Home | History | Annotate | Download | only in NVPTX
      1 //===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that NVPTX uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "NVPTXISelLowering.h"
     16 #include "MCTargetDesc/NVPTXBaseInfo.h"
     17 #include "NVPTX.h"
     18 #include "NVPTXSubtarget.h"
     19 #include "NVPTXTargetMachine.h"
     20 #include "NVPTXTargetObjectFile.h"
     21 #include "NVPTXUtilities.h"
     22 #include "llvm/ADT/APInt.h"
     23 #include "llvm/ADT/SmallVector.h"
     24 #include "llvm/ADT/StringRef.h"
     25 #include "llvm/CodeGen/Analysis.h"
     26 #include "llvm/CodeGen/MachineFunction.h"
     27 #include "llvm/CodeGen/MachineMemOperand.h"
     28 #include "llvm/CodeGen/SelectionDAG.h"
     29 #include "llvm/CodeGen/SelectionDAGNodes.h"
     30 #include "llvm/CodeGen/TargetCallingConv.h"
     31 #include "llvm/CodeGen/TargetLowering.h"
     32 #include "llvm/CodeGen/ValueTypes.h"
     33 #include "llvm/IR/Argument.h"
     34 #include "llvm/IR/Attributes.h"
     35 #include "llvm/IR/CallSite.h"
     36 #include "llvm/IR/Constants.h"
     37 #include "llvm/IR/DataLayout.h"
     38 #include "llvm/IR/DerivedTypes.h"
     39 #include "llvm/IR/Function.h"
     40 #include "llvm/IR/GlobalValue.h"
     41 #include "llvm/IR/Instruction.h"
     42 #include "llvm/IR/Instructions.h"
     43 #include "llvm/IR/Module.h"
     44 #include "llvm/IR/Type.h"
     45 #include "llvm/IR/Value.h"
     46 #include "llvm/Support/Casting.h"
     47 #include "llvm/Support/CodeGen.h"
     48 #include "llvm/Support/CommandLine.h"
     49 #include "llvm/Support/ErrorHandling.h"
     50 #include "llvm/Support/MachineValueType.h"
     51 #include "llvm/Support/MathExtras.h"
     52 #include "llvm/Support/raw_ostream.h"
     53 #include "llvm/Target/TargetMachine.h"
     54 #include "llvm/Target/TargetOptions.h"
     55 #include <algorithm>
     56 #include <cassert>
     57 #include <cstdint>
     58 #include <iterator>
     59 #include <sstream>
     60 #include <string>
     61 #include <utility>
     62 #include <vector>
     63 
     64 #define DEBUG_TYPE "nvptx-lower"
     65 
     66 using namespace llvm;
     67 
     68 static unsigned int uniqueCallSite = 0;
     69 
     70 static cl::opt<bool> sched4reg(
     71     "nvptx-sched4reg",
     72     cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
     73 
     74 static cl::opt<unsigned>
     75 FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
     76                     cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
     77                              " 1: do it  2: do it aggressively"),
     78                     cl::init(2));
     79 
     80 static cl::opt<int> UsePrecDivF32(
     81     "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden,
     82     cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
     83              " IEEE Compliant F32 div.rnd if available."),
     84     cl::init(2));
     85 
     86 static cl::opt<bool> UsePrecSqrtF32(
     87     "nvptx-prec-sqrtf32", cl::Hidden,
     88     cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
     89     cl::init(true));
     90 
     91 static cl::opt<bool> FtzEnabled(
     92     "nvptx-f32ftz", cl::ZeroOrMore, cl::Hidden,
     93     cl::desc("NVPTX Specific: Flush f32 subnormals to sign-preserving zero."),
     94     cl::init(false));
     95 
     96 int NVPTXTargetLowering::getDivF32Level() const {
     97   if (UsePrecDivF32.getNumOccurrences() > 0) {
     98     // If nvptx-prec-div32=N is used on the command-line, always honor it
     99     return UsePrecDivF32;
    100   } else {
    101     // Otherwise, use div.approx if fast math is enabled
    102     if (getTargetMachine().Options.UnsafeFPMath)
    103       return 0;
    104     else
    105       return 2;
    106   }
    107 }
    108 
    109 bool NVPTXTargetLowering::usePrecSqrtF32() const {
    110   if (UsePrecSqrtF32.getNumOccurrences() > 0) {
    111     // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
    112     return UsePrecSqrtF32;
    113   } else {
    114     // Otherwise, use sqrt.approx if fast math is enabled
    115     return !getTargetMachine().Options.UnsafeFPMath;
    116   }
    117 }
    118 
    119 bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
    120   // TODO: Get rid of this flag; there can be only one way to do this.
    121   if (FtzEnabled.getNumOccurrences() > 0) {
    122     // If nvptx-f32ftz is used on the command-line, always honor it
    123     return FtzEnabled;
    124   } else {
    125     const Function &F = MF.getFunction();
    126     // Otherwise, check for an nvptx-f32ftz attribute on the function
    127     if (F.hasFnAttribute("nvptx-f32ftz"))
    128       return F.getFnAttribute("nvptx-f32ftz").getValueAsString() == "true";
    129     else
    130       return false;
    131   }
    132 }
    133 
    134 static bool IsPTXVectorType(MVT VT) {
    135   switch (VT.SimpleTy) {
    136   default:
    137     return false;
    138   case MVT::v2i1:
    139   case MVT::v4i1:
    140   case MVT::v2i8:
    141   case MVT::v4i8:
    142   case MVT::v2i16:
    143   case MVT::v4i16:
    144   case MVT::v2i32:
    145   case MVT::v4i32:
    146   case MVT::v2i64:
    147   case MVT::v2f16:
    148   case MVT::v4f16:
    149   case MVT::v8f16: // <4 x f16x2>
    150   case MVT::v2f32:
    151   case MVT::v4f32:
    152   case MVT::v2f64:
    153     return true;
    154   }
    155 }
    156 
    157 /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
    158 /// EVTs that compose it.  Unlike ComputeValueVTs, this will break apart vectors
    159 /// into their primitive components.
    160 /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
    161 /// same number of types as the Ins/Outs arrays in LowerFormalArguments,
    162 /// LowerCall, and LowerReturn.
    163 static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
    164                                Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
    165                                SmallVectorImpl<uint64_t> *Offsets = nullptr,
    166                                uint64_t StartingOffset = 0) {
    167   SmallVector<EVT, 16> TempVTs;
    168   SmallVector<uint64_t, 16> TempOffsets;
    169 
    170   // Special case for i128 - decompose to (i64, i64)
    171   if (Ty->isIntegerTy(128)) {
    172     ValueVTs.push_back(EVT(MVT::i64));
    173     ValueVTs.push_back(EVT(MVT::i64));
    174 
    175     if (Offsets) {
    176       Offsets->push_back(StartingOffset + 0);
    177       Offsets->push_back(StartingOffset + 8);
    178     }
    179 
    180     return;
    181   }
    182 
    183   ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
    184   for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
    185     EVT VT = TempVTs[i];
    186     uint64_t Off = TempOffsets[i];
    187     // Split vectors into individual elements, except for v2f16, which
    188     // we will pass as a single scalar.
    189     if (VT.isVector()) {
    190       unsigned NumElts = VT.getVectorNumElements();
    191       EVT EltVT = VT.getVectorElementType();
    192       // Vectors with an even number of f16 elements will be passed to
    193       // us as an array of v2f16 elements. We must match this so we
    194       // stay in sync with Ins/Outs.
    195       if (EltVT == MVT::f16 && NumElts % 2 == 0) {
    196         EltVT = MVT::v2f16;
    197         NumElts /= 2;
    198       }
    199       for (unsigned j = 0; j != NumElts; ++j) {
    200         ValueVTs.push_back(EltVT);
    201         if (Offsets)
    202           Offsets->push_back(Off + j * EltVT.getStoreSize());
    203       }
    204     } else {
    205       ValueVTs.push_back(VT);
    206       if (Offsets)
    207         Offsets->push_back(Off);
    208     }
    209   }
    210 }
    211 
    212 // Check whether we can merge loads/stores of some of the pieces of a
    213 // flattened function parameter or return value into a single vector
    214 // load/store.
    215 //
    216 // The flattened parameter is represented as a list of EVTs and
    217 // offsets, and the whole structure is aligned to ParamAlignment. This
    218 // function determines whether we can load/store pieces of the
    219 // parameter starting at index Idx using a single vectorized op of
    220 // size AccessSize. If so, it returns the number of param pieces
    221 // covered by the vector op. Otherwise, it returns 1.
    222 static unsigned CanMergeParamLoadStoresStartingAt(
    223     unsigned Idx, uint32_t AccessSize, const SmallVectorImpl<EVT> &ValueVTs,
    224     const SmallVectorImpl<uint64_t> &Offsets, unsigned ParamAlignment) {
    225   assert(isPowerOf2_32(AccessSize) && "must be a power of 2!");
    226 
    227   // Can't vectorize if param alignment is not sufficient.
    228   if (AccessSize > ParamAlignment)
    229     return 1;
    230   // Can't vectorize if offset is not aligned.
    231   if (Offsets[Idx] & (AccessSize - 1))
    232     return 1;
    233 
    234   EVT EltVT = ValueVTs[Idx];
    235   unsigned EltSize = EltVT.getStoreSize();
    236 
    237   // Element is too large to vectorize.
    238   if (EltSize >= AccessSize)
    239     return 1;
    240 
    241   unsigned NumElts = AccessSize / EltSize;
    242   // Can't vectorize if AccessBytes if not a multiple of EltSize.
    243   if (AccessSize != EltSize * NumElts)
    244     return 1;
    245 
    246   // We don't have enough elements to vectorize.
    247   if (Idx + NumElts > ValueVTs.size())
    248     return 1;
    249 
    250   // PTX ISA can only deal with 2- and 4-element vector ops.
    251   if (NumElts != 4 && NumElts != 2)
    252     return 1;
    253 
    254   for (unsigned j = Idx + 1; j < Idx + NumElts; ++j) {
    255     // Types do not match.
    256     if (ValueVTs[j] != EltVT)
    257       return 1;
    258 
    259     // Elements are not contiguous.
    260     if (Offsets[j] - Offsets[j - 1] != EltSize)
    261       return 1;
    262   }
    263   // OK. We can vectorize ValueVTs[i..i+NumElts)
    264   return NumElts;
    265 }
    266 
    267 // Flags for tracking per-element vectorization state of loads/stores
    268 // of a flattened function parameter or return value.
    269 enum ParamVectorizationFlags {
    270   PVF_INNER = 0x0, // Middle elements of a vector.
    271   PVF_FIRST = 0x1, // First element of the vector.
    272   PVF_LAST = 0x2,  // Last element of the vector.
    273   // Scalar is effectively a 1-element vector.
    274   PVF_SCALAR = PVF_FIRST | PVF_LAST
    275 };
    276 
    277 // Computes whether and how we can vectorize the loads/stores of a
    278 // flattened function parameter or return value.
    279 //
    280 // The flattened parameter is represented as the list of ValueVTs and
    281 // Offsets, and is aligned to ParamAlignment bytes. We return a vector
    282 // of the same size as ValueVTs indicating how each piece should be
    283 // loaded/stored (i.e. as a scalar, or as part of a vector
    284 // load/store).
    285 static SmallVector<ParamVectorizationFlags, 16>
    286 VectorizePTXValueVTs(const SmallVectorImpl<EVT> &ValueVTs,
    287                      const SmallVectorImpl<uint64_t> &Offsets,
    288                      unsigned ParamAlignment) {
    289   // Set vector size to match ValueVTs and mark all elements as
    290   // scalars by default.
    291   SmallVector<ParamVectorizationFlags, 16> VectorInfo;
    292   VectorInfo.assign(ValueVTs.size(), PVF_SCALAR);
    293 
    294   // Check what we can vectorize using 128/64/32-bit accesses.
    295   for (int I = 0, E = ValueVTs.size(); I != E; ++I) {
    296     // Skip elements we've already processed.
    297     assert(VectorInfo[I] == PVF_SCALAR && "Unexpected vector info state.");
    298     for (unsigned AccessSize : {16, 8, 4, 2}) {
    299       unsigned NumElts = CanMergeParamLoadStoresStartingAt(
    300           I, AccessSize, ValueVTs, Offsets, ParamAlignment);
    301       // Mark vectorized elements.
    302       switch (NumElts) {
    303       default:
    304         llvm_unreachable("Unexpected return value");
    305       case 1:
    306         // Can't vectorize using this size, try next smaller size.
    307         continue;
    308       case 2:
    309         assert(I + 1 < E && "Not enough elements.");
    310         VectorInfo[I] = PVF_FIRST;
    311         VectorInfo[I + 1] = PVF_LAST;
    312         I += 1;
    313         break;
    314       case 4:
    315         assert(I + 3 < E && "Not enough elements.");
    316         VectorInfo[I] = PVF_FIRST;
    317         VectorInfo[I + 1] = PVF_INNER;
    318         VectorInfo[I + 2] = PVF_INNER;
    319         VectorInfo[I + 3] = PVF_LAST;
    320         I += 3;
    321         break;
    322       }
    323       // Break out of the inner loop because we've already succeeded
    324       // using largest possible AccessSize.
    325       break;
    326     }
    327   }
    328   return VectorInfo;
    329 }
    330 
    331 // NVPTXTargetLowering Constructor.
    332 NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
    333                                          const NVPTXSubtarget &STI)
    334     : TargetLowering(TM), nvTM(&TM), STI(STI) {
    335   // always lower memset, memcpy, and memmove intrinsics to load/store
    336   // instructions, rather
    337   // then generating calls to memset, mempcy or memmove.
    338   MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
    339   MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
    340   MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
    341 
    342   setBooleanContents(ZeroOrNegativeOneBooleanContent);
    343   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    344 
    345   // Jump is Expensive. Don't create extra control flow for 'and', 'or'
    346   // condition branches.
    347   setJumpIsExpensive(true);
    348 
    349   // Wide divides are _very_ slow. Try to reduce the width of the divide if
    350   // possible.
    351   addBypassSlowDiv(64, 32);
    352 
    353   // By default, use the Source scheduling
    354   if (sched4reg)
    355     setSchedulingPreference(Sched::RegPressure);
    356   else
    357     setSchedulingPreference(Sched::Source);
    358 
    359   auto setFP16OperationAction = [&](unsigned Op, MVT VT, LegalizeAction Action,
    360                                     LegalizeAction NoF16Action) {
    361     setOperationAction(Op, VT, STI.allowFP16Math() ? Action : NoF16Action);
    362   };
    363 
    364   addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
    365   addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
    366   addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
    367   addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
    368   addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
    369   addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
    370   addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass);
    371   addRegisterClass(MVT::v2f16, &NVPTX::Float16x2RegsRegClass);
    372 
    373   // Conversion to/from FP16/FP16x2 is always legal.
    374   setOperationAction(ISD::SINT_TO_FP, MVT::f16, Legal);
    375   setOperationAction(ISD::FP_TO_SINT, MVT::f16, Legal);
    376   setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
    377   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
    378   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Expand);
    379   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f16, Expand);
    380 
    381   setFP16OperationAction(ISD::SETCC, MVT::f16, Legal, Promote);
    382   setFP16OperationAction(ISD::SETCC, MVT::v2f16, Legal, Expand);
    383 
    384   // Operations not directly supported by NVPTX.
    385   for (MVT VT : {MVT::f16, MVT::v2f16, MVT::f32, MVT::f64, MVT::i1, MVT::i8,
    386                  MVT::i16, MVT::i32, MVT::i64}) {
    387     setOperationAction(ISD::SELECT_CC, VT, Expand);
    388     setOperationAction(ISD::BR_CC, VT, Expand);
    389   }
    390 
    391   // Some SIGN_EXTEND_INREG can be done using cvt instruction.
    392   // For others we will expand to a SHL/SRA pair.
    393   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
    394   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
    395   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
    396   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
    397   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    398 
    399   setOperationAction(ISD::SHL_PARTS, MVT::i32  , Custom);
    400   setOperationAction(ISD::SRA_PARTS, MVT::i32  , Custom);
    401   setOperationAction(ISD::SRL_PARTS, MVT::i32  , Custom);
    402   setOperationAction(ISD::SHL_PARTS, MVT::i64  , Custom);
    403   setOperationAction(ISD::SRA_PARTS, MVT::i64  , Custom);
    404   setOperationAction(ISD::SRL_PARTS, MVT::i64  , Custom);
    405 
    406   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
    407   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
    408 
    409   // TODO: we may consider expanding ROTL/ROTR on older GPUs.  Currently on GPUs
    410   // that don't have h/w rotation we lower them to multi-instruction assembly.
    411   // See ROT*_sw in NVPTXIntrInfo.td
    412   setOperationAction(ISD::ROTL, MVT::i64, Legal);
    413   setOperationAction(ISD::ROTR, MVT::i64, Legal);
    414   setOperationAction(ISD::ROTL, MVT::i32, Legal);
    415   setOperationAction(ISD::ROTR, MVT::i32, Legal);
    416 
    417   setOperationAction(ISD::ROTL, MVT::i16, Expand);
    418   setOperationAction(ISD::ROTR, MVT::i16, Expand);
    419   setOperationAction(ISD::ROTL, MVT::i8, Expand);
    420   setOperationAction(ISD::ROTR, MVT::i8, Expand);
    421   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
    422   setOperationAction(ISD::BSWAP, MVT::i32, Expand);
    423   setOperationAction(ISD::BSWAP, MVT::i64, Expand);
    424 
    425   // Indirect branch is not supported.
    426   // This also disables Jump Table creation.
    427   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
    428   setOperationAction(ISD::BRIND, MVT::Other, Expand);
    429 
    430   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
    431   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
    432 
    433   // We want to legalize constant related memmove and memcopy
    434   // intrinsics.
    435   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
    436 
    437   // Turn FP extload into load/fpextend
    438   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
    439   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
    440   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
    441   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
    442   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
    443   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
    444   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
    445   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
    446   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
    447   // Turn FP truncstore into trunc + store.
    448   // FIXME: vector types should also be expanded
    449   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
    450   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
    451   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    452 
    453   // PTX does not support load / store predicate registers
    454   setOperationAction(ISD::LOAD, MVT::i1, Custom);
    455   setOperationAction(ISD::STORE, MVT::i1, Custom);
    456 
    457   for (MVT VT : MVT::integer_valuetypes()) {
    458     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    459     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    460     setTruncStoreAction(VT, MVT::i1, Expand);
    461   }
    462 
    463   // This is legal in NVPTX
    464   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
    465   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
    466   setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
    467 
    468   // TRAP can be lowered to PTX trap
    469   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    470 
    471   // Register custom handling for vector loads/stores
    472   for (MVT VT : MVT::vector_valuetypes()) {
    473     if (IsPTXVectorType(VT)) {
    474       setOperationAction(ISD::LOAD, VT, Custom);
    475       setOperationAction(ISD::STORE, VT, Custom);
    476       setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
    477     }
    478   }
    479 
    480   // Custom handling for i8 intrinsics
    481   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
    482 
    483   for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
    484     setOperationAction(ISD::ABS,  Ty, Legal);
    485     setOperationAction(ISD::SMIN, Ty, Legal);
    486     setOperationAction(ISD::SMAX, Ty, Legal);
    487     setOperationAction(ISD::UMIN, Ty, Legal);
    488     setOperationAction(ISD::UMAX, Ty, Legal);
    489 
    490     setOperationAction(ISD::CTPOP, Ty, Legal);
    491     setOperationAction(ISD::CTLZ, Ty, Legal);
    492   }
    493 
    494   setOperationAction(ISD::CTTZ, MVT::i16, Expand);
    495   setOperationAction(ISD::CTTZ, MVT::i32, Expand);
    496   setOperationAction(ISD::CTTZ, MVT::i64, Expand);
    497 
    498   // PTX does not directly support SELP of i1, so promote to i32 first
    499   setOperationAction(ISD::SELECT, MVT::i1, Custom);
    500 
    501   // PTX cannot multiply two i64s in a single instruction.
    502   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
    503   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
    504 
    505   // We have some custom DAG combine patterns for these nodes
    506   setTargetDAGCombine(ISD::ADD);
    507   setTargetDAGCombine(ISD::AND);
    508   setTargetDAGCombine(ISD::FADD);
    509   setTargetDAGCombine(ISD::MUL);
    510   setTargetDAGCombine(ISD::SHL);
    511   setTargetDAGCombine(ISD::SREM);
    512   setTargetDAGCombine(ISD::UREM);
    513 
    514   // setcc for f16x2 needs special handling to prevent legalizer's
    515   // attempt to scalarize it due to v2i1 not being legal.
    516   if (STI.allowFP16Math())
    517     setTargetDAGCombine(ISD::SETCC);
    518 
    519   // Promote fp16 arithmetic if fp16 hardware isn't available or the
    520   // user passed --nvptx-no-fp16-math. The flag is useful because,
    521   // although sm_53+ GPUs have some sort of FP16 support in
    522   // hardware, only sm_53 and sm_60 have full implementation. Others
    523   // only have token amount of hardware and are likely to run faster
    524   // by using fp32 units instead.
    525   for (const auto &Op : {ISD::FADD, ISD::FMUL, ISD::FSUB, ISD::FMA}) {
    526     setFP16OperationAction(Op, MVT::f16, Legal, Promote);
    527     setFP16OperationAction(Op, MVT::v2f16, Legal, Expand);
    528   }
    529 
    530   // There's no neg.f16 instruction. Expand to (0-x).
    531   setOperationAction(ISD::FNEG, MVT::f16, Expand);
    532   setOperationAction(ISD::FNEG, MVT::v2f16, Expand);
    533 
    534   // (would be) Library functions.
    535 
    536   // These map to conversion instructions for scalar FP types.
    537   for (const auto &Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FRINT,
    538                          ISD::FROUND, ISD::FTRUNC}) {
    539     setOperationAction(Op, MVT::f16, Legal);
    540     setOperationAction(Op, MVT::f32, Legal);
    541     setOperationAction(Op, MVT::f64, Legal);
    542     setOperationAction(Op, MVT::v2f16, Expand);
    543   }
    544 
    545   // 'Expand' implements FCOPYSIGN without calling an external library.
    546   setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
    547   setOperationAction(ISD::FCOPYSIGN, MVT::v2f16, Expand);
    548   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    549   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    550 
    551   // These map to corresponding instructions for f32/f64. f16 must be
    552   // promoted to f32. v2f16 is expanded to f16, which is then promoted
    553   // to f32.
    554   for (const auto &Op : {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS,
    555                          ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM}) {
    556     setOperationAction(Op, MVT::f16, Promote);
    557     setOperationAction(Op, MVT::f32, Legal);
    558     setOperationAction(Op, MVT::f64, Legal);
    559     setOperationAction(Op, MVT::v2f16, Expand);
    560   }
    561   setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
    562   setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
    563   setOperationAction(ISD::FMINNAN, MVT::f16, Promote);
    564   setOperationAction(ISD::FMAXNAN, MVT::f16, Promote);
    565 
    566   // No FEXP2, FLOG2.  The PTX ex2 and log2 functions are always approximate.
    567   // No FPOW or FREM in PTX.
    568 
    569   // Now deduce the information based on the above mentioned
    570   // actions
    571   computeRegisterProperties(STI.getRegisterInfo());
    572 }
    573 
    574 const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
    575   switch ((NVPTXISD::NodeType)Opcode) {
    576   case NVPTXISD::FIRST_NUMBER:
    577     break;
    578   case NVPTXISD::CALL:
    579     return "NVPTXISD::CALL";
    580   case NVPTXISD::RET_FLAG:
    581     return "NVPTXISD::RET_FLAG";
    582   case NVPTXISD::LOAD_PARAM:
    583     return "NVPTXISD::LOAD_PARAM";
    584   case NVPTXISD::Wrapper:
    585     return "NVPTXISD::Wrapper";
    586   case NVPTXISD::DeclareParam:
    587     return "NVPTXISD::DeclareParam";
    588   case NVPTXISD::DeclareScalarParam:
    589     return "NVPTXISD::DeclareScalarParam";
    590   case NVPTXISD::DeclareRet:
    591     return "NVPTXISD::DeclareRet";
    592   case NVPTXISD::DeclareScalarRet:
    593     return "NVPTXISD::DeclareScalarRet";
    594   case NVPTXISD::DeclareRetParam:
    595     return "NVPTXISD::DeclareRetParam";
    596   case NVPTXISD::PrintCall:
    597     return "NVPTXISD::PrintCall";
    598   case NVPTXISD::PrintConvergentCall:
    599     return "NVPTXISD::PrintConvergentCall";
    600   case NVPTXISD::PrintCallUni:
    601     return "NVPTXISD::PrintCallUni";
    602   case NVPTXISD::PrintConvergentCallUni:
    603     return "NVPTXISD::PrintConvergentCallUni";
    604   case NVPTXISD::LoadParam:
    605     return "NVPTXISD::LoadParam";
    606   case NVPTXISD::LoadParamV2:
    607     return "NVPTXISD::LoadParamV2";
    608   case NVPTXISD::LoadParamV4:
    609     return "NVPTXISD::LoadParamV4";
    610   case NVPTXISD::StoreParam:
    611     return "NVPTXISD::StoreParam";
    612   case NVPTXISD::StoreParamV2:
    613     return "NVPTXISD::StoreParamV2";
    614   case NVPTXISD::StoreParamV4:
    615     return "NVPTXISD::StoreParamV4";
    616   case NVPTXISD::StoreParamS32:
    617     return "NVPTXISD::StoreParamS32";
    618   case NVPTXISD::StoreParamU32:
    619     return "NVPTXISD::StoreParamU32";
    620   case NVPTXISD::CallArgBegin:
    621     return "NVPTXISD::CallArgBegin";
    622   case NVPTXISD::CallArg:
    623     return "NVPTXISD::CallArg";
    624   case NVPTXISD::LastCallArg:
    625     return "NVPTXISD::LastCallArg";
    626   case NVPTXISD::CallArgEnd:
    627     return "NVPTXISD::CallArgEnd";
    628   case NVPTXISD::CallVoid:
    629     return "NVPTXISD::CallVoid";
    630   case NVPTXISD::CallVal:
    631     return "NVPTXISD::CallVal";
    632   case NVPTXISD::CallSymbol:
    633     return "NVPTXISD::CallSymbol";
    634   case NVPTXISD::Prototype:
    635     return "NVPTXISD::Prototype";
    636   case NVPTXISD::MoveParam:
    637     return "NVPTXISD::MoveParam";
    638   case NVPTXISD::StoreRetval:
    639     return "NVPTXISD::StoreRetval";
    640   case NVPTXISD::StoreRetvalV2:
    641     return "NVPTXISD::StoreRetvalV2";
    642   case NVPTXISD::StoreRetvalV4:
    643     return "NVPTXISD::StoreRetvalV4";
    644   case NVPTXISD::PseudoUseParam:
    645     return "NVPTXISD::PseudoUseParam";
    646   case NVPTXISD::RETURN:
    647     return "NVPTXISD::RETURN";
    648   case NVPTXISD::CallSeqBegin:
    649     return "NVPTXISD::CallSeqBegin";
    650   case NVPTXISD::CallSeqEnd:
    651     return "NVPTXISD::CallSeqEnd";
    652   case NVPTXISD::CallPrototype:
    653     return "NVPTXISD::CallPrototype";
    654   case NVPTXISD::LoadV2:
    655     return "NVPTXISD::LoadV2";
    656   case NVPTXISD::LoadV4:
    657     return "NVPTXISD::LoadV4";
    658   case NVPTXISD::LDGV2:
    659     return "NVPTXISD::LDGV2";
    660   case NVPTXISD::LDGV4:
    661     return "NVPTXISD::LDGV4";
    662   case NVPTXISD::LDUV2:
    663     return "NVPTXISD::LDUV2";
    664   case NVPTXISD::LDUV4:
    665     return "NVPTXISD::LDUV4";
    666   case NVPTXISD::StoreV2:
    667     return "NVPTXISD::StoreV2";
    668   case NVPTXISD::StoreV4:
    669     return "NVPTXISD::StoreV4";
    670   case NVPTXISD::FUN_SHFL_CLAMP:
    671     return "NVPTXISD::FUN_SHFL_CLAMP";
    672   case NVPTXISD::FUN_SHFR_CLAMP:
    673     return "NVPTXISD::FUN_SHFR_CLAMP";
    674   case NVPTXISD::IMAD:
    675     return "NVPTXISD::IMAD";
    676   case NVPTXISD::SETP_F16X2:
    677     return "NVPTXISD::SETP_F16X2";
    678   case NVPTXISD::Dummy:
    679     return "NVPTXISD::Dummy";
    680   case NVPTXISD::MUL_WIDE_SIGNED:
    681     return "NVPTXISD::MUL_WIDE_SIGNED";
    682   case NVPTXISD::MUL_WIDE_UNSIGNED:
    683     return "NVPTXISD::MUL_WIDE_UNSIGNED";
    684   case NVPTXISD::Tex1DFloatS32:        return "NVPTXISD::Tex1DFloatS32";
    685   case NVPTXISD::Tex1DFloatFloat:      return "NVPTXISD::Tex1DFloatFloat";
    686   case NVPTXISD::Tex1DFloatFloatLevel:
    687     return "NVPTXISD::Tex1DFloatFloatLevel";
    688   case NVPTXISD::Tex1DFloatFloatGrad:
    689     return "NVPTXISD::Tex1DFloatFloatGrad";
    690   case NVPTXISD::Tex1DS32S32:          return "NVPTXISD::Tex1DS32S32";
    691   case NVPTXISD::Tex1DS32Float:        return "NVPTXISD::Tex1DS32Float";
    692   case NVPTXISD::Tex1DS32FloatLevel:
    693     return "NVPTXISD::Tex1DS32FloatLevel";
    694   case NVPTXISD::Tex1DS32FloatGrad:
    695     return "NVPTXISD::Tex1DS32FloatGrad";
    696   case NVPTXISD::Tex1DU32S32:          return "NVPTXISD::Tex1DU32S32";
    697   case NVPTXISD::Tex1DU32Float:        return "NVPTXISD::Tex1DU32Float";
    698   case NVPTXISD::Tex1DU32FloatLevel:
    699     return "NVPTXISD::Tex1DU32FloatLevel";
    700   case NVPTXISD::Tex1DU32FloatGrad:
    701     return "NVPTXISD::Tex1DU32FloatGrad";
    702   case NVPTXISD::Tex1DArrayFloatS32:   return "NVPTXISD::Tex1DArrayFloatS32";
    703   case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
    704   case NVPTXISD::Tex1DArrayFloatFloatLevel:
    705     return "NVPTXISD::Tex1DArrayFloatFloatLevel";
    706   case NVPTXISD::Tex1DArrayFloatFloatGrad:
    707     return "NVPTXISD::Tex1DArrayFloatFloatGrad";
    708   case NVPTXISD::Tex1DArrayS32S32:     return "NVPTXISD::Tex1DArrayS32S32";
    709   case NVPTXISD::Tex1DArrayS32Float:   return "NVPTXISD::Tex1DArrayS32Float";
    710   case NVPTXISD::Tex1DArrayS32FloatLevel:
    711     return "NVPTXISD::Tex1DArrayS32FloatLevel";
    712   case NVPTXISD::Tex1DArrayS32FloatGrad:
    713     return "NVPTXISD::Tex1DArrayS32FloatGrad";
    714   case NVPTXISD::Tex1DArrayU32S32:     return "NVPTXISD::Tex1DArrayU32S32";
    715   case NVPTXISD::Tex1DArrayU32Float:   return "NVPTXISD::Tex1DArrayU32Float";
    716   case NVPTXISD::Tex1DArrayU32FloatLevel:
    717     return "NVPTXISD::Tex1DArrayU32FloatLevel";
    718   case NVPTXISD::Tex1DArrayU32FloatGrad:
    719     return "NVPTXISD::Tex1DArrayU32FloatGrad";
    720   case NVPTXISD::Tex2DFloatS32:        return "NVPTXISD::Tex2DFloatS32";
    721   case NVPTXISD::Tex2DFloatFloat:      return "NVPTXISD::Tex2DFloatFloat";
    722   case NVPTXISD::Tex2DFloatFloatLevel:
    723     return "NVPTXISD::Tex2DFloatFloatLevel";
    724   case NVPTXISD::Tex2DFloatFloatGrad:
    725     return "NVPTXISD::Tex2DFloatFloatGrad";
    726   case NVPTXISD::Tex2DS32S32:          return "NVPTXISD::Tex2DS32S32";
    727   case NVPTXISD::Tex2DS32Float:        return "NVPTXISD::Tex2DS32Float";
    728   case NVPTXISD::Tex2DS32FloatLevel:
    729     return "NVPTXISD::Tex2DS32FloatLevel";
    730   case NVPTXISD::Tex2DS32FloatGrad:
    731     return "NVPTXISD::Tex2DS32FloatGrad";
    732   case NVPTXISD::Tex2DU32S32:          return "NVPTXISD::Tex2DU32S32";
    733   case NVPTXISD::Tex2DU32Float:        return "NVPTXISD::Tex2DU32Float";
    734   case NVPTXISD::Tex2DU32FloatLevel:
    735     return "NVPTXISD::Tex2DU32FloatLevel";
    736   case NVPTXISD::Tex2DU32FloatGrad:
    737     return "NVPTXISD::Tex2DU32FloatGrad";
    738   case NVPTXISD::Tex2DArrayFloatS32:   return "NVPTXISD::Tex2DArrayFloatS32";
    739   case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
    740   case NVPTXISD::Tex2DArrayFloatFloatLevel:
    741     return "NVPTXISD::Tex2DArrayFloatFloatLevel";
    742   case NVPTXISD::Tex2DArrayFloatFloatGrad:
    743     return "NVPTXISD::Tex2DArrayFloatFloatGrad";
    744   case NVPTXISD::Tex2DArrayS32S32:     return "NVPTXISD::Tex2DArrayS32S32";
    745   case NVPTXISD::Tex2DArrayS32Float:   return "NVPTXISD::Tex2DArrayS32Float";
    746   case NVPTXISD::Tex2DArrayS32FloatLevel:
    747     return "NVPTXISD::Tex2DArrayS32FloatLevel";
    748   case NVPTXISD::Tex2DArrayS32FloatGrad:
    749     return "NVPTXISD::Tex2DArrayS32FloatGrad";
    750   case NVPTXISD::Tex2DArrayU32S32:     return "NVPTXISD::Tex2DArrayU32S32";
    751   case NVPTXISD::Tex2DArrayU32Float:   return "NVPTXISD::Tex2DArrayU32Float";
    752   case NVPTXISD::Tex2DArrayU32FloatLevel:
    753     return "NVPTXISD::Tex2DArrayU32FloatLevel";
    754   case NVPTXISD::Tex2DArrayU32FloatGrad:
    755     return "NVPTXISD::Tex2DArrayU32FloatGrad";
    756   case NVPTXISD::Tex3DFloatS32:        return "NVPTXISD::Tex3DFloatS32";
    757   case NVPTXISD::Tex3DFloatFloat:      return "NVPTXISD::Tex3DFloatFloat";
    758   case NVPTXISD::Tex3DFloatFloatLevel:
    759     return "NVPTXISD::Tex3DFloatFloatLevel";
    760   case NVPTXISD::Tex3DFloatFloatGrad:
    761     return "NVPTXISD::Tex3DFloatFloatGrad";
    762   case NVPTXISD::Tex3DS32S32:          return "NVPTXISD::Tex3DS32S32";
    763   case NVPTXISD::Tex3DS32Float:        return "NVPTXISD::Tex3DS32Float";
    764   case NVPTXISD::Tex3DS32FloatLevel:
    765     return "NVPTXISD::Tex3DS32FloatLevel";
    766   case NVPTXISD::Tex3DS32FloatGrad:
    767     return "NVPTXISD::Tex3DS32FloatGrad";
    768   case NVPTXISD::Tex3DU32S32:          return "NVPTXISD::Tex3DU32S32";
    769   case NVPTXISD::Tex3DU32Float:        return "NVPTXISD::Tex3DU32Float";
    770   case NVPTXISD::Tex3DU32FloatLevel:
    771     return "NVPTXISD::Tex3DU32FloatLevel";
    772   case NVPTXISD::Tex3DU32FloatGrad:
    773     return "NVPTXISD::Tex3DU32FloatGrad";
    774   case NVPTXISD::TexCubeFloatFloat:      return "NVPTXISD::TexCubeFloatFloat";
    775   case NVPTXISD::TexCubeFloatFloatLevel:
    776     return "NVPTXISD::TexCubeFloatFloatLevel";
    777   case NVPTXISD::TexCubeS32Float:        return "NVPTXISD::TexCubeS32Float";
    778   case NVPTXISD::TexCubeS32FloatLevel:
    779     return "NVPTXISD::TexCubeS32FloatLevel";
    780   case NVPTXISD::TexCubeU32Float:        return "NVPTXISD::TexCubeU32Float";
    781   case NVPTXISD::TexCubeU32FloatLevel:
    782     return "NVPTXISD::TexCubeU32FloatLevel";
    783   case NVPTXISD::TexCubeArrayFloatFloat:
    784     return "NVPTXISD::TexCubeArrayFloatFloat";
    785   case NVPTXISD::TexCubeArrayFloatFloatLevel:
    786     return "NVPTXISD::TexCubeArrayFloatFloatLevel";
    787   case NVPTXISD::TexCubeArrayS32Float:
    788     return "NVPTXISD::TexCubeArrayS32Float";
    789   case NVPTXISD::TexCubeArrayS32FloatLevel:
    790     return "NVPTXISD::TexCubeArrayS32FloatLevel";
    791   case NVPTXISD::TexCubeArrayU32Float:
    792     return "NVPTXISD::TexCubeArrayU32Float";
    793   case NVPTXISD::TexCubeArrayU32FloatLevel:
    794     return "NVPTXISD::TexCubeArrayU32FloatLevel";
    795   case NVPTXISD::Tld4R2DFloatFloat:
    796     return "NVPTXISD::Tld4R2DFloatFloat";
    797   case NVPTXISD::Tld4G2DFloatFloat:
    798     return "NVPTXISD::Tld4G2DFloatFloat";
    799   case NVPTXISD::Tld4B2DFloatFloat:
    800     return "NVPTXISD::Tld4B2DFloatFloat";
    801   case NVPTXISD::Tld4A2DFloatFloat:
    802     return "NVPTXISD::Tld4A2DFloatFloat";
    803   case NVPTXISD::Tld4R2DS64Float:
    804     return "NVPTXISD::Tld4R2DS64Float";
    805   case NVPTXISD::Tld4G2DS64Float:
    806     return "NVPTXISD::Tld4G2DS64Float";
    807   case NVPTXISD::Tld4B2DS64Float:
    808     return "NVPTXISD::Tld4B2DS64Float";
    809   case NVPTXISD::Tld4A2DS64Float:
    810     return "NVPTXISD::Tld4A2DS64Float";
    811   case NVPTXISD::Tld4R2DU64Float:
    812     return "NVPTXISD::Tld4R2DU64Float";
    813   case NVPTXISD::Tld4G2DU64Float:
    814     return "NVPTXISD::Tld4G2DU64Float";
    815   case NVPTXISD::Tld4B2DU64Float:
    816     return "NVPTXISD::Tld4B2DU64Float";
    817   case NVPTXISD::Tld4A2DU64Float:
    818     return "NVPTXISD::Tld4A2DU64Float";
    819 
    820   case NVPTXISD::TexUnified1DFloatS32:
    821     return "NVPTXISD::TexUnified1DFloatS32";
    822   case NVPTXISD::TexUnified1DFloatFloat:
    823     return "NVPTXISD::TexUnified1DFloatFloat";
    824   case NVPTXISD::TexUnified1DFloatFloatLevel:
    825     return "NVPTXISD::TexUnified1DFloatFloatLevel";
    826   case NVPTXISD::TexUnified1DFloatFloatGrad:
    827     return "NVPTXISD::TexUnified1DFloatFloatGrad";
    828   case NVPTXISD::TexUnified1DS32S32:
    829     return "NVPTXISD::TexUnified1DS32S32";
    830   case NVPTXISD::TexUnified1DS32Float:
    831     return "NVPTXISD::TexUnified1DS32Float";
    832   case NVPTXISD::TexUnified1DS32FloatLevel:
    833     return "NVPTXISD::TexUnified1DS32FloatLevel";
    834   case NVPTXISD::TexUnified1DS32FloatGrad:
    835     return "NVPTXISD::TexUnified1DS32FloatGrad";
    836   case NVPTXISD::TexUnified1DU32S32:
    837     return "NVPTXISD::TexUnified1DU32S32";
    838   case NVPTXISD::TexUnified1DU32Float:
    839     return "NVPTXISD::TexUnified1DU32Float";
    840   case NVPTXISD::TexUnified1DU32FloatLevel:
    841     return "NVPTXISD::TexUnified1DU32FloatLevel";
    842   case NVPTXISD::TexUnified1DU32FloatGrad:
    843     return "NVPTXISD::TexUnified1DU32FloatGrad";
    844   case NVPTXISD::TexUnified1DArrayFloatS32:
    845     return "NVPTXISD::TexUnified1DArrayFloatS32";
    846   case NVPTXISD::TexUnified1DArrayFloatFloat:
    847     return "NVPTXISD::TexUnified1DArrayFloatFloat";
    848   case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
    849     return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
    850   case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
    851     return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
    852   case NVPTXISD::TexUnified1DArrayS32S32:
    853     return "NVPTXISD::TexUnified1DArrayS32S32";
    854   case NVPTXISD::TexUnified1DArrayS32Float:
    855     return "NVPTXISD::TexUnified1DArrayS32Float";
    856   case NVPTXISD::TexUnified1DArrayS32FloatLevel:
    857     return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
    858   case NVPTXISD::TexUnified1DArrayS32FloatGrad:
    859     return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
    860   case NVPTXISD::TexUnified1DArrayU32S32:
    861     return "NVPTXISD::TexUnified1DArrayU32S32";
    862   case NVPTXISD::TexUnified1DArrayU32Float:
    863     return "NVPTXISD::TexUnified1DArrayU32Float";
    864   case NVPTXISD::TexUnified1DArrayU32FloatLevel:
    865     return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
    866   case NVPTXISD::TexUnified1DArrayU32FloatGrad:
    867     return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
    868   case NVPTXISD::TexUnified2DFloatS32:
    869     return "NVPTXISD::TexUnified2DFloatS32";
    870   case NVPTXISD::TexUnified2DFloatFloat:
    871     return "NVPTXISD::TexUnified2DFloatFloat";
    872   case NVPTXISD::TexUnified2DFloatFloatLevel:
    873     return "NVPTXISD::TexUnified2DFloatFloatLevel";
    874   case NVPTXISD::TexUnified2DFloatFloatGrad:
    875     return "NVPTXISD::TexUnified2DFloatFloatGrad";
    876   case NVPTXISD::TexUnified2DS32S32:
    877     return "NVPTXISD::TexUnified2DS32S32";
    878   case NVPTXISD::TexUnified2DS32Float:
    879     return "NVPTXISD::TexUnified2DS32Float";
    880   case NVPTXISD::TexUnified2DS32FloatLevel:
    881     return "NVPTXISD::TexUnified2DS32FloatLevel";
    882   case NVPTXISD::TexUnified2DS32FloatGrad:
    883     return "NVPTXISD::TexUnified2DS32FloatGrad";
    884   case NVPTXISD::TexUnified2DU32S32:
    885     return "NVPTXISD::TexUnified2DU32S32";
    886   case NVPTXISD::TexUnified2DU32Float:
    887     return "NVPTXISD::TexUnified2DU32Float";
    888   case NVPTXISD::TexUnified2DU32FloatLevel:
    889     return "NVPTXISD::TexUnified2DU32FloatLevel";
    890   case NVPTXISD::TexUnified2DU32FloatGrad:
    891     return "NVPTXISD::TexUnified2DU32FloatGrad";
    892   case NVPTXISD::TexUnified2DArrayFloatS32:
    893     return "NVPTXISD::TexUnified2DArrayFloatS32";
    894   case NVPTXISD::TexUnified2DArrayFloatFloat:
    895     return "NVPTXISD::TexUnified2DArrayFloatFloat";
    896   case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
    897     return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
    898   case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
    899     return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
    900   case NVPTXISD::TexUnified2DArrayS32S32:
    901     return "NVPTXISD::TexUnified2DArrayS32S32";
    902   case NVPTXISD::TexUnified2DArrayS32Float:
    903     return "NVPTXISD::TexUnified2DArrayS32Float";
    904   case NVPTXISD::TexUnified2DArrayS32FloatLevel:
    905     return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
    906   case NVPTXISD::TexUnified2DArrayS32FloatGrad:
    907     return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
    908   case NVPTXISD::TexUnified2DArrayU32S32:
    909     return "NVPTXISD::TexUnified2DArrayU32S32";
    910   case NVPTXISD::TexUnified2DArrayU32Float:
    911     return "NVPTXISD::TexUnified2DArrayU32Float";
    912   case NVPTXISD::TexUnified2DArrayU32FloatLevel:
    913     return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
    914   case NVPTXISD::TexUnified2DArrayU32FloatGrad:
    915     return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
    916   case NVPTXISD::TexUnified3DFloatS32:
    917     return "NVPTXISD::TexUnified3DFloatS32";
    918   case NVPTXISD::TexUnified3DFloatFloat:
    919     return "NVPTXISD::TexUnified3DFloatFloat";
    920   case NVPTXISD::TexUnified3DFloatFloatLevel:
    921     return "NVPTXISD::TexUnified3DFloatFloatLevel";
    922   case NVPTXISD::TexUnified3DFloatFloatGrad:
    923     return "NVPTXISD::TexUnified3DFloatFloatGrad";
    924   case NVPTXISD::TexUnified3DS32S32:
    925     return "NVPTXISD::TexUnified3DS32S32";
    926   case NVPTXISD::TexUnified3DS32Float:
    927     return "NVPTXISD::TexUnified3DS32Float";
    928   case NVPTXISD::TexUnified3DS32FloatLevel:
    929     return "NVPTXISD::TexUnified3DS32FloatLevel";
    930   case NVPTXISD::TexUnified3DS32FloatGrad:
    931     return "NVPTXISD::TexUnified3DS32FloatGrad";
    932   case NVPTXISD::TexUnified3DU32S32:
    933     return "NVPTXISD::TexUnified3DU32S32";
    934   case NVPTXISD::TexUnified3DU32Float:
    935     return "NVPTXISD::TexUnified3DU32Float";
    936   case NVPTXISD::TexUnified3DU32FloatLevel:
    937     return "NVPTXISD::TexUnified3DU32FloatLevel";
    938   case NVPTXISD::TexUnified3DU32FloatGrad:
    939     return "NVPTXISD::TexUnified3DU32FloatGrad";
    940   case NVPTXISD::TexUnifiedCubeFloatFloat:
    941     return "NVPTXISD::TexUnifiedCubeFloatFloat";
    942   case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
    943     return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
    944   case NVPTXISD::TexUnifiedCubeS32Float:
    945     return "NVPTXISD::TexUnifiedCubeS32Float";
    946   case NVPTXISD::TexUnifiedCubeS32FloatLevel:
    947     return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
    948   case NVPTXISD::TexUnifiedCubeU32Float:
    949     return "NVPTXISD::TexUnifiedCubeU32Float";
    950   case NVPTXISD::TexUnifiedCubeU32FloatLevel:
    951     return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
    952   case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
    953     return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
    954   case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
    955     return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
    956   case NVPTXISD::TexUnifiedCubeArrayS32Float:
    957     return "NVPTXISD::TexUnifiedCubeArrayS32Float";
    958   case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
    959     return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
    960   case NVPTXISD::TexUnifiedCubeArrayU32Float:
    961     return "NVPTXISD::TexUnifiedCubeArrayU32Float";
    962   case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
    963     return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
    964   case NVPTXISD::Tld4UnifiedR2DFloatFloat:
    965     return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
    966   case NVPTXISD::Tld4UnifiedG2DFloatFloat:
    967     return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
    968   case NVPTXISD::Tld4UnifiedB2DFloatFloat:
    969     return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
    970   case NVPTXISD::Tld4UnifiedA2DFloatFloat:
    971     return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
    972   case NVPTXISD::Tld4UnifiedR2DS64Float:
    973     return "NVPTXISD::Tld4UnifiedR2DS64Float";
    974   case NVPTXISD::Tld4UnifiedG2DS64Float:
    975     return "NVPTXISD::Tld4UnifiedG2DS64Float";
    976   case NVPTXISD::Tld4UnifiedB2DS64Float:
    977     return "NVPTXISD::Tld4UnifiedB2DS64Float";
    978   case NVPTXISD::Tld4UnifiedA2DS64Float:
    979     return "NVPTXISD::Tld4UnifiedA2DS64Float";
    980   case NVPTXISD::Tld4UnifiedR2DU64Float:
    981     return "NVPTXISD::Tld4UnifiedR2DU64Float";
    982   case NVPTXISD::Tld4UnifiedG2DU64Float:
    983     return "NVPTXISD::Tld4UnifiedG2DU64Float";
    984   case NVPTXISD::Tld4UnifiedB2DU64Float:
    985     return "NVPTXISD::Tld4UnifiedB2DU64Float";
    986   case NVPTXISD::Tld4UnifiedA2DU64Float:
    987     return "NVPTXISD::Tld4UnifiedA2DU64Float";
    988 
    989   case NVPTXISD::Suld1DI8Clamp:          return "NVPTXISD::Suld1DI8Clamp";
    990   case NVPTXISD::Suld1DI16Clamp:         return "NVPTXISD::Suld1DI16Clamp";
    991   case NVPTXISD::Suld1DI32Clamp:         return "NVPTXISD::Suld1DI32Clamp";
    992   case NVPTXISD::Suld1DI64Clamp:         return "NVPTXISD::Suld1DI64Clamp";
    993   case NVPTXISD::Suld1DV2I8Clamp:        return "NVPTXISD::Suld1DV2I8Clamp";
    994   case NVPTXISD::Suld1DV2I16Clamp:       return "NVPTXISD::Suld1DV2I16Clamp";
    995   case NVPTXISD::Suld1DV2I32Clamp:       return "NVPTXISD::Suld1DV2I32Clamp";
    996   case NVPTXISD::Suld1DV2I64Clamp:       return "NVPTXISD::Suld1DV2I64Clamp";
    997   case NVPTXISD::Suld1DV4I8Clamp:        return "NVPTXISD::Suld1DV4I8Clamp";
    998   case NVPTXISD::Suld1DV4I16Clamp:       return "NVPTXISD::Suld1DV4I16Clamp";
    999   case NVPTXISD::Suld1DV4I32Clamp:       return "NVPTXISD::Suld1DV4I32Clamp";
   1000 
   1001   case NVPTXISD::Suld1DArrayI8Clamp:   return "NVPTXISD::Suld1DArrayI8Clamp";
   1002   case NVPTXISD::Suld1DArrayI16Clamp:  return "NVPTXISD::Suld1DArrayI16Clamp";
   1003   case NVPTXISD::Suld1DArrayI32Clamp:  return "NVPTXISD::Suld1DArrayI32Clamp";
   1004   case NVPTXISD::Suld1DArrayI64Clamp:  return "NVPTXISD::Suld1DArrayI64Clamp";
   1005   case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
   1006   case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
   1007   case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
   1008   case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
   1009   case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
   1010   case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
   1011   case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
   1012 
   1013   case NVPTXISD::Suld2DI8Clamp:          return "NVPTXISD::Suld2DI8Clamp";
   1014   case NVPTXISD::Suld2DI16Clamp:         return "NVPTXISD::Suld2DI16Clamp";
   1015   case NVPTXISD::Suld2DI32Clamp:         return "NVPTXISD::Suld2DI32Clamp";
   1016   case NVPTXISD::Suld2DI64Clamp:         return "NVPTXISD::Suld2DI64Clamp";
   1017   case NVPTXISD::Suld2DV2I8Clamp:        return "NVPTXISD::Suld2DV2I8Clamp";
   1018   case NVPTXISD::Suld2DV2I16Clamp:       return "NVPTXISD::Suld2DV2I16Clamp";
   1019   case NVPTXISD::Suld2DV2I32Clamp:       return "NVPTXISD::Suld2DV2I32Clamp";
   1020   case NVPTXISD::Suld2DV2I64Clamp:       return "NVPTXISD::Suld2DV2I64Clamp";
   1021   case NVPTXISD::Suld2DV4I8Clamp:        return "NVPTXISD::Suld2DV4I8Clamp";
   1022   case NVPTXISD::Suld2DV4I16Clamp:       return "NVPTXISD::Suld2DV4I16Clamp";
   1023   case NVPTXISD::Suld2DV4I32Clamp:       return "NVPTXISD::Suld2DV4I32Clamp";
   1024 
   1025   case NVPTXISD::Suld2DArrayI8Clamp:   return "NVPTXISD::Suld2DArrayI8Clamp";
   1026   case NVPTXISD::Suld2DArrayI16Clamp:  return "NVPTXISD::Suld2DArrayI16Clamp";
   1027   case NVPTXISD::Suld2DArrayI32Clamp:  return "NVPTXISD::Suld2DArrayI32Clamp";
   1028   case NVPTXISD::Suld2DArrayI64Clamp:  return "NVPTXISD::Suld2DArrayI64Clamp";
   1029   case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
   1030   case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
   1031   case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
   1032   case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
   1033   case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
   1034   case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
   1035   case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
   1036 
   1037   case NVPTXISD::Suld3DI8Clamp:          return "NVPTXISD::Suld3DI8Clamp";
   1038   case NVPTXISD::Suld3DI16Clamp:         return "NVPTXISD::Suld3DI16Clamp";
   1039   case NVPTXISD::Suld3DI32Clamp:         return "NVPTXISD::Suld3DI32Clamp";
   1040   case NVPTXISD::Suld3DI64Clamp:         return "NVPTXISD::Suld3DI64Clamp";
   1041   case NVPTXISD::Suld3DV2I8Clamp:        return "NVPTXISD::Suld3DV2I8Clamp";
   1042   case NVPTXISD::Suld3DV2I16Clamp:       return "NVPTXISD::Suld3DV2I16Clamp";
   1043   case NVPTXISD::Suld3DV2I32Clamp:       return "NVPTXISD::Suld3DV2I32Clamp";
   1044   case NVPTXISD::Suld3DV2I64Clamp:       return "NVPTXISD::Suld3DV2I64Clamp";
   1045   case NVPTXISD::Suld3DV4I8Clamp:        return "NVPTXISD::Suld3DV4I8Clamp";
   1046   case NVPTXISD::Suld3DV4I16Clamp:       return "NVPTXISD::Suld3DV4I16Clamp";
   1047   case NVPTXISD::Suld3DV4I32Clamp:       return "NVPTXISD::Suld3DV4I32Clamp";
   1048 
   1049   case NVPTXISD::Suld1DI8Trap:          return "NVPTXISD::Suld1DI8Trap";
   1050   case NVPTXISD::Suld1DI16Trap:         return "NVPTXISD::Suld1DI16Trap";
   1051   case NVPTXISD::Suld1DI32Trap:         return "NVPTXISD::Suld1DI32Trap";
   1052   case NVPTXISD::Suld1DI64Trap:         return "NVPTXISD::Suld1DI64Trap";
   1053   case NVPTXISD::Suld1DV2I8Trap:        return "NVPTXISD::Suld1DV2I8Trap";
   1054   case NVPTXISD::Suld1DV2I16Trap:       return "NVPTXISD::Suld1DV2I16Trap";
   1055   case NVPTXISD::Suld1DV2I32Trap:       return "NVPTXISD::Suld1DV2I32Trap";
   1056   case NVPTXISD::Suld1DV2I64Trap:       return "NVPTXISD::Suld1DV2I64Trap";
   1057   case NVPTXISD::Suld1DV4I8Trap:        return "NVPTXISD::Suld1DV4I8Trap";
   1058   case NVPTXISD::Suld1DV4I16Trap:       return "NVPTXISD::Suld1DV4I16Trap";
   1059   case NVPTXISD::Suld1DV4I32Trap:       return "NVPTXISD::Suld1DV4I32Trap";
   1060 
   1061   case NVPTXISD::Suld1DArrayI8Trap:     return "NVPTXISD::Suld1DArrayI8Trap";
   1062   case NVPTXISD::Suld1DArrayI16Trap:    return "NVPTXISD::Suld1DArrayI16Trap";
   1063   case NVPTXISD::Suld1DArrayI32Trap:    return "NVPTXISD::Suld1DArrayI32Trap";
   1064   case NVPTXISD::Suld1DArrayI64Trap:    return "NVPTXISD::Suld1DArrayI64Trap";
   1065   case NVPTXISD::Suld1DArrayV2I8Trap:   return "NVPTXISD::Suld1DArrayV2I8Trap";
   1066   case NVPTXISD::Suld1DArrayV2I16Trap:  return "NVPTXISD::Suld1DArrayV2I16Trap";
   1067   case NVPTXISD::Suld1DArrayV2I32Trap:  return "NVPTXISD::Suld1DArrayV2I32Trap";
   1068   case NVPTXISD::Suld1DArrayV2I64Trap:  return "NVPTXISD::Suld1DArrayV2I64Trap";
   1069   case NVPTXISD::Suld1DArrayV4I8Trap:   return "NVPTXISD::Suld1DArrayV4I8Trap";
   1070   case NVPTXISD::Suld1DArrayV4I16Trap:  return "NVPTXISD::Suld1DArrayV4I16Trap";
   1071   case NVPTXISD::Suld1DArrayV4I32Trap:  return "NVPTXISD::Suld1DArrayV4I32Trap";
   1072 
   1073   case NVPTXISD::Suld2DI8Trap:          return "NVPTXISD::Suld2DI8Trap";
   1074   case NVPTXISD::Suld2DI16Trap:         return "NVPTXISD::Suld2DI16Trap";
   1075   case NVPTXISD::Suld2DI32Trap:         return "NVPTXISD::Suld2DI32Trap";
   1076   case NVPTXISD::Suld2DI64Trap:         return "NVPTXISD::Suld2DI64Trap";
   1077   case NVPTXISD::Suld2DV2I8Trap:        return "NVPTXISD::Suld2DV2I8Trap";
   1078   case NVPTXISD::Suld2DV2I16Trap:       return "NVPTXISD::Suld2DV2I16Trap";
   1079   case NVPTXISD::Suld2DV2I32Trap:       return "NVPTXISD::Suld2DV2I32Trap";
   1080   case NVPTXISD::Suld2DV2I64Trap:       return "NVPTXISD::Suld2DV2I64Trap";
   1081   case NVPTXISD::Suld2DV4I8Trap:        return "NVPTXISD::Suld2DV4I8Trap";
   1082   case NVPTXISD::Suld2DV4I16Trap:       return "NVPTXISD::Suld2DV4I16Trap";
   1083   case NVPTXISD::Suld2DV4I32Trap:       return "NVPTXISD::Suld2DV4I32Trap";
   1084 
   1085   case NVPTXISD::Suld2DArrayI8Trap:     return "NVPTXISD::Suld2DArrayI8Trap";
   1086   case NVPTXISD::Suld2DArrayI16Trap:    return "NVPTXISD::Suld2DArrayI16Trap";
   1087   case NVPTXISD::Suld2DArrayI32Trap:    return "NVPTXISD::Suld2DArrayI32Trap";
   1088   case NVPTXISD::Suld2DArrayI64Trap:    return "NVPTXISD::Suld2DArrayI64Trap";
   1089   case NVPTXISD::Suld2DArrayV2I8Trap:   return "NVPTXISD::Suld2DArrayV2I8Trap";
   1090   case NVPTXISD::Suld2DArrayV2I16Trap:  return "NVPTXISD::Suld2DArrayV2I16Trap";
   1091   case NVPTXISD::Suld2DArrayV2I32Trap:  return "NVPTXISD::Suld2DArrayV2I32Trap";
   1092   case NVPTXISD::Suld2DArrayV2I64Trap:  return "NVPTXISD::Suld2DArrayV2I64Trap";
   1093   case NVPTXISD::Suld2DArrayV4I8Trap:   return "NVPTXISD::Suld2DArrayV4I8Trap";
   1094   case NVPTXISD::Suld2DArrayV4I16Trap:  return "NVPTXISD::Suld2DArrayV4I16Trap";
   1095   case NVPTXISD::Suld2DArrayV4I32Trap:  return "NVPTXISD::Suld2DArrayV4I32Trap";
   1096 
   1097   case NVPTXISD::Suld3DI8Trap:          return "NVPTXISD::Suld3DI8Trap";
   1098   case NVPTXISD::Suld3DI16Trap:         return "NVPTXISD::Suld3DI16Trap";
   1099   case NVPTXISD::Suld3DI32Trap:         return "NVPTXISD::Suld3DI32Trap";
   1100   case NVPTXISD::Suld3DI64Trap:         return "NVPTXISD::Suld3DI64Trap";
   1101   case NVPTXISD::Suld3DV2I8Trap:        return "NVPTXISD::Suld3DV2I8Trap";
   1102   case NVPTXISD::Suld3DV2I16Trap:       return "NVPTXISD::Suld3DV2I16Trap";
   1103   case NVPTXISD::Suld3DV2I32Trap:       return "NVPTXISD::Suld3DV2I32Trap";
   1104   case NVPTXISD::Suld3DV2I64Trap:       return "NVPTXISD::Suld3DV2I64Trap";
   1105   case NVPTXISD::Suld3DV4I8Trap:        return "NVPTXISD::Suld3DV4I8Trap";
   1106   case NVPTXISD::Suld3DV4I16Trap:       return "NVPTXISD::Suld3DV4I16Trap";
   1107   case NVPTXISD::Suld3DV4I32Trap:       return "NVPTXISD::Suld3DV4I32Trap";
   1108 
   1109   case NVPTXISD::Suld1DI8Zero:          return "NVPTXISD::Suld1DI8Zero";
   1110   case NVPTXISD::Suld1DI16Zero:         return "NVPTXISD::Suld1DI16Zero";
   1111   case NVPTXISD::Suld1DI32Zero:         return "NVPTXISD::Suld1DI32Zero";
   1112   case NVPTXISD::Suld1DI64Zero:         return "NVPTXISD::Suld1DI64Zero";
   1113   case NVPTXISD::Suld1DV2I8Zero:        return "NVPTXISD::Suld1DV2I8Zero";
   1114   case NVPTXISD::Suld1DV2I16Zero:       return "NVPTXISD::Suld1DV2I16Zero";
   1115   case NVPTXISD::Suld1DV2I32Zero:       return "NVPTXISD::Suld1DV2I32Zero";
   1116   case NVPTXISD::Suld1DV2I64Zero:       return "NVPTXISD::Suld1DV2I64Zero";
   1117   case NVPTXISD::Suld1DV4I8Zero:        return "NVPTXISD::Suld1DV4I8Zero";
   1118   case NVPTXISD::Suld1DV4I16Zero:       return "NVPTXISD::Suld1DV4I16Zero";
   1119   case NVPTXISD::Suld1DV4I32Zero:       return "NVPTXISD::Suld1DV4I32Zero";
   1120 
   1121   case NVPTXISD::Suld1DArrayI8Zero:     return "NVPTXISD::Suld1DArrayI8Zero";
   1122   case NVPTXISD::Suld1DArrayI16Zero:    return "NVPTXISD::Suld1DArrayI16Zero";
   1123   case NVPTXISD::Suld1DArrayI32Zero:    return "NVPTXISD::Suld1DArrayI32Zero";
   1124   case NVPTXISD::Suld1DArrayI64Zero:    return "NVPTXISD::Suld1DArrayI64Zero";
   1125   case NVPTXISD::Suld1DArrayV2I8Zero:   return "NVPTXISD::Suld1DArrayV2I8Zero";
   1126   case NVPTXISD::Suld1DArrayV2I16Zero:  return "NVPTXISD::Suld1DArrayV2I16Zero";
   1127   case NVPTXISD::Suld1DArrayV2I32Zero:  return "NVPTXISD::Suld1DArrayV2I32Zero";
   1128   case NVPTXISD::Suld1DArrayV2I64Zero:  return "NVPTXISD::Suld1DArrayV2I64Zero";
   1129   case NVPTXISD::Suld1DArrayV4I8Zero:   return "NVPTXISD::Suld1DArrayV4I8Zero";
   1130   case NVPTXISD::Suld1DArrayV4I16Zero:  return "NVPTXISD::Suld1DArrayV4I16Zero";
   1131   case NVPTXISD::Suld1DArrayV4I32Zero:  return "NVPTXISD::Suld1DArrayV4I32Zero";
   1132 
   1133   case NVPTXISD::Suld2DI8Zero:          return "NVPTXISD::Suld2DI8Zero";
   1134   case NVPTXISD::Suld2DI16Zero:         return "NVPTXISD::Suld2DI16Zero";
   1135   case NVPTXISD::Suld2DI32Zero:         return "NVPTXISD::Suld2DI32Zero";
   1136   case NVPTXISD::Suld2DI64Zero:         return "NVPTXISD::Suld2DI64Zero";
   1137   case NVPTXISD::Suld2DV2I8Zero:        return "NVPTXISD::Suld2DV2I8Zero";
   1138   case NVPTXISD::Suld2DV2I16Zero:       return "NVPTXISD::Suld2DV2I16Zero";
   1139   case NVPTXISD::Suld2DV2I32Zero:       return "NVPTXISD::Suld2DV2I32Zero";
   1140   case NVPTXISD::Suld2DV2I64Zero:       return "NVPTXISD::Suld2DV2I64Zero";
   1141   case NVPTXISD::Suld2DV4I8Zero:        return "NVPTXISD::Suld2DV4I8Zero";
   1142   case NVPTXISD::Suld2DV4I16Zero:       return "NVPTXISD::Suld2DV4I16Zero";
   1143   case NVPTXISD::Suld2DV4I32Zero:       return "NVPTXISD::Suld2DV4I32Zero";
   1144 
   1145   case NVPTXISD::Suld2DArrayI8Zero:     return "NVPTXISD::Suld2DArrayI8Zero";
   1146   case NVPTXISD::Suld2DArrayI16Zero:    return "NVPTXISD::Suld2DArrayI16Zero";
   1147   case NVPTXISD::Suld2DArrayI32Zero:    return "NVPTXISD::Suld2DArrayI32Zero";
   1148   case NVPTXISD::Suld2DArrayI64Zero:    return "NVPTXISD::Suld2DArrayI64Zero";
   1149   case NVPTXISD::Suld2DArrayV2I8Zero:   return "NVPTXISD::Suld2DArrayV2I8Zero";
   1150   case NVPTXISD::Suld2DArrayV2I16Zero:  return "NVPTXISD::Suld2DArrayV2I16Zero";
   1151   case NVPTXISD::Suld2DArrayV2I32Zero:  return "NVPTXISD::Suld2DArrayV2I32Zero";
   1152   case NVPTXISD::Suld2DArrayV2I64Zero:  return "NVPTXISD::Suld2DArrayV2I64Zero";
   1153   case NVPTXISD::Suld2DArrayV4I8Zero:   return "NVPTXISD::Suld2DArrayV4I8Zero";
   1154   case NVPTXISD::Suld2DArrayV4I16Zero:  return "NVPTXISD::Suld2DArrayV4I16Zero";
   1155   case NVPTXISD::Suld2DArrayV4I32Zero:  return "NVPTXISD::Suld2DArrayV4I32Zero";
   1156 
   1157   case NVPTXISD::Suld3DI8Zero:          return "NVPTXISD::Suld3DI8Zero";
   1158   case NVPTXISD::Suld3DI16Zero:         return "NVPTXISD::Suld3DI16Zero";
   1159   case NVPTXISD::Suld3DI32Zero:         return "NVPTXISD::Suld3DI32Zero";
   1160   case NVPTXISD::Suld3DI64Zero:         return "NVPTXISD::Suld3DI64Zero";
   1161   case NVPTXISD::Suld3DV2I8Zero:        return "NVPTXISD::Suld3DV2I8Zero";
   1162   case NVPTXISD::Suld3DV2I16Zero:       return "NVPTXISD::Suld3DV2I16Zero";
   1163   case NVPTXISD::Suld3DV2I32Zero:       return "NVPTXISD::Suld3DV2I32Zero";
   1164   case NVPTXISD::Suld3DV2I64Zero:       return "NVPTXISD::Suld3DV2I64Zero";
   1165   case NVPTXISD::Suld3DV4I8Zero:        return "NVPTXISD::Suld3DV4I8Zero";
   1166   case NVPTXISD::Suld3DV4I16Zero:       return "NVPTXISD::Suld3DV4I16Zero";
   1167   case NVPTXISD::Suld3DV4I32Zero:       return "NVPTXISD::Suld3DV4I32Zero";
   1168   }
   1169   return nullptr;
   1170 }
   1171 
   1172 TargetLoweringBase::LegalizeTypeAction
   1173 NVPTXTargetLowering::getPreferredVectorAction(EVT VT) const {
   1174   if (VT.getVectorNumElements() != 1 && VT.getScalarType() == MVT::i1)
   1175     return TypeSplitVector;
   1176   if (VT == MVT::v2f16)
   1177     return TypeLegal;
   1178   return TargetLoweringBase::getPreferredVectorAction(VT);
   1179 }
   1180 
   1181 SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
   1182                                              int Enabled, int &ExtraSteps,
   1183                                              bool &UseOneConst,
   1184                                              bool Reciprocal) const {
   1185   if (!(Enabled == ReciprocalEstimate::Enabled ||
   1186         (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
   1187     return SDValue();
   1188 
   1189   if (ExtraSteps == ReciprocalEstimate::Unspecified)
   1190     ExtraSteps = 0;
   1191 
   1192   SDLoc DL(Operand);
   1193   EVT VT = Operand.getValueType();
   1194   bool Ftz = useF32FTZ(DAG.getMachineFunction());
   1195 
   1196   auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
   1197     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
   1198                        DAG.getConstant(IID, DL, MVT::i32), Operand);
   1199   };
   1200 
   1201   // The sqrt and rsqrt refinement processes assume we always start out with an
   1202   // approximation of the rsqrt.  Therefore, if we're going to do any refinement
   1203   // (i.e. ExtraSteps > 0), we must return an rsqrt.  But if we're *not* doing
   1204   // any refinement, we must return a regular sqrt.
   1205   if (Reciprocal || ExtraSteps > 0) {
   1206     if (VT == MVT::f32)
   1207       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
   1208                                    : Intrinsic::nvvm_rsqrt_approx_f);
   1209     else if (VT == MVT::f64)
   1210       return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
   1211     else
   1212       return SDValue();
   1213   } else {
   1214     if (VT == MVT::f32)
   1215       return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
   1216                                    : Intrinsic::nvvm_sqrt_approx_f);
   1217     else {
   1218       // There's no sqrt.approx.f64 instruction, so we emit
   1219       // reciprocal(rsqrt(x)).  This is faster than
   1220       // select(x == 0, 0, x * rsqrt(x)).  (In fact, it's faster than plain
   1221       // x * rsqrt(x).)
   1222       return DAG.getNode(
   1223           ISD::INTRINSIC_WO_CHAIN, DL, VT,
   1224           DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
   1225           MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
   1226     }
   1227   }
   1228 }
   1229 
   1230 SDValue
   1231 NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
   1232   SDLoc dl(Op);
   1233   const GlobalAddressSDNode *GAN = cast<GlobalAddressSDNode>(Op);
   1234   auto PtrVT = getPointerTy(DAG.getDataLayout(), GAN->getAddressSpace());
   1235   Op = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, PtrVT);
   1236   return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
   1237 }
   1238 
   1239 std::string NVPTXTargetLowering::getPrototype(
   1240     const DataLayout &DL, Type *retTy, const ArgListTy &Args,
   1241     const SmallVectorImpl<ISD::OutputArg> &Outs, unsigned retAlignment,
   1242     ImmutableCallSite CS) const {
   1243   auto PtrVT = getPointerTy(DL);
   1244 
   1245   bool isABI = (STI.getSmVersion() >= 20);
   1246   assert(isABI && "Non-ABI compilation is not supported");
   1247   if (!isABI)
   1248     return "";
   1249 
   1250   std::stringstream O;
   1251   O << "prototype_" << uniqueCallSite << " : .callprototype ";
   1252 
   1253   if (retTy->getTypeID() == Type::VoidTyID) {
   1254     O << "()";
   1255   } else {
   1256     O << "(";
   1257     if (retTy->isFloatingPointTy() || (retTy->isIntegerTy() && !retTy->isIntegerTy(128))) {
   1258       unsigned size = 0;
   1259       if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
   1260         size = ITy->getBitWidth();
   1261       } else {
   1262         assert(retTy->isFloatingPointTy() &&
   1263                "Floating point type expected here");
   1264         size = retTy->getPrimitiveSizeInBits();
   1265       }
   1266       // PTX ABI requires all scalar return values to be at least 32
   1267       // bits in size.  fp16 normally uses .b16 as its storage type in
   1268       // PTX, so its size must be adjusted here, too.
   1269       if (size < 32)
   1270         size = 32;
   1271 
   1272       O << ".param .b" << size << " _";
   1273     } else if (isa<PointerType>(retTy)) {
   1274       O << ".param .b" << PtrVT.getSizeInBits() << " _";
   1275     } else if (retTy->isAggregateType() || retTy->isVectorTy() || retTy->isIntegerTy(128)) {
   1276       auto &DL = CS.getCalledFunction()->getParent()->getDataLayout();
   1277       O << ".param .align " << retAlignment << " .b8 _["
   1278         << DL.getTypeAllocSize(retTy) << "]";
   1279     } else {
   1280       llvm_unreachable("Unknown return type");
   1281     }
   1282     O << ") ";
   1283   }
   1284   O << "_ (";
   1285 
   1286   bool first = true;
   1287 
   1288   unsigned OIdx = 0;
   1289   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
   1290     Type *Ty = Args[i].Ty;
   1291     if (!first) {
   1292       O << ", ";
   1293     }
   1294     first = false;
   1295 
   1296     if (!Outs[OIdx].Flags.isByVal()) {
   1297       if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
   1298         unsigned align = 0;
   1299         const CallInst *CallI = cast<CallInst>(CS.getInstruction());
   1300         // +1 because index 0 is reserved for return type alignment
   1301         if (!getAlign(*CallI, i + 1, align))
   1302           align = DL.getABITypeAlignment(Ty);
   1303         unsigned sz = DL.getTypeAllocSize(Ty);
   1304         O << ".param .align " << align << " .b8 ";
   1305         O << "_";
   1306         O << "[" << sz << "]";
   1307         // update the index for Outs
   1308         SmallVector<EVT, 16> vtparts;
   1309         ComputeValueVTs(*this, DL, Ty, vtparts);
   1310         if (unsigned len = vtparts.size())
   1311           OIdx += len - 1;
   1312         continue;
   1313       }
   1314       // i8 types in IR will be i16 types in SDAG
   1315       assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
   1316               (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
   1317              "type mismatch between callee prototype and arguments");
   1318       // scalar type
   1319       unsigned sz = 0;
   1320       if (isa<IntegerType>(Ty)) {
   1321         sz = cast<IntegerType>(Ty)->getBitWidth();
   1322         if (sz < 32)
   1323           sz = 32;
   1324       } else if (isa<PointerType>(Ty)) {
   1325         sz = PtrVT.getSizeInBits();
   1326       } else if (Ty->isHalfTy())
   1327         // PTX ABI requires all scalar parameters to be at least 32
   1328         // bits in size.  fp16 normally uses .b16 as its storage type
   1329         // in PTX, so its size must be adjusted here, too.
   1330         sz = 32;
   1331       else
   1332         sz = Ty->getPrimitiveSizeInBits();
   1333       O << ".param .b" << sz << " ";
   1334       O << "_";
   1335       continue;
   1336     }
   1337     auto *PTy = dyn_cast<PointerType>(Ty);
   1338     assert(PTy && "Param with byval attribute should be a pointer type");
   1339     Type *ETy = PTy->getElementType();
   1340 
   1341     unsigned align = Outs[OIdx].Flags.getByValAlign();
   1342     unsigned sz = DL.getTypeAllocSize(ETy);
   1343     O << ".param .align " << align << " .b8 ";
   1344     O << "_";
   1345     O << "[" << sz << "]";
   1346   }
   1347   O << ");";
   1348   return O.str();
   1349 }
   1350 
   1351 unsigned NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
   1352                                                    ImmutableCallSite CS,
   1353                                                    Type *Ty, unsigned Idx,
   1354                                                    const DataLayout &DL) const {
   1355   if (!CS) {
   1356     // CallSite is zero, fallback to ABI type alignment
   1357     return DL.getABITypeAlignment(Ty);
   1358   }
   1359 
   1360   unsigned Align = 0;
   1361   const Value *DirectCallee = CS.getCalledFunction();
   1362 
   1363   if (!DirectCallee) {
   1364     // We don't have a direct function symbol, but that may be because of
   1365     // constant cast instructions in the call.
   1366     const Instruction *CalleeI = CS.getInstruction();
   1367     assert(CalleeI && "Call target is not a function or derived value?");
   1368 
   1369     // With bitcast'd call targets, the instruction will be the call
   1370     if (isa<CallInst>(CalleeI)) {
   1371       // Check if we have call alignment metadata
   1372       if (getAlign(*cast<CallInst>(CalleeI), Idx, Align))
   1373         return Align;
   1374 
   1375       const Value *CalleeV = cast<CallInst>(CalleeI)->getCalledValue();
   1376       // Ignore any bitcast instructions
   1377       while (isa<ConstantExpr>(CalleeV)) {
   1378         const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
   1379         if (!CE->isCast())
   1380           break;
   1381         // Look through the bitcast
   1382         CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
   1383       }
   1384 
   1385       // We have now looked past all of the bitcasts.  Do we finally have a
   1386       // Function?
   1387       if (isa<Function>(CalleeV))
   1388         DirectCallee = CalleeV;
   1389     }
   1390   }
   1391 
   1392   // Check for function alignment information if we found that the
   1393   // ultimate target is a Function
   1394   if (DirectCallee)
   1395     if (getAlign(*cast<Function>(DirectCallee), Idx, Align))
   1396       return Align;
   1397 
   1398   // Call is indirect or alignment information is not available, fall back to
   1399   // the ABI type alignment
   1400   return DL.getABITypeAlignment(Ty);
   1401 }
   1402 
   1403 SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   1404                                        SmallVectorImpl<SDValue> &InVals) const {
   1405   SelectionDAG &DAG = CLI.DAG;
   1406   SDLoc dl = CLI.DL;
   1407   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   1408   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
   1409   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
   1410   SDValue Chain = CLI.Chain;
   1411   SDValue Callee = CLI.Callee;
   1412   bool &isTailCall = CLI.IsTailCall;
   1413   ArgListTy &Args = CLI.getArgs();
   1414   Type *RetTy = CLI.RetTy;
   1415   ImmutableCallSite CS = CLI.CS;
   1416   const DataLayout &DL = DAG.getDataLayout();
   1417 
   1418   bool isABI = (STI.getSmVersion() >= 20);
   1419   assert(isABI && "Non-ABI compilation is not supported");
   1420   if (!isABI)
   1421     return Chain;
   1422 
   1423   SDValue tempChain = Chain;
   1424   Chain = DAG.getCALLSEQ_START(Chain, uniqueCallSite, 0, dl);
   1425   SDValue InFlag = Chain.getValue(1);
   1426 
   1427   unsigned paramCount = 0;
   1428   // Args.size() and Outs.size() need not match.
   1429   // Outs.size() will be larger
   1430   //   * if there is an aggregate argument with multiple fields (each field
   1431   //     showing up separately in Outs)
   1432   //   * if there is a vector argument with more than typical vector-length
   1433   //     elements (generally if more than 4) where each vector element is
   1434   //     individually present in Outs.
   1435   // So a different index should be used for indexing into Outs/OutVals.
   1436   // See similar issue in LowerFormalArguments.
   1437   unsigned OIdx = 0;
   1438   // Declare the .params or .reg need to pass values
   1439   // to the function
   1440   for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
   1441     EVT VT = Outs[OIdx].VT;
   1442     Type *Ty = Args[i].Ty;
   1443 
   1444     if (!Outs[OIdx].Flags.isByVal()) {
   1445       SmallVector<EVT, 16> VTs;
   1446       SmallVector<uint64_t, 16> Offsets;
   1447       ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets);
   1448       unsigned ArgAlign =
   1449           getArgumentAlignment(Callee, CS, Ty, paramCount + 1, DL);
   1450       unsigned AllocSize = DL.getTypeAllocSize(Ty);
   1451       SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1452       bool NeedAlign; // Does argument declaration specify alignment?
   1453       if (Ty->isAggregateType() || Ty->isVectorTy() || Ty->isIntegerTy(128)) {
   1454         // declare .param .align <align> .b8 .param<n>[<size>];
   1455         SDValue DeclareParamOps[] = {
   1456             Chain, DAG.getConstant(ArgAlign, dl, MVT::i32),
   1457             DAG.getConstant(paramCount, dl, MVT::i32),
   1458             DAG.getConstant(AllocSize, dl, MVT::i32), InFlag};
   1459         Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
   1460                             DeclareParamOps);
   1461         NeedAlign = true;
   1462       } else {
   1463         // declare .param .b<size> .param<n>;
   1464         if ((VT.isInteger() || VT.isFloatingPoint()) && AllocSize < 4) {
   1465           // PTX ABI requires integral types to be at least 32 bits in
   1466           // size. FP16 is loaded/stored using i16, so it's handled
   1467           // here as well.
   1468           AllocSize = 4;
   1469         }
   1470         SDValue DeclareScalarParamOps[] = {
   1471             Chain, DAG.getConstant(paramCount, dl, MVT::i32),
   1472             DAG.getConstant(AllocSize * 8, dl, MVT::i32),
   1473             DAG.getConstant(0, dl, MVT::i32), InFlag};
   1474         Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
   1475                             DeclareScalarParamOps);
   1476         NeedAlign = false;
   1477       }
   1478       InFlag = Chain.getValue(1);
   1479 
   1480       // PTX Interoperability Guide 3.3(A): [Integer] Values shorter
   1481       // than 32-bits are sign extended or zero extended, depending on
   1482       // whether they are signed or unsigned types. This case applies
   1483       // only to scalar parameters and not to aggregate values.
   1484       bool ExtendIntegerParam =
   1485           Ty->isIntegerTy() && DL.getTypeAllocSizeInBits(Ty) < 32;
   1486 
   1487       auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, ArgAlign);
   1488       SmallVector<SDValue, 6> StoreOperands;
   1489       for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
   1490         // New store.
   1491         if (VectorInfo[j] & PVF_FIRST) {
   1492           assert(StoreOperands.empty() && "Unfinished preceeding store.");
   1493           StoreOperands.push_back(Chain);
   1494           StoreOperands.push_back(DAG.getConstant(paramCount, dl, MVT::i32));
   1495           StoreOperands.push_back(DAG.getConstant(Offsets[j], dl, MVT::i32));
   1496         }
   1497 
   1498         EVT EltVT = VTs[j];
   1499         SDValue StVal = OutVals[OIdx];
   1500         if (ExtendIntegerParam) {
   1501           assert(VTs.size() == 1 && "Scalar can't have multiple parts.");
   1502           // zext/sext to i32
   1503           StVal = DAG.getNode(Outs[OIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
   1504                                                         : ISD::ZERO_EXTEND,
   1505                               dl, MVT::i32, StVal);
   1506         } else if (EltVT.getSizeInBits() < 16) {
   1507           // Use 16-bit registers for small stores as it's the
   1508           // smallest general purpose register size supported by NVPTX.
   1509           StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
   1510         }
   1511 
   1512         // Record the value to store.
   1513         StoreOperands.push_back(StVal);
   1514 
   1515         if (VectorInfo[j] & PVF_LAST) {
   1516           unsigned NumElts = StoreOperands.size() - 3;
   1517           NVPTXISD::NodeType Op;
   1518           switch (NumElts) {
   1519           case 1:
   1520             Op = NVPTXISD::StoreParam;
   1521             break;
   1522           case 2:
   1523             Op = NVPTXISD::StoreParamV2;
   1524             break;
   1525           case 4:
   1526             Op = NVPTXISD::StoreParamV4;
   1527             break;
   1528           default:
   1529             llvm_unreachable("Invalid vector info.");
   1530           }
   1531 
   1532           StoreOperands.push_back(InFlag);
   1533 
   1534           // Adjust type of the store op if we've extended the scalar
   1535           // return value.
   1536           EVT TheStoreType = ExtendIntegerParam ? MVT::i32 : VTs[j];
   1537           unsigned EltAlign =
   1538               NeedAlign ? GreatestCommonDivisor64(ArgAlign, Offsets[j]) : 0;
   1539 
   1540           Chain = DAG.getMemIntrinsicNode(
   1541               Op, dl, DAG.getVTList(MVT::Other, MVT::Glue), StoreOperands,
   1542               TheStoreType, MachinePointerInfo(), EltAlign,
   1543               MachineMemOperand::MOStore);
   1544           InFlag = Chain.getValue(1);
   1545 
   1546           // Cleanup.
   1547           StoreOperands.clear();
   1548         }
   1549         ++OIdx;
   1550       }
   1551       assert(StoreOperands.empty() && "Unfinished parameter store.");
   1552       if (VTs.size() > 0)
   1553         --OIdx;
   1554       ++paramCount;
   1555       continue;
   1556     }
   1557 
   1558     // ByVal arguments
   1559     SmallVector<EVT, 16> VTs;
   1560     SmallVector<uint64_t, 16> Offsets;
   1561     auto *PTy = dyn_cast<PointerType>(Args[i].Ty);
   1562     assert(PTy && "Type of a byval parameter should be pointer");
   1563     ComputePTXValueVTs(*this, DL, PTy->getElementType(), VTs, &Offsets, 0);
   1564 
   1565     // declare .param .align <align> .b8 .param<n>[<size>];
   1566     unsigned sz = Outs[OIdx].Flags.getByValSize();
   1567     SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1568     unsigned ArgAlign = Outs[OIdx].Flags.getByValAlign();
   1569     // The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
   1570     // so we don't need to worry about natural alignment or not.
   1571     // See TargetLowering::LowerCallTo().
   1572 
   1573     // Enforce minumum alignment of 4 to work around ptxas miscompile
   1574     // for sm_50+. See corresponding alignment adjustment in
   1575     // emitFunctionParamList() for details.
   1576     if (ArgAlign < 4)
   1577       ArgAlign = 4;
   1578     SDValue DeclareParamOps[] = {Chain, DAG.getConstant(ArgAlign, dl, MVT::i32),
   1579                                  DAG.getConstant(paramCount, dl, MVT::i32),
   1580                                  DAG.getConstant(sz, dl, MVT::i32), InFlag};
   1581     Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
   1582                         DeclareParamOps);
   1583     InFlag = Chain.getValue(1);
   1584     for (unsigned j = 0, je = VTs.size(); j != je; ++j) {
   1585       EVT elemtype = VTs[j];
   1586       int curOffset = Offsets[j];
   1587       unsigned PartAlign = GreatestCommonDivisor64(ArgAlign, curOffset);
   1588       auto PtrVT = getPointerTy(DL);
   1589       SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx],
   1590                                     DAG.getConstant(curOffset, dl, PtrVT));
   1591       SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
   1592                                    MachinePointerInfo(), PartAlign);
   1593       if (elemtype.getSizeInBits() < 16) {
   1594         theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
   1595       }
   1596       SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1597       SDValue CopyParamOps[] = { Chain,
   1598                                  DAG.getConstant(paramCount, dl, MVT::i32),
   1599                                  DAG.getConstant(curOffset, dl, MVT::i32),
   1600                                  theVal, InFlag };
   1601       Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl, CopyParamVTs,
   1602                                       CopyParamOps, elemtype,
   1603                                       MachinePointerInfo(), /* Align */ 0,
   1604                                       MachineMemOperand::MOStore);
   1605 
   1606       InFlag = Chain.getValue(1);
   1607     }
   1608     ++paramCount;
   1609   }
   1610 
   1611   GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
   1612   unsigned retAlignment = 0;
   1613 
   1614   // Handle Result
   1615   if (Ins.size() > 0) {
   1616     SmallVector<EVT, 16> resvtparts;
   1617     ComputeValueVTs(*this, DL, RetTy, resvtparts);
   1618 
   1619     // Declare
   1620     //  .param .align 16 .b8 retval0[<size-in-bytes>], or
   1621     //  .param .b<size-in-bits> retval0
   1622     unsigned resultsz = DL.getTypeAllocSizeInBits(RetTy);
   1623     // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
   1624     // these three types to match the logic in
   1625     // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
   1626     // Plus, this behavior is consistent with nvcc's.
   1627     if (RetTy->isFloatingPointTy() || RetTy->isPointerTy() ||
   1628         (RetTy->isIntegerTy() && !RetTy->isIntegerTy(128))) {
   1629       // Scalar needs to be at least 32bit wide
   1630       if (resultsz < 32)
   1631         resultsz = 32;
   1632       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1633       SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
   1634                                   DAG.getConstant(resultsz, dl, MVT::i32),
   1635                                   DAG.getConstant(0, dl, MVT::i32), InFlag };
   1636       Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
   1637                           DeclareRetOps);
   1638       InFlag = Chain.getValue(1);
   1639     } else {
   1640       retAlignment = getArgumentAlignment(Callee, CS, RetTy, 0, DL);
   1641       SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1642       SDValue DeclareRetOps[] = { Chain,
   1643                                   DAG.getConstant(retAlignment, dl, MVT::i32),
   1644                                   DAG.getConstant(resultsz / 8, dl, MVT::i32),
   1645                                   DAG.getConstant(0, dl, MVT::i32), InFlag };
   1646       Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
   1647                           DeclareRetOps);
   1648       InFlag = Chain.getValue(1);
   1649     }
   1650   }
   1651 
   1652   if (!Func) {
   1653     // This is indirect function call case : PTX requires a prototype of the
   1654     // form
   1655     // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
   1656     // to be emitted, and the label has to used as the last arg of call
   1657     // instruction.
   1658     // The prototype is embedded in a string and put as the operand for a
   1659     // CallPrototype SDNode which will print out to the value of the string.
   1660     SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1661     std::string Proto = getPrototype(DL, RetTy, Args, Outs, retAlignment, CS);
   1662     const char *ProtoStr =
   1663       nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
   1664     SDValue ProtoOps[] = {
   1665       Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
   1666     };
   1667     Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
   1668     InFlag = Chain.getValue(1);
   1669   }
   1670   // Op to just print "call"
   1671   SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1672   SDValue PrintCallOps[] = {
   1673     Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
   1674   };
   1675   // We model convergent calls as separate opcodes.
   1676   unsigned Opcode = Func ? NVPTXISD::PrintCallUni : NVPTXISD::PrintCall;
   1677   if (CLI.IsConvergent)
   1678     Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
   1679                                               : NVPTXISD::PrintConvergentCall;
   1680   Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
   1681   InFlag = Chain.getValue(1);
   1682 
   1683   // Ops to print out the function name
   1684   SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1685   SDValue CallVoidOps[] = { Chain, Callee, InFlag };
   1686   Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
   1687   InFlag = Chain.getValue(1);
   1688 
   1689   // Ops to print out the param list
   1690   SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1691   SDValue CallArgBeginOps[] = { Chain, InFlag };
   1692   Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
   1693                       CallArgBeginOps);
   1694   InFlag = Chain.getValue(1);
   1695 
   1696   for (unsigned i = 0, e = paramCount; i != e; ++i) {
   1697     unsigned opcode;
   1698     if (i == (e - 1))
   1699       opcode = NVPTXISD::LastCallArg;
   1700     else
   1701       opcode = NVPTXISD::CallArg;
   1702     SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1703     SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
   1704                              DAG.getConstant(i, dl, MVT::i32), InFlag };
   1705     Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
   1706     InFlag = Chain.getValue(1);
   1707   }
   1708   SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1709   SDValue CallArgEndOps[] = { Chain,
   1710                               DAG.getConstant(Func ? 1 : 0, dl, MVT::i32),
   1711                               InFlag };
   1712   Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
   1713   InFlag = Chain.getValue(1);
   1714 
   1715   if (!Func) {
   1716     SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1717     SDValue PrototypeOps[] = { Chain,
   1718                                DAG.getConstant(uniqueCallSite, dl, MVT::i32),
   1719                                InFlag };
   1720     Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
   1721     InFlag = Chain.getValue(1);
   1722   }
   1723 
   1724   // Generate loads from param memory/moves from registers for result
   1725   if (Ins.size() > 0) {
   1726     SmallVector<EVT, 16> VTs;
   1727     SmallVector<uint64_t, 16> Offsets;
   1728     ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets, 0);
   1729     assert(VTs.size() == Ins.size() && "Bad value decomposition");
   1730 
   1731     unsigned RetAlign = getArgumentAlignment(Callee, CS, RetTy, 0, DL);
   1732     auto VectorInfo = VectorizePTXValueVTs(VTs, Offsets, RetAlign);
   1733 
   1734     SmallVector<EVT, 6> LoadVTs;
   1735     int VecIdx = -1; // Index of the first element of the vector.
   1736 
   1737     // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
   1738     // 32-bits are sign extended or zero extended, depending on whether
   1739     // they are signed or unsigned types.
   1740     bool ExtendIntegerRetVal =
   1741         RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
   1742 
   1743     for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
   1744       bool needTruncate = false;
   1745       EVT TheLoadType = VTs[i];
   1746       EVT EltType = Ins[i].VT;
   1747       unsigned EltAlign = GreatestCommonDivisor64(RetAlign, Offsets[i]);
   1748       if (ExtendIntegerRetVal) {
   1749         TheLoadType = MVT::i32;
   1750         EltType = MVT::i32;
   1751         needTruncate = true;
   1752       } else if (TheLoadType.getSizeInBits() < 16) {
   1753         if (VTs[i].isInteger())
   1754           needTruncate = true;
   1755         EltType = MVT::i16;
   1756       }
   1757 
   1758       // Record index of the very first element of the vector.
   1759       if (VectorInfo[i] & PVF_FIRST) {
   1760         assert(VecIdx == -1 && LoadVTs.empty() && "Orphaned operand list.");
   1761         VecIdx = i;
   1762       }
   1763 
   1764       LoadVTs.push_back(EltType);
   1765 
   1766       if (VectorInfo[i] & PVF_LAST) {
   1767         unsigned NumElts = LoadVTs.size();
   1768         LoadVTs.push_back(MVT::Other);
   1769         LoadVTs.push_back(MVT::Glue);
   1770         NVPTXISD::NodeType Op;
   1771         switch (NumElts) {
   1772         case 1:
   1773           Op = NVPTXISD::LoadParam;
   1774           break;
   1775         case 2:
   1776           Op = NVPTXISD::LoadParamV2;
   1777           break;
   1778         case 4:
   1779           Op = NVPTXISD::LoadParamV4;
   1780           break;
   1781         default:
   1782           llvm_unreachable("Invalid vector info.");
   1783         }
   1784 
   1785         SDValue LoadOperands[] = {
   1786             Chain, DAG.getConstant(1, dl, MVT::i32),
   1787             DAG.getConstant(Offsets[VecIdx], dl, MVT::i32), InFlag};
   1788         SDValue RetVal = DAG.getMemIntrinsicNode(
   1789             Op, dl, DAG.getVTList(LoadVTs), LoadOperands, TheLoadType,
   1790             MachinePointerInfo(), EltAlign,
   1791             MachineMemOperand::MOLoad);
   1792 
   1793         for (unsigned j = 0; j < NumElts; ++j) {
   1794           SDValue Ret = RetVal.getValue(j);
   1795           if (needTruncate)
   1796             Ret = DAG.getNode(ISD::TRUNCATE, dl, Ins[VecIdx + j].VT, Ret);
   1797           InVals.push_back(Ret);
   1798         }
   1799         Chain = RetVal.getValue(NumElts);
   1800         InFlag = RetVal.getValue(NumElts + 1);
   1801 
   1802         // Cleanup
   1803         VecIdx = -1;
   1804         LoadVTs.clear();
   1805       }
   1806     }
   1807   }
   1808 
   1809   Chain = DAG.getCALLSEQ_END(Chain,
   1810                              DAG.getIntPtrConstant(uniqueCallSite, dl, true),
   1811                              DAG.getIntPtrConstant(uniqueCallSite + 1, dl,
   1812                                                    true),
   1813                              InFlag, dl);
   1814   uniqueCallSite++;
   1815 
   1816   // set isTailCall to false for now, until we figure out how to express
   1817   // tail call optimization in PTX
   1818   isTailCall = false;
   1819   return Chain;
   1820 }
   1821 
   1822 // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
   1823 // (see LegalizeDAG.cpp). This is slow and uses local memory.
   1824 // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
   1825 SDValue
   1826 NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
   1827   SDNode *Node = Op.getNode();
   1828   SDLoc dl(Node);
   1829   SmallVector<SDValue, 8> Ops;
   1830   unsigned NumOperands = Node->getNumOperands();
   1831   for (unsigned i = 0; i < NumOperands; ++i) {
   1832     SDValue SubOp = Node->getOperand(i);
   1833     EVT VVT = SubOp.getNode()->getValueType(0);
   1834     EVT EltVT = VVT.getVectorElementType();
   1835     unsigned NumSubElem = VVT.getVectorNumElements();
   1836     for (unsigned j = 0; j < NumSubElem; ++j) {
   1837       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
   1838                                 DAG.getIntPtrConstant(j, dl)));
   1839     }
   1840   }
   1841   return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
   1842 }
   1843 
   1844 // We can init constant f16x2 with a single .b32 move.  Normally it
   1845 // would get lowered as two constant loads and vector-packing move.
   1846 //        mov.b16         %h1, 0x4000;
   1847 //        mov.b16         %h2, 0x3C00;
   1848 //        mov.b32         %hh2, {%h2, %h1};
   1849 // Instead we want just a constant move:
   1850 //        mov.b32         %hh2, 0x40003C00
   1851 //
   1852 // This results in better SASS code with CUDA 7.x. Ptxas in CUDA 8.0
   1853 // generates good SASS in both cases.
   1854 SDValue NVPTXTargetLowering::LowerBUILD_VECTOR(SDValue Op,
   1855                                                SelectionDAG &DAG) const {
   1856   //return Op;
   1857   if (!(Op->getValueType(0) == MVT::v2f16 &&
   1858         isa<ConstantFPSDNode>(Op->getOperand(0)) &&
   1859         isa<ConstantFPSDNode>(Op->getOperand(1))))
   1860     return Op;
   1861 
   1862   APInt E0 =
   1863       cast<ConstantFPSDNode>(Op->getOperand(0))->getValueAPF().bitcastToAPInt();
   1864   APInt E1 =
   1865       cast<ConstantFPSDNode>(Op->getOperand(1))->getValueAPF().bitcastToAPInt();
   1866   SDValue Const =
   1867       DAG.getConstant(E1.zext(32).shl(16) | E0.zext(32), SDLoc(Op), MVT::i32);
   1868   return DAG.getNode(ISD::BITCAST, SDLoc(Op), MVT::v2f16, Const);
   1869 }
   1870 
   1871 SDValue NVPTXTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
   1872                                                      SelectionDAG &DAG) const {
   1873   SDValue Index = Op->getOperand(1);
   1874   // Constant index will be matched by tablegen.
   1875   if (isa<ConstantSDNode>(Index.getNode()))
   1876     return Op;
   1877 
   1878   // Extract individual elements and select one of them.
   1879   SDValue Vector = Op->getOperand(0);
   1880   EVT VectorVT = Vector.getValueType();
   1881   assert(VectorVT == MVT::v2f16 && "Unexpected vector type.");
   1882   EVT EltVT = VectorVT.getVectorElementType();
   1883 
   1884   SDLoc dl(Op.getNode());
   1885   SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
   1886                            DAG.getIntPtrConstant(0, dl));
   1887   SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Vector,
   1888                            DAG.getIntPtrConstant(1, dl));
   1889   return DAG.getSelectCC(dl, Index, DAG.getIntPtrConstant(0, dl), E0, E1,
   1890                          ISD::CondCode::SETEQ);
   1891 }
   1892 
   1893 /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
   1894 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
   1895 ///    amount, or
   1896 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
   1897 ///    amount.
   1898 SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
   1899                                                   SelectionDAG &DAG) const {
   1900   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   1901   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
   1902 
   1903   EVT VT = Op.getValueType();
   1904   unsigned VTBits = VT.getSizeInBits();
   1905   SDLoc dl(Op);
   1906   SDValue ShOpLo = Op.getOperand(0);
   1907   SDValue ShOpHi = Op.getOperand(1);
   1908   SDValue ShAmt  = Op.getOperand(2);
   1909   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
   1910 
   1911   if (VTBits == 32 && STI.getSmVersion() >= 35) {
   1912     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
   1913     // {dHi, dLo} = {aHi, aLo} >> Amt
   1914     //   dHi = aHi >> Amt
   1915     //   dLo = shf.r.clamp aLo, aHi, Amt
   1916 
   1917     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
   1918     SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
   1919                              ShAmt);
   1920 
   1921     SDValue Ops[2] = { Lo, Hi };
   1922     return DAG.getMergeValues(Ops, dl);
   1923   }
   1924   else {
   1925     // {dHi, dLo} = {aHi, aLo} >> Amt
   1926     // - if (Amt>=size) then
   1927     //      dLo = aHi >> (Amt-size)
   1928     //      dHi = aHi >> Amt (this is either all 0 or all 1)
   1929     //   else
   1930     //      dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
   1931     //      dHi = aHi >> Amt
   1932 
   1933     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   1934                                    DAG.getConstant(VTBits, dl, MVT::i32),
   1935                                    ShAmt);
   1936     SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
   1937     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   1938                                      DAG.getConstant(VTBits, dl, MVT::i32));
   1939     SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
   1940     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   1941     SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
   1942 
   1943     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
   1944                                DAG.getConstant(VTBits, dl, MVT::i32),
   1945                                ISD::SETGE);
   1946     SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
   1947     SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
   1948 
   1949     SDValue Ops[2] = { Lo, Hi };
   1950     return DAG.getMergeValues(Ops, dl);
   1951   }
   1952 }
   1953 
   1954 /// LowerShiftLeftParts - Lower SHL_PARTS, which
   1955 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
   1956 ///    amount, or
   1957 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
   1958 ///    amount.
   1959 SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
   1960                                                  SelectionDAG &DAG) const {
   1961   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   1962   assert(Op.getOpcode() == ISD::SHL_PARTS);
   1963 
   1964   EVT VT = Op.getValueType();
   1965   unsigned VTBits = VT.getSizeInBits();
   1966   SDLoc dl(Op);
   1967   SDValue ShOpLo = Op.getOperand(0);
   1968   SDValue ShOpHi = Op.getOperand(1);
   1969   SDValue ShAmt  = Op.getOperand(2);
   1970 
   1971   if (VTBits == 32 && STI.getSmVersion() >= 35) {
   1972     // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
   1973     // {dHi, dLo} = {aHi, aLo} << Amt
   1974     //   dHi = shf.l.clamp aLo, aHi, Amt
   1975     //   dLo = aLo << Amt
   1976 
   1977     SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
   1978                              ShAmt);
   1979     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   1980 
   1981     SDValue Ops[2] = { Lo, Hi };
   1982     return DAG.getMergeValues(Ops, dl);
   1983   }
   1984   else {
   1985     // {dHi, dLo} = {aHi, aLo} << Amt
   1986     // - if (Amt>=size) then
   1987     //      dLo = aLo << Amt (all 0)
   1988     //      dLo = aLo << (Amt-size)
   1989     //   else
   1990     //      dLo = aLo << Amt
   1991     //      dHi = (aHi << Amt) | (aLo >> (size-Amt))
   1992 
   1993     SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   1994                                    DAG.getConstant(VTBits, dl, MVT::i32),
   1995                                    ShAmt);
   1996     SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
   1997     SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   1998                                      DAG.getConstant(VTBits, dl, MVT::i32));
   1999     SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
   2000     SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   2001     SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
   2002 
   2003     SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
   2004                                DAG.getConstant(VTBits, dl, MVT::i32),
   2005                                ISD::SETGE);
   2006     SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   2007     SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
   2008 
   2009     SDValue Ops[2] = { Lo, Hi };
   2010     return DAG.getMergeValues(Ops, dl);
   2011   }
   2012 }
   2013 
   2014 SDValue
   2015 NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   2016   switch (Op.getOpcode()) {
   2017   case ISD::RETURNADDR:
   2018     return SDValue();
   2019   case ISD::FRAMEADDR:
   2020     return SDValue();
   2021   case ISD::GlobalAddress:
   2022     return LowerGlobalAddress(Op, DAG);
   2023   case ISD::INTRINSIC_W_CHAIN:
   2024     return Op;
   2025   case ISD::BUILD_VECTOR:
   2026     return LowerBUILD_VECTOR(Op, DAG);
   2027   case ISD::EXTRACT_SUBVECTOR:
   2028     return Op;
   2029   case ISD::EXTRACT_VECTOR_ELT:
   2030     return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   2031   case ISD::CONCAT_VECTORS:
   2032     return LowerCONCAT_VECTORS(Op, DAG);
   2033   case ISD::STORE:
   2034     return LowerSTORE(Op, DAG);
   2035   case ISD::LOAD:
   2036     return LowerLOAD(Op, DAG);
   2037   case ISD::SHL_PARTS:
   2038     return LowerShiftLeftParts(Op, DAG);
   2039   case ISD::SRA_PARTS:
   2040   case ISD::SRL_PARTS:
   2041     return LowerShiftRightParts(Op, DAG);
   2042   case ISD::SELECT:
   2043     return LowerSelect(Op, DAG);
   2044   default:
   2045     llvm_unreachable("Custom lowering not defined for operation");
   2046   }
   2047 }
   2048 
   2049 SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
   2050   SDValue Op0 = Op->getOperand(0);
   2051   SDValue Op1 = Op->getOperand(1);
   2052   SDValue Op2 = Op->getOperand(2);
   2053   SDLoc DL(Op.getNode());
   2054 
   2055   assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
   2056 
   2057   Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
   2058   Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
   2059   SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
   2060   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
   2061 
   2062   return Trunc;
   2063 }
   2064 
   2065 SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
   2066   if (Op.getValueType() == MVT::i1)
   2067     return LowerLOADi1(Op, DAG);
   2068 
   2069   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
   2070   // loads and have to handle it here.
   2071   if (Op.getValueType() == MVT::v2f16) {
   2072     LoadSDNode *Load = cast<LoadSDNode>(Op);
   2073     EVT MemVT = Load->getMemoryVT();
   2074     if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
   2075                             Load->getAddressSpace(), Load->getAlignment())) {
   2076       SDValue Ops[2];
   2077       std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
   2078       return DAG.getMergeValues(Ops, SDLoc(Op));
   2079     }
   2080   }
   2081 
   2082   return SDValue();
   2083 }
   2084 
   2085 // v = ld i1* addr
   2086 //   =>
   2087 // v1 = ld i8* addr (-> i16)
   2088 // v = trunc i16 to i1
   2089 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
   2090   SDNode *Node = Op.getNode();
   2091   LoadSDNode *LD = cast<LoadSDNode>(Node);
   2092   SDLoc dl(Node);
   2093   assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
   2094   assert(Node->getValueType(0) == MVT::i1 &&
   2095          "Custom lowering for i1 load only");
   2096   SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
   2097                               LD->getPointerInfo(), LD->getAlignment(),
   2098                               LD->getMemOperand()->getFlags());
   2099   SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
   2100   // The legalizer (the caller) is expecting two values from the legalized
   2101   // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
   2102   // in LegalizeDAG.cpp which also uses MergeValues.
   2103   SDValue Ops[] = { result, LD->getChain() };
   2104   return DAG.getMergeValues(Ops, dl);
   2105 }
   2106 
   2107 SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
   2108   StoreSDNode *Store = cast<StoreSDNode>(Op);
   2109   EVT VT = Store->getMemoryVT();
   2110 
   2111   if (VT == MVT::i1)
   2112     return LowerSTOREi1(Op, DAG);
   2113 
   2114   // v2f16 is legal, so we can't rely on legalizer to handle unaligned
   2115   // stores and have to handle it here.
   2116   if (VT == MVT::v2f16 &&
   2117       !allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
   2118                           Store->getAddressSpace(), Store->getAlignment()))
   2119     return expandUnalignedStore(Store, DAG);
   2120 
   2121   if (VT.isVector())
   2122     return LowerSTOREVector(Op, DAG);
   2123 
   2124   return SDValue();
   2125 }
   2126 
   2127 SDValue
   2128 NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
   2129   SDNode *N = Op.getNode();
   2130   SDValue Val = N->getOperand(1);
   2131   SDLoc DL(N);
   2132   EVT ValVT = Val.getValueType();
   2133 
   2134   if (ValVT.isVector()) {
   2135     // We only handle "native" vector sizes for now, e.g. <4 x double> is not
   2136     // legal.  We can (and should) split that into 2 stores of <2 x double> here
   2137     // but I'm leaving that as a TODO for now.
   2138     if (!ValVT.isSimple())
   2139       return SDValue();
   2140     switch (ValVT.getSimpleVT().SimpleTy) {
   2141     default:
   2142       return SDValue();
   2143     case MVT::v2i8:
   2144     case MVT::v2i16:
   2145     case MVT::v2i32:
   2146     case MVT::v2i64:
   2147     case MVT::v2f16:
   2148     case MVT::v2f32:
   2149     case MVT::v2f64:
   2150     case MVT::v4i8:
   2151     case MVT::v4i16:
   2152     case MVT::v4i32:
   2153     case MVT::v4f16:
   2154     case MVT::v4f32:
   2155     case MVT::v8f16: // <4 x f16x2>
   2156       // This is a "native" vector type
   2157       break;
   2158     }
   2159 
   2160     MemSDNode *MemSD = cast<MemSDNode>(N);
   2161     const DataLayout &TD = DAG.getDataLayout();
   2162 
   2163     unsigned Align = MemSD->getAlignment();
   2164     unsigned PrefAlign =
   2165         TD.getPrefTypeAlignment(ValVT.getTypeForEVT(*DAG.getContext()));
   2166     if (Align < PrefAlign) {
   2167       // This store is not sufficiently aligned, so bail out and let this vector
   2168       // store be scalarized.  Note that we may still be able to emit smaller
   2169       // vector stores.  For example, if we are storing a <4 x float> with an
   2170       // alignment of 8, this check will fail but the legalizer will try again
   2171       // with 2 x <2 x float>, which will succeed with an alignment of 8.
   2172       return SDValue();
   2173     }
   2174 
   2175     unsigned Opcode = 0;
   2176     EVT EltVT = ValVT.getVectorElementType();
   2177     unsigned NumElts = ValVT.getVectorNumElements();
   2178 
   2179     // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
   2180     // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
   2181     // stored type to i16 and propagate the "real" type as the memory type.
   2182     bool NeedExt = false;
   2183     if (EltVT.getSizeInBits() < 16)
   2184       NeedExt = true;
   2185 
   2186     bool StoreF16x2 = false;
   2187     switch (NumElts) {
   2188     default:
   2189       return SDValue();
   2190     case 2:
   2191       Opcode = NVPTXISD::StoreV2;
   2192       break;
   2193     case 4:
   2194       Opcode = NVPTXISD::StoreV4;
   2195       break;
   2196     case 8:
   2197       // v8f16 is a special case. PTX doesn't have st.v8.f16
   2198       // instruction. Instead, we split the vector into v2f16 chunks and
   2199       // store them with st.v4.b32.
   2200       assert(EltVT == MVT::f16 && "Wrong type for the vector.");
   2201       Opcode = NVPTXISD::StoreV4;
   2202       StoreF16x2 = true;
   2203       break;
   2204     }
   2205 
   2206     SmallVector<SDValue, 8> Ops;
   2207 
   2208     // First is the chain
   2209     Ops.push_back(N->getOperand(0));
   2210 
   2211     if (StoreF16x2) {
   2212       // Combine f16,f16 -> v2f16
   2213       NumElts /= 2;
   2214       for (unsigned i = 0; i < NumElts; ++i) {
   2215         SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
   2216                                  DAG.getIntPtrConstant(i * 2, DL));
   2217         SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f16, Val,
   2218                                  DAG.getIntPtrConstant(i * 2 + 1, DL));
   2219         SDValue V2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f16, E0, E1);
   2220         Ops.push_back(V2);
   2221       }
   2222     } else {
   2223       // Then the split values
   2224       for (unsigned i = 0; i < NumElts; ++i) {
   2225         SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
   2226                                      DAG.getIntPtrConstant(i, DL));
   2227         if (NeedExt)
   2228           ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
   2229         Ops.push_back(ExtVal);
   2230       }
   2231     }
   2232 
   2233     // Then any remaining arguments
   2234     Ops.append(N->op_begin() + 2, N->op_end());
   2235 
   2236     SDValue NewSt =
   2237         DAG.getMemIntrinsicNode(Opcode, DL, DAG.getVTList(MVT::Other), Ops,
   2238                                 MemSD->getMemoryVT(), MemSD->getMemOperand());
   2239 
   2240     // return DCI.CombineTo(N, NewSt, true);
   2241     return NewSt;
   2242   }
   2243 
   2244   return SDValue();
   2245 }
   2246 
   2247 // st i1 v, addr
   2248 //    =>
   2249 // v1 = zxt v to i16
   2250 // st.u8 i16, addr
   2251 SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
   2252   SDNode *Node = Op.getNode();
   2253   SDLoc dl(Node);
   2254   StoreSDNode *ST = cast<StoreSDNode>(Node);
   2255   SDValue Tmp1 = ST->getChain();
   2256   SDValue Tmp2 = ST->getBasePtr();
   2257   SDValue Tmp3 = ST->getValue();
   2258   assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
   2259   Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
   2260   SDValue Result =
   2261       DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
   2262                         ST->getAlignment(), ST->getMemOperand()->getFlags());
   2263   return Result;
   2264 }
   2265 
   2266 SDValue
   2267 NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
   2268   std::string ParamSym;
   2269   raw_string_ostream ParamStr(ParamSym);
   2270 
   2271   ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
   2272   ParamStr.flush();
   2273 
   2274   std::string *SavedStr =
   2275     nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
   2276   return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
   2277 }
   2278 
   2279 // Check to see if the kernel argument is image*_t or sampler_t
   2280 
   2281 static bool isImageOrSamplerVal(const Value *arg, const Module *context) {
   2282   static const char *const specialTypes[] = { "struct._image2d_t",
   2283                                               "struct._image3d_t",
   2284                                               "struct._sampler_t" };
   2285 
   2286   Type *Ty = arg->getType();
   2287   auto *PTy = dyn_cast<PointerType>(Ty);
   2288 
   2289   if (!PTy)
   2290     return false;
   2291 
   2292   if (!context)
   2293     return false;
   2294 
   2295   auto *STy = dyn_cast<StructType>(PTy->getElementType());
   2296   if (!STy || STy->isLiteral())
   2297     return false;
   2298 
   2299   return std::find(std::begin(specialTypes), std::end(specialTypes),
   2300                    STy->getName()) != std::end(specialTypes);
   2301 }
   2302 
   2303 SDValue NVPTXTargetLowering::LowerFormalArguments(
   2304     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
   2305     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
   2306     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
   2307   MachineFunction &MF = DAG.getMachineFunction();
   2308   const DataLayout &DL = DAG.getDataLayout();
   2309   auto PtrVT = getPointerTy(DAG.getDataLayout());
   2310 
   2311   const Function *F = &MF.getFunction();
   2312   const AttributeList &PAL = F->getAttributes();
   2313   const TargetLowering *TLI = STI.getTargetLowering();
   2314 
   2315   SDValue Root = DAG.getRoot();
   2316   std::vector<SDValue> OutChains;
   2317 
   2318   bool isABI = (STI.getSmVersion() >= 20);
   2319   assert(isABI && "Non-ABI compilation is not supported");
   2320   if (!isABI)
   2321     return Chain;
   2322 
   2323   std::vector<Type *> argTypes;
   2324   std::vector<const Argument *> theArgs;
   2325   for (const Argument &I : F->args()) {
   2326     theArgs.push_back(&I);
   2327     argTypes.push_back(I.getType());
   2328   }
   2329   // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
   2330   // Ins.size() will be larger
   2331   //   * if there is an aggregate argument with multiple fields (each field
   2332   //     showing up separately in Ins)
   2333   //   * if there is a vector argument with more than typical vector-length
   2334   //     elements (generally if more than 4) where each vector element is
   2335   //     individually present in Ins.
   2336   // So a different index should be used for indexing into Ins.
   2337   // See similar issue in LowerCall.
   2338   unsigned InsIdx = 0;
   2339 
   2340   int idx = 0;
   2341   for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
   2342     Type *Ty = argTypes[i];
   2343 
   2344     // If the kernel argument is image*_t or sampler_t, convert it to
   2345     // a i32 constant holding the parameter position. This can later
   2346     // matched in the AsmPrinter to output the correct mangled name.
   2347     if (isImageOrSamplerVal(
   2348             theArgs[i],
   2349             (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
   2350                                      : nullptr))) {
   2351       assert(isKernelFunction(*F) &&
   2352              "Only kernels can have image/sampler params");
   2353       InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32));
   2354       continue;
   2355     }
   2356 
   2357     if (theArgs[i]->use_empty()) {
   2358       // argument is dead
   2359       if (Ty->isAggregateType() || Ty->isIntegerTy(128)) {
   2360         SmallVector<EVT, 16> vtparts;
   2361 
   2362         ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
   2363         assert(vtparts.size() > 0 && "empty aggregate type not expected");
   2364         for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
   2365              ++parti) {
   2366           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
   2367           ++InsIdx;
   2368         }
   2369         if (vtparts.size() > 0)
   2370           --InsIdx;
   2371         continue;
   2372       }
   2373       if (Ty->isVectorTy()) {
   2374         EVT ObjectVT = getValueType(DL, Ty);
   2375         unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
   2376         for (unsigned parti = 0; parti < NumRegs; ++parti) {
   2377           InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
   2378           ++InsIdx;
   2379         }
   2380         if (NumRegs > 0)
   2381           --InsIdx;
   2382         continue;
   2383       }
   2384       InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
   2385       continue;
   2386     }
   2387 
   2388     // In the following cases, assign a node order of "idx+1"
   2389     // to newly created nodes. The SDNodes for params have to
   2390     // appear in the same order as their order of appearance
   2391     // in the original function. "idx+1" holds that order.
   2392     if (!PAL.hasParamAttribute(i, Attribute::ByVal)) {
   2393       bool aggregateIsPacked = false;
   2394       if (StructType *STy = dyn_cast<StructType>(Ty))
   2395         aggregateIsPacked = STy->isPacked();
   2396 
   2397       SmallVector<EVT, 16> VTs;
   2398       SmallVector<uint64_t, 16> Offsets;
   2399       ComputePTXValueVTs(*this, DL, Ty, VTs, &Offsets, 0);
   2400       assert(VTs.size() > 0 && "Unexpected empty type.");
   2401       auto VectorInfo =
   2402           VectorizePTXValueVTs(VTs, Offsets, DL.getABITypeAlignment(Ty));
   2403 
   2404       SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
   2405       int VecIdx = -1; // Index of the first element of the current vector.
   2406       for (unsigned parti = 0, parte = VTs.size(); parti != parte; ++parti) {
   2407         if (VectorInfo[parti] & PVF_FIRST) {
   2408           assert(VecIdx == -1 && "Orphaned vector.");
   2409           VecIdx = parti;
   2410         }
   2411 
   2412         // That's the last element of this store op.
   2413         if (VectorInfo[parti] & PVF_LAST) {
   2414           unsigned NumElts = parti - VecIdx + 1;
   2415           EVT EltVT = VTs[parti];
   2416           // i1 is loaded/stored as i8.
   2417           EVT LoadVT = EltVT;
   2418           if (EltVT == MVT::i1)
   2419             LoadVT = MVT::i8;
   2420           else if (EltVT == MVT::v2f16)
   2421             // getLoad needs a vector type, but it can't handle
   2422             // vectors which contain v2f16 elements. So we must load
   2423             // using i32 here and then bitcast back.
   2424             LoadVT = MVT::i32;
   2425 
   2426           EVT VecVT = EVT::getVectorVT(F->getContext(), LoadVT, NumElts);
   2427           SDValue VecAddr =
   2428               DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
   2429                           DAG.getConstant(Offsets[VecIdx], dl, PtrVT));
   2430           Value *srcValue = Constant::getNullValue(PointerType::get(
   2431               EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
   2432           SDValue P =
   2433               DAG.getLoad(VecVT, dl, Root, VecAddr,
   2434                           MachinePointerInfo(srcValue), aggregateIsPacked,
   2435                           MachineMemOperand::MODereferenceable |
   2436                               MachineMemOperand::MOInvariant);
   2437           if (P.getNode())
   2438             P.getNode()->setIROrder(idx + 1);
   2439           for (unsigned j = 0; j < NumElts; ++j) {
   2440             SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LoadVT, P,
   2441                                       DAG.getIntPtrConstant(j, dl));
   2442             // We've loaded i1 as an i8 and now must truncate it back to i1
   2443             if (EltVT == MVT::i1)
   2444               Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Elt);
   2445             // v2f16 was loaded as an i32. Now we must bitcast it back.
   2446             else if (EltVT == MVT::v2f16)
   2447               Elt = DAG.getNode(ISD::BITCAST, dl, MVT::v2f16, Elt);
   2448             // Extend the element if necessary (e.g. an i8 is loaded
   2449             // into an i16 register)
   2450             if (Ins[InsIdx].VT.isInteger() &&
   2451                 Ins[InsIdx].VT.getSizeInBits() > LoadVT.getSizeInBits()) {
   2452               unsigned Extend = Ins[InsIdx].Flags.isSExt() ? ISD::SIGN_EXTEND
   2453                                                            : ISD::ZERO_EXTEND;
   2454               Elt = DAG.getNode(Extend, dl, Ins[InsIdx].VT, Elt);
   2455             }
   2456             InVals.push_back(Elt);
   2457           }
   2458 
   2459           // Reset vector tracking state.
   2460           VecIdx = -1;
   2461         }
   2462         ++InsIdx;
   2463       }
   2464       if (VTs.size() > 0)
   2465         --InsIdx;
   2466       continue;
   2467     }
   2468 
   2469     // Param has ByVal attribute
   2470     // Return MoveParam(param symbol).
   2471     // Ideally, the param symbol can be returned directly,
   2472     // but when SDNode builder decides to use it in a CopyToReg(),
   2473     // machine instruction fails because TargetExternalSymbol
   2474     // (not lowered) is target dependent, and CopyToReg assumes
   2475     // the source is lowered.
   2476     EVT ObjectVT = getValueType(DL, Ty);
   2477     assert(ObjectVT == Ins[InsIdx].VT &&
   2478            "Ins type did not match function type");
   2479     SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
   2480     SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
   2481     if (p.getNode())
   2482       p.getNode()->setIROrder(idx + 1);
   2483     InVals.push_back(p);
   2484   }
   2485 
   2486   // Clang will check explicit VarArg and issue error if any. However, Clang
   2487   // will let code with
   2488   // implicit var arg like f() pass. See bug 617733.
   2489   // We treat this case as if the arg list is empty.
   2490   // if (F.isVarArg()) {
   2491   // assert(0 && "VarArg not supported yet!");
   2492   //}
   2493 
   2494   if (!OutChains.empty())
   2495     DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
   2496 
   2497   return Chain;
   2498 }
   2499 
   2500 SDValue
   2501 NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
   2502                                  bool isVarArg,
   2503                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
   2504                                  const SmallVectorImpl<SDValue> &OutVals,
   2505                                  const SDLoc &dl, SelectionDAG &DAG) const {
   2506   MachineFunction &MF = DAG.getMachineFunction();
   2507   Type *RetTy = MF.getFunction().getReturnType();
   2508 
   2509   bool isABI = (STI.getSmVersion() >= 20);
   2510   assert(isABI && "Non-ABI compilation is not supported");
   2511   if (!isABI)
   2512     return Chain;
   2513 
   2514   const DataLayout DL = DAG.getDataLayout();
   2515   SmallVector<EVT, 16> VTs;
   2516   SmallVector<uint64_t, 16> Offsets;
   2517   ComputePTXValueVTs(*this, DL, RetTy, VTs, &Offsets);
   2518   assert(VTs.size() == OutVals.size() && "Bad return value decomposition");
   2519 
   2520   auto VectorInfo = VectorizePTXValueVTs(
   2521       VTs, Offsets, RetTy->isSized() ? DL.getABITypeAlignment(RetTy) : 1);
   2522 
   2523   // PTX Interoperability Guide 3.3(A): [Integer] Values shorter than
   2524   // 32-bits are sign extended or zero extended, depending on whether
   2525   // they are signed or unsigned types.
   2526   bool ExtendIntegerRetVal =
   2527       RetTy->isIntegerTy() && DL.getTypeAllocSizeInBits(RetTy) < 32;
   2528 
   2529   SmallVector<SDValue, 6> StoreOperands;
   2530   for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
   2531     // New load/store. Record chain and offset operands.
   2532     if (VectorInfo[i] & PVF_FIRST) {
   2533       assert(StoreOperands.empty() && "Orphaned operand list.");
   2534       StoreOperands.push_back(Chain);
   2535       StoreOperands.push_back(DAG.getConstant(Offsets[i], dl, MVT::i32));
   2536     }
   2537 
   2538     SDValue RetVal = OutVals[i];
   2539     if (ExtendIntegerRetVal) {
   2540       RetVal = DAG.getNode(Outs[i].Flags.isSExt() ? ISD::SIGN_EXTEND
   2541                                                   : ISD::ZERO_EXTEND,
   2542                            dl, MVT::i32, RetVal);
   2543     } else if (RetVal.getValueSizeInBits() < 16) {
   2544       // Use 16-bit registers for small load-stores as it's the
   2545       // smallest general purpose register size supported by NVPTX.
   2546       RetVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, RetVal);
   2547     }
   2548 
   2549     // Record the value to return.
   2550     StoreOperands.push_back(RetVal);
   2551 
   2552     // That's the last element of this store op.
   2553     if (VectorInfo[i] & PVF_LAST) {
   2554       NVPTXISD::NodeType Op;
   2555       unsigned NumElts = StoreOperands.size() - 2;
   2556       switch (NumElts) {
   2557       case 1:
   2558         Op = NVPTXISD::StoreRetval;
   2559         break;
   2560       case 2:
   2561         Op = NVPTXISD::StoreRetvalV2;
   2562         break;
   2563       case 4:
   2564         Op = NVPTXISD::StoreRetvalV4;
   2565         break;
   2566       default:
   2567         llvm_unreachable("Invalid vector info.");
   2568       }
   2569 
   2570       // Adjust type of load/store op if we've extended the scalar
   2571       // return value.
   2572       EVT TheStoreType = ExtendIntegerRetVal ? MVT::i32 : VTs[i];
   2573       Chain = DAG.getMemIntrinsicNode(Op, dl, DAG.getVTList(MVT::Other),
   2574                                       StoreOperands, TheStoreType,
   2575                                       MachinePointerInfo(), /* Align */ 1,
   2576                                       MachineMemOperand::MOStore);
   2577       // Cleanup vector state.
   2578       StoreOperands.clear();
   2579     }
   2580   }
   2581 
   2582   return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
   2583 }
   2584 
   2585 void NVPTXTargetLowering::LowerAsmOperandForConstraint(
   2586     SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
   2587     SelectionDAG &DAG) const {
   2588   if (Constraint.length() > 1)
   2589     return;
   2590   else
   2591     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   2592 }
   2593 
   2594 static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
   2595   switch (Intrinsic) {
   2596   default:
   2597     return 0;
   2598 
   2599   case Intrinsic::nvvm_tex_1d_v4f32_s32:
   2600     return NVPTXISD::Tex1DFloatS32;
   2601   case Intrinsic::nvvm_tex_1d_v4f32_f32:
   2602     return NVPTXISD::Tex1DFloatFloat;
   2603   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
   2604     return NVPTXISD::Tex1DFloatFloatLevel;
   2605   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
   2606     return NVPTXISD::Tex1DFloatFloatGrad;
   2607   case Intrinsic::nvvm_tex_1d_v4s32_s32:
   2608     return NVPTXISD::Tex1DS32S32;
   2609   case Intrinsic::nvvm_tex_1d_v4s32_f32:
   2610     return NVPTXISD::Tex1DS32Float;
   2611   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
   2612     return NVPTXISD::Tex1DS32FloatLevel;
   2613   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
   2614     return NVPTXISD::Tex1DS32FloatGrad;
   2615   case Intrinsic::nvvm_tex_1d_v4u32_s32:
   2616     return NVPTXISD::Tex1DU32S32;
   2617   case Intrinsic::nvvm_tex_1d_v4u32_f32:
   2618     return NVPTXISD::Tex1DU32Float;
   2619   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
   2620     return NVPTXISD::Tex1DU32FloatLevel;
   2621   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
   2622     return NVPTXISD::Tex1DU32FloatGrad;
   2623 
   2624   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
   2625     return NVPTXISD::Tex1DArrayFloatS32;
   2626   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
   2627     return NVPTXISD::Tex1DArrayFloatFloat;
   2628   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
   2629     return NVPTXISD::Tex1DArrayFloatFloatLevel;
   2630   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
   2631     return NVPTXISD::Tex1DArrayFloatFloatGrad;
   2632   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
   2633     return NVPTXISD::Tex1DArrayS32S32;
   2634   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
   2635     return NVPTXISD::Tex1DArrayS32Float;
   2636   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
   2637     return NVPTXISD::Tex1DArrayS32FloatLevel;
   2638   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
   2639     return NVPTXISD::Tex1DArrayS32FloatGrad;
   2640   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
   2641     return NVPTXISD::Tex1DArrayU32S32;
   2642   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
   2643     return NVPTXISD::Tex1DArrayU32Float;
   2644   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
   2645     return NVPTXISD::Tex1DArrayU32FloatLevel;
   2646   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
   2647     return NVPTXISD::Tex1DArrayU32FloatGrad;
   2648 
   2649   case Intrinsic::nvvm_tex_2d_v4f32_s32:
   2650     return NVPTXISD::Tex2DFloatS32;
   2651   case Intrinsic::nvvm_tex_2d_v4f32_f32:
   2652     return NVPTXISD::Tex2DFloatFloat;
   2653   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
   2654     return NVPTXISD::Tex2DFloatFloatLevel;
   2655   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
   2656     return NVPTXISD::Tex2DFloatFloatGrad;
   2657   case Intrinsic::nvvm_tex_2d_v4s32_s32:
   2658     return NVPTXISD::Tex2DS32S32;
   2659   case Intrinsic::nvvm_tex_2d_v4s32_f32:
   2660     return NVPTXISD::Tex2DS32Float;
   2661   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
   2662     return NVPTXISD::Tex2DS32FloatLevel;
   2663   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
   2664     return NVPTXISD::Tex2DS32FloatGrad;
   2665   case Intrinsic::nvvm_tex_2d_v4u32_s32:
   2666     return NVPTXISD::Tex2DU32S32;
   2667   case Intrinsic::nvvm_tex_2d_v4u32_f32:
   2668     return NVPTXISD::Tex2DU32Float;
   2669   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
   2670     return NVPTXISD::Tex2DU32FloatLevel;
   2671   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
   2672     return NVPTXISD::Tex2DU32FloatGrad;
   2673 
   2674   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
   2675     return NVPTXISD::Tex2DArrayFloatS32;
   2676   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
   2677     return NVPTXISD::Tex2DArrayFloatFloat;
   2678   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
   2679     return NVPTXISD::Tex2DArrayFloatFloatLevel;
   2680   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
   2681     return NVPTXISD::Tex2DArrayFloatFloatGrad;
   2682   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
   2683     return NVPTXISD::Tex2DArrayS32S32;
   2684   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
   2685     return NVPTXISD::Tex2DArrayS32Float;
   2686   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
   2687     return NVPTXISD::Tex2DArrayS32FloatLevel;
   2688   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
   2689     return NVPTXISD::Tex2DArrayS32FloatGrad;
   2690   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
   2691     return NVPTXISD::Tex2DArrayU32S32;
   2692   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
   2693     return NVPTXISD::Tex2DArrayU32Float;
   2694   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
   2695     return NVPTXISD::Tex2DArrayU32FloatLevel;
   2696   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
   2697     return NVPTXISD::Tex2DArrayU32FloatGrad;
   2698 
   2699   case Intrinsic::nvvm_tex_3d_v4f32_s32:
   2700     return NVPTXISD::Tex3DFloatS32;
   2701   case Intrinsic::nvvm_tex_3d_v4f32_f32:
   2702     return NVPTXISD::Tex3DFloatFloat;
   2703   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
   2704     return NVPTXISD::Tex3DFloatFloatLevel;
   2705   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
   2706     return NVPTXISD::Tex3DFloatFloatGrad;
   2707   case Intrinsic::nvvm_tex_3d_v4s32_s32:
   2708     return NVPTXISD::Tex3DS32S32;
   2709   case Intrinsic::nvvm_tex_3d_v4s32_f32:
   2710     return NVPTXISD::Tex3DS32Float;
   2711   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
   2712     return NVPTXISD::Tex3DS32FloatLevel;
   2713   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
   2714     return NVPTXISD::Tex3DS32FloatGrad;
   2715   case Intrinsic::nvvm_tex_3d_v4u32_s32:
   2716     return NVPTXISD::Tex3DU32S32;
   2717   case Intrinsic::nvvm_tex_3d_v4u32_f32:
   2718     return NVPTXISD::Tex3DU32Float;
   2719   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
   2720     return NVPTXISD::Tex3DU32FloatLevel;
   2721   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
   2722     return NVPTXISD::Tex3DU32FloatGrad;
   2723 
   2724   case Intrinsic::nvvm_tex_cube_v4f32_f32:
   2725     return NVPTXISD::TexCubeFloatFloat;
   2726   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
   2727     return NVPTXISD::TexCubeFloatFloatLevel;
   2728   case Intrinsic::nvvm_tex_cube_v4s32_f32:
   2729     return NVPTXISD::TexCubeS32Float;
   2730   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
   2731     return NVPTXISD::TexCubeS32FloatLevel;
   2732   case Intrinsic::nvvm_tex_cube_v4u32_f32:
   2733     return NVPTXISD::TexCubeU32Float;
   2734   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
   2735     return NVPTXISD::TexCubeU32FloatLevel;
   2736 
   2737   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
   2738     return NVPTXISD::TexCubeArrayFloatFloat;
   2739   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
   2740     return NVPTXISD::TexCubeArrayFloatFloatLevel;
   2741   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
   2742     return NVPTXISD::TexCubeArrayS32Float;
   2743   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
   2744     return NVPTXISD::TexCubeArrayS32FloatLevel;
   2745   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
   2746     return NVPTXISD::TexCubeArrayU32Float;
   2747   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
   2748     return NVPTXISD::TexCubeArrayU32FloatLevel;
   2749 
   2750   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
   2751     return NVPTXISD::Tld4R2DFloatFloat;
   2752   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
   2753     return NVPTXISD::Tld4G2DFloatFloat;
   2754   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
   2755     return NVPTXISD::Tld4B2DFloatFloat;
   2756   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
   2757     return NVPTXISD::Tld4A2DFloatFloat;
   2758   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
   2759     return NVPTXISD::Tld4R2DS64Float;
   2760   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
   2761     return NVPTXISD::Tld4G2DS64Float;
   2762   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
   2763     return NVPTXISD::Tld4B2DS64Float;
   2764   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
   2765     return NVPTXISD::Tld4A2DS64Float;
   2766   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
   2767     return NVPTXISD::Tld4R2DU64Float;
   2768   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
   2769     return NVPTXISD::Tld4G2DU64Float;
   2770   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
   2771     return NVPTXISD::Tld4B2DU64Float;
   2772   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
   2773     return NVPTXISD::Tld4A2DU64Float;
   2774 
   2775   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
   2776     return NVPTXISD::TexUnified1DFloatS32;
   2777   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
   2778     return NVPTXISD::TexUnified1DFloatFloat;
   2779   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
   2780     return NVPTXISD::TexUnified1DFloatFloatLevel;
   2781   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
   2782     return NVPTXISD::TexUnified1DFloatFloatGrad;
   2783   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
   2784     return NVPTXISD::TexUnified1DS32S32;
   2785   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
   2786     return NVPTXISD::TexUnified1DS32Float;
   2787   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
   2788     return NVPTXISD::TexUnified1DS32FloatLevel;
   2789   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
   2790     return NVPTXISD::TexUnified1DS32FloatGrad;
   2791   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
   2792     return NVPTXISD::TexUnified1DU32S32;
   2793   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
   2794     return NVPTXISD::TexUnified1DU32Float;
   2795   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
   2796     return NVPTXISD::TexUnified1DU32FloatLevel;
   2797   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
   2798     return NVPTXISD::TexUnified1DU32FloatGrad;
   2799 
   2800   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
   2801     return NVPTXISD::TexUnified1DArrayFloatS32;
   2802   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
   2803     return NVPTXISD::TexUnified1DArrayFloatFloat;
   2804   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
   2805     return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
   2806   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
   2807     return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
   2808   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
   2809     return NVPTXISD::TexUnified1DArrayS32S32;
   2810   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
   2811     return NVPTXISD::TexUnified1DArrayS32Float;
   2812   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
   2813     return NVPTXISD::TexUnified1DArrayS32FloatLevel;
   2814   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
   2815     return NVPTXISD::TexUnified1DArrayS32FloatGrad;
   2816   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
   2817     return NVPTXISD::TexUnified1DArrayU32S32;
   2818   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
   2819     return NVPTXISD::TexUnified1DArrayU32Float;
   2820   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
   2821     return NVPTXISD::TexUnified1DArrayU32FloatLevel;
   2822   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
   2823     return NVPTXISD::TexUnified1DArrayU32FloatGrad;
   2824 
   2825   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
   2826     return NVPTXISD::TexUnified2DFloatS32;
   2827   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
   2828     return NVPTXISD::TexUnified2DFloatFloat;
   2829   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
   2830     return NVPTXISD::TexUnified2DFloatFloatLevel;
   2831   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
   2832     return NVPTXISD::TexUnified2DFloatFloatGrad;
   2833   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
   2834     return NVPTXISD::TexUnified2DS32S32;
   2835   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
   2836     return NVPTXISD::TexUnified2DS32Float;
   2837   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
   2838     return NVPTXISD::TexUnified2DS32FloatLevel;
   2839   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
   2840     return NVPTXISD::TexUnified2DS32FloatGrad;
   2841   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
   2842     return NVPTXISD::TexUnified2DU32S32;
   2843   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
   2844     return NVPTXISD::TexUnified2DU32Float;
   2845   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
   2846     return NVPTXISD::TexUnified2DU32FloatLevel;
   2847   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
   2848     return NVPTXISD::TexUnified2DU32FloatGrad;
   2849 
   2850   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
   2851     return NVPTXISD::TexUnified2DArrayFloatS32;
   2852   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
   2853     return NVPTXISD::TexUnified2DArrayFloatFloat;
   2854   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
   2855     return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
   2856   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
   2857     return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
   2858   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
   2859     return NVPTXISD::TexUnified2DArrayS32S32;
   2860   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
   2861     return NVPTXISD::TexUnified2DArrayS32Float;
   2862   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
   2863     return NVPTXISD::TexUnified2DArrayS32FloatLevel;
   2864   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
   2865     return NVPTXISD::TexUnified2DArrayS32FloatGrad;
   2866   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
   2867     return NVPTXISD::TexUnified2DArrayU32S32;
   2868   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
   2869     return NVPTXISD::TexUnified2DArrayU32Float;
   2870   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
   2871     return NVPTXISD::TexUnified2DArrayU32FloatLevel;
   2872   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
   2873     return NVPTXISD::TexUnified2DArrayU32FloatGrad;
   2874 
   2875   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
   2876     return NVPTXISD::TexUnified3DFloatS32;
   2877   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
   2878     return NVPTXISD::TexUnified3DFloatFloat;
   2879   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
   2880     return NVPTXISD::TexUnified3DFloatFloatLevel;
   2881   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
   2882     return NVPTXISD::TexUnified3DFloatFloatGrad;
   2883   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
   2884     return NVPTXISD::TexUnified3DS32S32;
   2885   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
   2886     return NVPTXISD::TexUnified3DS32Float;
   2887   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
   2888     return NVPTXISD::TexUnified3DS32FloatLevel;
   2889   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
   2890     return NVPTXISD::TexUnified3DS32FloatGrad;
   2891   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
   2892     return NVPTXISD::TexUnified3DU32S32;
   2893   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
   2894     return NVPTXISD::TexUnified3DU32Float;
   2895   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
   2896     return NVPTXISD::TexUnified3DU32FloatLevel;
   2897   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
   2898     return NVPTXISD::TexUnified3DU32FloatGrad;
   2899 
   2900   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
   2901     return NVPTXISD::TexUnifiedCubeFloatFloat;
   2902   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
   2903     return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
   2904   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
   2905     return NVPTXISD::TexUnifiedCubeS32Float;
   2906   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
   2907     return NVPTXISD::TexUnifiedCubeS32FloatLevel;
   2908   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
   2909     return NVPTXISD::TexUnifiedCubeU32Float;
   2910   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
   2911     return NVPTXISD::TexUnifiedCubeU32FloatLevel;
   2912 
   2913   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
   2914     return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
   2915   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
   2916     return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
   2917   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
   2918     return NVPTXISD::TexUnifiedCubeArrayS32Float;
   2919   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
   2920     return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
   2921   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
   2922     return NVPTXISD::TexUnifiedCubeArrayU32Float;
   2923   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
   2924     return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
   2925 
   2926   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
   2927     return NVPTXISD::Tld4UnifiedR2DFloatFloat;
   2928   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
   2929     return NVPTXISD::Tld4UnifiedG2DFloatFloat;
   2930   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
   2931     return NVPTXISD::Tld4UnifiedB2DFloatFloat;
   2932   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
   2933     return NVPTXISD::Tld4UnifiedA2DFloatFloat;
   2934   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
   2935     return NVPTXISD::Tld4UnifiedR2DS64Float;
   2936   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
   2937     return NVPTXISD::Tld4UnifiedG2DS64Float;
   2938   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
   2939     return NVPTXISD::Tld4UnifiedB2DS64Float;
   2940   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
   2941     return NVPTXISD::Tld4UnifiedA2DS64Float;
   2942   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
   2943     return NVPTXISD::Tld4UnifiedR2DU64Float;
   2944   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
   2945     return NVPTXISD::Tld4UnifiedG2DU64Float;
   2946   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
   2947     return NVPTXISD::Tld4UnifiedB2DU64Float;
   2948   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
   2949     return NVPTXISD::Tld4UnifiedA2DU64Float;
   2950   }
   2951 }
   2952 
   2953 static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
   2954   switch (Intrinsic) {
   2955   default:
   2956     return 0;
   2957   case Intrinsic::nvvm_suld_1d_i8_clamp:
   2958     return NVPTXISD::Suld1DI8Clamp;
   2959   case Intrinsic::nvvm_suld_1d_i16_clamp:
   2960     return NVPTXISD::Suld1DI16Clamp;
   2961   case Intrinsic::nvvm_suld_1d_i32_clamp:
   2962     return NVPTXISD::Suld1DI32Clamp;
   2963   case Intrinsic::nvvm_suld_1d_i64_clamp:
   2964     return NVPTXISD::Suld1DI64Clamp;
   2965   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
   2966     return NVPTXISD::Suld1DV2I8Clamp;
   2967   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
   2968     return NVPTXISD::Suld1DV2I16Clamp;
   2969   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
   2970     return NVPTXISD::Suld1DV2I32Clamp;
   2971   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
   2972     return NVPTXISD::Suld1DV2I64Clamp;
   2973   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
   2974     return NVPTXISD::Suld1DV4I8Clamp;
   2975   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
   2976     return NVPTXISD::Suld1DV4I16Clamp;
   2977   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
   2978     return NVPTXISD::Suld1DV4I32Clamp;
   2979   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
   2980     return NVPTXISD::Suld1DArrayI8Clamp;
   2981   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
   2982     return NVPTXISD::Suld1DArrayI16Clamp;
   2983   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
   2984     return NVPTXISD::Suld1DArrayI32Clamp;
   2985   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
   2986     return NVPTXISD::Suld1DArrayI64Clamp;
   2987   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
   2988     return NVPTXISD::Suld1DArrayV2I8Clamp;
   2989   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
   2990     return NVPTXISD::Suld1DArrayV2I16Clamp;
   2991   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
   2992     return NVPTXISD::Suld1DArrayV2I32Clamp;
   2993   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
   2994     return NVPTXISD::Suld1DArrayV2I64Clamp;
   2995   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
   2996     return NVPTXISD::Suld1DArrayV4I8Clamp;
   2997   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
   2998     return NVPTXISD::Suld1DArrayV4I16Clamp;
   2999   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
   3000     return NVPTXISD::Suld1DArrayV4I32Clamp;
   3001   case Intrinsic::nvvm_suld_2d_i8_clamp:
   3002     return NVPTXISD::Suld2DI8Clamp;
   3003   case Intrinsic::nvvm_suld_2d_i16_clamp:
   3004     return NVPTXISD::Suld2DI16Clamp;
   3005   case Intrinsic::nvvm_suld_2d_i32_clamp:
   3006     return NVPTXISD::Suld2DI32Clamp;
   3007   case Intrinsic::nvvm_suld_2d_i64_clamp:
   3008     return NVPTXISD::Suld2DI64Clamp;
   3009   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
   3010     return NVPTXISD::Suld2DV2I8Clamp;
   3011   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
   3012     return NVPTXISD::Suld2DV2I16Clamp;
   3013   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
   3014     return NVPTXISD::Suld2DV2I32Clamp;
   3015   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
   3016     return NVPTXISD::Suld2DV2I64Clamp;
   3017   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
   3018     return NVPTXISD::Suld2DV4I8Clamp;
   3019   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
   3020     return NVPTXISD::Suld2DV4I16Clamp;
   3021   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
   3022     return NVPTXISD::Suld2DV4I32Clamp;
   3023   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
   3024     return NVPTXISD::Suld2DArrayI8Clamp;
   3025   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
   3026     return NVPTXISD::Suld2DArrayI16Clamp;
   3027   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
   3028     return NVPTXISD::Suld2DArrayI32Clamp;
   3029   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
   3030     return NVPTXISD::Suld2DArrayI64Clamp;
   3031   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
   3032     return NVPTXISD::Suld2DArrayV2I8Clamp;
   3033   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
   3034     return NVPTXISD::Suld2DArrayV2I16Clamp;
   3035   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
   3036     return NVPTXISD::Suld2DArrayV2I32Clamp;
   3037   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
   3038     return NVPTXISD::Suld2DArrayV2I64Clamp;
   3039   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
   3040     return NVPTXISD::Suld2DArrayV4I8Clamp;
   3041   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
   3042     return NVPTXISD::Suld2DArrayV4I16Clamp;
   3043   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
   3044     return NVPTXISD::Suld2DArrayV4I32Clamp;
   3045   case Intrinsic::nvvm_suld_3d_i8_clamp:
   3046     return NVPTXISD::Suld3DI8Clamp;
   3047   case Intrinsic::nvvm_suld_3d_i16_clamp:
   3048     return NVPTXISD::Suld3DI16Clamp;
   3049   case Intrinsic::nvvm_suld_3d_i32_clamp:
   3050     return NVPTXISD::Suld3DI32Clamp;
   3051   case Intrinsic::nvvm_suld_3d_i64_clamp:
   3052     return NVPTXISD::Suld3DI64Clamp;
   3053   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
   3054     return NVPTXISD::Suld3DV2I8Clamp;
   3055   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
   3056     return NVPTXISD::Suld3DV2I16Clamp;
   3057   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
   3058     return NVPTXISD::Suld3DV2I32Clamp;
   3059   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
   3060     return NVPTXISD::Suld3DV2I64Clamp;
   3061   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
   3062     return NVPTXISD::Suld3DV4I8Clamp;
   3063   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
   3064     return NVPTXISD::Suld3DV4I16Clamp;
   3065   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
   3066     return NVPTXISD::Suld3DV4I32Clamp;
   3067   case Intrinsic::nvvm_suld_1d_i8_trap:
   3068     return NVPTXISD::Suld1DI8Trap;
   3069   case Intrinsic::nvvm_suld_1d_i16_trap:
   3070     return NVPTXISD::Suld1DI16Trap;
   3071   case Intrinsic::nvvm_suld_1d_i32_trap:
   3072     return NVPTXISD::Suld1DI32Trap;
   3073   case Intrinsic::nvvm_suld_1d_i64_trap:
   3074     return NVPTXISD::Suld1DI64Trap;
   3075   case Intrinsic::nvvm_suld_1d_v2i8_trap:
   3076     return NVPTXISD::Suld1DV2I8Trap;
   3077   case Intrinsic::nvvm_suld_1d_v2i16_trap:
   3078     return NVPTXISD::Suld1DV2I16Trap;
   3079   case Intrinsic::nvvm_suld_1d_v2i32_trap:
   3080     return NVPTXISD::Suld1DV2I32Trap;
   3081   case Intrinsic::nvvm_suld_1d_v2i64_trap:
   3082     return NVPTXISD::Suld1DV2I64Trap;
   3083   case Intrinsic::nvvm_suld_1d_v4i8_trap:
   3084     return NVPTXISD::Suld1DV4I8Trap;
   3085   case Intrinsic::nvvm_suld_1d_v4i16_trap:
   3086     return NVPTXISD::Suld1DV4I16Trap;
   3087   case Intrinsic::nvvm_suld_1d_v4i32_trap:
   3088     return NVPTXISD::Suld1DV4I32Trap;
   3089   case Intrinsic::nvvm_suld_1d_array_i8_trap:
   3090     return NVPTXISD::Suld1DArrayI8Trap;
   3091   case Intrinsic::nvvm_suld_1d_array_i16_trap:
   3092     return NVPTXISD::Suld1DArrayI16Trap;
   3093   case Intrinsic::nvvm_suld_1d_array_i32_trap:
   3094     return NVPTXISD::Suld1DArrayI32Trap;
   3095   case Intrinsic::nvvm_suld_1d_array_i64_trap:
   3096     return NVPTXISD::Suld1DArrayI64Trap;
   3097   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
   3098     return NVPTXISD::Suld1DArrayV2I8Trap;
   3099   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
   3100     return NVPTXISD::Suld1DArrayV2I16Trap;
   3101   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
   3102     return NVPTXISD::Suld1DArrayV2I32Trap;
   3103   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
   3104     return NVPTXISD::Suld1DArrayV2I64Trap;
   3105   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
   3106     return NVPTXISD::Suld1DArrayV4I8Trap;
   3107   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
   3108     return NVPTXISD::Suld1DArrayV4I16Trap;
   3109   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
   3110     return NVPTXISD::Suld1DArrayV4I32Trap;
   3111   case Intrinsic::nvvm_suld_2d_i8_trap:
   3112     return NVPTXISD::Suld2DI8Trap;
   3113   case Intrinsic::nvvm_suld_2d_i16_trap:
   3114     return NVPTXISD::Suld2DI16Trap;
   3115   case Intrinsic::nvvm_suld_2d_i32_trap:
   3116     return NVPTXISD::Suld2DI32Trap;
   3117   case Intrinsic::nvvm_suld_2d_i64_trap:
   3118     return NVPTXISD::Suld2DI64Trap;
   3119   case Intrinsic::nvvm_suld_2d_v2i8_trap:
   3120     return NVPTXISD::Suld2DV2I8Trap;
   3121   case Intrinsic::nvvm_suld_2d_v2i16_trap:
   3122     return NVPTXISD::Suld2DV2I16Trap;
   3123   case Intrinsic::nvvm_suld_2d_v2i32_trap:
   3124     return NVPTXISD::Suld2DV2I32Trap;
   3125   case Intrinsic::nvvm_suld_2d_v2i64_trap:
   3126     return NVPTXISD::Suld2DV2I64Trap;
   3127   case Intrinsic::nvvm_suld_2d_v4i8_trap:
   3128     return NVPTXISD::Suld2DV4I8Trap;
   3129   case Intrinsic::nvvm_suld_2d_v4i16_trap:
   3130     return NVPTXISD::Suld2DV4I16Trap;
   3131   case Intrinsic::nvvm_suld_2d_v4i32_trap:
   3132     return NVPTXISD::Suld2DV4I32Trap;
   3133   case Intrinsic::nvvm_suld_2d_array_i8_trap:
   3134     return NVPTXISD::Suld2DArrayI8Trap;
   3135   case Intrinsic::nvvm_suld_2d_array_i16_trap:
   3136     return NVPTXISD::Suld2DArrayI16Trap;
   3137   case Intrinsic::nvvm_suld_2d_array_i32_trap:
   3138     return NVPTXISD::Suld2DArrayI32Trap;
   3139   case Intrinsic::nvvm_suld_2d_array_i64_trap:
   3140     return NVPTXISD::Suld2DArrayI64Trap;
   3141   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
   3142     return NVPTXISD::Suld2DArrayV2I8Trap;
   3143   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
   3144     return NVPTXISD::Suld2DArrayV2I16Trap;
   3145   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
   3146     return NVPTXISD::Suld2DArrayV2I32Trap;
   3147   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
   3148     return NVPTXISD::Suld2DArrayV2I64Trap;
   3149   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
   3150     return NVPTXISD::Suld2DArrayV4I8Trap;
   3151   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
   3152     return NVPTXISD::Suld2DArrayV4I16Trap;
   3153   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
   3154     return NVPTXISD::Suld2DArrayV4I32Trap;
   3155   case Intrinsic::nvvm_suld_3d_i8_trap:
   3156     return NVPTXISD::Suld3DI8Trap;
   3157   case Intrinsic::nvvm_suld_3d_i16_trap:
   3158     return NVPTXISD::Suld3DI16Trap;
   3159   case Intrinsic::nvvm_suld_3d_i32_trap:
   3160     return NVPTXISD::Suld3DI32Trap;
   3161   case Intrinsic::nvvm_suld_3d_i64_trap:
   3162     return NVPTXISD::Suld3DI64Trap;
   3163   case Intrinsic::nvvm_suld_3d_v2i8_trap:
   3164     return NVPTXISD::Suld3DV2I8Trap;
   3165   case Intrinsic::nvvm_suld_3d_v2i16_trap:
   3166     return NVPTXISD::Suld3DV2I16Trap;
   3167   case Intrinsic::nvvm_suld_3d_v2i32_trap:
   3168     return NVPTXISD::Suld3DV2I32Trap;
   3169   case Intrinsic::nvvm_suld_3d_v2i64_trap:
   3170     return NVPTXISD::Suld3DV2I64Trap;
   3171   case Intrinsic::nvvm_suld_3d_v4i8_trap:
   3172     return NVPTXISD::Suld3DV4I8Trap;
   3173   case Intrinsic::nvvm_suld_3d_v4i16_trap:
   3174     return NVPTXISD::Suld3DV4I16Trap;
   3175   case Intrinsic::nvvm_suld_3d_v4i32_trap:
   3176     return NVPTXISD::Suld3DV4I32Trap;
   3177   case Intrinsic::nvvm_suld_1d_i8_zero:
   3178     return NVPTXISD::Suld1DI8Zero;
   3179   case Intrinsic::nvvm_suld_1d_i16_zero:
   3180     return NVPTXISD::Suld1DI16Zero;
   3181   case Intrinsic::nvvm_suld_1d_i32_zero:
   3182     return NVPTXISD::Suld1DI32Zero;
   3183   case Intrinsic::nvvm_suld_1d_i64_zero:
   3184     return NVPTXISD::Suld1DI64Zero;
   3185   case Intrinsic::nvvm_suld_1d_v2i8_zero:
   3186     return NVPTXISD::Suld1DV2I8Zero;
   3187   case Intrinsic::nvvm_suld_1d_v2i16_zero:
   3188     return NVPTXISD::Suld1DV2I16Zero;
   3189   case Intrinsic::nvvm_suld_1d_v2i32_zero:
   3190     return NVPTXISD::Suld1DV2I32Zero;
   3191   case Intrinsic::nvvm_suld_1d_v2i64_zero:
   3192     return NVPTXISD::Suld1DV2I64Zero;
   3193   case Intrinsic::nvvm_suld_1d_v4i8_zero:
   3194     return NVPTXISD::Suld1DV4I8Zero;
   3195   case Intrinsic::nvvm_suld_1d_v4i16_zero:
   3196     return NVPTXISD::Suld1DV4I16Zero;
   3197   case Intrinsic::nvvm_suld_1d_v4i32_zero:
   3198     return NVPTXISD::Suld1DV4I32Zero;
   3199   case Intrinsic::nvvm_suld_1d_array_i8_zero:
   3200     return NVPTXISD::Suld1DArrayI8Zero;
   3201   case Intrinsic::nvvm_suld_1d_array_i16_zero:
   3202     return NVPTXISD::Suld1DArrayI16Zero;
   3203   case Intrinsic::nvvm_suld_1d_array_i32_zero:
   3204     return NVPTXISD::Suld1DArrayI32Zero;
   3205   case Intrinsic::nvvm_suld_1d_array_i64_zero:
   3206     return NVPTXISD::Suld1DArrayI64Zero;
   3207   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
   3208     return NVPTXISD::Suld1DArrayV2I8Zero;
   3209   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
   3210     return NVPTXISD::Suld1DArrayV2I16Zero;
   3211   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
   3212     return NVPTXISD::Suld1DArrayV2I32Zero;
   3213   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
   3214     return NVPTXISD::Suld1DArrayV2I64Zero;
   3215   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
   3216     return NVPTXISD::Suld1DArrayV4I8Zero;
   3217   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
   3218     return NVPTXISD::Suld1DArrayV4I16Zero;
   3219   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
   3220     return NVPTXISD::Suld1DArrayV4I32Zero;
   3221   case Intrinsic::nvvm_suld_2d_i8_zero:
   3222     return NVPTXISD::Suld2DI8Zero;
   3223   case Intrinsic::nvvm_suld_2d_i16_zero:
   3224     return NVPTXISD::Suld2DI16Zero;
   3225   case Intrinsic::nvvm_suld_2d_i32_zero:
   3226     return NVPTXISD::Suld2DI32Zero;
   3227   case Intrinsic::nvvm_suld_2d_i64_zero:
   3228     return NVPTXISD::Suld2DI64Zero;
   3229   case Intrinsic::nvvm_suld_2d_v2i8_zero:
   3230     return NVPTXISD::Suld2DV2I8Zero;
   3231   case Intrinsic::nvvm_suld_2d_v2i16_zero:
   3232     return NVPTXISD::Suld2DV2I16Zero;
   3233   case Intrinsic::nvvm_suld_2d_v2i32_zero:
   3234     return NVPTXISD::Suld2DV2I32Zero;
   3235   case Intrinsic::nvvm_suld_2d_v2i64_zero:
   3236     return NVPTXISD::Suld2DV2I64Zero;
   3237   case Intrinsic::nvvm_suld_2d_v4i8_zero:
   3238     return NVPTXISD::Suld2DV4I8Zero;
   3239   case Intrinsic::nvvm_suld_2d_v4i16_zero:
   3240     return NVPTXISD::Suld2DV4I16Zero;
   3241   case Intrinsic::nvvm_suld_2d_v4i32_zero:
   3242     return NVPTXISD::Suld2DV4I32Zero;
   3243   case Intrinsic::nvvm_suld_2d_array_i8_zero:
   3244     return NVPTXISD::Suld2DArrayI8Zero;
   3245   case Intrinsic::nvvm_suld_2d_array_i16_zero:
   3246     return NVPTXISD::Suld2DArrayI16Zero;
   3247   case Intrinsic::nvvm_suld_2d_array_i32_zero:
   3248     return NVPTXISD::Suld2DArrayI32Zero;
   3249   case Intrinsic::nvvm_suld_2d_array_i64_zero:
   3250     return NVPTXISD::Suld2DArrayI64Zero;
   3251   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
   3252     return NVPTXISD::Suld2DArrayV2I8Zero;
   3253   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
   3254     return NVPTXISD::Suld2DArrayV2I16Zero;
   3255   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
   3256     return NVPTXISD::Suld2DArrayV2I32Zero;
   3257   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
   3258     return NVPTXISD::Suld2DArrayV2I64Zero;
   3259   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
   3260     return NVPTXISD::Suld2DArrayV4I8Zero;
   3261   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
   3262     return NVPTXISD::Suld2DArrayV4I16Zero;
   3263   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
   3264     return NVPTXISD::Suld2DArrayV4I32Zero;
   3265   case Intrinsic::nvvm_suld_3d_i8_zero:
   3266     return NVPTXISD::Suld3DI8Zero;
   3267   case Intrinsic::nvvm_suld_3d_i16_zero:
   3268     return NVPTXISD::Suld3DI16Zero;
   3269   case Intrinsic::nvvm_suld_3d_i32_zero:
   3270     return NVPTXISD::Suld3DI32Zero;
   3271   case Intrinsic::nvvm_suld_3d_i64_zero:
   3272     return NVPTXISD::Suld3DI64Zero;
   3273   case Intrinsic::nvvm_suld_3d_v2i8_zero:
   3274     return NVPTXISD::Suld3DV2I8Zero;
   3275   case Intrinsic::nvvm_suld_3d_v2i16_zero:
   3276     return NVPTXISD::Suld3DV2I16Zero;
   3277   case Intrinsic::nvvm_suld_3d_v2i32_zero:
   3278     return NVPTXISD::Suld3DV2I32Zero;
   3279   case Intrinsic::nvvm_suld_3d_v2i64_zero:
   3280     return NVPTXISD::Suld3DV2I64Zero;
   3281   case Intrinsic::nvvm_suld_3d_v4i8_zero:
   3282     return NVPTXISD::Suld3DV4I8Zero;
   3283   case Intrinsic::nvvm_suld_3d_v4i16_zero:
   3284     return NVPTXISD::Suld3DV4I16Zero;
   3285   case Intrinsic::nvvm_suld_3d_v4i32_zero:
   3286     return NVPTXISD::Suld3DV4I32Zero;
   3287   }
   3288 }
   3289 
   3290 // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
   3291 // TgtMemIntrinsic
   3292 // because we need the information that is only available in the "Value" type
   3293 // of destination
   3294 // pointer. In particular, the address space information.
   3295 bool NVPTXTargetLowering::getTgtMemIntrinsic(
   3296     IntrinsicInfo &Info, const CallInst &I,
   3297     MachineFunction &MF, unsigned Intrinsic) const {
   3298   switch (Intrinsic) {
   3299   default:
   3300     return false;
   3301   case Intrinsic::nvvm_match_all_sync_i32p:
   3302   case Intrinsic::nvvm_match_all_sync_i64p:
   3303     Info.opc = ISD::INTRINSIC_W_CHAIN;
   3304     // memVT is bogus. These intrinsics have IntrInaccessibleMemOnly attribute
   3305     // in order to model data exchange with other threads, but perform no real
   3306     // memory accesses.
   3307     Info.memVT = MVT::i1;
   3308 
   3309     // Our result depends on both our and other thread's arguments.
   3310     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
   3311     return true;
   3312   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col:
   3313   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row:
   3314   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_col_stride:
   3315   case Intrinsic::nvvm_wmma_m16n16k16_load_a_f16_row_stride:
   3316   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col:
   3317   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row:
   3318   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_col_stride:
   3319   case Intrinsic::nvvm_wmma_m16n16k16_load_b_f16_row_stride:
   3320   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col:
   3321   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row:
   3322   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_col_stride:
   3323   case Intrinsic::nvvm_wmma_m32n8k16_load_a_f16_row_stride:
   3324   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col:
   3325   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row:
   3326   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_col_stride:
   3327   case Intrinsic::nvvm_wmma_m32n8k16_load_b_f16_row_stride:
   3328   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col:
   3329   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row:
   3330   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_col_stride:
   3331   case Intrinsic::nvvm_wmma_m8n32k16_load_a_f16_row_stride:
   3332   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col:
   3333   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row:
   3334   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_col_stride:
   3335   case Intrinsic::nvvm_wmma_m8n32k16_load_b_f16_row_stride: {
   3336     Info.opc = ISD::INTRINSIC_W_CHAIN;
   3337     Info.memVT = MVT::v8f16;
   3338     Info.ptrVal = I.getArgOperand(0);
   3339     Info.offset = 0;
   3340     Info.flags = MachineMemOperand::MOLoad;
   3341     Info.align = 16;
   3342     return true;
   3343   }
   3344 
   3345   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col:
   3346   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row:
   3347   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_col_stride:
   3348   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f16_row_stride:
   3349   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col:
   3350   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row:
   3351   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_col_stride:
   3352   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f16_row_stride:
   3353   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col:
   3354   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row:
   3355   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_col_stride:
   3356   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f16_row_stride: {
   3357     Info.opc = ISD::INTRINSIC_W_CHAIN;
   3358     Info.memVT = MVT::v4f16;
   3359     Info.ptrVal = I.getArgOperand(0);
   3360     Info.offset = 0;
   3361     Info.flags = MachineMemOperand::MOLoad;
   3362     Info.align = 16;
   3363     return true;
   3364   }
   3365 
   3366   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col:
   3367   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row:
   3368   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_col_stride:
   3369   case Intrinsic::nvvm_wmma_m16n16k16_load_c_f32_row_stride:
   3370   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col:
   3371   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row:
   3372   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_col_stride:
   3373   case Intrinsic::nvvm_wmma_m32n8k16_load_c_f32_row_stride:
   3374   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col:
   3375   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row:
   3376   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_col_stride:
   3377   case Intrinsic::nvvm_wmma_m8n32k16_load_c_f32_row_stride: {
   3378     Info.opc = ISD::INTRINSIC_W_CHAIN;
   3379     Info.memVT = MVT::v8f32;
   3380     Info.ptrVal = I.getArgOperand(0);
   3381     Info.offset = 0;
   3382     Info.flags = MachineMemOperand::MOLoad;
   3383     Info.align = 16;
   3384     return true;
   3385   }
   3386 
   3387   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col:
   3388   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row:
   3389   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_col_stride:
   3390   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f16_row_stride:
   3391   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col:
   3392   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row:
   3393   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_col_stride:
   3394   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f16_row_stride:
   3395   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col:
   3396   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row:
   3397   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_col_stride:
   3398   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f16_row_stride: {
   3399     Info.opc = ISD::INTRINSIC_VOID;
   3400     Info.memVT = MVT::v4f16;
   3401     Info.ptrVal = I.getArgOperand(0);
   3402     Info.offset = 0;
   3403     Info.flags = MachineMemOperand::MOStore;
   3404     Info.align = 16;
   3405     return true;
   3406   }
   3407 
   3408   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col:
   3409   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row:
   3410   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_col_stride:
   3411   case Intrinsic::nvvm_wmma_m16n16k16_store_d_f32_row_stride:
   3412   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col:
   3413   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row:
   3414   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_col_stride:
   3415   case Intrinsic::nvvm_wmma_m32n8k16_store_d_f32_row_stride:
   3416   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col:
   3417   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row:
   3418   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_col_stride:
   3419   case Intrinsic::nvvm_wmma_m8n32k16_store_d_f32_row_stride: {
   3420     Info.opc = ISD::INTRINSIC_VOID;
   3421     Info.memVT = MVT::v8f32;
   3422     Info.ptrVal = I.getArgOperand(0);
   3423     Info.offset = 0;
   3424     Info.flags = MachineMemOperand::MOStore;
   3425     Info.align = 16;
   3426     return true;
   3427   }
   3428 
   3429   case Intrinsic::nvvm_atomic_load_add_f32:
   3430   case Intrinsic::nvvm_atomic_load_add_f64:
   3431   case Intrinsic::nvvm_atomic_load_inc_32:
   3432   case Intrinsic::nvvm_atomic_load_dec_32:
   3433 
   3434   case Intrinsic::nvvm_atomic_add_gen_f_cta:
   3435   case Intrinsic::nvvm_atomic_add_gen_f_sys:
   3436   case Intrinsic::nvvm_atomic_add_gen_i_cta:
   3437   case Intrinsic::nvvm_atomic_add_gen_i_sys:
   3438   case Intrinsic::nvvm_atomic_and_gen_i_cta:
   3439   case Intrinsic::nvvm_atomic_and_gen_i_sys:
   3440   case Intrinsic::nvvm_atomic_cas_gen_i_cta:
   3441   case Intrinsic::nvvm_atomic_cas_gen_i_sys:
   3442   case Intrinsic::nvvm_atomic_dec_gen_i_cta:
   3443   case Intrinsic::nvvm_atomic_dec_gen_i_sys:
   3444   case Intrinsic::nvvm_atomic_inc_gen_i_cta:
   3445   case Intrinsic::nvvm_atomic_inc_gen_i_sys:
   3446   case Intrinsic::nvvm_atomic_max_gen_i_cta:
   3447   case Intrinsic::nvvm_atomic_max_gen_i_sys:
   3448   case Intrinsic::nvvm_atomic_min_gen_i_cta:
   3449   case Intrinsic::nvvm_atomic_min_gen_i_sys:
   3450   case Intrinsic::nvvm_atomic_or_gen_i_cta:
   3451   case Intrinsic::nvvm_atomic_or_gen_i_sys:
   3452   case Intrinsic::nvvm_atomic_exch_gen_i_cta:
   3453   case Intrinsic::nvvm_atomic_exch_gen_i_sys:
   3454   case Intrinsic::nvvm_atomic_xor_gen_i_cta:
   3455   case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
   3456     auto &DL = I.getModule()->getDataLayout();
   3457     Info.opc = ISD::INTRINSIC_W_CHAIN;
   3458     Info.memVT = getValueType(DL, I.getType());
   3459     Info.ptrVal = I.getArgOperand(0);
   3460     Info.offset = 0;
   3461     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
   3462     Info.align = 0;
   3463     return true;
   3464   }
   3465 
   3466   case Intrinsic::nvvm_ldu_global_i:
   3467   case Intrinsic::nvvm_ldu_global_f:
   3468   case Intrinsic::nvvm_ldu_global_p: {
   3469     auto &DL = I.getModule()->getDataLayout();
   3470     Info.opc = ISD::INTRINSIC_W_CHAIN;
   3471     if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
   3472       Info.memVT = getValueType(DL, I.getType());
   3473     else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
   3474       Info.memVT = getPointerTy(DL);
   3475     else
   3476       Info.memVT = getValueType(DL, I.getType());
   3477     Info.ptrVal = I.getArgOperand(0);
   3478     Info.offset = 0;
   3479     Info.flags = MachineMemOperand::MOLoad;
   3480     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
   3481 
   3482     return true;
   3483   }
   3484   case Intrinsic::nvvm_ldg_global_i:
   3485   case Intrinsic::nvvm_ldg_global_f:
   3486   case Intrinsic::nvvm_ldg_global_p: {
   3487     auto &DL = I.getModule()->getDataLayout();
   3488 
   3489     Info.opc = ISD::INTRINSIC_W_CHAIN;
   3490     if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
   3491       Info.memVT = getValueType(DL, I.getType());
   3492     else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
   3493       Info.memVT = getPointerTy(DL);
   3494     else
   3495       Info.memVT = getValueType(DL, I.getType());
   3496     Info.ptrVal = I.getArgOperand(0);
   3497     Info.offset = 0;
   3498     Info.flags = MachineMemOperand::MOLoad;
   3499     Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
   3500 
   3501     return true;
   3502   }
   3503 
   3504   case Intrinsic::nvvm_tex_1d_v4f32_s32:
   3505   case Intrinsic::nvvm_tex_1d_v4f32_f32:
   3506   case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
   3507   case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
   3508   case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
   3509   case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
   3510   case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
   3511   case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
   3512   case Intrinsic::nvvm_tex_2d_v4f32_s32:
   3513   case Intrinsic::nvvm_tex_2d_v4f32_f32:
   3514   case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
   3515   case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
   3516   case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
   3517   case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
   3518   case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
   3519   case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
   3520   case Intrinsic::nvvm_tex_3d_v4f32_s32:
   3521   case Intrinsic::nvvm_tex_3d_v4f32_f32:
   3522   case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
   3523   case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
   3524   case Intrinsic::nvvm_tex_cube_v4f32_f32:
   3525   case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
   3526   case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
   3527   case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
   3528   case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
   3529   case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
   3530   case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
   3531   case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
   3532   case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
   3533   case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
   3534   case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
   3535   case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
   3536   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
   3537   case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
   3538   case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
   3539   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
   3540   case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
   3541   case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
   3542   case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
   3543   case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
   3544   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
   3545   case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
   3546   case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
   3547   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
   3548   case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
   3549   case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
   3550   case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
   3551   case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
   3552   case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
   3553   case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
   3554   case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
   3555   case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
   3556   case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
   3557   case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
   3558   case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
   3559   case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
   3560     Info.opc = getOpcForTextureInstr(Intrinsic);
   3561     Info.memVT = MVT::v4f32;
   3562     Info.ptrVal = nullptr;
   3563     Info.offset = 0;
   3564     Info.flags = MachineMemOperand::MOLoad;
   3565     Info.align = 16;
   3566     return true;
   3567 
   3568   case Intrinsic::nvvm_tex_1d_v4s32_s32:
   3569   case Intrinsic::nvvm_tex_1d_v4s32_f32:
   3570   case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
   3571   case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
   3572   case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
   3573   case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
   3574   case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
   3575   case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
   3576   case Intrinsic::nvvm_tex_2d_v4s32_s32:
   3577   case Intrinsic::nvvm_tex_2d_v4s32_f32:
   3578   case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
   3579   case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
   3580   case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
   3581   case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
   3582   case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
   3583   case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
   3584   case Intrinsic::nvvm_tex_3d_v4s32_s32:
   3585   case Intrinsic::nvvm_tex_3d_v4s32_f32:
   3586   case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
   3587   case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
   3588   case Intrinsic::nvvm_tex_cube_v4s32_f32:
   3589   case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
   3590   case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
   3591   case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
   3592   case Intrinsic::nvvm_tex_cube_v4u32_f32:
   3593   case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
   3594   case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
   3595   case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
   3596   case Intrinsic::nvvm_tex_1d_v4u32_s32:
   3597   case Intrinsic::nvvm_tex_1d_v4u32_f32:
   3598   case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
   3599   case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
   3600   case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
   3601   case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
   3602   case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
   3603   case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
   3604   case Intrinsic::nvvm_tex_2d_v4u32_s32:
   3605   case Intrinsic::nvvm_tex_2d_v4u32_f32:
   3606   case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
   3607   case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
   3608   case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
   3609   case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
   3610   case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
   3611   case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
   3612   case Intrinsic::nvvm_tex_3d_v4u32_s32:
   3613   case Intrinsic::nvvm_tex_3d_v4u32_f32:
   3614   case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
   3615   case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
   3616   case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
   3617   case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
   3618   case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
   3619   case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
   3620   case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
   3621   case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
   3622   case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
   3623   case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
   3624   case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
   3625   case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
   3626   case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
   3627   case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
   3628   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
   3629   case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
   3630   case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
   3631   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
   3632   case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
   3633   case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
   3634   case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
   3635   case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
   3636   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
   3637   case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
   3638   case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
   3639   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
   3640   case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
   3641   case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
   3642   case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
   3643   case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
   3644   case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
   3645   case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
   3646   case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
   3647   case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
   3648   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
   3649   case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
   3650   case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
   3651   case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
   3652   case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
   3653   case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
   3654   case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
   3655   case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
   3656   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
   3657   case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
   3658   case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
   3659   case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
   3660   case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
   3661   case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
   3662   case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
   3663   case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
   3664   case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
   3665   case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
   3666   case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
   3667   case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
   3668   case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
   3669   case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
   3670   case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
   3671   case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
   3672   case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
   3673   case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
   3674   case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
   3675   case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
   3676   case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
   3677   case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
   3678   case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
   3679   case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
   3680     Info.opc = getOpcForTextureInstr(Intrinsic);
   3681     Info.memVT = MVT::v4i32;
   3682     Info.ptrVal = nullptr;
   3683     Info.offset = 0;
   3684     Info.flags = MachineMemOperand::MOLoad;
   3685     Info.align = 16;
   3686     return true;
   3687 
   3688   case Intrinsic::nvvm_suld_1d_i8_clamp:
   3689   case Intrinsic::nvvm_suld_1d_v2i8_clamp:
   3690   case Intrinsic::nvvm_suld_1d_v4i8_clamp:
   3691   case Intrinsic::nvvm_suld_1d_array_i8_clamp:
   3692   case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
   3693   case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
   3694   case Intrinsic::nvvm_suld_2d_i8_clamp:
   3695   case Intrinsic::nvvm_suld_2d_v2i8_clamp:
   3696   case Intrinsic::nvvm_suld_2d_v4i8_clamp:
   3697   case Intrinsic::nvvm_suld_2d_array_i8_clamp:
   3698   case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
   3699   case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
   3700   case Intrinsic::nvvm_suld_3d_i8_clamp:
   3701   case Intrinsic::nvvm_suld_3d_v2i8_clamp:
   3702   case Intrinsic::nvvm_suld_3d_v4i8_clamp:
   3703   case Intrinsic::nvvm_suld_1d_i8_trap:
   3704   case Intrinsic::nvvm_suld_1d_v2i8_trap:
   3705   case Intrinsic::nvvm_suld_1d_v4i8_trap:
   3706   case Intrinsic::nvvm_suld_1d_array_i8_trap:
   3707   case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
   3708   case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
   3709   case Intrinsic::nvvm_suld_2d_i8_trap:
   3710   case Intrinsic::nvvm_suld_2d_v2i8_trap:
   3711   case Intrinsic::nvvm_suld_2d_v4i8_trap:
   3712   case Intrinsic::nvvm_suld_2d_array_i8_trap:
   3713   case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
   3714   case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
   3715   case Intrinsic::nvvm_suld_3d_i8_trap:
   3716   case Intrinsic::nvvm_suld_3d_v2i8_trap:
   3717   case Intrinsic::nvvm_suld_3d_v4i8_trap:
   3718   case Intrinsic::nvvm_suld_1d_i8_zero:
   3719   case Intrinsic::nvvm_suld_1d_v2i8_zero:
   3720   case Intrinsic::nvvm_suld_1d_v4i8_zero:
   3721   case Intrinsic::nvvm_suld_1d_array_i8_zero:
   3722   case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
   3723   case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
   3724   case Intrinsic::nvvm_suld_2d_i8_zero:
   3725   case Intrinsic::nvvm_suld_2d_v2i8_zero:
   3726   case Intrinsic::nvvm_suld_2d_v4i8_zero:
   3727   case Intrinsic::nvvm_suld_2d_array_i8_zero:
   3728   case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
   3729   case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
   3730   case Intrinsic::nvvm_suld_3d_i8_zero:
   3731   case Intrinsic::nvvm_suld_3d_v2i8_zero:
   3732   case Intrinsic::nvvm_suld_3d_v4i8_zero:
   3733     Info.opc = getOpcForSurfaceInstr(Intrinsic);
   3734     Info.memVT = MVT::i8;
   3735     Info.ptrVal = nullptr;
   3736     Info.offset = 0;
   3737     Info.flags = MachineMemOperand::MOLoad;
   3738     Info.align = 16;
   3739     return true;
   3740 
   3741   case Intrinsic::nvvm_suld_1d_i16_clamp:
   3742   case Intrinsic::nvvm_suld_1d_v2i16_clamp:
   3743   case Intrinsic::nvvm_suld_1d_v4i16_clamp:
   3744   case Intrinsic::nvvm_suld_1d_array_i16_clamp:
   3745   case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
   3746   case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
   3747   case Intrinsic::nvvm_suld_2d_i16_clamp:
   3748   case Intrinsic::nvvm_suld_2d_v2i16_clamp:
   3749   case Intrinsic::nvvm_suld_2d_v4i16_clamp:
   3750   case Intrinsic::nvvm_suld_2d_array_i16_clamp:
   3751   case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
   3752   case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
   3753   case Intrinsic::nvvm_suld_3d_i16_clamp:
   3754   case Intrinsic::nvvm_suld_3d_v2i16_clamp:
   3755   case Intrinsic::nvvm_suld_3d_v4i16_clamp:
   3756   case Intrinsic::nvvm_suld_1d_i16_trap:
   3757   case Intrinsic::nvvm_suld_1d_v2i16_trap:
   3758   case Intrinsic::nvvm_suld_1d_v4i16_trap:
   3759   case Intrinsic::nvvm_suld_1d_array_i16_trap:
   3760   case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
   3761   case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
   3762   case Intrinsic::nvvm_suld_2d_i16_trap:
   3763   case Intrinsic::nvvm_suld_2d_v2i16_trap:
   3764   case Intrinsic::nvvm_suld_2d_v4i16_trap:
   3765   case Intrinsic::nvvm_suld_2d_array_i16_trap:
   3766   case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
   3767   case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
   3768   case Intrinsic::nvvm_suld_3d_i16_trap:
   3769   case Intrinsic::nvvm_suld_3d_v2i16_trap:
   3770   case Intrinsic::nvvm_suld_3d_v4i16_trap:
   3771   case Intrinsic::nvvm_suld_1d_i16_zero:
   3772   case Intrinsic::nvvm_suld_1d_v2i16_zero:
   3773   case Intrinsic::nvvm_suld_1d_v4i16_zero:
   3774   case Intrinsic::nvvm_suld_1d_array_i16_zero:
   3775   case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
   3776   case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
   3777   case Intrinsic::nvvm_suld_2d_i16_zero:
   3778   case Intrinsic::nvvm_suld_2d_v2i16_zero:
   3779   case Intrinsic::nvvm_suld_2d_v4i16_zero:
   3780   case Intrinsic::nvvm_suld_2d_array_i16_zero:
   3781   case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
   3782   case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
   3783   case Intrinsic::nvvm_suld_3d_i16_zero:
   3784   case Intrinsic::nvvm_suld_3d_v2i16_zero:
   3785   case Intrinsic::nvvm_suld_3d_v4i16_zero:
   3786     Info.opc = getOpcForSurfaceInstr(Intrinsic);
   3787     Info.memVT = MVT::i16;
   3788     Info.ptrVal = nullptr;
   3789     Info.offset = 0;
   3790     Info.flags = MachineMemOperand::MOLoad;
   3791     Info.align = 16;
   3792     return true;
   3793 
   3794   case Intrinsic::nvvm_suld_1d_i32_clamp:
   3795   case Intrinsic::nvvm_suld_1d_v2i32_clamp:
   3796   case Intrinsic::nvvm_suld_1d_v4i32_clamp:
   3797   case Intrinsic::nvvm_suld_1d_array_i32_clamp:
   3798   case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
   3799   case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
   3800   case Intrinsic::nvvm_suld_2d_i32_clamp:
   3801   case Intrinsic::nvvm_suld_2d_v2i32_clamp:
   3802   case Intrinsic::nvvm_suld_2d_v4i32_clamp:
   3803   case Intrinsic::nvvm_suld_2d_array_i32_clamp:
   3804   case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
   3805   case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
   3806   case Intrinsic::nvvm_suld_3d_i32_clamp:
   3807   case Intrinsic::nvvm_suld_3d_v2i32_clamp:
   3808   case Intrinsic::nvvm_suld_3d_v4i32_clamp:
   3809   case Intrinsic::nvvm_suld_1d_i32_trap:
   3810   case Intrinsic::nvvm_suld_1d_v2i32_trap:
   3811   case Intrinsic::nvvm_suld_1d_v4i32_trap:
   3812   case Intrinsic::nvvm_suld_1d_array_i32_trap:
   3813   case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
   3814   case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
   3815   case Intrinsic::nvvm_suld_2d_i32_trap:
   3816   case Intrinsic::nvvm_suld_2d_v2i32_trap:
   3817   case Intrinsic::nvvm_suld_2d_v4i32_trap:
   3818   case Intrinsic::nvvm_suld_2d_array_i32_trap:
   3819   case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
   3820   case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
   3821   case Intrinsic::nvvm_suld_3d_i32_trap:
   3822   case Intrinsic::nvvm_suld_3d_v2i32_trap:
   3823   case Intrinsic::nvvm_suld_3d_v4i32_trap:
   3824   case Intrinsic::nvvm_suld_1d_i32_zero:
   3825   case Intrinsic::nvvm_suld_1d_v2i32_zero:
   3826   case Intrinsic::nvvm_suld_1d_v4i32_zero:
   3827   case Intrinsic::nvvm_suld_1d_array_i32_zero:
   3828   case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
   3829   case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
   3830   case Intrinsic::nvvm_suld_2d_i32_zero:
   3831   case Intrinsic::nvvm_suld_2d_v2i32_zero:
   3832   case Intrinsic::nvvm_suld_2d_v4i32_zero:
   3833   case Intrinsic::nvvm_suld_2d_array_i32_zero:
   3834   case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
   3835   case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
   3836   case Intrinsic::nvvm_suld_3d_i32_zero:
   3837   case Intrinsic::nvvm_suld_3d_v2i32_zero:
   3838   case Intrinsic::nvvm_suld_3d_v4i32_zero:
   3839     Info.opc = getOpcForSurfaceInstr(Intrinsic);
   3840     Info.memVT = MVT::i32;
   3841     Info.ptrVal = nullptr;
   3842     Info.offset = 0;
   3843     Info.flags = MachineMemOperand::MOLoad;
   3844     Info.align = 16;
   3845     return true;
   3846 
   3847   case Intrinsic::nvvm_suld_1d_i64_clamp:
   3848   case Intrinsic::nvvm_suld_1d_v2i64_clamp:
   3849   case Intrinsic::nvvm_suld_1d_array_i64_clamp:
   3850   case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
   3851   case Intrinsic::nvvm_suld_2d_i64_clamp:
   3852   case Intrinsic::nvvm_suld_2d_v2i64_clamp:
   3853   case Intrinsic::nvvm_suld_2d_array_i64_clamp:
   3854   case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
   3855   case Intrinsic::nvvm_suld_3d_i64_clamp:
   3856   case Intrinsic::nvvm_suld_3d_v2i64_clamp:
   3857   case Intrinsic::nvvm_suld_1d_i64_trap:
   3858   case Intrinsic::nvvm_suld_1d_v2i64_trap:
   3859   case Intrinsic::nvvm_suld_1d_array_i64_trap:
   3860   case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
   3861   case Intrinsic::nvvm_suld_2d_i64_trap:
   3862   case Intrinsic::nvvm_suld_2d_v2i64_trap:
   3863   case Intrinsic::nvvm_suld_2d_array_i64_trap:
   3864   case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
   3865   case Intrinsic::nvvm_suld_3d_i64_trap:
   3866   case Intrinsic::nvvm_suld_3d_v2i64_trap:
   3867   case Intrinsic::nvvm_suld_1d_i64_zero:
   3868   case Intrinsic::nvvm_suld_1d_v2i64_zero:
   3869   case Intrinsic::nvvm_suld_1d_array_i64_zero:
   3870   case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
   3871   case Intrinsic::nvvm_suld_2d_i64_zero:
   3872   case Intrinsic::nvvm_suld_2d_v2i64_zero:
   3873   case Intrinsic::nvvm_suld_2d_array_i64_zero:
   3874   case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
   3875   case Intrinsic::nvvm_suld_3d_i64_zero:
   3876   case Intrinsic::nvvm_suld_3d_v2i64_zero:
   3877     Info.opc = getOpcForSurfaceInstr(Intrinsic);
   3878     Info.memVT = MVT::i64;
   3879     Info.ptrVal = nullptr;
   3880     Info.offset = 0;
   3881     Info.flags = MachineMemOperand::MOLoad;
   3882     Info.align = 16;
   3883     return true;
   3884   }
   3885   return false;
   3886 }
   3887 
   3888 /// isLegalAddressingMode - Return true if the addressing mode represented
   3889 /// by AM is legal for this target, for a load/store of the specified type.
   3890 /// Used to guide target specific optimizations, like loop strength reduction
   3891 /// (LoopStrengthReduce.cpp) and memory optimization for address mode
   3892 /// (CodeGenPrepare.cpp)
   3893 bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
   3894                                                 const AddrMode &AM, Type *Ty,
   3895                                                 unsigned AS, Instruction *I) const {
   3896   // AddrMode - This represents an addressing mode of:
   3897   //    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
   3898   //
   3899   // The legal address modes are
   3900   // - [avar]
   3901   // - [areg]
   3902   // - [areg+immoff]
   3903   // - [immAddr]
   3904 
   3905   if (AM.BaseGV) {
   3906     return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
   3907   }
   3908 
   3909   switch (AM.Scale) {
   3910   case 0: // "r", "r+i" or "i" is allowed
   3911     break;
   3912   case 1:
   3913     if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
   3914       return false;
   3915     // Otherwise we have r+i.
   3916     break;
   3917   default:
   3918     // No scale > 1 is allowed
   3919     return false;
   3920   }
   3921   return true;
   3922 }
   3923 
   3924 //===----------------------------------------------------------------------===//
   3925 //                         NVPTX Inline Assembly Support
   3926 //===----------------------------------------------------------------------===//
   3927 
   3928 /// getConstraintType - Given a constraint letter, return the type of
   3929 /// constraint it is for this target.
   3930 NVPTXTargetLowering::ConstraintType
   3931 NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
   3932   if (Constraint.size() == 1) {
   3933     switch (Constraint[0]) {
   3934     default:
   3935       break;
   3936     case 'b':
   3937     case 'r':
   3938     case 'h':
   3939     case 'c':
   3940     case 'l':
   3941     case 'f':
   3942     case 'd':
   3943     case '0':
   3944     case 'N':
   3945       return C_RegisterClass;
   3946     }
   3947   }
   3948   return TargetLowering::getConstraintType(Constraint);
   3949 }
   3950 
   3951 std::pair<unsigned, const TargetRegisterClass *>
   3952 NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
   3953                                                   StringRef Constraint,
   3954                                                   MVT VT) const {
   3955   if (Constraint.size() == 1) {
   3956     switch (Constraint[0]) {
   3957     case 'b':
   3958       return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
   3959     case 'c':
   3960       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
   3961     case 'h':
   3962       return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
   3963     case 'r':
   3964       return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
   3965     case 'l':
   3966     case 'N':
   3967       return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
   3968     case 'f':
   3969       return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
   3970     case 'd':
   3971       return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
   3972     }
   3973   }
   3974   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   3975 }
   3976 
   3977 //===----------------------------------------------------------------------===//
   3978 //                         NVPTX DAG Combining
   3979 //===----------------------------------------------------------------------===//
   3980 
   3981 bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
   3982                                    CodeGenOpt::Level OptLevel) const {
   3983   // Always honor command-line argument
   3984   if (FMAContractLevelOpt.getNumOccurrences() > 0)
   3985     return FMAContractLevelOpt > 0;
   3986 
   3987   // Do not contract if we're not optimizing the code.
   3988   if (OptLevel == 0)
   3989     return false;
   3990 
   3991   // Honor TargetOptions flags that explicitly say fusion is okay.
   3992   if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
   3993     return true;
   3994 
   3995   return allowUnsafeFPMath(MF);
   3996 }
   3997 
   3998 bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
   3999   // Honor TargetOptions flags that explicitly say unsafe math is okay.
   4000   if (MF.getTarget().Options.UnsafeFPMath)
   4001     return true;
   4002 
   4003   // Allow unsafe math if unsafe-fp-math attribute explicitly says so.
   4004   const Function &F = MF.getFunction();
   4005   if (F.hasFnAttribute("unsafe-fp-math")) {
   4006     Attribute Attr = F.getFnAttribute("unsafe-fp-math");
   4007     StringRef Val = Attr.getValueAsString();
   4008     if (Val == "true")
   4009       return true;
   4010   }
   4011 
   4012   return false;
   4013 }
   4014 
   4015 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
   4016 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
   4017 /// called with the default operands, and if that fails, with commuted
   4018 /// operands.
   4019 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
   4020                                            TargetLowering::DAGCombinerInfo &DCI,
   4021                                              const NVPTXSubtarget &Subtarget,
   4022                                              CodeGenOpt::Level OptLevel) {
   4023   SelectionDAG  &DAG = DCI.DAG;
   4024   // Skip non-integer, non-scalar case
   4025   EVT VT=N0.getValueType();
   4026   if (VT.isVector())
   4027     return SDValue();
   4028 
   4029   // fold (add (mul a, b), c) -> (mad a, b, c)
   4030   //
   4031   if (N0.getOpcode() == ISD::MUL) {
   4032     assert (VT.isInteger());
   4033     // For integer:
   4034     // Since integer multiply-add costs the same as integer multiply
   4035     // but is more costly than integer add, do the fusion only when
   4036     // the mul is only used in the add.
   4037     if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
   4038         !N0.getNode()->hasOneUse())
   4039       return SDValue();
   4040 
   4041     // Do the folding
   4042     return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
   4043                        N0.getOperand(0), N0.getOperand(1), N1);
   4044   }
   4045   else if (N0.getOpcode() == ISD::FMUL) {
   4046     if (VT == MVT::f32 || VT == MVT::f64) {
   4047       const auto *TLI = static_cast<const NVPTXTargetLowering *>(
   4048           &DAG.getTargetLoweringInfo());
   4049       if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
   4050         return SDValue();
   4051 
   4052       // For floating point:
   4053       // Do the fusion only when the mul has less than 5 uses and all
   4054       // are add.
   4055       // The heuristic is that if a use is not an add, then that use
   4056       // cannot be fused into fma, therefore mul is still needed anyway.
   4057       // If there are more than 4 uses, even if they are all add, fusing
   4058       // them will increase register pressue.
   4059       //
   4060       int numUses = 0;
   4061       int nonAddCount = 0;
   4062       for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
   4063            UE = N0.getNode()->use_end();
   4064            UI != UE; ++UI) {
   4065         numUses++;
   4066         SDNode *User = *UI;
   4067         if (User->getOpcode() != ISD::FADD)
   4068           ++nonAddCount;
   4069       }
   4070       if (numUses >= 5)
   4071         return SDValue();
   4072       if (nonAddCount) {
   4073         int orderNo = N->getIROrder();
   4074         int orderNo2 = N0.getNode()->getIROrder();
   4075         // simple heuristics here for considering potential register
   4076         // pressure, the logics here is that the differnce are used
   4077         // to measure the distance between def and use, the longer distance
   4078         // more likely cause register pressure.
   4079         if (orderNo - orderNo2 < 500)
   4080           return SDValue();
   4081 
   4082         // Now, check if at least one of the FMUL's operands is live beyond the node N,
   4083         // which guarantees that the FMA will not increase register pressure at node N.
   4084         bool opIsLive = false;
   4085         const SDNode *left = N0.getOperand(0).getNode();
   4086         const SDNode *right = N0.getOperand(1).getNode();
   4087 
   4088         if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
   4089           opIsLive = true;
   4090 
   4091         if (!opIsLive)
   4092           for (SDNode::use_iterator UI = left->use_begin(), UE = left->use_end(); UI != UE; ++UI) {
   4093             SDNode *User = *UI;
   4094             int orderNo3 = User->getIROrder();
   4095             if (orderNo3 > orderNo) {
   4096               opIsLive = true;
   4097               break;
   4098             }
   4099           }
   4100 
   4101         if (!opIsLive)
   4102           for (SDNode::use_iterator UI = right->use_begin(), UE = right->use_end(); UI != UE; ++UI) {
   4103             SDNode *User = *UI;
   4104             int orderNo3 = User->getIROrder();
   4105             if (orderNo3 > orderNo) {
   4106               opIsLive = true;
   4107               break;
   4108             }
   4109           }
   4110 
   4111         if (!opIsLive)
   4112           return SDValue();
   4113       }
   4114 
   4115       return DAG.getNode(ISD::FMA, SDLoc(N), VT,
   4116                          N0.getOperand(0), N0.getOperand(1), N1);
   4117     }
   4118   }
   4119 
   4120   return SDValue();
   4121 }
   4122 
   4123 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
   4124 ///
   4125 static SDValue PerformADDCombine(SDNode *N,
   4126                                  TargetLowering::DAGCombinerInfo &DCI,
   4127                                  const NVPTXSubtarget &Subtarget,
   4128                                  CodeGenOpt::Level OptLevel) {
   4129   SDValue N0 = N->getOperand(0);
   4130   SDValue N1 = N->getOperand(1);
   4131 
   4132   // First try with the default operand order.
   4133   if (SDValue Result =
   4134           PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel))
   4135     return Result;
   4136 
   4137   // If that didn't work, try again with the operands commuted.
   4138   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
   4139 }
   4140 
   4141 static SDValue PerformANDCombine(SDNode *N,
   4142                                  TargetLowering::DAGCombinerInfo &DCI) {
   4143   // The type legalizer turns a vector load of i8 values into a zextload to i16
   4144   // registers, optionally ANY_EXTENDs it (if target type is integer),
   4145   // and ANDs off the high 8 bits. Since we turn this load into a
   4146   // target-specific DAG node, the DAG combiner fails to eliminate these AND
   4147   // nodes. Do that here.
   4148   SDValue Val = N->getOperand(0);
   4149   SDValue Mask = N->getOperand(1);
   4150 
   4151   if (isa<ConstantSDNode>(Val)) {
   4152     std::swap(Val, Mask);
   4153   }
   4154 
   4155   SDValue AExt;
   4156   // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
   4157   if (Val.getOpcode() == ISD::ANY_EXTEND) {
   4158     AExt = Val;
   4159     Val = Val->getOperand(0);
   4160   }
   4161 
   4162   if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
   4163     Val = Val->getOperand(0);
   4164   }
   4165 
   4166   if (Val->getOpcode() == NVPTXISD::LoadV2 ||
   4167       Val->getOpcode() == NVPTXISD::LoadV4) {
   4168     ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
   4169     if (!MaskCnst) {
   4170       // Not an AND with a constant
   4171       return SDValue();
   4172     }
   4173 
   4174     uint64_t MaskVal = MaskCnst->getZExtValue();
   4175     if (MaskVal != 0xff) {
   4176       // Not an AND that chops off top 8 bits
   4177       return SDValue();
   4178     }
   4179 
   4180     MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
   4181     if (!Mem) {
   4182       // Not a MemSDNode?!?
   4183       return SDValue();
   4184     }
   4185 
   4186     EVT MemVT = Mem->getMemoryVT();
   4187     if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
   4188       // We only handle the i8 case
   4189       return SDValue();
   4190     }
   4191 
   4192     unsigned ExtType =
   4193       cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
   4194         getZExtValue();
   4195     if (ExtType == ISD::SEXTLOAD) {
   4196       // If for some reason the load is a sextload, the and is needed to zero
   4197       // out the high 8 bits
   4198       return SDValue();
   4199     }
   4200 
   4201     bool AddTo = false;
   4202     if (AExt.getNode() != nullptr) {
   4203       // Re-insert the ext as a zext.
   4204       Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
   4205                             AExt.getValueType(), Val);
   4206       AddTo = true;
   4207     }
   4208 
   4209     // If we get here, the AND is unnecessary.  Just replace it with the load
   4210     DCI.CombineTo(N, Val, AddTo);
   4211   }
   4212 
   4213   return SDValue();
   4214 }
   4215 
   4216 static SDValue PerformREMCombine(SDNode *N,
   4217                                  TargetLowering::DAGCombinerInfo &DCI,
   4218                                  CodeGenOpt::Level OptLevel) {
   4219   assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM);
   4220 
   4221   // Don't do anything at less than -O2.
   4222   if (OptLevel < CodeGenOpt::Default)
   4223     return SDValue();
   4224 
   4225   SelectionDAG &DAG = DCI.DAG;
   4226   SDLoc DL(N);
   4227   EVT VT = N->getValueType(0);
   4228   bool IsSigned = N->getOpcode() == ISD::SREM;
   4229   unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
   4230 
   4231   const SDValue &Num = N->getOperand(0);
   4232   const SDValue &Den = N->getOperand(1);
   4233 
   4234   for (const SDNode *U : Num->uses()) {
   4235     if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
   4236         U->getOperand(1) == Den) {
   4237       // Num % Den -> Num - (Num / Den) * Den
   4238       return DAG.getNode(ISD::SUB, DL, VT, Num,
   4239                          DAG.getNode(ISD::MUL, DL, VT,
   4240                                      DAG.getNode(DivOpc, DL, VT, Num, Den),
   4241                                      Den));
   4242     }
   4243   }
   4244   return SDValue();
   4245 }
   4246 
   4247 enum OperandSignedness {
   4248   Signed = 0,
   4249   Unsigned,
   4250   Unknown
   4251 };
   4252 
   4253 /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
   4254 /// that can be demoted to \p OptSize bits without loss of information. The
   4255 /// signedness of the operand, if determinable, is placed in \p S.
   4256 static bool IsMulWideOperandDemotable(SDValue Op,
   4257                                       unsigned OptSize,
   4258                                       OperandSignedness &S) {
   4259   S = Unknown;
   4260 
   4261   if (Op.getOpcode() == ISD::SIGN_EXTEND ||
   4262       Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
   4263     EVT OrigVT = Op.getOperand(0).getValueType();
   4264     if (OrigVT.getSizeInBits() <= OptSize) {
   4265       S = Signed;
   4266       return true;
   4267     }
   4268   } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
   4269     EVT OrigVT = Op.getOperand(0).getValueType();
   4270     if (OrigVT.getSizeInBits() <= OptSize) {
   4271       S = Unsigned;
   4272       return true;
   4273     }
   4274   }
   4275 
   4276   return false;
   4277 }
   4278 
   4279 /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
   4280 /// be demoted to \p OptSize bits without loss of information. If the operands
   4281 /// contain a constant, it should appear as the RHS operand. The signedness of
   4282 /// the operands is placed in \p IsSigned.
   4283 static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
   4284                                         unsigned OptSize,
   4285                                         bool &IsSigned) {
   4286   OperandSignedness LHSSign;
   4287 
   4288   // The LHS operand must be a demotable op
   4289   if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
   4290     return false;
   4291 
   4292   // We should have been able to determine the signedness from the LHS
   4293   if (LHSSign == Unknown)
   4294     return false;
   4295 
   4296   IsSigned = (LHSSign == Signed);
   4297 
   4298   // The RHS can be a demotable op or a constant
   4299   if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
   4300     const APInt &Val = CI->getAPIntValue();
   4301     if (LHSSign == Unsigned) {
   4302       return Val.isIntN(OptSize);
   4303     } else {
   4304       return Val.isSignedIntN(OptSize);
   4305     }
   4306   } else {
   4307     OperandSignedness RHSSign;
   4308     if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
   4309       return false;
   4310 
   4311     return LHSSign == RHSSign;
   4312   }
   4313 }
   4314 
   4315 /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
   4316 /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
   4317 /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
   4318 /// amount.
   4319 static SDValue TryMULWIDECombine(SDNode *N,
   4320                                  TargetLowering::DAGCombinerInfo &DCI) {
   4321   EVT MulType = N->getValueType(0);
   4322   if (MulType != MVT::i32 && MulType != MVT::i64) {
   4323     return SDValue();
   4324   }
   4325 
   4326   SDLoc DL(N);
   4327   unsigned OptSize = MulType.getSizeInBits() >> 1;
   4328   SDValue LHS = N->getOperand(0);
   4329   SDValue RHS = N->getOperand(1);
   4330 
   4331   // Canonicalize the multiply so the constant (if any) is on the right
   4332   if (N->getOpcode() == ISD::MUL) {
   4333     if (isa<ConstantSDNode>(LHS)) {
   4334       std::swap(LHS, RHS);
   4335     }
   4336   }
   4337 
   4338   // If we have a SHL, determine the actual multiply amount
   4339   if (N->getOpcode() == ISD::SHL) {
   4340     ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
   4341     if (!ShlRHS) {
   4342       return SDValue();
   4343     }
   4344 
   4345     APInt ShiftAmt = ShlRHS->getAPIntValue();
   4346     unsigned BitWidth = MulType.getSizeInBits();
   4347     if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
   4348       APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
   4349       RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
   4350     } else {
   4351       return SDValue();
   4352     }
   4353   }
   4354 
   4355   bool Signed;
   4356   // Verify that our operands are demotable
   4357   if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
   4358     return SDValue();
   4359   }
   4360 
   4361   EVT DemotedVT;
   4362   if (MulType == MVT::i32) {
   4363     DemotedVT = MVT::i16;
   4364   } else {
   4365     DemotedVT = MVT::i32;
   4366   }
   4367 
   4368   // Truncate the operands to the correct size. Note that these are just for
   4369   // type consistency and will (likely) be eliminated in later phases.
   4370   SDValue TruncLHS =
   4371     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
   4372   SDValue TruncRHS =
   4373     DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
   4374 
   4375   unsigned Opc;
   4376   if (Signed) {
   4377     Opc = NVPTXISD::MUL_WIDE_SIGNED;
   4378   } else {
   4379     Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
   4380   }
   4381 
   4382   return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
   4383 }
   4384 
   4385 /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
   4386 static SDValue PerformMULCombine(SDNode *N,
   4387                                  TargetLowering::DAGCombinerInfo &DCI,
   4388                                  CodeGenOpt::Level OptLevel) {
   4389   if (OptLevel > 0) {
   4390     // Try mul.wide combining at OptLevel > 0
   4391     if (SDValue Ret = TryMULWIDECombine(N, DCI))
   4392       return Ret;
   4393   }
   4394 
   4395   return SDValue();
   4396 }
   4397 
   4398 /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
   4399 static SDValue PerformSHLCombine(SDNode *N,
   4400                                  TargetLowering::DAGCombinerInfo &DCI,
   4401                                  CodeGenOpt::Level OptLevel) {
   4402   if (OptLevel > 0) {
   4403     // Try mul.wide combining at OptLevel > 0
   4404     if (SDValue Ret = TryMULWIDECombine(N, DCI))
   4405       return Ret;
   4406   }
   4407 
   4408   return SDValue();
   4409 }
   4410 
   4411 static SDValue PerformSETCCCombine(SDNode *N,
   4412                                    TargetLowering::DAGCombinerInfo &DCI) {
   4413   EVT CCType = N->getValueType(0);
   4414   SDValue A = N->getOperand(0);
   4415   SDValue B = N->getOperand(1);
   4416 
   4417   if (CCType != MVT::v2i1 || A.getValueType() != MVT::v2f16)
   4418     return SDValue();
   4419 
   4420   SDLoc DL(N);
   4421   // setp.f16x2 returns two scalar predicates, which we need to
   4422   // convert back to v2i1. The returned result will be scalarized by
   4423   // the legalizer, but the comparison will remain a single vector
   4424   // instruction.
   4425   SDValue CCNode = DCI.DAG.getNode(NVPTXISD::SETP_F16X2, DL,
   4426                                    DCI.DAG.getVTList(MVT::i1, MVT::i1),
   4427                                    {A, B, N->getOperand(2)});
   4428   return DCI.DAG.getNode(ISD::BUILD_VECTOR, DL, CCType, CCNode.getValue(0),
   4429                          CCNode.getValue(1));
   4430 }
   4431 
   4432 SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
   4433                                                DAGCombinerInfo &DCI) const {
   4434   CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
   4435   switch (N->getOpcode()) {
   4436     default: break;
   4437     case ISD::ADD:
   4438     case ISD::FADD:
   4439       return PerformADDCombine(N, DCI, STI, OptLevel);
   4440     case ISD::MUL:
   4441       return PerformMULCombine(N, DCI, OptLevel);
   4442     case ISD::SHL:
   4443       return PerformSHLCombine(N, DCI, OptLevel);
   4444     case ISD::AND:
   4445       return PerformANDCombine(N, DCI);
   4446     case ISD::UREM:
   4447     case ISD::SREM:
   4448       return PerformREMCombine(N, DCI, OptLevel);
   4449     case ISD::SETCC:
   4450       return PerformSETCCCombine(N, DCI);
   4451   }
   4452   return SDValue();
   4453 }
   4454 
   4455 /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
   4456 static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
   4457                               SmallVectorImpl<SDValue> &Results) {
   4458   EVT ResVT = N->getValueType(0);
   4459   SDLoc DL(N);
   4460 
   4461   assert(ResVT.isVector() && "Vector load must have vector type");
   4462 
   4463   // We only handle "native" vector sizes for now, e.g. <4 x double> is not
   4464   // legal.  We can (and should) split that into 2 loads of <2 x double> here
   4465   // but I'm leaving that as a TODO for now.
   4466   assert(ResVT.isSimple() && "Can only handle simple types");
   4467   switch (ResVT.getSimpleVT().SimpleTy) {
   4468   default:
   4469     return;
   4470   case MVT::v2i8:
   4471   case MVT::v2i16:
   4472   case MVT::v2i32:
   4473   case MVT::v2i64:
   4474   case MVT::v2f16:
   4475   case MVT::v2f32:
   4476   case MVT::v2f64:
   4477   case MVT::v4i8:
   4478   case MVT::v4i16:
   4479   case MVT::v4i32:
   4480   case MVT::v4f16:
   4481   case MVT::v4f32:
   4482   case MVT::v8f16: // <4 x f16x2>
   4483     // This is a "native" vector type
   4484     break;
   4485   }
   4486 
   4487   LoadSDNode *LD = cast<LoadSDNode>(N);
   4488 
   4489   unsigned Align = LD->getAlignment();
   4490   auto &TD = DAG.getDataLayout();
   4491   unsigned PrefAlign =
   4492       TD.getPrefTypeAlignment(ResVT.getTypeForEVT(*DAG.getContext()));
   4493   if (Align < PrefAlign) {
   4494     // This load is not sufficiently aligned, so bail out and let this vector
   4495     // load be scalarized.  Note that we may still be able to emit smaller
   4496     // vector loads.  For example, if we are loading a <4 x float> with an
   4497     // alignment of 8, this check will fail but the legalizer will try again
   4498     // with 2 x <2 x float>, which will succeed with an alignment of 8.
   4499     return;
   4500   }
   4501 
   4502   EVT EltVT = ResVT.getVectorElementType();
   4503   unsigned NumElts = ResVT.getVectorNumElements();
   4504 
   4505   // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
   4506   // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
   4507   // loaded type to i16 and propagate the "real" type as the memory type.
   4508   bool NeedTrunc = false;
   4509   if (EltVT.getSizeInBits() < 16) {
   4510     EltVT = MVT::i16;
   4511     NeedTrunc = true;
   4512   }
   4513 
   4514   unsigned Opcode = 0;
   4515   SDVTList LdResVTs;
   4516   bool LoadF16x2 = false;
   4517 
   4518   switch (NumElts) {
   4519   default:
   4520     return;
   4521   case 2:
   4522     Opcode = NVPTXISD::LoadV2;
   4523     LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
   4524     break;
   4525   case 4: {
   4526     Opcode = NVPTXISD::LoadV4;
   4527     EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
   4528     LdResVTs = DAG.getVTList(ListVTs);
   4529     break;
   4530   }
   4531   case 8: {
   4532     // v8f16 is a special case. PTX doesn't have ld.v8.f16
   4533     // instruction. Instead, we split the vector into v2f16 chunks and
   4534     // load them with ld.v4.b32.
   4535     assert(EltVT == MVT::f16 && "Unsupported v8 vector type.");
   4536     LoadF16x2 = true;
   4537     Opcode = NVPTXISD::LoadV4;
   4538     EVT ListVTs[] = {MVT::v2f16, MVT::v2f16, MVT::v2f16, MVT::v2f16,
   4539                      MVT::Other};
   4540     LdResVTs = DAG.getVTList(ListVTs);
   4541     break;
   4542   }
   4543   }
   4544 
   4545   // Copy regular operands
   4546   SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
   4547 
   4548   // The select routine does not have access to the LoadSDNode instance, so
   4549   // pass along the extension information
   4550   OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
   4551 
   4552   SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
   4553                                           LD->getMemoryVT(),
   4554                                           LD->getMemOperand());
   4555 
   4556   SmallVector<SDValue, 8> ScalarRes;
   4557   if (LoadF16x2) {
   4558     // Split v2f16 subvectors back into individual elements.
   4559     NumElts /= 2;
   4560     for (unsigned i = 0; i < NumElts; ++i) {
   4561       SDValue SubVector = NewLD.getValue(i);
   4562       SDValue E0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
   4563                                DAG.getIntPtrConstant(0, DL));
   4564       SDValue E1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, SubVector,
   4565                                DAG.getIntPtrConstant(1, DL));
   4566       ScalarRes.push_back(E0);
   4567       ScalarRes.push_back(E1);
   4568     }
   4569   } else {
   4570     for (unsigned i = 0; i < NumElts; ++i) {
   4571       SDValue Res = NewLD.getValue(i);
   4572       if (NeedTrunc)
   4573         Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
   4574       ScalarRes.push_back(Res);
   4575     }
   4576   }
   4577 
   4578   SDValue LoadChain = NewLD.getValue(NumElts);
   4579 
   4580   SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);
   4581 
   4582   Results.push_back(BuildVec);
   4583   Results.push_back(LoadChain);
   4584 }
   4585 
   4586 static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
   4587                                      SmallVectorImpl<SDValue> &Results) {
   4588   SDValue Chain = N->getOperand(0);
   4589   SDValue Intrin = N->getOperand(1);
   4590   SDLoc DL(N);
   4591 
   4592   // Get the intrinsic ID
   4593   unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
   4594   switch (IntrinNo) {
   4595   default:
   4596     return;
   4597   case Intrinsic::nvvm_ldg_global_i:
   4598   case Intrinsic::nvvm_ldg_global_f:
   4599   case Intrinsic::nvvm_ldg_global_p:
   4600   case Intrinsic::nvvm_ldu_global_i:
   4601   case Intrinsic::nvvm_ldu_global_f:
   4602   case Intrinsic::nvvm_ldu_global_p: {
   4603     EVT ResVT = N->getValueType(0);
   4604 
   4605     if (ResVT.isVector()) {
   4606       // Vector LDG/LDU
   4607 
   4608       unsigned NumElts = ResVT.getVectorNumElements();
   4609       EVT EltVT = ResVT.getVectorElementType();
   4610 
   4611       // Since LDU/LDG are target nodes, we cannot rely on DAG type
   4612       // legalization.
   4613       // Therefore, we must ensure the type is legal.  For i1 and i8, we set the
   4614       // loaded type to i16 and propagate the "real" type as the memory type.
   4615       bool NeedTrunc = false;
   4616       if (EltVT.getSizeInBits() < 16) {
   4617         EltVT = MVT::i16;
   4618         NeedTrunc = true;
   4619       }
   4620 
   4621       unsigned Opcode = 0;
   4622       SDVTList LdResVTs;
   4623 
   4624       switch (NumElts) {
   4625       default:
   4626         return;
   4627       case 2:
   4628         switch (IntrinNo) {
   4629         default:
   4630           return;
   4631         case Intrinsic::nvvm_ldg_global_i:
   4632         case Intrinsic::nvvm_ldg_global_f:
   4633         case Intrinsic::nvvm_ldg_global_p:
   4634           Opcode = NVPTXISD::LDGV2;
   4635           break;
   4636         case Intrinsic::nvvm_ldu_global_i:
   4637         case Intrinsic::nvvm_ldu_global_f:
   4638         case Intrinsic::nvvm_ldu_global_p:
   4639           Opcode = NVPTXISD::LDUV2;
   4640           break;
   4641         }
   4642         LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
   4643         break;
   4644       case 4: {
   4645         switch (IntrinNo) {
   4646         default:
   4647           return;
   4648         case Intrinsic::nvvm_ldg_global_i:
   4649         case Intrinsic::nvvm_ldg_global_f:
   4650         case Intrinsic::nvvm_ldg_global_p:
   4651           Opcode = NVPTXISD::LDGV4;
   4652           break;
   4653         case Intrinsic::nvvm_ldu_global_i:
   4654         case Intrinsic::nvvm_ldu_global_f:
   4655         case Intrinsic::nvvm_ldu_global_p:
   4656           Opcode = NVPTXISD::LDUV4;
   4657           break;
   4658         }
   4659         EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
   4660         LdResVTs = DAG.getVTList(ListVTs);
   4661         break;
   4662       }
   4663       }
   4664 
   4665       SmallVector<SDValue, 8> OtherOps;
   4666 
   4667       // Copy regular operands
   4668 
   4669       OtherOps.push_back(Chain); // Chain
   4670                                  // Skip operand 1 (intrinsic ID)
   4671       // Others
   4672       OtherOps.append(N->op_begin() + 2, N->op_end());
   4673 
   4674       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
   4675 
   4676       SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
   4677                                               MemSD->getMemoryVT(),
   4678                                               MemSD->getMemOperand());
   4679 
   4680       SmallVector<SDValue, 4> ScalarRes;
   4681 
   4682       for (unsigned i = 0; i < NumElts; ++i) {
   4683         SDValue Res = NewLD.getValue(i);
   4684         if (NeedTrunc)
   4685           Res =
   4686               DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
   4687         ScalarRes.push_back(Res);
   4688       }
   4689 
   4690       SDValue LoadChain = NewLD.getValue(NumElts);
   4691 
   4692       SDValue BuildVec =
   4693           DAG.getBuildVector(ResVT, DL, ScalarRes);
   4694 
   4695       Results.push_back(BuildVec);
   4696       Results.push_back(LoadChain);
   4697     } else {
   4698       // i8 LDG/LDU
   4699       assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
   4700              "Custom handling of non-i8 ldu/ldg?");
   4701 
   4702       // Just copy all operands as-is
   4703       SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
   4704 
   4705       // Force output to i16
   4706       SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
   4707 
   4708       MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
   4709 
   4710       // We make sure the memory type is i8, which will be used during isel
   4711       // to select the proper instruction.
   4712       SDValue NewLD =
   4713           DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
   4714                                   MVT::i8, MemSD->getMemOperand());
   4715 
   4716       Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
   4717                                     NewLD.getValue(0)));
   4718       Results.push_back(NewLD.getValue(1));
   4719     }
   4720   }
   4721   }
   4722 }
   4723 
   4724 void NVPTXTargetLowering::ReplaceNodeResults(
   4725     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
   4726   switch (N->getOpcode()) {
   4727   default:
   4728     report_fatal_error("Unhandled custom legalization");
   4729   case ISD::LOAD:
   4730     ReplaceLoadVector(N, DAG, Results);
   4731     return;
   4732   case ISD::INTRINSIC_W_CHAIN:
   4733     ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
   4734     return;
   4735   }
   4736 }
   4737 
   4738 // Pin NVPTXTargetObjectFile's vtables to this file.
   4739 NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {}
   4740 
   4741 MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
   4742     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
   4743   return getDataSection();
   4744 }
   4745