Home | History | Annotate | Download | only in Scalar
      1 //===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass transforms loops that contain branches on loop-invariant conditions
     11 // to multiple loops.  For example, it turns the left into the right code:
     12 //
     13 //  for (...)                  if (lic)
     14 //    A                          for (...)
     15 //    if (lic)                     A; B; C
     16 //      B                      else
     17 //    C                          for (...)
     18 //                                 A; C
     19 //
     20 // This can increase the size of the code exponentially (doubling it every time
     21 // a loop is unswitched) so we only unswitch if the resultant code will be
     22 // smaller than a threshold.
     23 //
     24 // This pass expects LICM to be run before it to hoist invariant conditions out
     25 // of the loop, to make the unswitching opportunity obvious.
     26 //
     27 //===----------------------------------------------------------------------===//
     28 
     29 #include "llvm/ADT/DenseMap.h"
     30 #include "llvm/ADT/SmallPtrSet.h"
     31 #include "llvm/ADT/SmallPtrSet.h"
     32 #include "llvm/ADT/SmallVector.h"
     33 #include "llvm/ADT/Statistic.h"
     34 #include "llvm/Analysis/AssumptionCache.h"
     35 #include "llvm/Analysis/CodeMetrics.h"
     36 #include "llvm/Analysis/DivergenceAnalysis.h"
     37 #include "llvm/Analysis/InstructionSimplify.h"
     38 #include "llvm/Analysis/LoopInfo.h"
     39 #include "llvm/Analysis/LoopPass.h"
     40 #include "llvm/Analysis/ScalarEvolution.h"
     41 #include "llvm/Analysis/TargetTransformInfo.h"
     42 #include "llvm/Transforms/Utils/Local.h"
     43 #include "llvm/IR/Attributes.h"
     44 #include "llvm/IR/BasicBlock.h"
     45 #include "llvm/IR/CallSite.h"
     46 #include "llvm/IR/Constant.h"
     47 #include "llvm/IR/Constants.h"
     48 #include "llvm/IR/DerivedTypes.h"
     49 #include "llvm/IR/Dominators.h"
     50 #include "llvm/IR/Function.h"
     51 #include "llvm/IR/IRBuilder.h"
     52 #include "llvm/IR/InstrTypes.h"
     53 #include "llvm/IR/Instruction.h"
     54 #include "llvm/IR/Instructions.h"
     55 #include "llvm/IR/IntrinsicInst.h"
     56 #include "llvm/IR/Intrinsics.h"
     57 #include "llvm/IR/Module.h"
     58 #include "llvm/IR/Type.h"
     59 #include "llvm/IR/User.h"
     60 #include "llvm/IR/Value.h"
     61 #include "llvm/IR/ValueHandle.h"
     62 #include "llvm/Pass.h"
     63 #include "llvm/Support/Casting.h"
     64 #include "llvm/Support/CommandLine.h"
     65 #include "llvm/Support/Debug.h"
     66 #include "llvm/Support/raw_ostream.h"
     67 #include "llvm/Transforms/Scalar.h"
     68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     69 #include "llvm/Transforms/Utils/Cloning.h"
     70 #include "llvm/Transforms/Utils/LoopUtils.h"
     71 #include "llvm/Transforms/Utils/ValueMapper.h"
     72 #include <algorithm>
     73 #include <cassert>
     74 #include <map>
     75 #include <set>
     76 #include <tuple>
     77 #include <utility>
     78 #include <vector>
     79 
     80 using namespace llvm;
     81 
     82 #define DEBUG_TYPE "loop-unswitch"
     83 
     84 STATISTIC(NumBranches, "Number of branches unswitched");
     85 STATISTIC(NumSwitches, "Number of switches unswitched");
     86 STATISTIC(NumGuards,   "Number of guards unswitched");
     87 STATISTIC(NumSelects , "Number of selects unswitched");
     88 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
     89 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
     90 STATISTIC(TotalInsts,  "Total number of instructions analyzed");
     91 
     92 // The specific value of 100 here was chosen based only on intuition and a
     93 // few specific examples.
     94 static cl::opt<unsigned>
     95 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
     96           cl::init(100), cl::Hidden);
     97 
     98 namespace {
     99 
    100   class LUAnalysisCache {
    101     using UnswitchedValsMap =
    102         DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
    103     using UnswitchedValsIt = UnswitchedValsMap::iterator;
    104 
    105     struct LoopProperties {
    106       unsigned CanBeUnswitchedCount;
    107       unsigned WasUnswitchedCount;
    108       unsigned SizeEstimation;
    109       UnswitchedValsMap UnswitchedVals;
    110     };
    111 
    112     // Here we use std::map instead of DenseMap, since we need to keep valid
    113     // LoopProperties pointer for current loop for better performance.
    114     using LoopPropsMap = std::map<const Loop *, LoopProperties>;
    115     using LoopPropsMapIt = LoopPropsMap::iterator;
    116 
    117     LoopPropsMap LoopsProperties;
    118     UnswitchedValsMap *CurLoopInstructions = nullptr;
    119     LoopProperties *CurrentLoopProperties = nullptr;
    120 
    121     // A loop unswitching with an estimated cost above this threshold
    122     // is not performed. MaxSize is turned into unswitching quota for
    123     // the current loop, and reduced correspondingly, though note that
    124     // the quota is returned by releaseMemory() when the loop has been
    125     // processed, so that MaxSize will return to its previous
    126     // value. So in most cases MaxSize will equal the Threshold flag
    127     // when a new loop is processed. An exception to that is that
    128     // MaxSize will have a smaller value while processing nested loops
    129     // that were introduced due to loop unswitching of an outer loop.
    130     //
    131     // FIXME: The way that MaxSize works is subtle and depends on the
    132     // pass manager processing loops and calling releaseMemory() in a
    133     // specific order. It would be good to find a more straightforward
    134     // way of doing what MaxSize does.
    135     unsigned MaxSize;
    136 
    137   public:
    138     LUAnalysisCache() : MaxSize(Threshold) {}
    139 
    140     // Analyze loop. Check its size, calculate is it possible to unswitch
    141     // it. Returns true if we can unswitch this loop.
    142     bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
    143                    AssumptionCache *AC);
    144 
    145     // Clean all data related to given loop.
    146     void forgetLoop(const Loop *L);
    147 
    148     // Mark case value as unswitched.
    149     // Since SI instruction can be partly unswitched, in order to avoid
    150     // extra unswitching in cloned loops keep track all unswitched values.
    151     void setUnswitched(const SwitchInst *SI, const Value *V);
    152 
    153     // Check was this case value unswitched before or not.
    154     bool isUnswitched(const SwitchInst *SI, const Value *V);
    155 
    156     // Returns true if another unswitching could be done within the cost
    157     // threshold.
    158     bool CostAllowsUnswitching();
    159 
    160     // Clone all loop-unswitch related loop properties.
    161     // Redistribute unswitching quotas.
    162     // Note, that new loop data is stored inside the VMap.
    163     void cloneData(const Loop *NewLoop, const Loop *OldLoop,
    164                    const ValueToValueMapTy &VMap);
    165   };
    166 
    167   class LoopUnswitch : public LoopPass {
    168     LoopInfo *LI;  // Loop information
    169     LPPassManager *LPM;
    170     AssumptionCache *AC;
    171 
    172     // Used to check if second loop needs processing after
    173     // RewriteLoopBodyWithConditionConstant rewrites first loop.
    174     std::vector<Loop*> LoopProcessWorklist;
    175 
    176     LUAnalysisCache BranchesInfo;
    177 
    178     bool OptimizeForSize;
    179     bool redoLoop = false;
    180 
    181     Loop *currentLoop = nullptr;
    182     DominatorTree *DT = nullptr;
    183     BasicBlock *loopHeader = nullptr;
    184     BasicBlock *loopPreheader = nullptr;
    185 
    186     bool SanitizeMemory;
    187     LoopSafetyInfo SafetyInfo;
    188 
    189     // LoopBlocks contains all of the basic blocks of the loop, including the
    190     // preheader of the loop, the body of the loop, and the exit blocks of the
    191     // loop, in that order.
    192     std::vector<BasicBlock*> LoopBlocks;
    193     // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
    194     std::vector<BasicBlock*> NewBlocks;
    195 
    196     bool hasBranchDivergence;
    197 
    198   public:
    199     static char ID; // Pass ID, replacement for typeid
    200 
    201     explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false)
    202         : LoopPass(ID), OptimizeForSize(Os),
    203           hasBranchDivergence(hasBranchDivergence) {
    204         initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
    205     }
    206 
    207     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
    208     bool processCurrentLoop();
    209     bool isUnreachableDueToPreviousUnswitching(BasicBlock *);
    210 
    211     /// This transformation requires natural loop information & requires that
    212     /// loop preheaders be inserted into the CFG.
    213     ///
    214     void getAnalysisUsage(AnalysisUsage &AU) const override {
    215       AU.addRequired<AssumptionCacheTracker>();
    216       AU.addRequired<TargetTransformInfoWrapperPass>();
    217       if (hasBranchDivergence)
    218         AU.addRequired<DivergenceAnalysis>();
    219       getLoopAnalysisUsage(AU);
    220     }
    221 
    222   private:
    223     void releaseMemory() override {
    224       BranchesInfo.forgetLoop(currentLoop);
    225     }
    226 
    227     void initLoopData() {
    228       loopHeader = currentLoop->getHeader();
    229       loopPreheader = currentLoop->getLoopPreheader();
    230     }
    231 
    232     /// Split all of the edges from inside the loop to their exit blocks.
    233     /// Update the appropriate Phi nodes as we do so.
    234     void SplitExitEdges(Loop *L,
    235                         const SmallVectorImpl<BasicBlock *> &ExitBlocks);
    236 
    237     bool TryTrivialLoopUnswitch(bool &Changed);
    238 
    239     bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
    240                               TerminatorInst *TI = nullptr);
    241     void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
    242                                   BasicBlock *ExitBlock, TerminatorInst *TI);
    243     void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
    244                                      TerminatorInst *TI);
    245 
    246     void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
    247                                               Constant *Val, bool isEqual);
    248 
    249     void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
    250                                         BasicBlock *TrueDest,
    251                                         BasicBlock *FalseDest,
    252                                         BranchInst *OldBranch,
    253                                         TerminatorInst *TI);
    254 
    255     void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
    256 
    257     /// Given that the Invariant is not equal to Val. Simplify instructions
    258     /// in the loop.
    259     Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
    260                                            Constant *Val);
    261   };
    262 
    263 } // end anonymous namespace
    264 
    265 // Analyze loop. Check its size, calculate is it possible to unswitch
    266 // it. Returns true if we can unswitch this loop.
    267 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
    268                                 AssumptionCache *AC) {
    269   LoopPropsMapIt PropsIt;
    270   bool Inserted;
    271   std::tie(PropsIt, Inserted) =
    272       LoopsProperties.insert(std::make_pair(L, LoopProperties()));
    273 
    274   LoopProperties &Props = PropsIt->second;
    275 
    276   if (Inserted) {
    277     // New loop.
    278 
    279     // Limit the number of instructions to avoid causing significant code
    280     // expansion, and the number of basic blocks, to avoid loops with
    281     // large numbers of branches which cause loop unswitching to go crazy.
    282     // This is a very ad-hoc heuristic.
    283 
    284     SmallPtrSet<const Value *, 32> EphValues;
    285     CodeMetrics::collectEphemeralValues(L, AC, EphValues);
    286 
    287     // FIXME: This is overly conservative because it does not take into
    288     // consideration code simplification opportunities and code that can
    289     // be shared by the resultant unswitched loops.
    290     CodeMetrics Metrics;
    291     for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
    292          ++I)
    293       Metrics.analyzeBasicBlock(*I, TTI, EphValues);
    294 
    295     Props.SizeEstimation = Metrics.NumInsts;
    296     Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
    297     Props.WasUnswitchedCount = 0;
    298     MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
    299 
    300     if (Metrics.notDuplicatable) {
    301       LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName()
    302                         << ", contents cannot be "
    303                         << "duplicated!\n");
    304       return false;
    305     }
    306   }
    307 
    308   // Be careful. This links are good only before new loop addition.
    309   CurrentLoopProperties = &Props;
    310   CurLoopInstructions = &Props.UnswitchedVals;
    311 
    312   return true;
    313 }
    314 
    315 // Clean all data related to given loop.
    316 void LUAnalysisCache::forgetLoop(const Loop *L) {
    317   LoopPropsMapIt LIt = LoopsProperties.find(L);
    318 
    319   if (LIt != LoopsProperties.end()) {
    320     LoopProperties &Props = LIt->second;
    321     MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
    322                Props.SizeEstimation;
    323     LoopsProperties.erase(LIt);
    324   }
    325 
    326   CurrentLoopProperties = nullptr;
    327   CurLoopInstructions = nullptr;
    328 }
    329 
    330 // Mark case value as unswitched.
    331 // Since SI instruction can be partly unswitched, in order to avoid
    332 // extra unswitching in cloned loops keep track all unswitched values.
    333 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
    334   (*CurLoopInstructions)[SI].insert(V);
    335 }
    336 
    337 // Check was this case value unswitched before or not.
    338 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
    339   return (*CurLoopInstructions)[SI].count(V);
    340 }
    341 
    342 bool LUAnalysisCache::CostAllowsUnswitching() {
    343   return CurrentLoopProperties->CanBeUnswitchedCount > 0;
    344 }
    345 
    346 // Clone all loop-unswitch related loop properties.
    347 // Redistribute unswitching quotas.
    348 // Note, that new loop data is stored inside the VMap.
    349 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
    350                                 const ValueToValueMapTy &VMap) {
    351   LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
    352   LoopProperties &OldLoopProps = *CurrentLoopProperties;
    353   UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
    354 
    355   // Reallocate "can-be-unswitched quota"
    356 
    357   --OldLoopProps.CanBeUnswitchedCount;
    358   ++OldLoopProps.WasUnswitchedCount;
    359   NewLoopProps.WasUnswitchedCount = 0;
    360   unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
    361   NewLoopProps.CanBeUnswitchedCount = Quota / 2;
    362   OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
    363 
    364   NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
    365 
    366   // Clone unswitched values info:
    367   // for new loop switches we clone info about values that was
    368   // already unswitched and has redundant successors.
    369   for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
    370     const SwitchInst *OldInst = I->first;
    371     Value *NewI = VMap.lookup(OldInst);
    372     const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
    373     assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
    374 
    375     NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
    376   }
    377 }
    378 
    379 char LoopUnswitch::ID = 0;
    380 
    381 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
    382                       false, false)
    383 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    384 INITIALIZE_PASS_DEPENDENCY(LoopPass)
    385 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
    386 INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
    387 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
    388                       false, false)
    389 
    390 Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) {
    391   return new LoopUnswitch(Os, hasBranchDivergence);
    392 }
    393 
    394 /// Operator chain lattice.
    395 enum OperatorChain {
    396   OC_OpChainNone,    ///< There is no operator.
    397   OC_OpChainOr,      ///< There are only ORs.
    398   OC_OpChainAnd,     ///< There are only ANDs.
    399   OC_OpChainMixed    ///< There are ANDs and ORs.
    400 };
    401 
    402 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
    403 /// an invariant piece, return the invariant. Otherwise, return null.
    404 //
    405 /// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
    406 /// mixed operator chain, as we can not reliably find a value which will simplify
    407 /// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
    408 /// to simplify the chain.
    409 ///
    410 /// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
    411 /// simplify the condition itself to a loop variant condition, but at the
    412 /// cost of creating an entirely new loop.
    413 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
    414                                    OperatorChain &ParentChain,
    415                                    DenseMap<Value *, Value *> &Cache) {
    416   auto CacheIt = Cache.find(Cond);
    417   if (CacheIt != Cache.end())
    418     return CacheIt->second;
    419 
    420   // We started analyze new instruction, increment scanned instructions counter.
    421   ++TotalInsts;
    422 
    423   // We can never unswitch on vector conditions.
    424   if (Cond->getType()->isVectorTy())
    425     return nullptr;
    426 
    427   // Constants should be folded, not unswitched on!
    428   if (isa<Constant>(Cond)) return nullptr;
    429 
    430   // TODO: Handle: br (VARIANT|INVARIANT).
    431 
    432   // Hoist simple values out.
    433   if (L->makeLoopInvariant(Cond, Changed)) {
    434     Cache[Cond] = Cond;
    435     return Cond;
    436   }
    437 
    438   // Walk up the operator chain to find partial invariant conditions.
    439   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
    440     if (BO->getOpcode() == Instruction::And ||
    441         BO->getOpcode() == Instruction::Or) {
    442       // Given the previous operator, compute the current operator chain status.
    443       OperatorChain NewChain;
    444       switch (ParentChain) {
    445       case OC_OpChainNone:
    446         NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
    447                                       OC_OpChainOr;
    448         break;
    449       case OC_OpChainOr:
    450         NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
    451                                       OC_OpChainMixed;
    452         break;
    453       case OC_OpChainAnd:
    454         NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
    455                                       OC_OpChainMixed;
    456         break;
    457       case OC_OpChainMixed:
    458         NewChain = OC_OpChainMixed;
    459         break;
    460       }
    461 
    462       // If we reach a Mixed state, we do not want to keep walking up as we can not
    463       // reliably find a value that will simplify the chain. With this check, we
    464       // will return null on the first sight of mixed chain and the caller will
    465       // either backtrack to find partial LIV in other operand or return null.
    466       if (NewChain != OC_OpChainMixed) {
    467         // Update the current operator chain type before we search up the chain.
    468         ParentChain = NewChain;
    469         // If either the left or right side is invariant, we can unswitch on this,
    470         // which will cause the branch to go away in one loop and the condition to
    471         // simplify in the other one.
    472         if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed,
    473                                               ParentChain, Cache)) {
    474           Cache[Cond] = LHS;
    475           return LHS;
    476         }
    477         // We did not manage to find a partial LIV in operand(0). Backtrack and try
    478         // operand(1).
    479         ParentChain = NewChain;
    480         if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed,
    481                                               ParentChain, Cache)) {
    482           Cache[Cond] = RHS;
    483           return RHS;
    484         }
    485       }
    486     }
    487 
    488   Cache[Cond] = nullptr;
    489   return nullptr;
    490 }
    491 
    492 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
    493 /// an invariant piece, return the invariant along with the operator chain type.
    494 /// Otherwise, return null.
    495 static std::pair<Value *, OperatorChain> FindLIVLoopCondition(Value *Cond,
    496                                                               Loop *L,
    497                                                               bool &Changed) {
    498   DenseMap<Value *, Value *> Cache;
    499   OperatorChain OpChain = OC_OpChainNone;
    500   Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache);
    501 
    502   // In case we do find a LIV, it can not be obtained by walking up a mixed
    503   // operator chain.
    504   assert((!FCond || OpChain != OC_OpChainMixed) &&
    505         "Do not expect a partial LIV with mixed operator chain");
    506   return {FCond, OpChain};
    507 }
    508 
    509 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
    510   if (skipLoop(L))
    511     return false;
    512 
    513   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
    514       *L->getHeader()->getParent());
    515   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    516   LPM = &LPM_Ref;
    517   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    518   currentLoop = L;
    519   Function *F = currentLoop->getHeader()->getParent();
    520 
    521   SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
    522   if (SanitizeMemory)
    523     computeLoopSafetyInfo(&SafetyInfo, L);
    524 
    525   bool Changed = false;
    526   do {
    527     assert(currentLoop->isLCSSAForm(*DT));
    528     redoLoop = false;
    529     Changed |= processCurrentLoop();
    530   } while(redoLoop);
    531 
    532   return Changed;
    533 }
    534 
    535 // Return true if the BasicBlock BB is unreachable from the loop header.
    536 // Return false, otherwise.
    537 bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
    538   auto *Node = DT->getNode(BB)->getIDom();
    539   BasicBlock *DomBB = Node->getBlock();
    540   while (currentLoop->contains(DomBB)) {
    541     BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());
    542 
    543     Node = DT->getNode(DomBB)->getIDom();
    544     DomBB = Node->getBlock();
    545 
    546     if (!BInst || !BInst->isConditional())
    547       continue;
    548 
    549     Value *Cond = BInst->getCondition();
    550     if (!isa<ConstantInt>(Cond))
    551       continue;
    552 
    553     BasicBlock *UnreachableSucc =
    554         Cond == ConstantInt::getTrue(Cond->getContext())
    555             ? BInst->getSuccessor(1)
    556             : BInst->getSuccessor(0);
    557 
    558     if (DT->dominates(UnreachableSucc, BB))
    559       return true;
    560   }
    561   return false;
    562 }
    563 
    564 /// FIXME: Remove this workaround when freeze related patches are done.
    565 /// LoopUnswitch and Equality propagation in GVN have discrepancy about
    566 /// whether branch on undef/poison has undefine behavior. Here it is to
    567 /// rule out some common cases that we found such discrepancy already
    568 /// causing problems. Detail could be found in PR31652. Note if the
    569 /// func returns true, it is unsafe. But if it is false, it doesn't mean
    570 /// it is necessarily safe.
    571 static bool EqualityPropUnSafe(Value &LoopCond) {
    572   ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
    573   if (!CI || !CI->isEquality())
    574     return false;
    575 
    576   Value *LHS = CI->getOperand(0);
    577   Value *RHS = CI->getOperand(1);
    578   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
    579     return true;
    580 
    581   auto hasUndefInPHI = [](PHINode &PN) {
    582     for (Value *Opd : PN.incoming_values()) {
    583       if (isa<UndefValue>(Opd))
    584         return true;
    585     }
    586     return false;
    587   };
    588   PHINode *LPHI = dyn_cast<PHINode>(LHS);
    589   PHINode *RPHI = dyn_cast<PHINode>(RHS);
    590   if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI)))
    591     return true;
    592 
    593   auto hasUndefInSelect = [](SelectInst &SI) {
    594     if (isa<UndefValue>(SI.getTrueValue()) ||
    595         isa<UndefValue>(SI.getFalseValue()))
    596       return true;
    597     return false;
    598   };
    599   SelectInst *LSI = dyn_cast<SelectInst>(LHS);
    600   SelectInst *RSI = dyn_cast<SelectInst>(RHS);
    601   if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI)))
    602     return true;
    603   return false;
    604 }
    605 
    606 /// Do actual work and unswitch loop if possible and profitable.
    607 bool LoopUnswitch::processCurrentLoop() {
    608   bool Changed = false;
    609 
    610   initLoopData();
    611 
    612   // If LoopSimplify was unable to form a preheader, don't do any unswitching.
    613   if (!loopPreheader)
    614     return false;
    615 
    616   // Loops with indirectbr cannot be cloned.
    617   if (!currentLoop->isSafeToClone())
    618     return false;
    619 
    620   // Without dedicated exits, splitting the exit edge may fail.
    621   if (!currentLoop->hasDedicatedExits())
    622     return false;
    623 
    624   LLVMContext &Context = loopHeader->getContext();
    625 
    626   // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
    627   if (!BranchesInfo.countLoop(
    628           currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
    629                            *currentLoop->getHeader()->getParent()),
    630           AC))
    631     return false;
    632 
    633   // Try trivial unswitch first before loop over other basic blocks in the loop.
    634   if (TryTrivialLoopUnswitch(Changed)) {
    635     return true;
    636   }
    637 
    638   // Do not do non-trivial unswitch while optimizing for size.
    639   // FIXME: Use Function::optForSize().
    640   if (OptimizeForSize ||
    641       loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
    642     return false;
    643 
    644   // Run through the instructions in the loop, keeping track of three things:
    645   //
    646   //  - That we do not unswitch loops containing convergent operations, as we
    647   //    might be making them control dependent on the unswitch value when they
    648   //    were not before.
    649   //    FIXME: This could be refined to only bail if the convergent operation is
    650   //    not already control-dependent on the unswitch value.
    651   //
    652   //  - That basic blocks in the loop contain invokes whose predecessor edges we
    653   //    cannot split.
    654   //
    655   //  - The set of guard intrinsics encountered (these are non terminator
    656   //    instructions that are also profitable to be unswitched).
    657 
    658   SmallVector<IntrinsicInst *, 4> Guards;
    659 
    660   for (const auto BB : currentLoop->blocks()) {
    661     for (auto &I : *BB) {
    662       auto CS = CallSite(&I);
    663       if (!CS) continue;
    664       if (CS.hasFnAttr(Attribute::Convergent))
    665         return false;
    666       if (auto *II = dyn_cast<InvokeInst>(&I))
    667         if (!II->getUnwindDest()->canSplitPredecessors())
    668           return false;
    669       if (auto *II = dyn_cast<IntrinsicInst>(&I))
    670         if (II->getIntrinsicID() == Intrinsic::experimental_guard)
    671           Guards.push_back(II);
    672     }
    673   }
    674 
    675   for (IntrinsicInst *Guard : Guards) {
    676     Value *LoopCond =
    677         FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed).first;
    678     if (LoopCond &&
    679         UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
    680       // NB! Unswitching (if successful) could have erased some of the
    681       // instructions in Guards leaving dangling pointers there.  This is fine
    682       // because we're returning now, and won't look at Guards again.
    683       ++NumGuards;
    684       return true;
    685     }
    686   }
    687 
    688   // Loop over all of the basic blocks in the loop.  If we find an interior
    689   // block that is branching on a loop-invariant condition, we can unswitch this
    690   // loop.
    691   for (Loop::block_iterator I = currentLoop->block_begin(),
    692          E = currentLoop->block_end(); I != E; ++I) {
    693     TerminatorInst *TI = (*I)->getTerminator();
    694 
    695     // Unswitching on a potentially uninitialized predicate is not
    696     // MSan-friendly. Limit this to the cases when the original predicate is
    697     // guaranteed to execute, to avoid creating a use-of-uninitialized-value
    698     // in the code that did not have one.
    699     // This is a workaround for the discrepancy between LLVM IR and MSan
    700     // semantics. See PR28054 for more details.
    701     if (SanitizeMemory &&
    702         !isGuaranteedToExecute(*TI, DT, currentLoop, &SafetyInfo))
    703       continue;
    704 
    705     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
    706       // Some branches may be rendered unreachable because of previous
    707       // unswitching.
    708       // Unswitch only those branches that are reachable.
    709       if (isUnreachableDueToPreviousUnswitching(*I))
    710         continue;
    711 
    712       // If this isn't branching on an invariant condition, we can't unswitch
    713       // it.
    714       if (BI->isConditional()) {
    715         // See if this, or some part of it, is loop invariant.  If so, we can
    716         // unswitch on it if we desire.
    717         Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
    718                                                currentLoop, Changed).first;
    719         if (LoopCond && !EqualityPropUnSafe(*LoopCond) &&
    720             UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
    721           ++NumBranches;
    722           return true;
    723         }
    724       }
    725     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
    726       Value *SC = SI->getCondition();
    727       Value *LoopCond;
    728       OperatorChain OpChain;
    729       std::tie(LoopCond, OpChain) =
    730         FindLIVLoopCondition(SC, currentLoop, Changed);
    731 
    732       unsigned NumCases = SI->getNumCases();
    733       if (LoopCond && NumCases) {
    734         // Find a value to unswitch on:
    735         // FIXME: this should chose the most expensive case!
    736         // FIXME: scan for a case with a non-critical edge?
    737         Constant *UnswitchVal = nullptr;
    738         // Find a case value such that at least one case value is unswitched
    739         // out.
    740         if (OpChain == OC_OpChainAnd) {
    741           // If the chain only has ANDs and the switch has a case value of 0.
    742           // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
    743           auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
    744           if (BranchesInfo.isUnswitched(SI, AllZero))
    745             continue;
    746           // We are unswitching 0 out.
    747           UnswitchVal = AllZero;
    748         } else if (OpChain == OC_OpChainOr) {
    749           // If the chain only has ORs and the switch has a case value of ~0.
    750           // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
    751           auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
    752           if (BranchesInfo.isUnswitched(SI, AllOne))
    753             continue;
    754           // We are unswitching ~0 out.
    755           UnswitchVal = AllOne;
    756         } else {
    757           assert(OpChain == OC_OpChainNone &&
    758                  "Expect to unswitch on trivial chain");
    759           // Do not process same value again and again.
    760           // At this point we have some cases already unswitched and
    761           // some not yet unswitched. Let's find the first not yet unswitched one.
    762           for (auto Case : SI->cases()) {
    763             Constant *UnswitchValCandidate = Case.getCaseValue();
    764             if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
    765               UnswitchVal = UnswitchValCandidate;
    766               break;
    767             }
    768           }
    769         }
    770 
    771         if (!UnswitchVal)
    772           continue;
    773 
    774         if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
    775           ++NumSwitches;
    776           // In case of a full LIV, UnswitchVal is the value we unswitched out.
    777           // In case of a partial LIV, we only unswitch when its an AND-chain
    778           // or OR-chain. In both cases switch input value simplifies to
    779           // UnswitchVal.
    780           BranchesInfo.setUnswitched(SI, UnswitchVal);
    781           return true;
    782         }
    783       }
    784     }
    785 
    786     // Scan the instructions to check for unswitchable values.
    787     for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
    788          BBI != E; ++BBI)
    789       if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
    790         Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
    791                                                currentLoop, Changed).first;
    792         if (LoopCond && UnswitchIfProfitable(LoopCond,
    793                                              ConstantInt::getTrue(Context))) {
    794           ++NumSelects;
    795           return true;
    796         }
    797       }
    798   }
    799   return Changed;
    800 }
    801 
    802 /// Check to see if all paths from BB exit the loop with no side effects
    803 /// (including infinite loops).
    804 ///
    805 /// If true, we return true and set ExitBB to the block we
    806 /// exit through.
    807 ///
    808 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
    809                                          BasicBlock *&ExitBB,
    810                                          std::set<BasicBlock*> &Visited) {
    811   if (!Visited.insert(BB).second) {
    812     // Already visited. Without more analysis, this could indicate an infinite
    813     // loop.
    814     return false;
    815   }
    816   if (!L->contains(BB)) {
    817     // Otherwise, this is a loop exit, this is fine so long as this is the
    818     // first exit.
    819     if (ExitBB) return false;
    820     ExitBB = BB;
    821     return true;
    822   }
    823 
    824   // Otherwise, this is an unvisited intra-loop node.  Check all successors.
    825   for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
    826     // Check to see if the successor is a trivial loop exit.
    827     if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
    828       return false;
    829   }
    830 
    831   // Okay, everything after this looks good, check to make sure that this block
    832   // doesn't include any side effects.
    833   for (Instruction &I : *BB)
    834     if (I.mayHaveSideEffects())
    835       return false;
    836 
    837   return true;
    838 }
    839 
    840 /// Return true if the specified block unconditionally leads to an exit from
    841 /// the specified loop, and has no side-effects in the process. If so, return
    842 /// the block that is exited to, otherwise return null.
    843 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
    844   std::set<BasicBlock*> Visited;
    845   Visited.insert(L->getHeader());  // Branches to header make infinite loops.
    846   BasicBlock *ExitBB = nullptr;
    847   if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
    848     return ExitBB;
    849   return nullptr;
    850 }
    851 
    852 /// We have found that we can unswitch currentLoop when LoopCond == Val to
    853 /// simplify the loop.  If we decide that this is profitable,
    854 /// unswitch the loop, reprocess the pieces, then return true.
    855 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
    856                                         TerminatorInst *TI) {
    857   // Check to see if it would be profitable to unswitch current loop.
    858   if (!BranchesInfo.CostAllowsUnswitching()) {
    859     LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
    860                       << currentLoop->getHeader()->getName()
    861                       << " at non-trivial condition '" << *Val
    862                       << "' == " << *LoopCond << "\n"
    863                       << ". Cost too high.\n");
    864     return false;
    865   }
    866   if (hasBranchDivergence &&
    867       getAnalysis<DivergenceAnalysis>().isDivergent(LoopCond)) {
    868     LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
    869                       << currentLoop->getHeader()->getName()
    870                       << " at non-trivial condition '" << *Val
    871                       << "' == " << *LoopCond << "\n"
    872                       << ". Condition is divergent.\n");
    873     return false;
    874   }
    875 
    876   UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
    877   return true;
    878 }
    879 
    880 /// Recursively clone the specified loop and all of its children,
    881 /// mapping the blocks with the specified map.
    882 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
    883                        LoopInfo *LI, LPPassManager *LPM) {
    884   Loop &New = *LI->AllocateLoop();
    885   if (PL)
    886     PL->addChildLoop(&New);
    887   else
    888     LI->addTopLevelLoop(&New);
    889   LPM->addLoop(New);
    890 
    891   // Add all of the blocks in L to the new loop.
    892   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
    893        I != E; ++I)
    894     if (LI->getLoopFor(*I) == L)
    895       New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
    896 
    897   // Add all of the subloops to the new loop.
    898   for (Loop *I : *L)
    899     CloneLoop(I, &New, VM, LI, LPM);
    900 
    901   return &New;
    902 }
    903 
    904 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
    905 /// otherwise branch to FalseDest. Insert the code immediately before OldBranch
    906 /// and remove (but not erase!) it from the function.
    907 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
    908                                                   BasicBlock *TrueDest,
    909                                                   BasicBlock *FalseDest,
    910                                                   BranchInst *OldBranch,
    911                                                   TerminatorInst *TI) {
    912   assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
    913   assert(TrueDest != FalseDest && "Branch targets should be different");
    914   // Insert a conditional branch on LIC to the two preheaders.  The original
    915   // code is the true version and the new code is the false version.
    916   Value *BranchVal = LIC;
    917   bool Swapped = false;
    918   if (!isa<ConstantInt>(Val) ||
    919       Val->getType() != Type::getInt1Ty(LIC->getContext()))
    920     BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
    921   else if (Val != ConstantInt::getTrue(Val->getContext())) {
    922     // We want to enter the new loop when the condition is true.
    923     std::swap(TrueDest, FalseDest);
    924     Swapped = true;
    925   }
    926 
    927   // Old branch will be removed, so save its parent and successor to update the
    928   // DomTree.
    929   auto *OldBranchSucc = OldBranch->getSuccessor(0);
    930   auto *OldBranchParent = OldBranch->getParent();
    931 
    932   // Insert the new branch.
    933   BranchInst *BI =
    934       IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
    935   if (Swapped)
    936     BI->swapProfMetadata();
    937 
    938   // Remove the old branch so there is only one branch at the end. This is
    939   // needed to perform DomTree's internal DFS walk on the function's CFG.
    940   OldBranch->removeFromParent();
    941 
    942   // Inform the DT about the new branch.
    943   if (DT) {
    944     // First, add both successors.
    945     SmallVector<DominatorTree::UpdateType, 3> Updates;
    946     if (TrueDest != OldBranchSucc)
    947       Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
    948     if (FalseDest != OldBranchSucc)
    949       Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
    950     // If both of the new successors are different from the old one, inform the
    951     // DT that the edge was deleted.
    952     if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
    953       Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
    954     }
    955 
    956     DT->applyUpdates(Updates);
    957   }
    958 
    959   // If either edge is critical, split it. This helps preserve LoopSimplify
    960   // form for enclosing loops.
    961   auto Options = CriticalEdgeSplittingOptions(DT, LI).setPreserveLCSSA();
    962   SplitCriticalEdge(BI, 0, Options);
    963   SplitCriticalEdge(BI, 1, Options);
    964 }
    965 
    966 /// Given a loop that has a trivial unswitchable condition in it (a cond branch
    967 /// from its header block to its latch block, where the path through the loop
    968 /// that doesn't execute its body has no side-effects), unswitch it. This
    969 /// doesn't involve any code duplication, just moving the conditional branch
    970 /// outside of the loop and updating loop info.
    971 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
    972                                             BasicBlock *ExitBlock,
    973                                             TerminatorInst *TI) {
    974   LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
    975                     << loopHeader->getName() << " [" << L->getBlocks().size()
    976                     << " blocks] in Function "
    977                     << L->getHeader()->getParent()->getName()
    978                     << " on cond: " << *Val << " == " << *Cond << "\n");
    979   // We are going to make essential changes to CFG. This may invalidate cached
    980   // information for L or one of its parent loops in SCEV.
    981   if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
    982     SEWP->getSE().forgetTopmostLoop(L);
    983 
    984   // First step, split the preheader, so that we know that there is a safe place
    985   // to insert the conditional branch.  We will change loopPreheader to have a
    986   // conditional branch on Cond.
    987   BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI);
    988 
    989   // Now that we have a place to insert the conditional branch, create a place
    990   // to branch to: this is the exit block out of the loop that we should
    991   // short-circuit to.
    992 
    993   // Split this block now, so that the loop maintains its exit block, and so
    994   // that the jump from the preheader can execute the contents of the exit block
    995   // without actually branching to it (the exit block should be dominated by the
    996   // loop header, not the preheader).
    997   assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
    998   BasicBlock *NewExit = SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI);
    999 
   1000   // Okay, now we have a position to branch from and a position to branch to,
   1001   // insert the new conditional branch.
   1002   auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator());
   1003   assert(OldBranch && "Failed to split the preheader");
   1004   EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);
   1005   LPM->deleteSimpleAnalysisValue(OldBranch, L);
   1006 
   1007   // EmitPreheaderBranchOnCondition removed the OldBranch from the function.
   1008   // Delete it, as it is no longer needed.
   1009   delete OldBranch;
   1010 
   1011   // We need to reprocess this loop, it could be unswitched again.
   1012   redoLoop = true;
   1013 
   1014   // Now that we know that the loop is never entered when this condition is a
   1015   // particular value, rewrite the loop with this info.  We know that this will
   1016   // at least eliminate the old branch.
   1017   RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
   1018   ++NumTrivial;
   1019 }
   1020 
   1021 /// Check if the first non-constant condition starting from the loop header is
   1022 /// a trivial unswitch condition: that is, a condition controls whether or not
   1023 /// the loop does anything at all. If it is a trivial condition, unswitching
   1024 /// produces no code duplications (equivalently, it produces a simpler loop and
   1025 /// a new empty loop, which gets deleted). Therefore always unswitch trivial
   1026 /// condition.
   1027 bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
   1028   BasicBlock *CurrentBB = currentLoop->getHeader();
   1029   TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
   1030   LLVMContext &Context = CurrentBB->getContext();
   1031 
   1032   // If loop header has only one reachable successor (currently via an
   1033   // unconditional branch or constant foldable conditional branch, but
   1034   // should also consider adding constant foldable switch instruction in
   1035   // future), we should keep looking for trivial condition candidates in
   1036   // the successor as well. An alternative is to constant fold conditions
   1037   // and merge successors into loop header (then we only need to check header's
   1038   // terminator). The reason for not doing this in LoopUnswitch pass is that
   1039   // it could potentially break LoopPassManager's invariants. Folding dead
   1040   // branches could either eliminate the current loop or make other loops
   1041   // unreachable. LCSSA form might also not be preserved after deleting
   1042   // branches. The following code keeps traversing loop header's successors
   1043   // until it finds the trivial condition candidate (condition that is not a
   1044   // constant). Since unswitching generates branches with constant conditions,
   1045   // this scenario could be very common in practice.
   1046   SmallPtrSet<BasicBlock*, 8> Visited;
   1047 
   1048   while (true) {
   1049     // If we exit loop or reach a previous visited block, then
   1050     // we can not reach any trivial condition candidates (unfoldable
   1051     // branch instructions or switch instructions) and no unswitch
   1052     // can happen. Exit and return false.
   1053     if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
   1054       return false;
   1055 
   1056     // Check if this loop will execute any side-effecting instructions (e.g.
   1057     // stores, calls, volatile loads) in the part of the loop that the code
   1058     // *would* execute. Check the header first.
   1059     for (Instruction &I : *CurrentBB)
   1060       if (I.mayHaveSideEffects())
   1061         return false;
   1062 
   1063     if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
   1064       if (BI->isUnconditional()) {
   1065         CurrentBB = BI->getSuccessor(0);
   1066       } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
   1067         CurrentBB = BI->getSuccessor(0);
   1068       } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
   1069         CurrentBB = BI->getSuccessor(1);
   1070       } else {
   1071         // Found a trivial condition candidate: non-foldable conditional branch.
   1072         break;
   1073       }
   1074     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
   1075       // At this point, any constant-foldable instructions should have probably
   1076       // been folded.
   1077       ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
   1078       if (!Cond)
   1079         break;
   1080       // Find the target block we are definitely going to.
   1081       CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
   1082     } else {
   1083       // We do not understand these terminator instructions.
   1084       break;
   1085     }
   1086 
   1087     CurrentTerm = CurrentBB->getTerminator();
   1088   }
   1089 
   1090   // CondVal is the condition that controls the trivial condition.
   1091   // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
   1092   Constant *CondVal = nullptr;
   1093   BasicBlock *LoopExitBB = nullptr;
   1094 
   1095   if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
   1096     // If this isn't branching on an invariant condition, we can't unswitch it.
   1097     if (!BI->isConditional())
   1098       return false;
   1099 
   1100     Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
   1101                                            currentLoop, Changed).first;
   1102 
   1103     // Unswitch only if the trivial condition itself is an LIV (not
   1104     // partial LIV which could occur in and/or)
   1105     if (!LoopCond || LoopCond != BI->getCondition())
   1106       return false;
   1107 
   1108     // Check to see if a successor of the branch is guaranteed to
   1109     // exit through a unique exit block without having any
   1110     // side-effects.  If so, determine the value of Cond that causes
   1111     // it to do this.
   1112     if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
   1113                                              BI->getSuccessor(0)))) {
   1114       CondVal = ConstantInt::getTrue(Context);
   1115     } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
   1116                                                     BI->getSuccessor(1)))) {
   1117       CondVal = ConstantInt::getFalse(Context);
   1118     }
   1119 
   1120     // If we didn't find a single unique LoopExit block, or if the loop exit
   1121     // block contains phi nodes, this isn't trivial.
   1122     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
   1123       return false;   // Can't handle this.
   1124 
   1125     if (EqualityPropUnSafe(*LoopCond))
   1126       return false;
   1127 
   1128     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
   1129                              CurrentTerm);
   1130     ++NumBranches;
   1131     return true;
   1132   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
   1133     // If this isn't switching on an invariant condition, we can't unswitch it.
   1134     Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
   1135                                            currentLoop, Changed).first;
   1136 
   1137     // Unswitch only if the trivial condition itself is an LIV (not
   1138     // partial LIV which could occur in and/or)
   1139     if (!LoopCond || LoopCond != SI->getCondition())
   1140       return false;
   1141 
   1142     // Check to see if a successor of the switch is guaranteed to go to the
   1143     // latch block or exit through a one exit block without having any
   1144     // side-effects.  If so, determine the value of Cond that causes it to do
   1145     // this.
   1146     // Note that we can't trivially unswitch on the default case or
   1147     // on already unswitched cases.
   1148     for (auto Case : SI->cases()) {
   1149       BasicBlock *LoopExitCandidate;
   1150       if ((LoopExitCandidate =
   1151                isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) {
   1152         // Okay, we found a trivial case, remember the value that is trivial.
   1153         ConstantInt *CaseVal = Case.getCaseValue();
   1154 
   1155         // Check that it was not unswitched before, since already unswitched
   1156         // trivial vals are looks trivial too.
   1157         if (BranchesInfo.isUnswitched(SI, CaseVal))
   1158           continue;
   1159         LoopExitBB = LoopExitCandidate;
   1160         CondVal = CaseVal;
   1161         break;
   1162       }
   1163     }
   1164 
   1165     // If we didn't find a single unique LoopExit block, or if the loop exit
   1166     // block contains phi nodes, this isn't trivial.
   1167     if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
   1168       return false;   // Can't handle this.
   1169 
   1170     UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
   1171                              nullptr);
   1172 
   1173     // We are only unswitching full LIV.
   1174     BranchesInfo.setUnswitched(SI, CondVal);
   1175     ++NumSwitches;
   1176     return true;
   1177   }
   1178   return false;
   1179 }
   1180 
   1181 /// Split all of the edges from inside the loop to their exit blocks.
   1182 /// Update the appropriate Phi nodes as we do so.
   1183 void LoopUnswitch::SplitExitEdges(Loop *L,
   1184                                const SmallVectorImpl<BasicBlock *> &ExitBlocks){
   1185 
   1186   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
   1187     BasicBlock *ExitBlock = ExitBlocks[i];
   1188     SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
   1189                                        pred_end(ExitBlock));
   1190 
   1191     // Although SplitBlockPredecessors doesn't preserve loop-simplify in
   1192     // general, if we call it on all predecessors of all exits then it does.
   1193     SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI,
   1194                            /*PreserveLCSSA*/ true);
   1195   }
   1196 }
   1197 
   1198 /// We determined that the loop is profitable to unswitch when LIC equal Val.
   1199 /// Split it into loop versions and test the condition outside of either loop.
   1200 /// Return the loops created as Out1/Out2.
   1201 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
   1202                                                Loop *L, TerminatorInst *TI) {
   1203   Function *F = loopHeader->getParent();
   1204   LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
   1205                     << loopHeader->getName() << " [" << L->getBlocks().size()
   1206                     << " blocks] in Function " << F->getName() << " when '"
   1207                     << *Val << "' == " << *LIC << "\n");
   1208 
   1209   // We are going to make essential changes to CFG. This may invalidate cached
   1210   // information for L or one of its parent loops in SCEV.
   1211   if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
   1212     SEWP->getSE().forgetTopmostLoop(L);
   1213 
   1214   LoopBlocks.clear();
   1215   NewBlocks.clear();
   1216 
   1217   // First step, split the preheader and exit blocks, and add these blocks to
   1218   // the LoopBlocks list.
   1219   BasicBlock *NewPreheader = SplitEdge(loopPreheader, loopHeader, DT, LI);
   1220   LoopBlocks.push_back(NewPreheader);
   1221 
   1222   // We want the loop to come after the preheader, but before the exit blocks.
   1223   LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
   1224 
   1225   SmallVector<BasicBlock*, 8> ExitBlocks;
   1226   L->getUniqueExitBlocks(ExitBlocks);
   1227 
   1228   // Split all of the edges from inside the loop to their exit blocks.  Update
   1229   // the appropriate Phi nodes as we do so.
   1230   SplitExitEdges(L, ExitBlocks);
   1231 
   1232   // The exit blocks may have been changed due to edge splitting, recompute.
   1233   ExitBlocks.clear();
   1234   L->getUniqueExitBlocks(ExitBlocks);
   1235 
   1236   // Add exit blocks to the loop blocks.
   1237   LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
   1238 
   1239   // Next step, clone all of the basic blocks that make up the loop (including
   1240   // the loop preheader and exit blocks), keeping track of the mapping between
   1241   // the instructions and blocks.
   1242   NewBlocks.reserve(LoopBlocks.size());
   1243   ValueToValueMapTy VMap;
   1244   for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
   1245     BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
   1246 
   1247     NewBlocks.push_back(NewBB);
   1248     VMap[LoopBlocks[i]] = NewBB;  // Keep the BB mapping.
   1249     LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
   1250   }
   1251 
   1252   // Splice the newly inserted blocks into the function right before the
   1253   // original preheader.
   1254   F->getBasicBlockList().splice(NewPreheader->getIterator(),
   1255                                 F->getBasicBlockList(),
   1256                                 NewBlocks[0]->getIterator(), F->end());
   1257 
   1258   // Now we create the new Loop object for the versioned loop.
   1259   Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
   1260 
   1261   // Recalculate unswitching quota, inherit simplified switches info for NewBB,
   1262   // Probably clone more loop-unswitch related loop properties.
   1263   BranchesInfo.cloneData(NewLoop, L, VMap);
   1264 
   1265   Loop *ParentLoop = L->getParentLoop();
   1266   if (ParentLoop) {
   1267     // Make sure to add the cloned preheader and exit blocks to the parent loop
   1268     // as well.
   1269     ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
   1270   }
   1271 
   1272   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
   1273     BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
   1274     // The new exit block should be in the same loop as the old one.
   1275     if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
   1276       ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
   1277 
   1278     assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
   1279            "Exit block should have been split to have one successor!");
   1280     BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
   1281 
   1282     // If the successor of the exit block had PHI nodes, add an entry for
   1283     // NewExit.
   1284     for (PHINode &PN : ExitSucc->phis()) {
   1285       Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]);
   1286       ValueToValueMapTy::iterator It = VMap.find(V);
   1287       if (It != VMap.end()) V = It->second;
   1288       PN.addIncoming(V, NewExit);
   1289     }
   1290 
   1291     if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
   1292       PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
   1293                                     &*ExitSucc->getFirstInsertionPt());
   1294 
   1295       for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
   1296            I != E; ++I) {
   1297         BasicBlock *BB = *I;
   1298         LandingPadInst *LPI = BB->getLandingPadInst();
   1299         LPI->replaceAllUsesWith(PN);
   1300         PN->addIncoming(LPI, BB);
   1301       }
   1302     }
   1303   }
   1304 
   1305   // Rewrite the code to refer to itself.
   1306   for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
   1307     for (Instruction &I : *NewBlocks[i]) {
   1308       RemapInstruction(&I, VMap,
   1309                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
   1310       if (auto *II = dyn_cast<IntrinsicInst>(&I))
   1311         if (II->getIntrinsicID() == Intrinsic::assume)
   1312           AC->registerAssumption(II);
   1313     }
   1314   }
   1315 
   1316   // Rewrite the original preheader to select between versions of the loop.
   1317   BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
   1318   assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
   1319          "Preheader splitting did not work correctly!");
   1320 
   1321   // Emit the new branch that selects between the two versions of this loop.
   1322   EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
   1323                                  TI);
   1324   LPM->deleteSimpleAnalysisValue(OldBR, L);
   1325 
   1326   // The OldBr was replaced by a new one and removed (but not erased) by
   1327   // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it.
   1328   delete OldBR;
   1329 
   1330   LoopProcessWorklist.push_back(NewLoop);
   1331   redoLoop = true;
   1332 
   1333   // Keep a WeakTrackingVH holding onto LIC.  If the first call to
   1334   // RewriteLoopBody
   1335   // deletes the instruction (for example by simplifying a PHI that feeds into
   1336   // the condition that we're unswitching on), we don't rewrite the second
   1337   // iteration.
   1338   WeakTrackingVH LICHandle(LIC);
   1339 
   1340   // Now we rewrite the original code to know that the condition is true and the
   1341   // new code to know that the condition is false.
   1342   RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
   1343 
   1344   // It's possible that simplifying one loop could cause the other to be
   1345   // changed to another value or a constant.  If its a constant, don't simplify
   1346   // it.
   1347   if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
   1348       LICHandle && !isa<Constant>(LICHandle))
   1349     RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
   1350 }
   1351 
   1352 /// Remove all instances of I from the worklist vector specified.
   1353 static void RemoveFromWorklist(Instruction *I,
   1354                                std::vector<Instruction*> &Worklist) {
   1355 
   1356   Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
   1357                  Worklist.end());
   1358 }
   1359 
   1360 /// When we find that I really equals V, remove I from the
   1361 /// program, replacing all uses with V and update the worklist.
   1362 static void ReplaceUsesOfWith(Instruction *I, Value *V,
   1363                               std::vector<Instruction*> &Worklist,
   1364                               Loop *L, LPPassManager *LPM) {
   1365   LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");
   1366 
   1367   // Add uses to the worklist, which may be dead now.
   1368   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
   1369     if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
   1370       Worklist.push_back(Use);
   1371 
   1372   // Add users to the worklist which may be simplified now.
   1373   for (User *U : I->users())
   1374     Worklist.push_back(cast<Instruction>(U));
   1375   LPM->deleteSimpleAnalysisValue(I, L);
   1376   RemoveFromWorklist(I, Worklist);
   1377   I->replaceAllUsesWith(V);
   1378   if (!I->mayHaveSideEffects())
   1379     I->eraseFromParent();
   1380   ++NumSimplify;
   1381 }
   1382 
   1383 /// We know either that the value LIC has the value specified by Val in the
   1384 /// specified loop, or we know it does NOT have that value.
   1385 /// Rewrite any uses of LIC or of properties correlated to it.
   1386 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
   1387                                                         Constant *Val,
   1388                                                         bool IsEqual) {
   1389   assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
   1390 
   1391   // FIXME: Support correlated properties, like:
   1392   //  for (...)
   1393   //    if (li1 < li2)
   1394   //      ...
   1395   //    if (li1 > li2)
   1396   //      ...
   1397 
   1398   // FOLD boolean conditions (X|LIC), (X&LIC).  Fold conditional branches,
   1399   // selects, switches.
   1400   std::vector<Instruction*> Worklist;
   1401   LLVMContext &Context = Val->getContext();
   1402 
   1403   // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
   1404   // in the loop with the appropriate one directly.
   1405   if (IsEqual || (isa<ConstantInt>(Val) &&
   1406       Val->getType()->isIntegerTy(1))) {
   1407     Value *Replacement;
   1408     if (IsEqual)
   1409       Replacement = Val;
   1410     else
   1411       Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
   1412                                      !cast<ConstantInt>(Val)->getZExtValue());
   1413 
   1414     for (User *U : LIC->users()) {
   1415       Instruction *UI = dyn_cast<Instruction>(U);
   1416       if (!UI || !L->contains(UI))
   1417         continue;
   1418       Worklist.push_back(UI);
   1419     }
   1420 
   1421     for (Instruction *UI : Worklist)
   1422       UI->replaceUsesOfWith(LIC, Replacement);
   1423 
   1424     SimplifyCode(Worklist, L);
   1425     return;
   1426   }
   1427 
   1428   // Otherwise, we don't know the precise value of LIC, but we do know that it
   1429   // is certainly NOT "Val".  As such, simplify any uses in the loop that we
   1430   // can.  This case occurs when we unswitch switch statements.
   1431   for (User *U : LIC->users()) {
   1432     Instruction *UI = dyn_cast<Instruction>(U);
   1433     if (!UI || !L->contains(UI))
   1434       continue;
   1435 
   1436     // At this point, we know LIC is definitely not Val. Try to use some simple
   1437     // logic to simplify the user w.r.t. to the context.
   1438     if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) {
   1439       if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
   1440         // This in-loop instruction has been simplified w.r.t. its context,
   1441         // i.e. LIC != Val, make sure we propagate its replacement value to
   1442         // all its users.
   1443         //
   1444         // We can not yet delete UI, the LIC user, yet, because that would invalidate
   1445         // the LIC->users() iterator !. However, we can make this instruction
   1446         // dead by replacing all its users and push it onto the worklist so that
   1447         // it can be properly deleted and its operands simplified.
   1448         UI->replaceAllUsesWith(Replacement);
   1449       }
   1450     }
   1451 
   1452     // This is a LIC user, push it into the worklist so that SimplifyCode can
   1453     // attempt to simplify it.
   1454     Worklist.push_back(UI);
   1455 
   1456     // If we know that LIC is not Val, use this info to simplify code.
   1457     SwitchInst *SI = dyn_cast<SwitchInst>(UI);
   1458     if (!SI || !isa<ConstantInt>(Val)) continue;
   1459 
   1460     // NOTE: if a case value for the switch is unswitched out, we record it
   1461     // after the unswitch finishes. We can not record it here as the switch
   1462     // is not a direct user of the partial LIV.
   1463     SwitchInst::CaseHandle DeadCase =
   1464         *SI->findCaseValue(cast<ConstantInt>(Val));
   1465     // Default case is live for multiple values.
   1466     if (DeadCase == *SI->case_default())
   1467       continue;
   1468 
   1469     // Found a dead case value.  Don't remove PHI nodes in the
   1470     // successor if they become single-entry, those PHI nodes may
   1471     // be in the Users list.
   1472 
   1473     BasicBlock *Switch = SI->getParent();
   1474     BasicBlock *SISucc = DeadCase.getCaseSuccessor();
   1475     BasicBlock *Latch = L->getLoopLatch();
   1476 
   1477     if (!SI->findCaseDest(SISucc)) continue;  // Edge is critical.
   1478     // If the DeadCase successor dominates the loop latch, then the
   1479     // transformation isn't safe since it will delete the sole predecessor edge
   1480     // to the latch.
   1481     if (Latch && DT->dominates(SISucc, Latch))
   1482       continue;
   1483 
   1484     // FIXME: This is a hack.  We need to keep the successor around
   1485     // and hooked up so as to preserve the loop structure, because
   1486     // trying to update it is complicated.  So instead we preserve the
   1487     // loop structure and put the block on a dead code path.
   1488     SplitEdge(Switch, SISucc, DT, LI);
   1489     // Compute the successors instead of relying on the return value
   1490     // of SplitEdge, since it may have split the switch successor
   1491     // after PHI nodes.
   1492     BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
   1493     BasicBlock *OldSISucc = *succ_begin(NewSISucc);
   1494     // Create an "unreachable" destination.
   1495     BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
   1496                                            Switch->getParent(),
   1497                                            OldSISucc);
   1498     new UnreachableInst(Context, Abort);
   1499     // Force the new case destination to branch to the "unreachable"
   1500     // block while maintaining a (dead) CFG edge to the old block.
   1501     NewSISucc->getTerminator()->eraseFromParent();
   1502     BranchInst::Create(Abort, OldSISucc,
   1503                        ConstantInt::getTrue(Context), NewSISucc);
   1504     // Release the PHI operands for this edge.
   1505     for (PHINode &PN : NewSISucc->phis())
   1506       PN.setIncomingValue(PN.getBasicBlockIndex(Switch),
   1507                           UndefValue::get(PN.getType()));
   1508     // Tell the domtree about the new block. We don't fully update the
   1509     // domtree here -- instead we force it to do a full recomputation
   1510     // after the pass is complete -- but we do need to inform it of
   1511     // new blocks.
   1512     DT->addNewBlock(Abort, NewSISucc);
   1513   }
   1514 
   1515   SimplifyCode(Worklist, L);
   1516 }
   1517 
   1518 /// Now that we have simplified some instructions in the loop, walk over it and
   1519 /// constant prop, dce, and fold control flow where possible. Note that this is
   1520 /// effectively a very simple loop-structure-aware optimizer. During processing
   1521 /// of this loop, L could very well be deleted, so it must not be used.
   1522 ///
   1523 /// FIXME: When the loop optimizer is more mature, separate this out to a new
   1524 /// pass.
   1525 ///
   1526 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
   1527   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
   1528   while (!Worklist.empty()) {
   1529     Instruction *I = Worklist.back();
   1530     Worklist.pop_back();
   1531 
   1532     // Simple DCE.
   1533     if (isInstructionTriviallyDead(I)) {
   1534       LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");
   1535 
   1536       // Add uses to the worklist, which may be dead now.
   1537       for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
   1538         if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
   1539           Worklist.push_back(Use);
   1540       LPM->deleteSimpleAnalysisValue(I, L);
   1541       RemoveFromWorklist(I, Worklist);
   1542       I->eraseFromParent();
   1543       ++NumSimplify;
   1544       continue;
   1545     }
   1546 
   1547     // See if instruction simplification can hack this up.  This is common for
   1548     // things like "select false, X, Y" after unswitching made the condition be
   1549     // 'false'.  TODO: update the domtree properly so we can pass it here.
   1550     if (Value *V = SimplifyInstruction(I, DL))
   1551       if (LI->replacementPreservesLCSSAForm(I, V)) {
   1552         ReplaceUsesOfWith(I, V, Worklist, L, LPM);
   1553         continue;
   1554       }
   1555 
   1556     // Special case hacks that appear commonly in unswitched code.
   1557     if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   1558       if (BI->isUnconditional()) {
   1559         // If BI's parent is the only pred of the successor, fold the two blocks
   1560         // together.
   1561         BasicBlock *Pred = BI->getParent();
   1562         BasicBlock *Succ = BI->getSuccessor(0);
   1563         BasicBlock *SinglePred = Succ->getSinglePredecessor();
   1564         if (!SinglePred) continue;  // Nothing to do.
   1565         assert(SinglePred == Pred && "CFG broken");
   1566 
   1567         LLVM_DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
   1568                           << Succ->getName() << "\n");
   1569 
   1570         // Resolve any single entry PHI nodes in Succ.
   1571         while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
   1572           ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM);
   1573 
   1574         // If Succ has any successors with PHI nodes, update them to have
   1575         // entries coming from Pred instead of Succ.
   1576         Succ->replaceAllUsesWith(Pred);
   1577 
   1578         // Move all of the successor contents from Succ to Pred.
   1579         Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
   1580                                    Succ->begin(), Succ->end());
   1581         LPM->deleteSimpleAnalysisValue(BI, L);
   1582         RemoveFromWorklist(BI, Worklist);
   1583         BI->eraseFromParent();
   1584 
   1585         // Remove Succ from the loop tree.
   1586         LI->removeBlock(Succ);
   1587         LPM->deleteSimpleAnalysisValue(Succ, L);
   1588         Succ->eraseFromParent();
   1589         ++NumSimplify;
   1590         continue;
   1591       }
   1592 
   1593       continue;
   1594     }
   1595   }
   1596 }
   1597 
   1598 /// Simple simplifications we can do given the information that Cond is
   1599 /// definitely not equal to Val.
   1600 Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst,
   1601                                                      Value *Invariant,
   1602                                                      Constant *Val) {
   1603   // icmp eq cond, val -> false
   1604   ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
   1605   if (CI && CI->isEquality()) {
   1606     Value *Op0 = CI->getOperand(0);
   1607     Value *Op1 = CI->getOperand(1);
   1608     if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
   1609       LLVMContext &Ctx = Inst->getContext();
   1610       if (CI->getPredicate() == CmpInst::ICMP_EQ)
   1611         return ConstantInt::getFalse(Ctx);
   1612       else
   1613         return ConstantInt::getTrue(Ctx);
   1614      }
   1615   }
   1616 
   1617   // FIXME: there may be other opportunities, e.g. comparison with floating
   1618   // point, or Invariant - Val != 0, etc.
   1619   return nullptr;
   1620 }
   1621