Home | History | Annotate | Download | only in utils
      1 // Copyright 2013 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/base/utils/random-number-generator.h"
      6 
      7 #include <stdio.h>
      8 #include <stdlib.h>
      9 
     10 #include <algorithm>
     11 #include <new>
     12 
     13 #include "src/base/bits.h"
     14 #include "src/base/macros.h"
     15 #include "src/base/platform/mutex.h"
     16 #include "src/base/platform/time.h"
     17 
     18 namespace v8 {
     19 namespace base {
     20 
     21 static LazyMutex entropy_mutex = LAZY_MUTEX_INITIALIZER;
     22 static RandomNumberGenerator::EntropySource entropy_source = nullptr;
     23 
     24 // static
     25 void RandomNumberGenerator::SetEntropySource(EntropySource source) {
     26   LockGuard<Mutex> lock_guard(entropy_mutex.Pointer());
     27   entropy_source = source;
     28 }
     29 
     30 
     31 RandomNumberGenerator::RandomNumberGenerator() {
     32   // Check if embedder supplied an entropy source.
     33   { LockGuard<Mutex> lock_guard(entropy_mutex.Pointer());
     34     if (entropy_source != nullptr) {
     35       int64_t seed;
     36       if (entropy_source(reinterpret_cast<unsigned char*>(&seed),
     37                          sizeof(seed))) {
     38         SetSeed(seed);
     39         return;
     40       }
     41     }
     42   }
     43 
     44 #if V8_OS_CYGWIN || V8_OS_WIN
     45   // Use rand_s() to gather entropy on Windows. See:
     46   // https://code.google.com/p/v8/issues/detail?id=2905
     47   unsigned first_half, second_half;
     48   errno_t result = rand_s(&first_half);
     49   DCHECK_EQ(0, result);
     50   result = rand_s(&second_half);
     51   DCHECK_EQ(0, result);
     52   SetSeed((static_cast<int64_t>(first_half) << 32) + second_half);
     53 #else
     54   // Gather entropy from /dev/urandom if available.
     55   FILE* fp = fopen("/dev/urandom", "rb");
     56   if (fp != nullptr) {
     57     int64_t seed;
     58     size_t n = fread(&seed, sizeof(seed), 1, fp);
     59     fclose(fp);
     60     if (n == 1) {
     61       SetSeed(seed);
     62       return;
     63     }
     64   }
     65 
     66   // We cannot assume that random() or rand() were seeded
     67   // properly, so instead of relying on random() or rand(),
     68   // we just seed our PRNG using timing data as fallback.
     69   // This is weak entropy, but it's sufficient, because
     70   // it is the responsibility of the embedder to install
     71   // an entropy source using v8::V8::SetEntropySource(),
     72   // which provides reasonable entropy, see:
     73   // https://code.google.com/p/v8/issues/detail?id=2905
     74   int64_t seed = Time::NowFromSystemTime().ToInternalValue() << 24;
     75   seed ^= TimeTicks::HighResolutionNow().ToInternalValue() << 16;
     76   seed ^= TimeTicks::Now().ToInternalValue() << 8;
     77   SetSeed(seed);
     78 #endif  // V8_OS_CYGWIN || V8_OS_WIN
     79 }
     80 
     81 
     82 int RandomNumberGenerator::NextInt(int max) {
     83   DCHECK_LT(0, max);
     84 
     85   // Fast path if max is a power of 2.
     86   if (bits::IsPowerOfTwo(max)) {
     87     return static_cast<int>((max * static_cast<int64_t>(Next(31))) >> 31);
     88   }
     89 
     90   while (true) {
     91     int rnd = Next(31);
     92     int val = rnd % max;
     93     if (rnd - val + (max - 1) >= 0) {
     94       return val;
     95     }
     96   }
     97 }
     98 
     99 
    100 double RandomNumberGenerator::NextDouble() {
    101   XorShift128(&state0_, &state1_);
    102   return ToDouble(state0_, state1_);
    103 }
    104 
    105 
    106 int64_t RandomNumberGenerator::NextInt64() {
    107   XorShift128(&state0_, &state1_);
    108   return bit_cast<int64_t>(state0_ + state1_);
    109 }
    110 
    111 
    112 void RandomNumberGenerator::NextBytes(void* buffer, size_t buflen) {
    113   for (size_t n = 0; n < buflen; ++n) {
    114     static_cast<uint8_t*>(buffer)[n] = static_cast<uint8_t>(Next(8));
    115   }
    116 }
    117 
    118 static std::vector<uint64_t> ComplementSample(
    119     const std::unordered_set<uint64_t>& set, uint64_t max) {
    120   std::vector<uint64_t> result;
    121   result.reserve(max - set.size());
    122   for (uint64_t i = 0; i < max; i++) {
    123     if (!set.count(i)) {
    124       result.push_back(i);
    125     }
    126   }
    127   return result;
    128 }
    129 
    130 std::vector<uint64_t> RandomNumberGenerator::NextSample(uint64_t max,
    131                                                         size_t n) {
    132   CHECK_LE(n, max);
    133 
    134   if (n == 0) {
    135     return std::vector<uint64_t>();
    136   }
    137 
    138   // Choose to select or exclude, whatever needs fewer generator calls.
    139   size_t smaller_part = static_cast<size_t>(
    140       std::min(max - static_cast<uint64_t>(n), static_cast<uint64_t>(n)));
    141   std::unordered_set<uint64_t> selected;
    142 
    143   size_t counter = 0;
    144   while (selected.size() != smaller_part && counter / 3 < smaller_part) {
    145     uint64_t x = static_cast<uint64_t>(NextDouble() * max);
    146     CHECK_LT(x, max);
    147 
    148     selected.insert(x);
    149     counter++;
    150   }
    151 
    152   if (selected.size() == smaller_part) {
    153     if (smaller_part != n) {
    154       return ComplementSample(selected, max);
    155     }
    156     return std::vector<uint64_t>(selected.begin(), selected.end());
    157   }
    158 
    159   // Failed to select numbers in smaller_part * 3 steps, try different approach.
    160   return NextSampleSlow(max, n, selected);
    161 }
    162 
    163 std::vector<uint64_t> RandomNumberGenerator::NextSampleSlow(
    164     uint64_t max, size_t n, const std::unordered_set<uint64_t>& excluded) {
    165   CHECK_GE(max - excluded.size(), n);
    166 
    167   std::vector<uint64_t> result;
    168   result.reserve(max - excluded.size());
    169 
    170   for (uint64_t i = 0; i < max; i++) {
    171     if (!excluded.count(i)) {
    172       result.push_back(i);
    173     }
    174   }
    175 
    176   // Decrease result vector until it contains values to select or exclude,
    177   // whatever needs fewer generator calls.
    178   size_t larger_part = static_cast<size_t>(
    179       std::max(max - static_cast<uint64_t>(n), static_cast<uint64_t>(n)));
    180 
    181   // Excluded set may cause that initial result is already smaller than
    182   // larget_part.
    183   while (result.size() != larger_part && result.size() > n) {
    184     size_t x = static_cast<size_t>(NextDouble() * result.size());
    185     CHECK_LT(x, result.size());
    186 
    187     std::swap(result[x], result.back());
    188     result.pop_back();
    189   }
    190 
    191   if (result.size() != n) {
    192     return ComplementSample(
    193         std::unordered_set<uint64_t>(result.begin(), result.end()), max);
    194   }
    195   return result;
    196 }
    197 
    198 int RandomNumberGenerator::Next(int bits) {
    199   DCHECK_LT(0, bits);
    200   DCHECK_GE(32, bits);
    201   XorShift128(&state0_, &state1_);
    202   return static_cast<int>((state0_ + state1_) >> (64 - bits));
    203 }
    204 
    205 
    206 void RandomNumberGenerator::SetSeed(int64_t seed) {
    207   initial_seed_ = seed;
    208   state0_ = MurmurHash3(bit_cast<uint64_t>(seed));
    209   state1_ = MurmurHash3(~state0_);
    210   CHECK(state0_ != 0 || state1_ != 0);
    211 }
    212 
    213 
    214 uint64_t RandomNumberGenerator::MurmurHash3(uint64_t h) {
    215   h ^= h >> 33;
    216   h *= uint64_t{0xFF51AFD7ED558CCD};
    217   h ^= h >> 33;
    218   h *= uint64_t{0xC4CEB9FE1A85EC53};
    219   h ^= h >> 33;
    220   return h;
    221 }
    222 
    223 }  // namespace base
    224 }  // namespace v8
    225