     93   kSpecialCondition = 15 << 28,  // Special condition (refer to section A3.2.1).
     94   kNumberOfConditions = 16,
     95 
     96   // Aliases.
     97   hs = cs,                       // C set            Unsigned higher or same.
     98   lo = cc                        // C clear          Unsigned lower.
     99 };
    100 
    101 
    102 inline Condition NegateCondition(Condition cond) {
    103   DCHECK(cond != al);
    104   return static_cast<Condition>(cond ^ ne);
    105 }
    106 
    107 
    108 // -----------------------------------------------------------------------------
    109 // Instructions encoding.
    110 
    111 // Instr is merely used by the Assembler to distinguish 32bit integers
    112 // representing instructions from usual 32 bit values.
    113 // Instruction objects are pointers to 32bit values, and provide methods to
    114 // access the various ISA fields.
    115 typedef int32_t Instr;
    116 
    117 
    118 // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
    119 // as defined in section A3.4
    120 enum Opcode {
    121   AND =  0 << 21,  // Logical AND.
    122   EOR =  1 << 21,  // Logical Exclusive OR.
    123   SUB =  2 << 21,  // Subtract.
    124   RSB =  3 << 21,  // Reverse Subtract.
    125   ADD =  4 << 21,  // Add.
    126   ADC =  5 << 21,  // Add with Carry.
    127   SBC =  6 << 21,  // Subtract with Carry.
    128   RSC =  7 << 21,  // Reverse Subtract with Carry.
    129   TST =  8 << 21,  // Test.
    130   TEQ =  9 << 21,  // Test Equivalence.
    131   CMP = 10 << 21,  // Compare.
    132   CMN = 11 << 21,  // Compare Negated.
    133   ORR = 12 << 21,  // Logical (inclusive) OR.
    134   MOV = 13 << 21,  // Move.
    135   BIC = 14 << 21,  // Bit Clear.
    136   MVN = 15 << 21   // Move Not.
    137 };
    138 
    139 
    140 // The bits for bit 7-4 for some type 0 miscellaneous instructions.
    141 enum MiscInstructionsBits74 {
    142   // With bits 22-21 01.
    143   BX   =  1 << 4,
    144   BXJ  =  2 << 4,
    145   BLX  =  3 << 4,
    146   BKPT =  7 << 4,
    147 
    148   // With bits 22-21 11.
    149   CLZ  =  1 << 4
    150 };
    151 
    152 
    153 // Instruction encoding bits and masks.
    154 enum {
    155   H = 1 << 5,   // Halfword (or byte).
    156   S6 = 1 << 6,  // Signed (or unsigned).
    157   L = 1 << 20,  // Load (or store).
    158   S = 1 << 20,  // Set condition code (or leave unchanged).
    159   W = 1 << 21,  // Writeback base register (or leave unchanged).
    160   A = 1 << 21,  // Accumulate in multiply instruction (or not).
    161   B = 1 << 22,  // Unsigned byte (or word).
    162   N = 1 << 22,  // Long (or short).
    163   U = 1 << 23,  // Positive (or negative) offset/index.
    164   P = 1 << 24,  // Offset/pre-indexed addressing (or post-indexed addressing).
    165   I = 1 << 25,  // Immediate shifter operand (or not).
    166   B0 = 1 << 0,
    167   B4 = 1 << 4,
    168   B5 = 1 << 5,
    169   B6 = 1 << 6,
    170   B7 = 1 << 7,
    171   B8 = 1 << 8,
    172   B9 = 1 << 9,
    173   B10 = 1 << 10,
    174   B12 = 1 << 12,
    175   B16 = 1 << 16,
    176   B17 = 1 << 17,
    177   B18 = 1 << 18,
    178   B19 = 1 << 19,
    179   B20 = 1 << 20,
    180   B21 = 1 << 21,
    181   B22 = 1 << 22,
    182   B23 = 1 << 23,
    183   B24 = 1 << 24,
    184   B25 = 1 << 25,
    185   B26 = 1 << 26,
    186   B27 = 1 << 27,
    187   B28 = 1 << 28,
    188 
    189   // Instruction bit masks.
    190   kCondMask = 15 << 28,
    191   kALUMask = 0x6f << 21,
    192   kRdMask = 15 << 12,  // In str instruction.
    193   kCoprocessorMask = 15 << 8,
    194   kOpCodeMask = 15 << 21,  // In data-processing instructions.
    195   kImm24Mask = (1 << 24) - 1,
    196   kImm16Mask = (1 << 16) - 1,
    197   kImm8Mask = (1 << 8) - 1,
    198   kOff12Mask = (1 << 12) - 1,
    199   kOff8Mask = (1 << 8) - 1
    200 };
    201 
    202 enum BarrierOption {
    203   OSHLD = 0x1,
    204   OSHST = 0x2,
    205   OSH = 0x3,
    206   NSHLD = 0x5,
    207   NSHST = 0x6,
    208   NSH = 0x7,
    209   ISHLD = 0x9,
    210   ISHST = 0xa,
    211   ISH = 0xb,
    212   LD = 0xd,
    213   ST = 0xe,
    214   SY = 0xf,
    215 };
    216 
    217 
    218 // -----------------------------------------------------------------------------
    219 // Addressing modes and instruction variants.
    220 
    221 // Condition code updating mode.
    222 enum SBit {
    223   SetCC   = 1 << 20,  // Set condition code.
    224   LeaveCC = 0 << 20   // Leave condition code unchanged.
    225 };
    226 
    227 
    228 // Status register selection.
    229 enum SRegister {
    230   CPSR = 0 << 22,
    231   SPSR = 1 << 22
    232 };
    233 
    234 
    235 // Shifter types for Data-processing operands as defined in section A5.1.2.
    236 enum ShiftOp {
    237   LSL = 0 << 5,   // Logical shift left.
    238   LSR = 1 << 5,   // Logical shift right.
    239   ASR = 2 << 5,   // Arithmetic shift right.
    240   ROR = 3 << 5,   // Rotate right.
    241 
    242   // RRX is encoded as ROR with shift_imm == 0.
    243   // Use a special code to make the distinction. The RRX ShiftOp is only used
    244   // as an argument, and will never actually be encoded. The Assembler will
    245   // detect it and emit the correct ROR shift operand with shift_imm == 0.
    246   RRX = -1,
    247   kNumberOfShifts = 4
    248 };
    249 
    250 
    251 // Status register fields.
    252 enum SRegisterField {
    253   CPSR_c = CPSR | 1 << 16,
    254   CPSR_x = CPSR | 1 << 17,
    255   CPSR_s = CPSR | 1 << 18,
    256   CPSR_f = CPSR | 1 << 19,
    257   SPSR_c = SPSR | 1 << 16,
    258   SPSR_x = SPSR | 1 << 17,
    259   SPSR_s = SPSR | 1 << 18,
    260   SPSR_f = SPSR | 1 << 19
    261 };
    262 
    263 // Status register field mask (or'ed SRegisterField enum values).
    264 typedef uint32_t SRegisterFieldMask;
    265 
    266 
    267 // Memory operand addressing mode.
    268 enum AddrMode {
    269   // Bit encoding P U W.
    270   Offset       = (8|4|0) << 21,  // Offset (without writeback to base).
    271   PreIndex     = (8|4|1) << 21,  // Pre-indexed addressing with writeback.
    272   PostIndex    = (0|4|0) << 21,  // Post-indexed addressing with writeback.
    273   NegOffset    = (8|0|0) << 21,  // Negative offset (without writeback to base).
    274   NegPreIndex  = (8|0|1) << 21,  // Negative pre-indexed with writeback.
    275   NegPostIndex = (0|0|0) << 21   // Negative post-indexed with writeback.
    276 };
    277 
    278 
    279 // Load/store multiple addressing mode.
    280 enum BlockAddrMode {
    281   // Bit encoding P U W .
    282   da           = (0|0|0) << 21,  // Decrement after.
    283   ia           = (0|4|0) << 21,  // Increment after.
    284   db           = (8|0|0) << 21,  // Decrement before.
    285   ib           = (8|4|0) << 21,  // Increment before.
    286   da_w         = (0|0|1) << 21,  // Decrement after with writeback to base.
    287   ia_w         = (0|4|1) << 21,  // Increment after with writeback to base.
    288   db_w         = (8|0|1) << 21,  // Decrement before with writeback to base.
    289   ib_w         = (8|4|1) << 21,  // Increment before with writeback to base.
    290 
    291   // Alias modes for comparison when writeback does not matter.
    292   da_x         = (0|0|0) << 21,  // Decrement after.
    293   ia_x         = (0|4|0) << 21,  // Increment after.
    294   db_x         = (8|0|0) << 21,  // Decrement before.
    295   ib_x         = (8|4|0) << 21,  // Increment before.
    296 
    297   kBlockAddrModeMask = (8|4|1) << 21
    298 };
    299 
    300 
    301 // Coprocessor load/store operand size.
    302 enum LFlag {
    303   Long  = 1 << 22,  // Long load/store coprocessor.
    304   Short = 0 << 22   // Short load/store coprocessor.
    305 };
    306 
    307 // Neon sizes.
    308 enum NeonSize { Neon8 = 0x0, Neon16 = 0x1, Neon32 = 0x2, Neon64 = 0x3 };
    309 
    310 // NEON data type
    311 enum NeonDataType {
    312   NeonS8 = 0,
    313   NeonS16 = 1,
    314   NeonS32 = 2,
    315   // Gap to make it easier to extract U and size.
    316   NeonU8 = 4,
    317   NeonU16 = 5,
    318   NeonU32 = 6
    319 };
    320 
    321 inline int NeonU(NeonDataType dt) { return static_cast<int>(dt) >> 2; }
    322 inline int NeonSz(NeonDataType dt) { return static_cast<int>(dt) & 0x3; }
    323 
    324 // Convert sizes to data types (U bit is clear).
    325 inline NeonDataType NeonSizeToDataType(NeonSize size) {
    326   DCHECK_NE(Neon64, size);
    327   return static_cast<NeonDataType>(size);
    328 }
    329 
    330 inline NeonSize NeonDataTypeToSize(NeonDataType dt) {
    331   return static_cast<NeonSize>(NeonSz(dt));
    332 }
    333 
    334 enum NeonListType {
    335   nlt_1 = 0x7,
    336   nlt_2 = 0xA,
    337   nlt_3 = 0x6,
    338   nlt_4 = 0x2
    339 };
    340 
    341 // -----------------------------------------------------------------------------
    342 // Supervisor Call (svc) specific support.
    343 
    344 // Special Software Interrupt codes when used in the presence of the ARM
    345 // simulator.
    346 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
    347 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
    348 enum SoftwareInterruptCodes {
    349   // transition to C code
    350   kCallRtRedirected = 0x10,
    351   // break point
    352   kBreakpoint = 0x20,
    353   // stop
    354   kStopCode = 1 << 23
    355 };
    356 const uint32_t kStopCodeMask = kStopCode - 1;
    357 const uint32_t kMaxStopCode = kStopCode - 1;
    358 const int32_t  kDefaultStopCode = -1;
    359 
    360 
    361 // Type of VFP register. Determines register encoding.
    362 enum VFPRegPrecision {
    363   kSinglePrecision = 0,
    364   kDoublePrecision = 1,
    365   kSimd128Precision = 2
    366 };
    367 
    368 // VFP FPSCR constants.
    369 enum VFPConversionMode {
    370   kFPSCRRounding = 0,
    371   kDefaultRoundToZero = 1
    372 };
    373 
    374 // This mask does not include the "inexact" or "input denormal" cumulative
    375 // exceptions flags, because we usually don't want to check for it.
    376 const uint32_t kVFPExceptionMask = 0xf;
    377 const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
    378 const uint32_t kVFPOverflowExceptionBit = 1 << 2;
    379 const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
    380 const uint32_t kVFPInexactExceptionBit = 1 << 4;
    381 const uint32_t kVFPFlushToZeroMask = 1 << 24;
    382 const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
    383 
    384 const uint32_t kVFPNConditionFlagBit = 1 << 31;
    385 const uint32_t kVFPZConditionFlagBit = 1 << 30;
    386 const uint32_t kVFPCConditionFlagBit = 1 << 29;
    387 const uint32_t kVFPVConditionFlagBit = 1 << 28;
    388 
    389 
    390 // VFP rounding modes. See ARM DDI 0406B Page A2-29.
    391 enum VFPRoundingMode {
    392   RN = 0 << 22,   // Round to Nearest.
    393   RP = 1 << 22,   // Round towards Plus Infinity.
    394   RM = 2 << 22,   // Round towards Minus Infinity.
    395   RZ = 3 << 22,   // Round towards zero.
    396 
    397   // Aliases.
    398   kRoundToNearest = RN,
    399   kRoundToPlusInf = RP,
    400   kRoundToMinusInf = RM,
    401   kRoundToZero = RZ
    402 };
    403 
    404 const uint32_t kVFPRoundingModeMask = 3 << 22;
    405 
    406 enum CheckForInexactConversion {
    407   kCheckForInexactConversion,
    408   kDontCheckForInexactConversion
    409 };
    410 
    411 // -----------------------------------------------------------------------------
    412 // Hints.
    413 
    414 // Branch hints are not used on the ARM.  They are defined so that they can
    415 // appear in shared function signatures, but will be ignored in ARM
    416 // implementations.
    417 enum Hint { no_hint };
    418 
    419 // Hints are not used on the arm.  Negating is trivial.
    420 inline Hint NegateHint(Hint ignored) { return no_hint; }
    421 
    422 
    423 // -----------------------------------------------------------------------------
    424 // Instruction abstraction.
    425 
    426 // The class Instruction enables access to individual fields defined in the ARM
    427 // architecture instruction set encoding as described in figure A3-1.
    428 // Note that the Assembler uses typedef int32_t Instr.
    429 //
    430 // Example: Test whether the instruction at ptr does set the condition code
    431 // bits.
    432 //
    433 // bool InstructionSetsConditionCodes(byte* ptr) {
    434 //   Instruction* instr = Instruction::At(ptr);
    435 //   int type = instr->TypeValue();
    436 //   return ((type == 0) || (type == 1)) && instr->HasS();
    437 // }
    438 //
    439 
    440 constexpr uint8_t kInstrSize = 4;
    441 constexpr uint8_t kInstrSizeLog2 = 2;
    442 
    443 class Instruction {
    444  public:
    445   // Difference between address of current opcode and value read from pc
    446   // register.
    447   static constexpr int kPcLoadDelta = 8;
    448 
    449 // Helper macro to define static accessors.
    450 // We use the cast to char* trick to bypass the strict anti-aliasing rules.
    451 #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
    452   static inline return_type Name(Instr instr) {          \
    453     char* temp = reinterpret_cast<char*>(&instr);        \
    454     return reinterpret_cast<Instruction*>(temp)->Name(); \
    455   }
    456 
    457 #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
    458 
    459   // Get the raw instruction bits.
    460   inline Instr InstructionBits() const {
    461     return *reinterpret_cast<const Instr*>(this);
    462   }
    463 
    464   // Set the raw instruction bits to value.
    465   inline void SetInstructionBits(Instr value) {
    466     *reinterpret_cast<Instr*>(this) = value;
    467   }
    468 
    469   // Extract a single bit from the instruction bits and return it as bit 0 in
    470   // the result.
    471   inline int Bit(int nr) const {
    472     return (InstructionBits() >> nr) & 1;
    473   }
    474 
    475   // Extract a bit field <hi:lo> from the instruction bits and return it in the
    476   // least-significant bits of the result.
    477   inline int Bits(int hi, int lo) const {
    478     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
    479   }
    480 
    481   // Read a bit field <hi:lo>, leaving its position unchanged in the result.
    482   inline int BitField(int hi, int lo) const {
    483     return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
    484   }
    485 
    486   // Static support.
    487 
    488   // Extract a single bit from the instruction bits and return it as bit 0 in
    489   // the result.
    490   static inline int Bit(Instr instr, int nr) {
    491     return (instr >> nr) & 1;
    492   }
    493 
    494   // Extract a bit field <hi:lo> from the instruction bits and return it in the
    495   // least-significant bits of the result.
    496   static inline int Bits(Instr instr, int hi, int lo) {
    497     return (instr >> lo) & ((2 << (hi - lo)) - 1);
    498   }
    499 
    500   // Read a bit field <hi:lo>, leaving its position unchanged in the result.
    501   static inline int BitField(Instr instr, int hi, int lo) {
    502     return instr & (((2 << (hi - lo)) - 1) << lo);
    503   }
    504 
    505   // Accessors for the different named fields used in the ARM encoding.
    506   // The naming of these accessor corresponds to figure A3-1.
    507   //
    508   // Two kind of accessors are declared:
    509   // - <Name>Field() will return the raw field, i.e. the field's bits at their
    510   //   original place in the instruction encoding.
    511   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
    512   //   0xC0810002 ConditionField(instr) will return 0xC0000000.
    513   // - <Name>Value() will return the field value, shifted back to bit 0.
    514   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
    515   //   0xC0810002 ConditionField(instr) will return 0xC.
    516 
    517 
    518   // Generally applicable fields
    519   inline int ConditionValue() const { return Bits(31, 28); }
    520   inline Condition ConditionField() const {
    521     return static_cast<Condition>(BitField(31, 28));
    522   }
    523   DECLARE_STATIC_TYPED_ACCESSOR(int, ConditionValue);
    524   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
    525 
    526   inline int TypeValue() const { return Bits(27, 25); }
    527   inline int SpecialValue() const { return Bits(27, 23); }
    528 
    529   inline int RnValue() const { return Bits(19, 16); }
    530   DECLARE_STATIC_ACCESSOR(RnValue);
    531   inline int RdValue() const { return Bits(15, 12); }
    532   DECLARE_STATIC_ACCESSOR(RdValue);
    533 
    534   inline int CoprocessorValue() const { return Bits(11, 8); }
    535   // Support for VFP.
    536   // Vn(19-16) | Vd(15-12) |  Vm(3-0)
    537   inline int VnValue() const { return Bits(19, 16); }
    538   inline int VmValue() const { return Bits(3, 0); }
    539   inline int VdValue() const { return Bits(15, 12); }
    540   inline int NValue() const { return Bit(7); }
    541   inline int MValue() const { return Bit(5); }
    542   inline int DValue() const { return Bit(22); }
    543   inline int RtValue() const { return Bits(15, 12); }
    544   inline int PValue() const { return Bit(24); }
    545   inline int UValue() const { return Bit(23); }
    546   inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
    547   inline int Opc2Value() const { return Bits(19, 16); }
    548   inline int Opc3Value() const { return Bits(7, 6); }
    549   inline int SzValue() const { return Bit(8); }
    550   inline int VLValue() const { return Bit(20); }
    551   inline int VCValue() const { return Bit(8); }
    552   inline int VAValue() const { return Bits(23, 21); }
    553   inline int VBValue() const { return Bits(6, 5); }
    554   inline int VFPNRegValue(VFPRegPrecision pre) {
    555     return VFPGlueRegValue(pre, 16, 7);
    556   }
    557   inline int VFPMRegValue(VFPRegPrecision pre) {
    558     return VFPGlueRegValue(pre, 0, 5);
    559   }
    560   inline int VFPDRegValue(VFPRegPrecision pre) {
    561     return VFPGlueRegValue(pre, 12, 22);
    562   }
    563 
    564   // Fields used in Data processing instructions
    565   inline int OpcodeValue() const {
    566     return static_cast<Opcode>(Bits(24, 21));
    567   }
    568   inline Opcode OpcodeField() const {
    569     return static_cast<Opcode>(BitField(24, 21));
    570   }
    571   inline int SValue() const { return Bit(20); }
    572     // with register
    573   inline int RmValue() const { return Bits(3, 0); }
    574   DECLARE_STATIC_ACCESSOR(RmValue);
    575   inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
    576   inline ShiftOp ShiftField() const {
    577     return static_cast<ShiftOp>(BitField(6, 5));
    578   }
    579   inline int RegShiftValue() const { return Bit(4); }
    580   inline int RsValue() const { return Bits(11, 8); }
    581   inline int ShiftAmountValue() const { return Bits(11, 7); }
    582     // with immediate
    583   inline int RotateValue() const { return Bits(11, 8); }
    584   DECLARE_STATIC_ACCESSOR(RotateValue);
    585   inline int Immed8Value() const { return Bits(7, 0); }
    586   DECLARE_STATIC_ACCESSOR(Immed8Value);
    587   inline int Immed4Value() const { return Bits(19, 16); }
    588   inline int ImmedMovwMovtValue() const {
    589       return Immed4Value() << 12 | Offset12Value(); }
    590   DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue);
    591 
    592   // Fields used in Load/Store instructions
    593   inline int PUValue() const { return Bits(24, 23); }
    594   inline int PUField() const { return BitField(24, 23); }
    595   inline int  BValue() const { return Bit(22); }
    596   inline int  WValue() const { return Bit(21); }
    597   inline int  LValue() const { return Bit(20); }
    598     // with register uses same fields as Data processing instructions above
    599     // with immediate
    600   inline int Offset12Value() const { return Bits(11, 0); }
    601     // multiple
    602   inline int RlistValue() const { return Bits(15, 0); }
    603     // extra loads and stores
    604   inline int SignValue() const { return Bit(6); }
    605   inline int HValue() const { return Bit(5); }
    606   inline int ImmedHValue() const { return Bits(11, 8); }
    607   inline int ImmedLValue() const { return Bits(3, 0); }
    608 
    609   // Fields used in Branch instructions
    610   inline int LinkValue() const { return Bit(24); }
    611   inline int SImmed24Value() const {
    612     return signed_bitextract_32(23, 0, InstructionBits());
    613   }
    614 
    615   bool IsBranch() { return Bit(27) == 1 && Bit(25) == 1; }
    616 
    617   int GetBranchOffset() {
    618     DCHECK(IsBranch());
    619     return SImmed24Value() * kInstrSize;
    620   }
    621 
    622   void SetBranchOffset(int32_t branch_offset) {
    623     DCHECK(IsBranch());
    624     DCHECK_EQ(branch_offset % kInstrSize, 0);
    625     int32_t new_imm24 = branch_offset / kInstrSize;
    626     CHECK(is_int24(new_imm24));
    627     SetInstructionBits((InstructionBits() & ~(kImm24Mask)) |
    628                        (new_imm24 & kImm24Mask));
    629   }
    630 
    631   // Fields used in Software interrupt instructions
    632   inline SoftwareInterruptCodes SvcValue() const {
    633     return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
    634   }
    635 
    636   // Test for special encodings of type 0 instructions (extra loads and stores,
    637   // as well as multiplications).
    638   inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
    639 
    640   // Test for miscellaneous instructions encodings of type 0 instructions.
    641   inline bool IsMiscType0() const { return (Bit(24) == 1)
    642                                            && (Bit(23) == 0)
    643                                            && (Bit(20) == 0)
    644                                            && ((Bit(7) == 0)); }
    645 
    646   // Test for nop-like instructions which fall under type 1.
    647   inline bool IsNopLikeType1() const { return Bits(24, 8) == 0x120F0; }
    648 
    649   // Test for a stop instruction.
    650   inline bool IsStop() const {
    651     return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
    652   }
    653 
    654   // Special accessors that test for existence of a value.
    655   inline bool HasS()    const { return SValue() == 1; }
    656   inline bool HasB()    const { return BValue() == 1; }
    657   inline bool HasW()    const { return WValue() == 1; }
    658   inline bool HasL()    const { return LValue() == 1; }
    659   inline bool HasU()    const { return UValue() == 1; }
    660   inline bool HasSign() const { return SignValue() == 1; }
    661   inline bool HasH()    const { return HValue() == 1; }
    662   inline bool HasLink() const { return LinkValue() == 1; }
    663 
    664   // Decode the double immediate from a vmov instruction.
    665   Float64 DoubleImmedVmov() const;
    666 
    667   // Instructions are read of out a code stream. The only way to get a
    668   // reference to an instruction is to convert a pointer. There is no way
    669   // to allocate or create instances of class Instruction.
    670   // Use the At(pc) function to create references to Instruction.
    671   static Instruction* At(Address pc) {
    672     return reinterpret_cast<Instruction*>(pc);
    673   }
    674 
    675 
    676  private:
    677   // Join split register codes, depending on register precision.
    678   // four_bit is the position of the least-significant bit of the four
    679   // bit specifier. one_bit is the position of the additional single bit
    680   // specifier.
    681   inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
    682     if (pre == kSinglePrecision) {
    683       return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
    684     } else {
    685       int reg_num = (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
    686       if (pre == kDoublePrecision) {
    687         return reg_num;
    688       }
    689       DCHECK_EQ(kSimd128Precision, pre);
    690       DCHECK_EQ(reg_num & 1, 0);
    691       return reg_num / 2;
    692     }
    693   }
    694 
    695   // We need to prevent the creation of instances of class Instruction.
    696   DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
    697 };
    698 
    699 
    700 // Helper functions for converting between register numbers and names.
    701 class Registers {
    702  public:
    703   // Return the name of the register.
    704   static const char* Name(int reg);
    705 
    706   // Lookup the register number for the name provided.
    707   static int Number(const char* name);
    708 
    709   struct RegisterAlias {
    710     int reg;
    711     const char* name;
    712   };
    713 
    714  private:
    715   static const char* names_[kNumRegisters];
    716   static const RegisterAlias aliases_[];
    717 };
    718 
    719 // Helper functions for converting between VFP register numbers and names.
    720 class VFPRegisters {
    721  public:
    722   // Return the name of the register.
    723   static const char* Name(int reg, bool is_double);
    724 
    725   // Lookup the register number for the name provided.
    726   // Set flag pointed by is_double to true if register
    727   // is double-precision.
    728   static int Number(const char* name, bool* is_double);
    729 
    730  private:
    731   static const char* names_[kNumVFPRegisters];
    732 };
    733 
    734 // Relative jumps on ARM can address 32 MB.
    735 constexpr size_t kMaxPCRelativeCodeRangeInMB = 32;
    736 
    737 }  // namespace internal
    738 }  // namespace v8
    739 
    740 #endif  // V8_ARM_CONSTANTS_ARM_H_
    741