Home | History | Annotate | Download | only in Scalar
      1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass hoists expressions from branches to a common dominator. It uses
     11 // GVN (global value numbering) to discover expressions computing the same
     12 // values. The primary goals of code-hoisting are:
     13 // 1. To reduce the code size.
     14 // 2. In some cases reduce critical path (by exposing more ILP).
     15 //
     16 // The algorithm factors out the reachability of values such that multiple
     17 // queries to find reachability of values are fast. This is based on finding the
     18 // ANTIC points in the CFG which do not change during hoisting. The ANTIC points
     19 // are basically the dominance-frontiers in the inverse graph. So we introduce a
     20 // data structure (CHI nodes) to keep track of values flowing out of a basic
     21 // block. We only do this for values with multiple occurrences in the function
     22 // as they are the potential hoistable candidates. This approach allows us to
     23 // hoist instructions to a basic block with more than two successors, as well as
     24 // deal with infinite loops in a trivial way.
     25 //
     26 // Limitations: This pass does not hoist fully redundant expressions because
     27 // they are already handled by GVN-PRE. It is advisable to run gvn-hoist before
     28 // and after gvn-pre because gvn-pre creates opportunities for more instructions
     29 // to be hoisted.
     30 //
     31 // Hoisting may affect the performance in some cases. To mitigate that, hoisting
     32 // is disabled in the following cases.
     33 // 1. Scalars across calls.
     34 // 2. geps when corresponding load/store cannot be hoisted.
     35 //===----------------------------------------------------------------------===//
     36 
     37 #include "llvm/ADT/DenseMap.h"
     38 #include "llvm/ADT/DenseSet.h"
     39 #include "llvm/ADT/STLExtras.h"
     40 #include "llvm/ADT/SmallPtrSet.h"
     41 #include "llvm/ADT/SmallVector.h"
     42 #include "llvm/ADT/Statistic.h"
     43 #include "llvm/ADT/iterator_range.h"
     44 #include "llvm/Analysis/AliasAnalysis.h"
     45 #include "llvm/Analysis/GlobalsModRef.h"
     46 #include "llvm/Analysis/IteratedDominanceFrontier.h"
     47 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     48 #include "llvm/Analysis/MemorySSA.h"
     49 #include "llvm/Analysis/MemorySSAUpdater.h"
     50 #include "llvm/Analysis/PostDominators.h"
     51 #include "llvm/Transforms/Utils/Local.h"
     52 #include "llvm/Analysis/ValueTracking.h"
     53 #include "llvm/IR/Argument.h"
     54 #include "llvm/IR/BasicBlock.h"
     55 #include "llvm/IR/CFG.h"
     56 #include "llvm/IR/Constants.h"
     57 #include "llvm/IR/Dominators.h"
     58 #include "llvm/IR/Function.h"
     59 #include "llvm/IR/InstrTypes.h"
     60 #include "llvm/IR/Instruction.h"
     61 #include "llvm/IR/Instructions.h"
     62 #include "llvm/IR/IntrinsicInst.h"
     63 #include "llvm/IR/Intrinsics.h"
     64 #include "llvm/IR/LLVMContext.h"
     65 #include "llvm/IR/PassManager.h"
     66 #include "llvm/IR/Use.h"
     67 #include "llvm/IR/User.h"
     68 #include "llvm/IR/Value.h"
     69 #include "llvm/Pass.h"
     70 #include "llvm/Support/Casting.h"
     71 #include "llvm/Support/CommandLine.h"
     72 #include "llvm/Support/Debug.h"
     73 #include "llvm/Support/raw_ostream.h"
     74 #include "llvm/Transforms/Scalar.h"
     75 #include "llvm/Transforms/Scalar/GVN.h"
     76 #include <algorithm>
     77 #include <cassert>
     78 #include <iterator>
     79 #include <memory>
     80 #include <utility>
     81 #include <vector>
     82 
     83 using namespace llvm;
     84 
     85 #define DEBUG_TYPE "gvn-hoist"
     86 
     87 STATISTIC(NumHoisted, "Number of instructions hoisted");
     88 STATISTIC(NumRemoved, "Number of instructions removed");
     89 STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
     90 STATISTIC(NumLoadsRemoved, "Number of loads removed");
     91 STATISTIC(NumStoresHoisted, "Number of stores hoisted");
     92 STATISTIC(NumStoresRemoved, "Number of stores removed");
     93 STATISTIC(NumCallsHoisted, "Number of calls hoisted");
     94 STATISTIC(NumCallsRemoved, "Number of calls removed");
     95 
     96 static cl::opt<int>
     97     MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
     98                         cl::desc("Max number of instructions to hoist "
     99                                  "(default unlimited = -1)"));
    100 
    101 static cl::opt<int> MaxNumberOfBBSInPath(
    102     "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
    103     cl::desc("Max number of basic blocks on the path between "
    104              "hoisting locations (default = 4, unlimited = -1)"));
    105 
    106 static cl::opt<int> MaxDepthInBB(
    107     "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
    108     cl::desc("Hoist instructions from the beginning of the BB up to the "
    109              "maximum specified depth (default = 100, unlimited = -1)"));
    110 
    111 static cl::opt<int>
    112     MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
    113                    cl::desc("Maximum length of dependent chains to hoist "
    114                             "(default = 10, unlimited = -1)"));
    115 
    116 namespace llvm {
    117 
    118 using BBSideEffectsSet = DenseMap<const BasicBlock *, bool>;
    119 using SmallVecInsn = SmallVector<Instruction *, 4>;
    120 using SmallVecImplInsn = SmallVectorImpl<Instruction *>;
    121 
    122 // Each element of a hoisting list contains the basic block where to hoist and
    123 // a list of instructions to be hoisted.
    124 using HoistingPointInfo = std::pair<BasicBlock *, SmallVecInsn>;
    125 
    126 using HoistingPointList = SmallVector<HoistingPointInfo, 4>;
    127 
    128 // A map from a pair of VNs to all the instructions with those VNs.
    129 using VNType = std::pair<unsigned, unsigned>;
    130 
    131 using VNtoInsns = DenseMap<VNType, SmallVector<Instruction *, 4>>;
    132 
    133 // CHI keeps information about values flowing out of a basic block.  It is
    134 // similar to PHI but in the inverse graph, and used for outgoing values on each
    135 // edge. For conciseness, it is computed only for instructions with multiple
    136 // occurrences in the CFG because they are the only hoistable candidates.
    137 //     A (CHI[{V, B, I1}, {V, C, I2}]
    138 //  /     \
    139 // /       \
    140 // B(I1)  C (I2)
    141 // The Value number for both I1 and I2 is V, the CHI node will save the
    142 // instruction as well as the edge where the value is flowing to.
    143 struct CHIArg {
    144   VNType VN;
    145 
    146   // Edge destination (shows the direction of flow), may not be where the I is.
    147   BasicBlock *Dest;
    148 
    149   // The instruction (VN) which uses the values flowing out of CHI.
    150   Instruction *I;
    151 
    152   bool operator==(const CHIArg &A) { return VN == A.VN; }
    153   bool operator!=(const CHIArg &A) { return !(*this == A); }
    154 };
    155 
    156 using CHIIt = SmallVectorImpl<CHIArg>::iterator;
    157 using CHIArgs = iterator_range<CHIIt>;
    158 using OutValuesType = DenseMap<BasicBlock *, SmallVector<CHIArg, 2>>;
    159 using InValuesType =
    160     DenseMap<BasicBlock *, SmallVector<std::pair<VNType, Instruction *>, 2>>;
    161 
    162 // An invalid value number Used when inserting a single value number into
    163 // VNtoInsns.
    164 enum : unsigned { InvalidVN = ~2U };
    165 
    166 // Records all scalar instructions candidate for code hoisting.
    167 class InsnInfo {
    168   VNtoInsns VNtoScalars;
    169 
    170 public:
    171   // Inserts I and its value number in VNtoScalars.
    172   void insert(Instruction *I, GVN::ValueTable &VN) {
    173     // Scalar instruction.
    174     unsigned V = VN.lookupOrAdd(I);
    175     VNtoScalars[{V, InvalidVN}].push_back(I);
    176   }
    177 
    178   const VNtoInsns &getVNTable() const { return VNtoScalars; }
    179 };
    180 
    181 // Records all load instructions candidate for code hoisting.
    182 class LoadInfo {
    183   VNtoInsns VNtoLoads;
    184 
    185 public:
    186   // Insert Load and the value number of its memory address in VNtoLoads.
    187   void insert(LoadInst *Load, GVN::ValueTable &VN) {
    188     if (Load->isSimple()) {
    189       unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
    190       VNtoLoads[{V, InvalidVN}].push_back(Load);
    191     }
    192   }
    193 
    194   const VNtoInsns &getVNTable() const { return VNtoLoads; }
    195 };
    196 
    197 // Records all store instructions candidate for code hoisting.
    198 class StoreInfo {
    199   VNtoInsns VNtoStores;
    200 
    201 public:
    202   // Insert the Store and a hash number of the store address and the stored
    203   // value in VNtoStores.
    204   void insert(StoreInst *Store, GVN::ValueTable &VN) {
    205     if (!Store->isSimple())
    206       return;
    207     // Hash the store address and the stored value.
    208     Value *Ptr = Store->getPointerOperand();
    209     Value *Val = Store->getValueOperand();
    210     VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
    211   }
    212 
    213   const VNtoInsns &getVNTable() const { return VNtoStores; }
    214 };
    215 
    216 // Records all call instructions candidate for code hoisting.
    217 class CallInfo {
    218   VNtoInsns VNtoCallsScalars;
    219   VNtoInsns VNtoCallsLoads;
    220   VNtoInsns VNtoCallsStores;
    221 
    222 public:
    223   // Insert Call and its value numbering in one of the VNtoCalls* containers.
    224   void insert(CallInst *Call, GVN::ValueTable &VN) {
    225     // A call that doesNotAccessMemory is handled as a Scalar,
    226     // onlyReadsMemory will be handled as a Load instruction,
    227     // all other calls will be handled as stores.
    228     unsigned V = VN.lookupOrAdd(Call);
    229     auto Entry = std::make_pair(V, InvalidVN);
    230 
    231     if (Call->doesNotAccessMemory())
    232       VNtoCallsScalars[Entry].push_back(Call);
    233     else if (Call->onlyReadsMemory())
    234       VNtoCallsLoads[Entry].push_back(Call);
    235     else
    236       VNtoCallsStores[Entry].push_back(Call);
    237   }
    238 
    239   const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
    240   const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
    241   const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
    242 };
    243 
    244 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
    245   static const unsigned KnownIDs[] = {
    246       LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
    247       LLVMContext::MD_noalias,        LLVMContext::MD_range,
    248       LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
    249       LLVMContext::MD_invariant_group};
    250   combineMetadata(ReplInst, I, KnownIDs);
    251 }
    252 
    253 // This pass hoists common computations across branches sharing common
    254 // dominator. The primary goal is to reduce the code size, and in some
    255 // cases reduce critical path (by exposing more ILP).
    256 class GVNHoist {
    257 public:
    258   GVNHoist(DominatorTree *DT, PostDominatorTree *PDT, AliasAnalysis *AA,
    259            MemoryDependenceResults *MD, MemorySSA *MSSA)
    260       : DT(DT), PDT(PDT), AA(AA), MD(MD), MSSA(MSSA),
    261         MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {}
    262 
    263   bool run(Function &F) {
    264     NumFuncArgs = F.arg_size();
    265     VN.setDomTree(DT);
    266     VN.setAliasAnalysis(AA);
    267     VN.setMemDep(MD);
    268     bool Res = false;
    269     // Perform DFS Numbering of instructions.
    270     unsigned BBI = 0;
    271     for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
    272       DFSNumber[BB] = ++BBI;
    273       unsigned I = 0;
    274       for (auto &Inst : *BB)
    275         DFSNumber[&Inst] = ++I;
    276     }
    277 
    278     int ChainLength = 0;
    279 
    280     // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
    281     while (true) {
    282       if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
    283         return Res;
    284 
    285       auto HoistStat = hoistExpressions(F);
    286       if (HoistStat.first + HoistStat.second == 0)
    287         return Res;
    288 
    289       if (HoistStat.second > 0)
    290         // To address a limitation of the current GVN, we need to rerun the
    291         // hoisting after we hoisted loads or stores in order to be able to
    292         // hoist all scalars dependent on the hoisted ld/st.
    293         VN.clear();
    294 
    295       Res = true;
    296     }
    297 
    298     return Res;
    299   }
    300 
    301   // Copied from NewGVN.cpp
    302   // This function provides global ranking of operations so that we can place
    303   // them in a canonical order.  Note that rank alone is not necessarily enough
    304   // for a complete ordering, as constants all have the same rank.  However,
    305   // generally, we will simplify an operation with all constants so that it
    306   // doesn't matter what order they appear in.
    307   unsigned int rank(const Value *V) const {
    308     // Prefer constants to undef to anything else
    309     // Undef is a constant, have to check it first.
    310     // Prefer smaller constants to constantexprs
    311     if (isa<ConstantExpr>(V))
    312       return 2;
    313     if (isa<UndefValue>(V))
    314       return 1;
    315     if (isa<Constant>(V))
    316       return 0;
    317     else if (auto *A = dyn_cast<Argument>(V))
    318       return 3 + A->getArgNo();
    319 
    320     // Need to shift the instruction DFS by number of arguments + 3 to account
    321     // for the constant and argument ranking above.
    322     auto Result = DFSNumber.lookup(V);
    323     if (Result > 0)
    324       return 4 + NumFuncArgs + Result;
    325     // Unreachable or something else, just return a really large number.
    326     return ~0;
    327   }
    328 
    329 private:
    330   GVN::ValueTable VN;
    331   DominatorTree *DT;
    332   PostDominatorTree *PDT;
    333   AliasAnalysis *AA;
    334   MemoryDependenceResults *MD;
    335   MemorySSA *MSSA;
    336   std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
    337   DenseMap<const Value *, unsigned> DFSNumber;
    338   BBSideEffectsSet BBSideEffects;
    339   DenseSet<const BasicBlock *> HoistBarrier;
    340   SmallVector<BasicBlock *, 32> IDFBlocks;
    341   unsigned NumFuncArgs;
    342   const bool HoistingGeps = false;
    343 
    344   enum InsKind { Unknown, Scalar, Load, Store };
    345 
    346   // Return true when there are exception handling in BB.
    347   bool hasEH(const BasicBlock *BB) {
    348     auto It = BBSideEffects.find(BB);
    349     if (It != BBSideEffects.end())
    350       return It->second;
    351 
    352     if (BB->isEHPad() || BB->hasAddressTaken()) {
    353       BBSideEffects[BB] = true;
    354       return true;
    355     }
    356 
    357     if (BB->getTerminator()->mayThrow()) {
    358       BBSideEffects[BB] = true;
    359       return true;
    360     }
    361 
    362     BBSideEffects[BB] = false;
    363     return false;
    364   }
    365 
    366   // Return true when a successor of BB dominates A.
    367   bool successorDominate(const BasicBlock *BB, const BasicBlock *A) {
    368     for (const BasicBlock *Succ : BB->getTerminator()->successors())
    369       if (DT->dominates(Succ, A))
    370         return true;
    371 
    372     return false;
    373   }
    374 
    375   // Return true when I1 appears before I2 in the instructions of BB.
    376   bool firstInBB(const Instruction *I1, const Instruction *I2) {
    377     assert(I1->getParent() == I2->getParent());
    378     unsigned I1DFS = DFSNumber.lookup(I1);
    379     unsigned I2DFS = DFSNumber.lookup(I2);
    380     assert(I1DFS && I2DFS);
    381     return I1DFS < I2DFS;
    382   }
    383 
    384   // Return true when there are memory uses of Def in BB.
    385   bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
    386                     const BasicBlock *BB) {
    387     const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
    388     if (!Acc)
    389       return false;
    390 
    391     Instruction *OldPt = Def->getMemoryInst();
    392     const BasicBlock *OldBB = OldPt->getParent();
    393     const BasicBlock *NewBB = NewPt->getParent();
    394     bool ReachedNewPt = false;
    395 
    396     for (const MemoryAccess &MA : *Acc)
    397       if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
    398         Instruction *Insn = MU->getMemoryInst();
    399 
    400         // Do not check whether MU aliases Def when MU occurs after OldPt.
    401         if (BB == OldBB && firstInBB(OldPt, Insn))
    402           break;
    403 
    404         // Do not check whether MU aliases Def when MU occurs before NewPt.
    405         if (BB == NewBB) {
    406           if (!ReachedNewPt) {
    407             if (firstInBB(Insn, NewPt))
    408               continue;
    409             ReachedNewPt = true;
    410           }
    411         }
    412         if (MemorySSAUtil::defClobbersUseOrDef(Def, MU, *AA))
    413           return true;
    414       }
    415 
    416     return false;
    417   }
    418 
    419   bool hasEHhelper(const BasicBlock *BB, const BasicBlock *SrcBB,
    420                    int &NBBsOnAllPaths) {
    421     // Stop walk once the limit is reached.
    422     if (NBBsOnAllPaths == 0)
    423       return true;
    424 
    425     // Impossible to hoist with exceptions on the path.
    426     if (hasEH(BB))
    427       return true;
    428 
    429     // No such instruction after HoistBarrier in a basic block was
    430     // selected for hoisting so instructions selected within basic block with
    431     // a hoist barrier can be hoisted.
    432     if ((BB != SrcBB) && HoistBarrier.count(BB))
    433       return true;
    434 
    435     return false;
    436   }
    437 
    438   // Return true when there are exception handling or loads of memory Def
    439   // between Def and NewPt.  This function is only called for stores: Def is
    440   // the MemoryDef of the store to be hoisted.
    441 
    442   // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
    443   // return true when the counter NBBsOnAllPaths reaces 0, except when it is
    444   // initialized to -1 which is unlimited.
    445   bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
    446                           int &NBBsOnAllPaths) {
    447     const BasicBlock *NewBB = NewPt->getParent();
    448     const BasicBlock *OldBB = Def->getBlock();
    449     assert(DT->dominates(NewBB, OldBB) && "invalid path");
    450     assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
    451            "def does not dominate new hoisting point");
    452 
    453     // Walk all basic blocks reachable in depth-first iteration on the inverse
    454     // CFG from OldBB to NewBB. These blocks are all the blocks that may be
    455     // executed between the execution of NewBB and OldBB. Hoisting an expression
    456     // from OldBB into NewBB has to be safe on all execution paths.
    457     for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
    458       const BasicBlock *BB = *I;
    459       if (BB == NewBB) {
    460         // Stop traversal when reaching HoistPt.
    461         I.skipChildren();
    462         continue;
    463       }
    464 
    465       if (hasEHhelper(BB, OldBB, NBBsOnAllPaths))
    466         return true;
    467 
    468       // Check that we do not move a store past loads.
    469       if (hasMemoryUse(NewPt, Def, BB))
    470         return true;
    471 
    472       // -1 is unlimited number of blocks on all paths.
    473       if (NBBsOnAllPaths != -1)
    474         --NBBsOnAllPaths;
    475 
    476       ++I;
    477     }
    478 
    479     return false;
    480   }
    481 
    482   // Return true when there are exception handling between HoistPt and BB.
    483   // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
    484   // return true when the counter NBBsOnAllPaths reaches 0, except when it is
    485   // initialized to -1 which is unlimited.
    486   bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *SrcBB,
    487                    int &NBBsOnAllPaths) {
    488     assert(DT->dominates(HoistPt, SrcBB) && "Invalid path");
    489 
    490     // Walk all basic blocks reachable in depth-first iteration on
    491     // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
    492     // blocks that may be executed between the execution of NewHoistPt and
    493     // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
    494     // on all execution paths.
    495     for (auto I = idf_begin(SrcBB), E = idf_end(SrcBB); I != E;) {
    496       const BasicBlock *BB = *I;
    497       if (BB == HoistPt) {
    498         // Stop traversal when reaching NewHoistPt.
    499         I.skipChildren();
    500         continue;
    501       }
    502 
    503       if (hasEHhelper(BB, SrcBB, NBBsOnAllPaths))
    504         return true;
    505 
    506       // -1 is unlimited number of blocks on all paths.
    507       if (NBBsOnAllPaths != -1)
    508         --NBBsOnAllPaths;
    509 
    510       ++I;
    511     }
    512 
    513     return false;
    514   }
    515 
    516   // Return true when it is safe to hoist a memory load or store U from OldPt
    517   // to NewPt.
    518   bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
    519                        MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) {
    520     // In place hoisting is safe.
    521     if (NewPt == OldPt)
    522       return true;
    523 
    524     const BasicBlock *NewBB = NewPt->getParent();
    525     const BasicBlock *OldBB = OldPt->getParent();
    526     const BasicBlock *UBB = U->getBlock();
    527 
    528     // Check for dependences on the Memory SSA.
    529     MemoryAccess *D = U->getDefiningAccess();
    530     BasicBlock *DBB = D->getBlock();
    531     if (DT->properlyDominates(NewBB, DBB))
    532       // Cannot move the load or store to NewBB above its definition in DBB.
    533       return false;
    534 
    535     if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
    536       if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
    537         if (!firstInBB(UD->getMemoryInst(), NewPt))
    538           // Cannot move the load or store to NewPt above its definition in D.
    539           return false;
    540 
    541     // Check for unsafe hoistings due to side effects.
    542     if (K == InsKind::Store) {
    543       if (hasEHOrLoadsOnPath(NewPt, dyn_cast<MemoryDef>(U), NBBsOnAllPaths))
    544         return false;
    545     } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
    546       return false;
    547 
    548     if (UBB == NewBB) {
    549       if (DT->properlyDominates(DBB, NewBB))
    550         return true;
    551       assert(UBB == DBB);
    552       assert(MSSA->locallyDominates(D, U));
    553     }
    554 
    555     // No side effects: it is safe to hoist.
    556     return true;
    557   }
    558 
    559   // Return true when it is safe to hoist scalar instructions from all blocks in
    560   // WL to HoistBB.
    561   bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB,
    562                          int &NBBsOnAllPaths) {
    563     return !hasEHOnPath(HoistBB, BB, NBBsOnAllPaths);
    564   }
    565 
    566   // In the inverse CFG, the dominance frontier of basic block (BB) is the
    567   // point where ANTIC needs to be computed for instructions which are going
    568   // to be hoisted. Since this point does not change during gvn-hoist,
    569   // we compute it only once (on demand).
    570   // The ides is inspired from:
    571   // "Partial Redundancy Elimination in SSA Form"
    572   // ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU and FRED CHOW
    573   // They use similar idea in the forward graph to find fully redundant and
    574   // partially redundant expressions, here it is used in the inverse graph to
    575   // find fully anticipable instructions at merge point (post-dominator in
    576   // the inverse CFG).
    577   // Returns the edge via which an instruction in BB will get the values from.
    578 
    579   // Returns true when the values are flowing out to each edge.
    580   bool valueAnticipable(CHIArgs C, TerminatorInst *TI) const {
    581     if (TI->getNumSuccessors() > (unsigned)size(C))
    582       return false; // Not enough args in this CHI.
    583 
    584     for (auto CHI : C) {
    585       BasicBlock *Dest = CHI.Dest;
    586       // Find if all the edges have values flowing out of BB.
    587       bool Found = llvm::any_of(TI->successors(), [Dest](const BasicBlock *BB) {
    588           return BB == Dest; });
    589       if (!Found)
    590         return false;
    591     }
    592     return true;
    593   }
    594 
    595   // Check if it is safe to hoist values tracked by CHI in the range
    596   // [Begin, End) and accumulate them in Safe.
    597   void checkSafety(CHIArgs C, BasicBlock *BB, InsKind K,
    598                    SmallVectorImpl<CHIArg> &Safe) {
    599     int NumBBsOnAllPaths = MaxNumberOfBBSInPath;
    600     for (auto CHI : C) {
    601       Instruction *Insn = CHI.I;
    602       if (!Insn) // No instruction was inserted in this CHI.
    603         continue;
    604       if (K == InsKind::Scalar) {
    605         if (safeToHoistScalar(BB, Insn->getParent(), NumBBsOnAllPaths))
    606           Safe.push_back(CHI);
    607       } else {
    608         MemoryUseOrDef *UD = MSSA->getMemoryAccess(Insn);
    609         if (safeToHoistLdSt(BB->getTerminator(), Insn, UD, K, NumBBsOnAllPaths))
    610           Safe.push_back(CHI);
    611       }
    612     }
    613   }
    614 
    615   using RenameStackType = DenseMap<VNType, SmallVector<Instruction *, 2>>;
    616 
    617   // Push all the VNs corresponding to BB into RenameStack.
    618   void fillRenameStack(BasicBlock *BB, InValuesType &ValueBBs,
    619                        RenameStackType &RenameStack) {
    620     auto it1 = ValueBBs.find(BB);
    621     if (it1 != ValueBBs.end()) {
    622       // Iterate in reverse order to keep lower ranked values on the top.
    623       for (std::pair<VNType, Instruction *> &VI : reverse(it1->second)) {
    624         // Get the value of instruction I
    625         LLVM_DEBUG(dbgs() << "\nPushing on stack: " << *VI.second);
    626         RenameStack[VI.first].push_back(VI.second);
    627       }
    628     }
    629   }
    630 
    631   void fillChiArgs(BasicBlock *BB, OutValuesType &CHIBBs,
    632                    RenameStackType &RenameStack) {
    633     // For each *predecessor* (because Post-DOM) of BB check if it has a CHI
    634     for (auto Pred : predecessors(BB)) {
    635       auto P = CHIBBs.find(Pred);
    636       if (P == CHIBBs.end()) {
    637         continue;
    638       }
    639       LLVM_DEBUG(dbgs() << "\nLooking at CHIs in: " << Pred->getName(););
    640       // A CHI is found (BB -> Pred is an edge in the CFG)
    641       // Pop the stack until Top(V) = Ve.
    642       auto &VCHI = P->second;
    643       for (auto It = VCHI.begin(), E = VCHI.end(); It != E;) {
    644         CHIArg &C = *It;
    645         if (!C.Dest) {
    646           auto si = RenameStack.find(C.VN);
    647           // The Basic Block where CHI is must dominate the value we want to
    648           // track in a CHI. In the PDom walk, there can be values in the
    649           // stack which are not control dependent e.g., nested loop.
    650           if (si != RenameStack.end() && si->second.size() &&
    651               DT->properlyDominates(Pred, si->second.back()->getParent())) {
    652             C.Dest = BB;                     // Assign the edge
    653             C.I = si->second.pop_back_val(); // Assign the argument
    654             LLVM_DEBUG(dbgs()
    655                        << "\nCHI Inserted in BB: " << C.Dest->getName() << *C.I
    656                        << ", VN: " << C.VN.first << ", " << C.VN.second);
    657           }
    658           // Move to next CHI of a different value
    659           It = std::find_if(It, VCHI.end(),
    660                             [It](CHIArg &A) { return A != *It; });
    661         } else
    662           ++It;
    663       }
    664     }
    665   }
    666 
    667   // Walk the post-dominator tree top-down and use a stack for each value to
    668   // store the last value you see. When you hit a CHI from a given edge, the
    669   // value to use as the argument is at the top of the stack, add the value to
    670   // CHI and pop.
    671   void insertCHI(InValuesType &ValueBBs, OutValuesType &CHIBBs) {
    672     auto Root = PDT->getNode(nullptr);
    673     if (!Root)
    674       return;
    675     // Depth first walk on PDom tree to fill the CHIargs at each PDF.
    676     RenameStackType RenameStack;
    677     for (auto Node : depth_first(Root)) {
    678       BasicBlock *BB = Node->getBlock();
    679       if (!BB)
    680         continue;
    681 
    682       // Collect all values in BB and push to stack.
    683       fillRenameStack(BB, ValueBBs, RenameStack);
    684 
    685       // Fill outgoing values in each CHI corresponding to BB.
    686       fillChiArgs(BB, CHIBBs, RenameStack);
    687     }
    688   }
    689 
    690   // Walk all the CHI-nodes to find ones which have a empty-entry and remove
    691   // them Then collect all the instructions which are safe to hoist and see if
    692   // they form a list of anticipable values. OutValues contains CHIs
    693   // corresponding to each basic block.
    694   void findHoistableCandidates(OutValuesType &CHIBBs, InsKind K,
    695                                HoistingPointList &HPL) {
    696     auto cmpVN = [](const CHIArg &A, const CHIArg &B) { return A.VN < B.VN; };
    697 
    698     // CHIArgs now have the outgoing values, so check for anticipability and
    699     // accumulate hoistable candidates in HPL.
    700     for (std::pair<BasicBlock *, SmallVector<CHIArg, 2>> &A : CHIBBs) {
    701       BasicBlock *BB = A.first;
    702       SmallVectorImpl<CHIArg> &CHIs = A.second;
    703       // Vector of PHIs contains PHIs for different instructions.
    704       // Sort the args according to their VNs, such that identical
    705       // instructions are together.
    706       std::stable_sort(CHIs.begin(), CHIs.end(), cmpVN);
    707       auto TI = BB->getTerminator();
    708       auto B = CHIs.begin();
    709       // [PreIt, PHIIt) form a range of CHIs which have identical VNs.
    710       auto PHIIt = std::find_if(CHIs.begin(), CHIs.end(),
    711                                  [B](CHIArg &A) { return A != *B; });
    712       auto PrevIt = CHIs.begin();
    713       while (PrevIt != PHIIt) {
    714         // Collect values which satisfy safety checks.
    715         SmallVector<CHIArg, 2> Safe;
    716         // We check for safety first because there might be multiple values in
    717         // the same path, some of which are not safe to be hoisted, but overall
    718         // each edge has at least one value which can be hoisted, making the
    719         // value anticipable along that path.
    720         checkSafety(make_range(PrevIt, PHIIt), BB, K, Safe);
    721 
    722         // List of safe values should be anticipable at TI.
    723         if (valueAnticipable(make_range(Safe.begin(), Safe.end()), TI)) {
    724           HPL.push_back({BB, SmallVecInsn()});
    725           SmallVecInsn &V = HPL.back().second;
    726           for (auto B : Safe)
    727             V.push_back(B.I);
    728         }
    729 
    730         // Check other VNs
    731         PrevIt = PHIIt;
    732         PHIIt = std::find_if(PrevIt, CHIs.end(),
    733                              [PrevIt](CHIArg &A) { return A != *PrevIt; });
    734       }
    735     }
    736   }
    737 
    738   // Compute insertion points for each values which can be fully anticipated at
    739   // a dominator. HPL contains all such values.
    740   void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
    741                               InsKind K) {
    742     // Sort VNs based on their rankings
    743     std::vector<VNType> Ranks;
    744     for (const auto &Entry : Map) {
    745       Ranks.push_back(Entry.first);
    746     }
    747 
    748     // TODO: Remove fully-redundant expressions.
    749     // Get instruction from the Map, assume that all the Instructions
    750     // with same VNs have same rank (this is an approximation).
    751     llvm::sort(Ranks.begin(), Ranks.end(),
    752                [this, &Map](const VNType &r1, const VNType &r2) {
    753                  return (rank(*Map.lookup(r1).begin()) <
    754                          rank(*Map.lookup(r2).begin()));
    755                });
    756 
    757     // - Sort VNs according to their rank, and start with lowest ranked VN
    758     // - Take a VN and for each instruction with same VN
    759     //   - Find the dominance frontier in the inverse graph (PDF)
    760     //   - Insert the chi-node at PDF
    761     // - Remove the chi-nodes with missing entries
    762     // - Remove values from CHI-nodes which do not truly flow out, e.g.,
    763     //   modified along the path.
    764     // - Collect the remaining values that are still anticipable
    765     SmallVector<BasicBlock *, 2> IDFBlocks;
    766     ReverseIDFCalculator IDFs(*PDT);
    767     OutValuesType OutValue;
    768     InValuesType InValue;
    769     for (const auto &R : Ranks) {
    770       const SmallVecInsn &V = Map.lookup(R);
    771       if (V.size() < 2)
    772         continue;
    773       const VNType &VN = R;
    774       SmallPtrSet<BasicBlock *, 2> VNBlocks;
    775       for (auto &I : V) {
    776         BasicBlock *BBI = I->getParent();
    777         if (!hasEH(BBI))
    778           VNBlocks.insert(BBI);
    779       }
    780       // Compute the Post Dominance Frontiers of each basic block
    781       // The dominance frontier of a live block X in the reverse
    782       // control graph is the set of blocks upon which X is control
    783       // dependent. The following sequence computes the set of blocks
    784       // which currently have dead terminators that are control
    785       // dependence sources of a block which is in NewLiveBlocks.
    786       IDFs.setDefiningBlocks(VNBlocks);
    787       IDFs.calculate(IDFBlocks);
    788 
    789       // Make a map of BB vs instructions to be hoisted.
    790       for (unsigned i = 0; i < V.size(); ++i) {
    791         InValue[V[i]->getParent()].push_back(std::make_pair(VN, V[i]));
    792       }
    793       // Insert empty CHI node for this VN. This is used to factor out
    794       // basic blocks where the ANTIC can potentially change.
    795       for (auto IDFB : IDFBlocks) { // TODO: Prune out useless CHI insertions.
    796         for (unsigned i = 0; i < V.size(); ++i) {
    797           CHIArg C = {VN, nullptr, nullptr};
    798            // Ignore spurious PDFs.
    799           if (DT->properlyDominates(IDFB, V[i]->getParent())) {
    800             OutValue[IDFB].push_back(C);
    801             LLVM_DEBUG(dbgs() << "\nInsertion a CHI for BB: " << IDFB->getName()
    802                               << ", for Insn: " << *V[i]);
    803           }
    804         }
    805       }
    806     }
    807 
    808     // Insert CHI args at each PDF to iterate on factored graph of
    809     // control dependence.
    810     insertCHI(InValue, OutValue);
    811     // Using the CHI args inserted at each PDF, find fully anticipable values.
    812     findHoistableCandidates(OutValue, K, HPL);
    813   }
    814 
    815   // Return true when all operands of Instr are available at insertion point
    816   // HoistPt. When limiting the number of hoisted expressions, one could hoist
    817   // a load without hoisting its access function. So before hoisting any
    818   // expression, make sure that all its operands are available at insert point.
    819   bool allOperandsAvailable(const Instruction *I,
    820                             const BasicBlock *HoistPt) const {
    821     for (const Use &Op : I->operands())
    822       if (const auto *Inst = dyn_cast<Instruction>(&Op))
    823         if (!DT->dominates(Inst->getParent(), HoistPt))
    824           return false;
    825 
    826     return true;
    827   }
    828 
    829   // Same as allOperandsAvailable with recursive check for GEP operands.
    830   bool allGepOperandsAvailable(const Instruction *I,
    831                                const BasicBlock *HoistPt) const {
    832     for (const Use &Op : I->operands())
    833       if (const auto *Inst = dyn_cast<Instruction>(&Op))
    834         if (!DT->dominates(Inst->getParent(), HoistPt)) {
    835           if (const GetElementPtrInst *GepOp =
    836                   dyn_cast<GetElementPtrInst>(Inst)) {
    837             if (!allGepOperandsAvailable(GepOp, HoistPt))
    838               return false;
    839             // Gep is available if all operands of GepOp are available.
    840           } else {
    841             // Gep is not available if it has operands other than GEPs that are
    842             // defined in blocks not dominating HoistPt.
    843             return false;
    844           }
    845         }
    846     return true;
    847   }
    848 
    849   // Make all operands of the GEP available.
    850   void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
    851                          const SmallVecInsn &InstructionsToHoist,
    852                          Instruction *Gep) const {
    853     assert(allGepOperandsAvailable(Gep, HoistPt) &&
    854            "GEP operands not available");
    855 
    856     Instruction *ClonedGep = Gep->clone();
    857     for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
    858       if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
    859         // Check whether the operand is already available.
    860         if (DT->dominates(Op->getParent(), HoistPt))
    861           continue;
    862 
    863         // As a GEP can refer to other GEPs, recursively make all the operands
    864         // of this GEP available at HoistPt.
    865         if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
    866           makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
    867       }
    868 
    869     // Copy Gep and replace its uses in Repl with ClonedGep.
    870     ClonedGep->insertBefore(HoistPt->getTerminator());
    871 
    872     // Conservatively discard any optimization hints, they may differ on the
    873     // other paths.
    874     ClonedGep->dropUnknownNonDebugMetadata();
    875 
    876     // If we have optimization hints which agree with each other along different
    877     // paths, preserve them.
    878     for (const Instruction *OtherInst : InstructionsToHoist) {
    879       const GetElementPtrInst *OtherGep;
    880       if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
    881         OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
    882       else
    883         OtherGep = cast<GetElementPtrInst>(
    884             cast<StoreInst>(OtherInst)->getPointerOperand());
    885       ClonedGep->andIRFlags(OtherGep);
    886     }
    887 
    888     // Replace uses of Gep with ClonedGep in Repl.
    889     Repl->replaceUsesOfWith(Gep, ClonedGep);
    890   }
    891 
    892   void updateAlignment(Instruction *I, Instruction *Repl) {
    893     if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
    894       ReplacementLoad->setAlignment(
    895           std::min(ReplacementLoad->getAlignment(),
    896                    cast<LoadInst>(I)->getAlignment()));
    897       ++NumLoadsRemoved;
    898     } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
    899       ReplacementStore->setAlignment(
    900           std::min(ReplacementStore->getAlignment(),
    901                    cast<StoreInst>(I)->getAlignment()));
    902       ++NumStoresRemoved;
    903     } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
    904       ReplacementAlloca->setAlignment(
    905           std::max(ReplacementAlloca->getAlignment(),
    906                    cast<AllocaInst>(I)->getAlignment()));
    907     } else if (isa<CallInst>(Repl)) {
    908       ++NumCallsRemoved;
    909     }
    910   }
    911 
    912   // Remove all the instructions in Candidates and replace their usage with Repl.
    913   // Returns the number of instructions removed.
    914   unsigned rauw(const SmallVecInsn &Candidates, Instruction *Repl,
    915                 MemoryUseOrDef *NewMemAcc) {
    916     unsigned NR = 0;
    917     for (Instruction *I : Candidates) {
    918       if (I != Repl) {
    919         ++NR;
    920         updateAlignment(I, Repl);
    921         if (NewMemAcc) {
    922           // Update the uses of the old MSSA access with NewMemAcc.
    923           MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
    924           OldMA->replaceAllUsesWith(NewMemAcc);
    925           MSSAUpdater->removeMemoryAccess(OldMA);
    926         }
    927 
    928         Repl->andIRFlags(I);
    929         combineKnownMetadata(Repl, I);
    930         I->replaceAllUsesWith(Repl);
    931         // Also invalidate the Alias Analysis cache.
    932         MD->removeInstruction(I);
    933         I->eraseFromParent();
    934       }
    935     }
    936     return NR;
    937   }
    938 
    939   // Replace all Memory PHI usage with NewMemAcc.
    940   void raMPHIuw(MemoryUseOrDef *NewMemAcc) {
    941     SmallPtrSet<MemoryPhi *, 4> UsePhis;
    942     for (User *U : NewMemAcc->users())
    943       if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
    944         UsePhis.insert(Phi);
    945 
    946     for (MemoryPhi *Phi : UsePhis) {
    947       auto In = Phi->incoming_values();
    948       if (llvm::all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
    949         Phi->replaceAllUsesWith(NewMemAcc);
    950         MSSAUpdater->removeMemoryAccess(Phi);
    951       }
    952     }
    953   }
    954 
    955   // Remove all other instructions and replace them with Repl.
    956   unsigned removeAndReplace(const SmallVecInsn &Candidates, Instruction *Repl,
    957                             BasicBlock *DestBB, bool MoveAccess) {
    958     MemoryUseOrDef *NewMemAcc = MSSA->getMemoryAccess(Repl);
    959     if (MoveAccess && NewMemAcc) {
    960         // The definition of this ld/st will not change: ld/st hoisting is
    961         // legal when the ld/st is not moved past its current definition.
    962         MSSAUpdater->moveToPlace(NewMemAcc, DestBB, MemorySSA::End);
    963     }
    964 
    965     // Replace all other instructions with Repl with memory access NewMemAcc.
    966     unsigned NR = rauw(Candidates, Repl, NewMemAcc);
    967 
    968     // Remove MemorySSA phi nodes with the same arguments.
    969     if (NewMemAcc)
    970       raMPHIuw(NewMemAcc);
    971     return NR;
    972   }
    973 
    974   // In the case Repl is a load or a store, we make all their GEPs
    975   // available: GEPs are not hoisted by default to avoid the address
    976   // computations to be hoisted without the associated load or store.
    977   bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
    978                                 const SmallVecInsn &InstructionsToHoist) const {
    979     // Check whether the GEP of a ld/st can be synthesized at HoistPt.
    980     GetElementPtrInst *Gep = nullptr;
    981     Instruction *Val = nullptr;
    982     if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
    983       Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
    984     } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
    985       Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
    986       Val = dyn_cast<Instruction>(St->getValueOperand());
    987       // Check that the stored value is available.
    988       if (Val) {
    989         if (isa<GetElementPtrInst>(Val)) {
    990           // Check whether we can compute the GEP at HoistPt.
    991           if (!allGepOperandsAvailable(Val, HoistPt))
    992             return false;
    993         } else if (!DT->dominates(Val->getParent(), HoistPt))
    994           return false;
    995       }
    996     }
    997 
    998     // Check whether we can compute the Gep at HoistPt.
    999     if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
   1000       return false;
   1001 
   1002     makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
   1003 
   1004     if (Val && isa<GetElementPtrInst>(Val))
   1005       makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
   1006 
   1007     return true;
   1008   }
   1009 
   1010   std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) {
   1011     unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
   1012     for (const HoistingPointInfo &HP : HPL) {
   1013       // Find out whether we already have one of the instructions in HoistPt,
   1014       // in which case we do not have to move it.
   1015       BasicBlock *DestBB = HP.first;
   1016       const SmallVecInsn &InstructionsToHoist = HP.second;
   1017       Instruction *Repl = nullptr;
   1018       for (Instruction *I : InstructionsToHoist)
   1019         if (I->getParent() == DestBB)
   1020           // If there are two instructions in HoistPt to be hoisted in place:
   1021           // update Repl to be the first one, such that we can rename the uses
   1022           // of the second based on the first.
   1023           if (!Repl || firstInBB(I, Repl))
   1024             Repl = I;
   1025 
   1026       // Keep track of whether we moved the instruction so we know whether we
   1027       // should move the MemoryAccess.
   1028       bool MoveAccess = true;
   1029       if (Repl) {
   1030         // Repl is already in HoistPt: it remains in place.
   1031         assert(allOperandsAvailable(Repl, DestBB) &&
   1032                "instruction depends on operands that are not available");
   1033         MoveAccess = false;
   1034       } else {
   1035         // When we do not find Repl in HoistPt, select the first in the list
   1036         // and move it to HoistPt.
   1037         Repl = InstructionsToHoist.front();
   1038 
   1039         // We can move Repl in HoistPt only when all operands are available.
   1040         // The order in which hoistings are done may influence the availability
   1041         // of operands.
   1042         if (!allOperandsAvailable(Repl, DestBB)) {
   1043           // When HoistingGeps there is nothing more we can do to make the
   1044           // operands available: just continue.
   1045           if (HoistingGeps)
   1046             continue;
   1047 
   1048           // When not HoistingGeps we need to copy the GEPs.
   1049           if (!makeGepOperandsAvailable(Repl, DestBB, InstructionsToHoist))
   1050             continue;
   1051         }
   1052 
   1053         // Move the instruction at the end of HoistPt.
   1054         Instruction *Last = DestBB->getTerminator();
   1055         MD->removeInstruction(Repl);
   1056         Repl->moveBefore(Last);
   1057 
   1058         DFSNumber[Repl] = DFSNumber[Last]++;
   1059       }
   1060 
   1061       NR += removeAndReplace(InstructionsToHoist, Repl, DestBB, MoveAccess);
   1062 
   1063       if (isa<LoadInst>(Repl))
   1064         ++NL;
   1065       else if (isa<StoreInst>(Repl))
   1066         ++NS;
   1067       else if (isa<CallInst>(Repl))
   1068         ++NC;
   1069       else // Scalar
   1070         ++NI;
   1071     }
   1072 
   1073     NumHoisted += NL + NS + NC + NI;
   1074     NumRemoved += NR;
   1075     NumLoadsHoisted += NL;
   1076     NumStoresHoisted += NS;
   1077     NumCallsHoisted += NC;
   1078     return {NI, NL + NC + NS};
   1079   }
   1080 
   1081   // Hoist all expressions. Returns Number of scalars hoisted
   1082   // and number of non-scalars hoisted.
   1083   std::pair<unsigned, unsigned> hoistExpressions(Function &F) {
   1084     InsnInfo II;
   1085     LoadInfo LI;
   1086     StoreInfo SI;
   1087     CallInfo CI;
   1088     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
   1089       int InstructionNb = 0;
   1090       for (Instruction &I1 : *BB) {
   1091         // If I1 cannot guarantee progress, subsequent instructions
   1092         // in BB cannot be hoisted anyways.
   1093         if (!isGuaranteedToTransferExecutionToSuccessor(&I1)) {
   1094           HoistBarrier.insert(BB);
   1095           break;
   1096         }
   1097         // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
   1098         // deeper may increase the register pressure and compilation time.
   1099         if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
   1100           break;
   1101 
   1102         // Do not value number terminator instructions.
   1103         if (isa<TerminatorInst>(&I1))
   1104           break;
   1105 
   1106         if (auto *Load = dyn_cast<LoadInst>(&I1))
   1107           LI.insert(Load, VN);
   1108         else if (auto *Store = dyn_cast<StoreInst>(&I1))
   1109           SI.insert(Store, VN);
   1110         else if (auto *Call = dyn_cast<CallInst>(&I1)) {
   1111           if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
   1112             if (isa<DbgInfoIntrinsic>(Intr) ||
   1113                 Intr->getIntrinsicID() == Intrinsic::assume ||
   1114                 Intr->getIntrinsicID() == Intrinsic::sideeffect)
   1115               continue;
   1116           }
   1117           if (Call->mayHaveSideEffects())
   1118             break;
   1119 
   1120           if (Call->isConvergent())
   1121             break;
   1122 
   1123           CI.insert(Call, VN);
   1124         } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
   1125           // Do not hoist scalars past calls that may write to memory because
   1126           // that could result in spills later. geps are handled separately.
   1127           // TODO: We can relax this for targets like AArch64 as they have more
   1128           // registers than X86.
   1129           II.insert(&I1, VN);
   1130       }
   1131     }
   1132 
   1133     HoistingPointList HPL;
   1134     computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
   1135     computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
   1136     computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
   1137     computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
   1138     computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
   1139     computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
   1140     return hoist(HPL);
   1141   }
   1142 };
   1143 
   1144 class GVNHoistLegacyPass : public FunctionPass {
   1145 public:
   1146   static char ID;
   1147 
   1148   GVNHoistLegacyPass() : FunctionPass(ID) {
   1149     initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
   1150   }
   1151 
   1152   bool runOnFunction(Function &F) override {
   1153     if (skipFunction(F))
   1154       return false;
   1155     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1156     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
   1157     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
   1158     auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
   1159     auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
   1160 
   1161     GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
   1162     return G.run(F);
   1163   }
   1164 
   1165   void getAnalysisUsage(AnalysisUsage &AU) const override {
   1166     AU.addRequired<DominatorTreeWrapperPass>();
   1167     AU.addRequired<PostDominatorTreeWrapperPass>();
   1168     AU.addRequired<AAResultsWrapperPass>();
   1169     AU.addRequired<MemoryDependenceWrapperPass>();
   1170     AU.addRequired<MemorySSAWrapperPass>();
   1171     AU.addPreserved<DominatorTreeWrapperPass>();
   1172     AU.addPreserved<MemorySSAWrapperPass>();
   1173     AU.addPreserved<GlobalsAAWrapperPass>();
   1174   }
   1175 };
   1176 
   1177 } // end namespace llvm
   1178 
   1179 PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
   1180   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
   1181   PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
   1182   AliasAnalysis &AA = AM.getResult<AAManager>(F);
   1183   MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
   1184   MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
   1185   GVNHoist G(&DT, &PDT, &AA, &MD, &MSSA);
   1186   if (!G.run(F))
   1187     return PreservedAnalyses::all();
   1188 
   1189   PreservedAnalyses PA;
   1190   PA.preserve<DominatorTreeAnalysis>();
   1191   PA.preserve<MemorySSAAnalysis>();
   1192   PA.preserve<GlobalsAA>();
   1193   return PA;
   1194 }
   1195 
   1196 char GVNHoistLegacyPass::ID = 0;
   1197 
   1198 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
   1199                       "Early GVN Hoisting of Expressions", false, false)
   1200 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
   1201 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
   1202 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   1203 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
   1204 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
   1205 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
   1206                     "Early GVN Hoisting of Expressions", false, false)
   1207 
   1208 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }
   1209