Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitAnd, visitOr, and visitXor functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombineInternal.h"
     15 #include "llvm/Analysis/CmpInstAnalysis.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/Transforms/Utils/Local.h"
     18 #include "llvm/IR/ConstantRange.h"
     19 #include "llvm/IR/Intrinsics.h"
     20 #include "llvm/IR/PatternMatch.h"
     21 using namespace llvm;
     22 using namespace PatternMatch;
     23 
     24 #define DEBUG_TYPE "instcombine"
     25 
     26 /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
     27 /// a four bit mask.
     28 static unsigned getFCmpCode(FCmpInst::Predicate CC) {
     29   assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE &&
     30          "Unexpected FCmp predicate!");
     31   // Take advantage of the bit pattern of FCmpInst::Predicate here.
     32   //                                                 U L G E
     33   static_assert(FCmpInst::FCMP_FALSE ==  0, "");  // 0 0 0 0
     34   static_assert(FCmpInst::FCMP_OEQ   ==  1, "");  // 0 0 0 1
     35   static_assert(FCmpInst::FCMP_OGT   ==  2, "");  // 0 0 1 0
     36   static_assert(FCmpInst::FCMP_OGE   ==  3, "");  // 0 0 1 1
     37   static_assert(FCmpInst::FCMP_OLT   ==  4, "");  // 0 1 0 0
     38   static_assert(FCmpInst::FCMP_OLE   ==  5, "");  // 0 1 0 1
     39   static_assert(FCmpInst::FCMP_ONE   ==  6, "");  // 0 1 1 0
     40   static_assert(FCmpInst::FCMP_ORD   ==  7, "");  // 0 1 1 1
     41   static_assert(FCmpInst::FCMP_UNO   ==  8, "");  // 1 0 0 0
     42   static_assert(FCmpInst::FCMP_UEQ   ==  9, "");  // 1 0 0 1
     43   static_assert(FCmpInst::FCMP_UGT   == 10, "");  // 1 0 1 0
     44   static_assert(FCmpInst::FCMP_UGE   == 11, "");  // 1 0 1 1
     45   static_assert(FCmpInst::FCMP_ULT   == 12, "");  // 1 1 0 0
     46   static_assert(FCmpInst::FCMP_ULE   == 13, "");  // 1 1 0 1
     47   static_assert(FCmpInst::FCMP_UNE   == 14, "");  // 1 1 1 0
     48   static_assert(FCmpInst::FCMP_TRUE  == 15, "");  // 1 1 1 1
     49   return CC;
     50 }
     51 
     52 /// This is the complement of getICmpCode, which turns an opcode and two
     53 /// operands into either a constant true or false, or a brand new ICmp
     54 /// instruction. The sign is passed in to determine which kind of predicate to
     55 /// use in the new icmp instruction.
     56 static Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
     57                               InstCombiner::BuilderTy &Builder) {
     58   ICmpInst::Predicate NewPred;
     59   if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
     60     return NewConstant;
     61   return Builder.CreateICmp(NewPred, LHS, RHS);
     62 }
     63 
     64 /// This is the complement of getFCmpCode, which turns an opcode and two
     65 /// operands into either a FCmp instruction, or a true/false constant.
     66 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
     67                            InstCombiner::BuilderTy &Builder) {
     68   const auto Pred = static_cast<FCmpInst::Predicate>(Code);
     69   assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE &&
     70          "Unexpected FCmp predicate!");
     71   if (Pred == FCmpInst::FCMP_FALSE)
     72     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
     73   if (Pred == FCmpInst::FCMP_TRUE)
     74     return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
     75   return Builder.CreateFCmp(Pred, LHS, RHS);
     76 }
     77 
     78 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
     79 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
     80 /// \param I Binary operator to transform.
     81 /// \return Pointer to node that must replace the original binary operator, or
     82 ///         null pointer if no transformation was made.
     83 static Value *SimplifyBSwap(BinaryOperator &I,
     84                             InstCombiner::BuilderTy &Builder) {
     85   assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
     86 
     87   Value *OldLHS = I.getOperand(0);
     88   Value *OldRHS = I.getOperand(1);
     89 
     90   Value *NewLHS;
     91   if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
     92     return nullptr;
     93 
     94   Value *NewRHS;
     95   const APInt *C;
     96 
     97   if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
     98     // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
     99     if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
    100       return nullptr;
    101     // NewRHS initialized by the matcher.
    102   } else if (match(OldRHS, m_APInt(C))) {
    103     // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
    104     if (!OldLHS->hasOneUse())
    105       return nullptr;
    106     NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
    107   } else
    108     return nullptr;
    109 
    110   Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
    111   Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
    112                                           I.getType());
    113   return Builder.CreateCall(F, BinOp);
    114 }
    115 
    116 /// This handles expressions of the form ((val OP C1) & C2).  Where
    117 /// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.
    118 Instruction *InstCombiner::OptAndOp(BinaryOperator *Op,
    119                                     ConstantInt *OpRHS,
    120                                     ConstantInt *AndRHS,
    121                                     BinaryOperator &TheAnd) {
    122   Value *X = Op->getOperand(0);
    123 
    124   switch (Op->getOpcode()) {
    125   default: break;
    126   case Instruction::Add:
    127     if (Op->hasOneUse()) {
    128       // Adding a one to a single bit bit-field should be turned into an XOR
    129       // of the bit.  First thing to check is to see if this AND is with a
    130       // single bit constant.
    131       const APInt &AndRHSV = AndRHS->getValue();
    132 
    133       // If there is only one bit set.
    134       if (AndRHSV.isPowerOf2()) {
    135         // Ok, at this point, we know that we are masking the result of the
    136         // ADD down to exactly one bit.  If the constant we are adding has
    137         // no bits set below this bit, then we can eliminate the ADD.
    138         const APInt& AddRHS = OpRHS->getValue();
    139 
    140         // Check to see if any bits below the one bit set in AndRHSV are set.
    141         if ((AddRHS & (AndRHSV - 1)).isNullValue()) {
    142           // If not, the only thing that can effect the output of the AND is
    143           // the bit specified by AndRHSV.  If that bit is set, the effect of
    144           // the XOR is to toggle the bit.  If it is clear, then the ADD has
    145           // no effect.
    146           if ((AddRHS & AndRHSV).isNullValue()) { // Bit is not set, noop
    147             TheAnd.setOperand(0, X);
    148             return &TheAnd;
    149           } else {
    150             // Pull the XOR out of the AND.
    151             Value *NewAnd = Builder.CreateAnd(X, AndRHS);
    152             NewAnd->takeName(Op);
    153             return BinaryOperator::CreateXor(NewAnd, AndRHS);
    154           }
    155         }
    156       }
    157     }
    158     break;
    159   }
    160   return nullptr;
    161 }
    162 
    163 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
    164 /// (V < Lo || V >= Hi). This method expects that Lo <= Hi. IsSigned indicates
    165 /// whether to treat V, Lo, and Hi as signed or not.
    166 Value *InstCombiner::insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
    167                                      bool isSigned, bool Inside) {
    168   assert((isSigned ? Lo.sle(Hi) : Lo.ule(Hi)) &&
    169          "Lo is not <= Hi in range emission code!");
    170 
    171   Type *Ty = V->getType();
    172   if (Lo == Hi)
    173     return Inside ? ConstantInt::getFalse(Ty) : ConstantInt::getTrue(Ty);
    174 
    175   // V >= Min && V <  Hi --> V <  Hi
    176   // V <  Min || V >= Hi --> V >= Hi
    177   ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
    178   if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
    179     Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
    180     return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
    181   }
    182 
    183   // V >= Lo && V <  Hi --> V - Lo u<  Hi - Lo
    184   // V <  Lo || V >= Hi --> V - Lo u>= Hi - Lo
    185   Value *VMinusLo =
    186       Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
    187   Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
    188   return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
    189 }
    190 
    191 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
    192 /// that can be simplified.
    193 /// One of A and B is considered the mask. The other is the value. This is
    194 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
    195 /// only "Mask", then both A and B can be considered masks. If A is the mask,
    196 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
    197 /// If both A and C are constants, this proof is also easy.
    198 /// For the following explanations, we assume that A is the mask.
    199 ///
    200 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
    201 /// bits of A are set in B.
    202 ///   Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
    203 ///
    204 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
    205 /// bits of A are cleared in B.
    206 ///   Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
    207 ///
    208 /// "Mixed" declares that (A & B) == C and C might or might not contain any
    209 /// number of one bits and zero bits.
    210 ///   Example: (icmp eq (A & 3), 1) -> AMask_Mixed
    211 ///
    212 /// "Not" means that in above descriptions "==" should be replaced by "!=".
    213 ///   Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
    214 ///
    215 /// If the mask A contains a single bit, then the following is equivalent:
    216 ///    (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
    217 ///    (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
    218 enum MaskedICmpType {
    219   AMask_AllOnes           =     1,
    220   AMask_NotAllOnes        =     2,
    221   BMask_AllOnes           =     4,
    222   BMask_NotAllOnes        =     8,
    223   Mask_AllZeros           =    16,
    224   Mask_NotAllZeros        =    32,
    225   AMask_Mixed             =    64,
    226   AMask_NotMixed          =   128,
    227   BMask_Mixed             =   256,
    228   BMask_NotMixed          =   512
    229 };
    230 
    231 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
    232 /// satisfies.
    233 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
    234                                   ICmpInst::Predicate Pred) {
    235   ConstantInt *ACst = dyn_cast<ConstantInt>(A);
    236   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    237   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    238   bool IsEq = (Pred == ICmpInst::ICMP_EQ);
    239   bool IsAPow2 = (ACst && !ACst->isZero() && ACst->getValue().isPowerOf2());
    240   bool IsBPow2 = (BCst && !BCst->isZero() && BCst->getValue().isPowerOf2());
    241   unsigned MaskVal = 0;
    242   if (CCst && CCst->isZero()) {
    243     // if C is zero, then both A and B qualify as mask
    244     MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
    245                      : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
    246     if (IsAPow2)
    247       MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
    248                        : (AMask_AllOnes | AMask_Mixed));
    249     if (IsBPow2)
    250       MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
    251                        : (BMask_AllOnes | BMask_Mixed));
    252     return MaskVal;
    253   }
    254 
    255   if (A == C) {
    256     MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
    257                      : (AMask_NotAllOnes | AMask_NotMixed));
    258     if (IsAPow2)
    259       MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
    260                        : (Mask_AllZeros | AMask_Mixed));
    261   } else if (ACst && CCst && ConstantExpr::getAnd(ACst, CCst) == CCst) {
    262     MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
    263   }
    264 
    265   if (B == C) {
    266     MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
    267                      : (BMask_NotAllOnes | BMask_NotMixed));
    268     if (IsBPow2)
    269       MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
    270                        : (Mask_AllZeros | BMask_Mixed));
    271   } else if (BCst && CCst && ConstantExpr::getAnd(BCst, CCst) == CCst) {
    272     MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
    273   }
    274 
    275   return MaskVal;
    276 }
    277 
    278 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
    279 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
    280 /// is adjacent to the corresponding normal flag (recording ==), this just
    281 /// involves swapping those bits over.
    282 static unsigned conjugateICmpMask(unsigned Mask) {
    283   unsigned NewMask;
    284   NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
    285                      AMask_Mixed | BMask_Mixed))
    286             << 1;
    287 
    288   NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
    289                       AMask_NotMixed | BMask_NotMixed))
    290              >> 1;
    291 
    292   return NewMask;
    293 }
    294 
    295 // Adapts the external decomposeBitTestICmp for local use.
    296 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
    297                                  Value *&X, Value *&Y, Value *&Z) {
    298   APInt Mask;
    299   if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
    300     return false;
    301 
    302   Y = ConstantInt::get(X->getType(), Mask);
    303   Z = ConstantInt::get(X->getType(), 0);
    304   return true;
    305 }
    306 
    307 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
    308 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
    309 /// the right hand side as a pair.
    310 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
    311 /// and PredR are their predicates, respectively.
    312 static
    313 Optional<std::pair<unsigned, unsigned>>
    314 getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C,
    315                          Value *&D, Value *&E, ICmpInst *LHS,
    316                          ICmpInst *RHS,
    317                          ICmpInst::Predicate &PredL,
    318                          ICmpInst::Predicate &PredR) {
    319   // vectors are not (yet?) supported. Don't support pointers either.
    320   if (!LHS->getOperand(0)->getType()->isIntegerTy() ||
    321       !RHS->getOperand(0)->getType()->isIntegerTy())
    322     return None;
    323 
    324   // Here comes the tricky part:
    325   // LHS might be of the form L11 & L12 == X, X == L21 & L22,
    326   // and L11 & L12 == L21 & L22. The same goes for RHS.
    327   // Now we must find those components L** and R**, that are equal, so
    328   // that we can extract the parameters A, B, C, D, and E for the canonical
    329   // above.
    330   Value *L1 = LHS->getOperand(0);
    331   Value *L2 = LHS->getOperand(1);
    332   Value *L11, *L12, *L21, *L22;
    333   // Check whether the icmp can be decomposed into a bit test.
    334   if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
    335     L21 = L22 = L1 = nullptr;
    336   } else {
    337     // Look for ANDs in the LHS icmp.
    338     if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
    339       // Any icmp can be viewed as being trivially masked; if it allows us to
    340       // remove one, it's worth it.
    341       L11 = L1;
    342       L12 = Constant::getAllOnesValue(L1->getType());
    343     }
    344 
    345     if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
    346       L21 = L2;
    347       L22 = Constant::getAllOnesValue(L2->getType());
    348     }
    349   }
    350 
    351   // Bail if LHS was a icmp that can't be decomposed into an equality.
    352   if (!ICmpInst::isEquality(PredL))
    353     return None;
    354 
    355   Value *R1 = RHS->getOperand(0);
    356   Value *R2 = RHS->getOperand(1);
    357   Value *R11, *R12;
    358   bool Ok = false;
    359   if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
    360     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    361       A = R11;
    362       D = R12;
    363     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    364       A = R12;
    365       D = R11;
    366     } else {
    367       return None;
    368     }
    369     E = R2;
    370     R1 = nullptr;
    371     Ok = true;
    372   } else {
    373     if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
    374       // As before, model no mask as a trivial mask if it'll let us do an
    375       // optimization.
    376       R11 = R1;
    377       R12 = Constant::getAllOnesValue(R1->getType());
    378     }
    379 
    380     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    381       A = R11;
    382       D = R12;
    383       E = R2;
    384       Ok = true;
    385     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    386       A = R12;
    387       D = R11;
    388       E = R2;
    389       Ok = true;
    390     }
    391   }
    392 
    393   // Bail if RHS was a icmp that can't be decomposed into an equality.
    394   if (!ICmpInst::isEquality(PredR))
    395     return None;
    396 
    397   // Look for ANDs on the right side of the RHS icmp.
    398   if (!Ok) {
    399     if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
    400       R11 = R2;
    401       R12 = Constant::getAllOnesValue(R2->getType());
    402     }
    403 
    404     if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
    405       A = R11;
    406       D = R12;
    407       E = R1;
    408       Ok = true;
    409     } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
    410       A = R12;
    411       D = R11;
    412       E = R1;
    413       Ok = true;
    414     } else {
    415       return None;
    416     }
    417   }
    418   if (!Ok)
    419     return None;
    420 
    421   if (L11 == A) {
    422     B = L12;
    423     C = L2;
    424   } else if (L12 == A) {
    425     B = L11;
    426     C = L2;
    427   } else if (L21 == A) {
    428     B = L22;
    429     C = L1;
    430   } else if (L22 == A) {
    431     B = L21;
    432     C = L1;
    433   }
    434 
    435   unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
    436   unsigned RightType = getMaskedICmpType(A, D, E, PredR);
    437   return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType));
    438 }
    439 
    440 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
    441 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
    442 /// and the right hand side is of type BMask_Mixed. For example,
    443 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
    444 static Value * foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
    445     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
    446     Value *A, Value *B, Value *C, Value *D, Value *E,
    447     ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
    448     llvm::InstCombiner::BuilderTy &Builder) {
    449   // We are given the canonical form:
    450   //   (icmp ne (A & B), 0) & (icmp eq (A & D), E).
    451   // where D & E == E.
    452   //
    453   // If IsAnd is false, we get it in negated form:
    454   //   (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
    455   //      !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
    456   //
    457   // We currently handle the case of B, C, D, E are constant.
    458   //
    459   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    460   if (!BCst)
    461     return nullptr;
    462   ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    463   if (!CCst)
    464     return nullptr;
    465   ConstantInt *DCst = dyn_cast<ConstantInt>(D);
    466   if (!DCst)
    467     return nullptr;
    468   ConstantInt *ECst = dyn_cast<ConstantInt>(E);
    469   if (!ECst)
    470     return nullptr;
    471 
    472   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
    473 
    474   // Update E to the canonical form when D is a power of two and RHS is
    475   // canonicalized as,
    476   // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
    477   // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
    478   if (PredR != NewCC)
    479     ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
    480 
    481   // If B or D is zero, skip because if LHS or RHS can be trivially folded by
    482   // other folding rules and this pattern won't apply any more.
    483   if (BCst->getValue() == 0 || DCst->getValue() == 0)
    484     return nullptr;
    485 
    486   // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
    487   // deduce anything from it.
    488   // For example,
    489   // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
    490   if ((BCst->getValue() & DCst->getValue()) == 0)
    491     return nullptr;
    492 
    493   // If the following two conditions are met:
    494   //
    495   // 1. mask B covers only a single bit that's not covered by mask D, that is,
    496   // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
    497   // B and D has only one bit set) and,
    498   //
    499   // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
    500   // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
    501   //
    502   // then that single bit in B must be one and thus the whole expression can be
    503   // folded to
    504   //   (A & (B | D)) == (B & (B ^ D)) | E.
    505   //
    506   // For example,
    507   // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
    508   // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
    509   if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) &&
    510       (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) {
    511     APInt BorD = BCst->getValue() | DCst->getValue();
    512     APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) |
    513         ECst->getValue();
    514     Value *NewMask = ConstantInt::get(BCst->getType(), BorD);
    515     Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE);
    516     Value *NewAnd = Builder.CreateAnd(A, NewMask);
    517     return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
    518   }
    519 
    520   auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
    521     return (C1->getValue() & C2->getValue()) == C1->getValue();
    522   };
    523   auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
    524     return (C1->getValue() & C2->getValue()) == C2->getValue();
    525   };
    526 
    527   // In the following, we consider only the cases where B is a superset of D, B
    528   // is a subset of D, or B == D because otherwise there's at least one bit
    529   // covered by B but not D, in which case we can't deduce much from it, so
    530   // no folding (aside from the single must-be-one bit case right above.)
    531   // For example,
    532   // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
    533   if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
    534     return nullptr;
    535 
    536   // At this point, either B is a superset of D, B is a subset of D or B == D.
    537 
    538   // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
    539   // and the whole expression becomes false (or true if negated), otherwise, no
    540   // folding.
    541   // For example,
    542   // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
    543   // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
    544   if (ECst->isZero()) {
    545     if (IsSubSetOrEqual(BCst, DCst))
    546       return ConstantInt::get(LHS->getType(), !IsAnd);
    547     return nullptr;
    548   }
    549 
    550   // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
    551   // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
    552   // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
    553   // RHS. For example,
    554   // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
    555   // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
    556   if (IsSuperSetOrEqual(BCst, DCst))
    557     return RHS;
    558   // Otherwise, B is a subset of D. If B and E have a common bit set,
    559   // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
    560   // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
    561   assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
    562   if ((BCst->getValue() & ECst->getValue()) != 0)
    563     return RHS;
    564   // Otherwise, LHS and RHS contradict and the whole expression becomes false
    565   // (or true if negated.) For example,
    566   // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
    567   // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
    568   return ConstantInt::get(LHS->getType(), !IsAnd);
    569 }
    570 
    571 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
    572 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
    573 /// aren't of the common mask pattern type.
    574 static Value *foldLogOpOfMaskedICmpsAsymmetric(
    575     ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
    576     Value *A, Value *B, Value *C, Value *D, Value *E,
    577     ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
    578     unsigned LHSMask, unsigned RHSMask,
    579     llvm::InstCombiner::BuilderTy &Builder) {
    580   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
    581          "Expected equality predicates for masked type of icmps.");
    582   // Handle Mask_NotAllZeros-BMask_Mixed cases.
    583   // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
    584   // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
    585   //    which gets swapped to
    586   //    (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
    587   if (!IsAnd) {
    588     LHSMask = conjugateICmpMask(LHSMask);
    589     RHSMask = conjugateICmpMask(RHSMask);
    590   }
    591   if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
    592     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
    593             LHS, RHS, IsAnd, A, B, C, D, E,
    594             PredL, PredR, Builder)) {
    595       return V;
    596     }
    597   } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
    598     if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
    599             RHS, LHS, IsAnd, A, D, E, B, C,
    600             PredR, PredL, Builder)) {
    601       return V;
    602     }
    603   }
    604   return nullptr;
    605 }
    606 
    607 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
    608 /// into a single (icmp(A & X) ==/!= Y).
    609 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
    610                                      llvm::InstCombiner::BuilderTy &Builder) {
    611   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
    612   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
    613   Optional<std::pair<unsigned, unsigned>> MaskPair =
    614       getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
    615   if (!MaskPair)
    616     return nullptr;
    617   assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
    618          "Expected equality predicates for masked type of icmps.");
    619   unsigned LHSMask = MaskPair->first;
    620   unsigned RHSMask = MaskPair->second;
    621   unsigned Mask = LHSMask & RHSMask;
    622   if (Mask == 0) {
    623     // Even if the two sides don't share a common pattern, check if folding can
    624     // still happen.
    625     if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
    626             LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
    627             Builder))
    628       return V;
    629     return nullptr;
    630   }
    631 
    632   // In full generality:
    633   //     (icmp (A & B) Op C) | (icmp (A & D) Op E)
    634   // ==  ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
    635   //
    636   // If the latter can be converted into (icmp (A & X) Op Y) then the former is
    637   // equivalent to (icmp (A & X) !Op Y).
    638   //
    639   // Therefore, we can pretend for the rest of this function that we're dealing
    640   // with the conjunction, provided we flip the sense of any comparisons (both
    641   // input and output).
    642 
    643   // In most cases we're going to produce an EQ for the "&&" case.
    644   ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
    645   if (!IsAnd) {
    646     // Convert the masking analysis into its equivalent with negated
    647     // comparisons.
    648     Mask = conjugateICmpMask(Mask);
    649   }
    650 
    651   if (Mask & Mask_AllZeros) {
    652     // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
    653     // -> (icmp eq (A & (B|D)), 0)
    654     Value *NewOr = Builder.CreateOr(B, D);
    655     Value *NewAnd = Builder.CreateAnd(A, NewOr);
    656     // We can't use C as zero because we might actually handle
    657     //   (icmp ne (A & B), B) & (icmp ne (A & D), D)
    658     // with B and D, having a single bit set.
    659     Value *Zero = Constant::getNullValue(A->getType());
    660     return Builder.CreateICmp(NewCC, NewAnd, Zero);
    661   }
    662   if (Mask & BMask_AllOnes) {
    663     // (icmp eq (A & B), B) & (icmp eq (A & D), D)
    664     // -> (icmp eq (A & (B|D)), (B|D))
    665     Value *NewOr = Builder.CreateOr(B, D);
    666     Value *NewAnd = Builder.CreateAnd(A, NewOr);
    667     return Builder.CreateICmp(NewCC, NewAnd, NewOr);
    668   }
    669   if (Mask & AMask_AllOnes) {
    670     // (icmp eq (A & B), A) & (icmp eq (A & D), A)
    671     // -> (icmp eq (A & (B&D)), A)
    672     Value *NewAnd1 = Builder.CreateAnd(B, D);
    673     Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
    674     return Builder.CreateICmp(NewCC, NewAnd2, A);
    675   }
    676 
    677   // Remaining cases assume at least that B and D are constant, and depend on
    678   // their actual values. This isn't strictly necessary, just a "handle the
    679   // easy cases for now" decision.
    680   ConstantInt *BCst = dyn_cast<ConstantInt>(B);
    681   if (!BCst)
    682     return nullptr;
    683   ConstantInt *DCst = dyn_cast<ConstantInt>(D);
    684   if (!DCst)
    685     return nullptr;
    686 
    687   if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
    688     // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
    689     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
    690     //     -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
    691     // Only valid if one of the masks is a superset of the other (check "B&D" is
    692     // the same as either B or D).
    693     APInt NewMask = BCst->getValue() & DCst->getValue();
    694 
    695     if (NewMask == BCst->getValue())
    696       return LHS;
    697     else if (NewMask == DCst->getValue())
    698       return RHS;
    699   }
    700 
    701   if (Mask & AMask_NotAllOnes) {
    702     // (icmp ne (A & B), B) & (icmp ne (A & D), D)
    703     //     -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
    704     // Only valid if one of the masks is a superset of the other (check "B|D" is
    705     // the same as either B or D).
    706     APInt NewMask = BCst->getValue() | DCst->getValue();
    707 
    708     if (NewMask == BCst->getValue())
    709       return LHS;
    710     else if (NewMask == DCst->getValue())
    711       return RHS;
    712   }
    713 
    714   if (Mask & BMask_Mixed) {
    715     // (icmp eq (A & B), C) & (icmp eq (A & D), E)
    716     // We already know that B & C == C && D & E == E.
    717     // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
    718     // C and E, which are shared by both the mask B and the mask D, don't
    719     // contradict, then we can transform to
    720     // -> (icmp eq (A & (B|D)), (C|E))
    721     // Currently, we only handle the case of B, C, D, and E being constant.
    722     // We can't simply use C and E because we might actually handle
    723     //   (icmp ne (A & B), B) & (icmp eq (A & D), D)
    724     // with B and D, having a single bit set.
    725     ConstantInt *CCst = dyn_cast<ConstantInt>(C);
    726     if (!CCst)
    727       return nullptr;
    728     ConstantInt *ECst = dyn_cast<ConstantInt>(E);
    729     if (!ECst)
    730       return nullptr;
    731     if (PredL != NewCC)
    732       CCst = cast<ConstantInt>(ConstantExpr::getXor(BCst, CCst));
    733     if (PredR != NewCC)
    734       ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
    735 
    736     // If there is a conflict, we should actually return a false for the
    737     // whole construct.
    738     if (((BCst->getValue() & DCst->getValue()) &
    739          (CCst->getValue() ^ ECst->getValue())).getBoolValue())
    740       return ConstantInt::get(LHS->getType(), !IsAnd);
    741 
    742     Value *NewOr1 = Builder.CreateOr(B, D);
    743     Value *NewOr2 = ConstantExpr::getOr(CCst, ECst);
    744     Value *NewAnd = Builder.CreateAnd(A, NewOr1);
    745     return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
    746   }
    747 
    748   return nullptr;
    749 }
    750 
    751 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
    752 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
    753 /// If \p Inverted is true then the check is for the inverted range, e.g.
    754 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
    755 Value *InstCombiner::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
    756                                         bool Inverted) {
    757   // Check the lower range comparison, e.g. x >= 0
    758   // InstCombine already ensured that if there is a constant it's on the RHS.
    759   ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
    760   if (!RangeStart)
    761     return nullptr;
    762 
    763   ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
    764                                Cmp0->getPredicate());
    765 
    766   // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
    767   if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
    768         (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
    769     return nullptr;
    770 
    771   ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
    772                                Cmp1->getPredicate());
    773 
    774   Value *Input = Cmp0->getOperand(0);
    775   Value *RangeEnd;
    776   if (Cmp1->getOperand(0) == Input) {
    777     // For the upper range compare we have: icmp x, n
    778     RangeEnd = Cmp1->getOperand(1);
    779   } else if (Cmp1->getOperand(1) == Input) {
    780     // For the upper range compare we have: icmp n, x
    781     RangeEnd = Cmp1->getOperand(0);
    782     Pred1 = ICmpInst::getSwappedPredicate(Pred1);
    783   } else {
    784     return nullptr;
    785   }
    786 
    787   // Check the upper range comparison, e.g. x < n
    788   ICmpInst::Predicate NewPred;
    789   switch (Pred1) {
    790     case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
    791     case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
    792     default: return nullptr;
    793   }
    794 
    795   // This simplification is only valid if the upper range is not negative.
    796   KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
    797   if (!Known.isNonNegative())
    798     return nullptr;
    799 
    800   if (Inverted)
    801     NewPred = ICmpInst::getInversePredicate(NewPred);
    802 
    803   return Builder.CreateICmp(NewPred, Input, RangeEnd);
    804 }
    805 
    806 static Value *
    807 foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS,
    808                                      bool JoinedByAnd,
    809                                      InstCombiner::BuilderTy &Builder) {
    810   Value *X = LHS->getOperand(0);
    811   if (X != RHS->getOperand(0))
    812     return nullptr;
    813 
    814   const APInt *C1, *C2;
    815   if (!match(LHS->getOperand(1), m_APInt(C1)) ||
    816       !match(RHS->getOperand(1), m_APInt(C2)))
    817     return nullptr;
    818 
    819   // We only handle (X != C1 && X != C2) and (X == C1 || X == C2).
    820   ICmpInst::Predicate Pred = LHS->getPredicate();
    821   if (Pred !=  RHS->getPredicate())
    822     return nullptr;
    823   if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
    824     return nullptr;
    825   if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
    826     return nullptr;
    827 
    828   // The larger unsigned constant goes on the right.
    829   if (C1->ugt(*C2))
    830     std::swap(C1, C2);
    831 
    832   APInt Xor = *C1 ^ *C2;
    833   if (Xor.isPowerOf2()) {
    834     // If LHSC and RHSC differ by only one bit, then set that bit in X and
    835     // compare against the larger constant:
    836     // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2
    837     // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2
    838     // We choose an 'or' with a Pow2 constant rather than the inverse mask with
    839     // 'and' because that may lead to smaller codegen from a smaller constant.
    840     Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor));
    841     return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2));
    842   }
    843 
    844   // Special case: get the ordering right when the values wrap around zero.
    845   // Ie, we assumed the constants were unsigned when swapping earlier.
    846   if (C1->isNullValue() && C2->isAllOnesValue())
    847     std::swap(C1, C2);
    848 
    849   if (*C1 == *C2 - 1) {
    850     // (X == 13 || X == 14) --> X - 13 <=u 1
    851     // (X != 13 && X != 14) --> X - 13  >u 1
    852     // An 'add' is the canonical IR form, so favor that over a 'sub'.
    853     Value *Add = Builder.CreateAdd(X, ConstantInt::get(X->getType(), -(*C1)));
    854     auto NewPred = JoinedByAnd ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_ULE;
    855     return Builder.CreateICmp(NewPred, Add, ConstantInt::get(X->getType(), 1));
    856   }
    857 
    858   return nullptr;
    859 }
    860 
    861 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
    862 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
    863 Value *InstCombiner::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
    864                                                    bool JoinedByAnd,
    865                                                    Instruction &CxtI) {
    866   ICmpInst::Predicate Pred = LHS->getPredicate();
    867   if (Pred != RHS->getPredicate())
    868     return nullptr;
    869   if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
    870     return nullptr;
    871   if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
    872     return nullptr;
    873 
    874   // TODO support vector splats
    875   ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
    876   ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
    877   if (!LHSC || !RHSC || !LHSC->isZero() || !RHSC->isZero())
    878     return nullptr;
    879 
    880   Value *A, *B, *C, *D;
    881   if (match(LHS->getOperand(0), m_And(m_Value(A), m_Value(B))) &&
    882       match(RHS->getOperand(0), m_And(m_Value(C), m_Value(D)))) {
    883     if (A == D || B == D)
    884       std::swap(C, D);
    885     if (B == C)
    886       std::swap(A, B);
    887 
    888     if (A == C &&
    889         isKnownToBeAPowerOfTwo(B, false, 0, &CxtI) &&
    890         isKnownToBeAPowerOfTwo(D, false, 0, &CxtI)) {
    891       Value *Mask = Builder.CreateOr(B, D);
    892       Value *Masked = Builder.CreateAnd(A, Mask);
    893       auto NewPred = JoinedByAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
    894       return Builder.CreateICmp(NewPred, Masked, Mask);
    895     }
    896   }
    897 
    898   return nullptr;
    899 }
    900 
    901 /// Fold (icmp)&(icmp) if possible.
    902 Value *InstCombiner::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS,
    903                                     Instruction &CxtI) {
    904   // Fold (!iszero(A & K1) & !iszero(A & K2)) ->  (A & (K1 | K2)) == (K1 | K2)
    905   // if K1 and K2 are a one-bit mask.
    906   if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, true, CxtI))
    907     return V;
    908 
    909   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
    910 
    911   // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
    912   if (PredicatesFoldable(PredL, PredR)) {
    913     if (LHS->getOperand(0) == RHS->getOperand(1) &&
    914         LHS->getOperand(1) == RHS->getOperand(0))
    915       LHS->swapOperands();
    916     if (LHS->getOperand(0) == RHS->getOperand(0) &&
    917         LHS->getOperand(1) == RHS->getOperand(1)) {
    918       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
    919       unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
    920       bool isSigned = LHS->isSigned() || RHS->isSigned();
    921       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
    922     }
    923   }
    924 
    925   // handle (roughly):  (icmp eq (A & B), C) & (icmp eq (A & D), E)
    926   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
    927     return V;
    928 
    929   // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
    930   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
    931     return V;
    932 
    933   // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
    934   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
    935     return V;
    936 
    937   if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder))
    938     return V;
    939 
    940   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
    941   Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
    942   ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
    943   ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
    944   if (!LHSC || !RHSC)
    945     return nullptr;
    946 
    947   if (LHSC == RHSC && PredL == PredR) {
    948     // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
    949     // where C is a power of 2 or
    950     // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
    951     if ((PredL == ICmpInst::ICMP_ULT && LHSC->getValue().isPowerOf2()) ||
    952         (PredL == ICmpInst::ICMP_EQ && LHSC->isZero())) {
    953       Value *NewOr = Builder.CreateOr(LHS0, RHS0);
    954       return Builder.CreateICmp(PredL, NewOr, LHSC);
    955     }
    956   }
    957 
    958   // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
    959   // where CMAX is the all ones value for the truncated type,
    960   // iff the lower bits of C2 and CA are zero.
    961   if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() &&
    962       RHS->hasOneUse()) {
    963     Value *V;
    964     ConstantInt *AndC, *SmallC = nullptr, *BigC = nullptr;
    965 
    966     // (trunc x) == C1 & (and x, CA) == C2
    967     // (and x, CA) == C2 & (trunc x) == C1
    968     if (match(RHS0, m_Trunc(m_Value(V))) &&
    969         match(LHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
    970       SmallC = RHSC;
    971       BigC = LHSC;
    972     } else if (match(LHS0, m_Trunc(m_Value(V))) &&
    973                match(RHS0, m_And(m_Specific(V), m_ConstantInt(AndC)))) {
    974       SmallC = LHSC;
    975       BigC = RHSC;
    976     }
    977 
    978     if (SmallC && BigC) {
    979       unsigned BigBitSize = BigC->getType()->getBitWidth();
    980       unsigned SmallBitSize = SmallC->getType()->getBitWidth();
    981 
    982       // Check that the low bits are zero.
    983       APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
    984       if ((Low & AndC->getValue()).isNullValue() &&
    985           (Low & BigC->getValue()).isNullValue()) {
    986         Value *NewAnd = Builder.CreateAnd(V, Low | AndC->getValue());
    987         APInt N = SmallC->getValue().zext(BigBitSize) | BigC->getValue();
    988         Value *NewVal = ConstantInt::get(AndC->getType()->getContext(), N);
    989         return Builder.CreateICmp(PredL, NewAnd, NewVal);
    990       }
    991     }
    992   }
    993 
    994   // From here on, we only handle:
    995   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
    996   if (LHS0 != RHS0)
    997     return nullptr;
    998 
    999   // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
   1000   if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
   1001       PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
   1002       PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
   1003       PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
   1004     return nullptr;
   1005 
   1006   // We can't fold (ugt x, C) & (sgt x, C2).
   1007   if (!PredicatesFoldable(PredL, PredR))
   1008     return nullptr;
   1009 
   1010   // Ensure that the larger constant is on the RHS.
   1011   bool ShouldSwap;
   1012   if (CmpInst::isSigned(PredL) ||
   1013       (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
   1014     ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
   1015   else
   1016     ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
   1017 
   1018   if (ShouldSwap) {
   1019     std::swap(LHS, RHS);
   1020     std::swap(LHSC, RHSC);
   1021     std::swap(PredL, PredR);
   1022   }
   1023 
   1024   // At this point, we know we have two icmp instructions
   1025   // comparing a value against two constants and and'ing the result
   1026   // together.  Because of the above check, we know that we only have
   1027   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
   1028   // (from the icmp folding check above), that the two constants
   1029   // are not equal and that the larger constant is on the RHS
   1030   assert(LHSC != RHSC && "Compares not folded above?");
   1031 
   1032   switch (PredL) {
   1033   default:
   1034     llvm_unreachable("Unknown integer condition code!");
   1035   case ICmpInst::ICMP_NE:
   1036     switch (PredR) {
   1037     default:
   1038       llvm_unreachable("Unknown integer condition code!");
   1039     case ICmpInst::ICMP_ULT:
   1040       if (LHSC == SubOne(RHSC)) // (X != 13 & X u< 14) -> X < 13
   1041         return Builder.CreateICmpULT(LHS0, LHSC);
   1042       if (LHSC->isZero()) // (X !=  0 & X u< 14) -> X-1 u< 13
   1043         return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
   1044                                false, true);
   1045       break; // (X != 13 & X u< 15) -> no change
   1046     case ICmpInst::ICMP_SLT:
   1047       if (LHSC == SubOne(RHSC)) // (X != 13 & X s< 14) -> X < 13
   1048         return Builder.CreateICmpSLT(LHS0, LHSC);
   1049       break;                 // (X != 13 & X s< 15) -> no change
   1050     case ICmpInst::ICMP_NE:
   1051       // Potential folds for this case should already be handled.
   1052       break;
   1053     }
   1054     break;
   1055   case ICmpInst::ICMP_UGT:
   1056     switch (PredR) {
   1057     default:
   1058       llvm_unreachable("Unknown integer condition code!");
   1059     case ICmpInst::ICMP_NE:
   1060       if (RHSC == AddOne(LHSC)) // (X u> 13 & X != 14) -> X u> 14
   1061         return Builder.CreateICmp(PredL, LHS0, RHSC);
   1062       break;                 // (X u> 13 & X != 15) -> no change
   1063     case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
   1064       return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(),
   1065                              false, true);
   1066     }
   1067     break;
   1068   case ICmpInst::ICMP_SGT:
   1069     switch (PredR) {
   1070     default:
   1071       llvm_unreachable("Unknown integer condition code!");
   1072     case ICmpInst::ICMP_NE:
   1073       if (RHSC == AddOne(LHSC)) // (X s> 13 & X != 14) -> X s> 14
   1074         return Builder.CreateICmp(PredL, LHS0, RHSC);
   1075       break;                 // (X s> 13 & X != 15) -> no change
   1076     case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
   1077       return insertRangeTest(LHS0, LHSC->getValue() + 1, RHSC->getValue(), true,
   1078                              true);
   1079     }
   1080     break;
   1081   }
   1082 
   1083   return nullptr;
   1084 }
   1085 
   1086 Value *InstCombiner::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
   1087   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
   1088   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
   1089   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
   1090 
   1091   if (LHS0 == RHS1 && RHS0 == LHS1) {
   1092     // Swap RHS operands to match LHS.
   1093     PredR = FCmpInst::getSwappedPredicate(PredR);
   1094     std::swap(RHS0, RHS1);
   1095   }
   1096 
   1097   // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
   1098   // Suppose the relation between x and y is R, where R is one of
   1099   // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
   1100   // testing the desired relations.
   1101   //
   1102   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
   1103   //    bool(R & CC0) && bool(R & CC1)
   1104   //  = bool((R & CC0) & (R & CC1))
   1105   //  = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
   1106   //
   1107   // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
   1108   //    bool(R & CC0) || bool(R & CC1)
   1109   //  = bool((R & CC0) | (R & CC1))
   1110   //  = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
   1111   if (LHS0 == RHS0 && LHS1 == RHS1) {
   1112     unsigned FCmpCodeL = getFCmpCode(PredL);
   1113     unsigned FCmpCodeR = getFCmpCode(PredR);
   1114     unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
   1115     return getFCmpValue(NewPred, LHS0, LHS1, Builder);
   1116   }
   1117 
   1118   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
   1119       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
   1120     if (LHS0->getType() != RHS0->getType())
   1121       return nullptr;
   1122 
   1123     // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
   1124     // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
   1125     if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
   1126       // Ignore the constants because they are obviously not NANs:
   1127       // (fcmp ord x, 0.0) & (fcmp ord y, 0.0)  -> (fcmp ord x, y)
   1128       // (fcmp uno x, 0.0) | (fcmp uno y, 0.0)  -> (fcmp uno x, y)
   1129       return Builder.CreateFCmp(PredL, LHS0, RHS0);
   1130   }
   1131 
   1132   return nullptr;
   1133 }
   1134 
   1135 /// Match De Morgan's Laws:
   1136 /// (~A & ~B) == (~(A | B))
   1137 /// (~A | ~B) == (~(A & B))
   1138 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
   1139                                        InstCombiner::BuilderTy &Builder) {
   1140   auto Opcode = I.getOpcode();
   1141   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
   1142          "Trying to match De Morgan's Laws with something other than and/or");
   1143 
   1144   // Flip the logic operation.
   1145   Opcode = (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
   1146 
   1147   Value *A, *B;
   1148   if (match(I.getOperand(0), m_OneUse(m_Not(m_Value(A)))) &&
   1149       match(I.getOperand(1), m_OneUse(m_Not(m_Value(B)))) &&
   1150       !IsFreeToInvert(A, A->hasOneUse()) &&
   1151       !IsFreeToInvert(B, B->hasOneUse())) {
   1152     Value *AndOr = Builder.CreateBinOp(Opcode, A, B, I.getName() + ".demorgan");
   1153     return BinaryOperator::CreateNot(AndOr);
   1154   }
   1155 
   1156   return nullptr;
   1157 }
   1158 
   1159 bool InstCombiner::shouldOptimizeCast(CastInst *CI) {
   1160   Value *CastSrc = CI->getOperand(0);
   1161 
   1162   // Noop casts and casts of constants should be eliminated trivially.
   1163   if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
   1164     return false;
   1165 
   1166   // If this cast is paired with another cast that can be eliminated, we prefer
   1167   // to have it eliminated.
   1168   if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
   1169     if (isEliminableCastPair(PrecedingCI, CI))
   1170       return false;
   1171 
   1172   return true;
   1173 }
   1174 
   1175 /// Fold {and,or,xor} (cast X), C.
   1176 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
   1177                                           InstCombiner::BuilderTy &Builder) {
   1178   Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
   1179   if (!C)
   1180     return nullptr;
   1181 
   1182   auto LogicOpc = Logic.getOpcode();
   1183   Type *DestTy = Logic.getType();
   1184   Type *SrcTy = Cast->getSrcTy();
   1185 
   1186   // Move the logic operation ahead of a zext or sext if the constant is
   1187   // unchanged in the smaller source type. Performing the logic in a smaller
   1188   // type may provide more information to later folds, and the smaller logic
   1189   // instruction may be cheaper (particularly in the case of vectors).
   1190   Value *X;
   1191   if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
   1192     Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
   1193     Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
   1194     if (ZextTruncC == C) {
   1195       // LogicOpc (zext X), C --> zext (LogicOpc X, C)
   1196       Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
   1197       return new ZExtInst(NewOp, DestTy);
   1198     }
   1199   }
   1200 
   1201   if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
   1202     Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
   1203     Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
   1204     if (SextTruncC == C) {
   1205       // LogicOpc (sext X), C --> sext (LogicOpc X, C)
   1206       Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
   1207       return new SExtInst(NewOp, DestTy);
   1208     }
   1209   }
   1210 
   1211   return nullptr;
   1212 }
   1213 
   1214 /// Fold {and,or,xor} (cast X), Y.
   1215 Instruction *InstCombiner::foldCastedBitwiseLogic(BinaryOperator &I) {
   1216   auto LogicOpc = I.getOpcode();
   1217   assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
   1218 
   1219   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1220   CastInst *Cast0 = dyn_cast<CastInst>(Op0);
   1221   if (!Cast0)
   1222     return nullptr;
   1223 
   1224   // This must be a cast from an integer or integer vector source type to allow
   1225   // transformation of the logic operation to the source type.
   1226   Type *DestTy = I.getType();
   1227   Type *SrcTy = Cast0->getSrcTy();
   1228   if (!SrcTy->isIntOrIntVectorTy())
   1229     return nullptr;
   1230 
   1231   if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
   1232     return Ret;
   1233 
   1234   CastInst *Cast1 = dyn_cast<CastInst>(Op1);
   1235   if (!Cast1)
   1236     return nullptr;
   1237 
   1238   // Both operands of the logic operation are casts. The casts must be of the
   1239   // same type for reduction.
   1240   auto CastOpcode = Cast0->getOpcode();
   1241   if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
   1242     return nullptr;
   1243 
   1244   Value *Cast0Src = Cast0->getOperand(0);
   1245   Value *Cast1Src = Cast1->getOperand(0);
   1246 
   1247   // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
   1248   if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
   1249     Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
   1250                                         I.getName());
   1251     return CastInst::Create(CastOpcode, NewOp, DestTy);
   1252   }
   1253 
   1254   // For now, only 'and'/'or' have optimizations after this.
   1255   if (LogicOpc == Instruction::Xor)
   1256     return nullptr;
   1257 
   1258   // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
   1259   // cast is otherwise not optimizable.  This happens for vector sexts.
   1260   ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
   1261   ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
   1262   if (ICmp0 && ICmp1) {
   1263     Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I)
   1264                                               : foldOrOfICmps(ICmp0, ICmp1, I);
   1265     if (Res)
   1266       return CastInst::Create(CastOpcode, Res, DestTy);
   1267     return nullptr;
   1268   }
   1269 
   1270   // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
   1271   // cast is otherwise not optimizable.  This happens for vector sexts.
   1272   FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
   1273   FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
   1274   if (FCmp0 && FCmp1)
   1275     if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
   1276       return CastInst::Create(CastOpcode, R, DestTy);
   1277 
   1278   return nullptr;
   1279 }
   1280 
   1281 static Instruction *foldAndToXor(BinaryOperator &I,
   1282                                  InstCombiner::BuilderTy &Builder) {
   1283   assert(I.getOpcode() == Instruction::And);
   1284   Value *Op0 = I.getOperand(0);
   1285   Value *Op1 = I.getOperand(1);
   1286   Value *A, *B;
   1287 
   1288   // Operand complexity canonicalization guarantees that the 'or' is Op0.
   1289   // (A | B) & ~(A & B) --> A ^ B
   1290   // (A | B) & ~(B & A) --> A ^ B
   1291   if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
   1292                         m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
   1293     return BinaryOperator::CreateXor(A, B);
   1294 
   1295   // (A | ~B) & (~A | B) --> ~(A ^ B)
   1296   // (A | ~B) & (B | ~A) --> ~(A ^ B)
   1297   // (~B | A) & (~A | B) --> ~(A ^ B)
   1298   // (~B | A) & (B | ~A) --> ~(A ^ B)
   1299   if (Op0->hasOneUse() || Op1->hasOneUse())
   1300     if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
   1301                           m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
   1302       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
   1303 
   1304   return nullptr;
   1305 }
   1306 
   1307 static Instruction *foldOrToXor(BinaryOperator &I,
   1308                                 InstCombiner::BuilderTy &Builder) {
   1309   assert(I.getOpcode() == Instruction::Or);
   1310   Value *Op0 = I.getOperand(0);
   1311   Value *Op1 = I.getOperand(1);
   1312   Value *A, *B;
   1313 
   1314   // Operand complexity canonicalization guarantees that the 'and' is Op0.
   1315   // (A & B) | ~(A | B) --> ~(A ^ B)
   1316   // (A & B) | ~(B | A) --> ~(A ^ B)
   1317   if (Op0->hasOneUse() || Op1->hasOneUse())
   1318     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
   1319         match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
   1320       return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
   1321 
   1322   // (A & ~B) | (~A & B) --> A ^ B
   1323   // (A & ~B) | (B & ~A) --> A ^ B
   1324   // (~B & A) | (~A & B) --> A ^ B
   1325   // (~B & A) | (B & ~A) --> A ^ B
   1326   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
   1327       match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
   1328     return BinaryOperator::CreateXor(A, B);
   1329 
   1330   return nullptr;
   1331 }
   1332 
   1333 /// Return true if a constant shift amount is always less than the specified
   1334 /// bit-width. If not, the shift could create poison in the narrower type.
   1335 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
   1336   if (auto *ScalarC = dyn_cast<ConstantInt>(C))
   1337     return ScalarC->getZExtValue() < BitWidth;
   1338 
   1339   if (C->getType()->isVectorTy()) {
   1340     // Check each element of a constant vector.
   1341     unsigned NumElts = C->getType()->getVectorNumElements();
   1342     for (unsigned i = 0; i != NumElts; ++i) {
   1343       Constant *Elt = C->getAggregateElement(i);
   1344       if (!Elt)
   1345         return false;
   1346       if (isa<UndefValue>(Elt))
   1347         continue;
   1348       auto *CI = dyn_cast<ConstantInt>(Elt);
   1349       if (!CI || CI->getZExtValue() >= BitWidth)
   1350         return false;
   1351     }
   1352     return true;
   1353   }
   1354 
   1355   // The constant is a constant expression or unknown.
   1356   return false;
   1357 }
   1358 
   1359 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
   1360 /// a common zext operand: and (binop (zext X), C), (zext X).
   1361 Instruction *InstCombiner::narrowMaskedBinOp(BinaryOperator &And) {
   1362   // This transform could also apply to {or, and, xor}, but there are better
   1363   // folds for those cases, so we don't expect those patterns here. AShr is not
   1364   // handled because it should always be transformed to LShr in this sequence.
   1365   // The subtract transform is different because it has a constant on the left.
   1366   // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
   1367   Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
   1368   Constant *C;
   1369   if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
   1370       !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
   1371       !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
   1372       !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
   1373       !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
   1374     return nullptr;
   1375 
   1376   Value *X;
   1377   if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
   1378     return nullptr;
   1379 
   1380   Type *Ty = And.getType();
   1381   if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
   1382     return nullptr;
   1383 
   1384   // If we're narrowing a shift, the shift amount must be safe (less than the
   1385   // width) in the narrower type. If the shift amount is greater, instsimplify
   1386   // usually handles that case, but we can't guarantee/assert it.
   1387   Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
   1388   if (Opc == Instruction::LShr || Opc == Instruction::Shl)
   1389     if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
   1390       return nullptr;
   1391 
   1392   // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
   1393   // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
   1394   Value *NewC = ConstantExpr::getTrunc(C, X->getType());
   1395   Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
   1396                                          : Builder.CreateBinOp(Opc, X, NewC);
   1397   return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
   1398 }
   1399 
   1400 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
   1401 // here. We should standardize that construct where it is needed or choose some
   1402 // other way to ensure that commutated variants of patterns are not missed.
   1403 Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
   1404   if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1),
   1405                                  SQ.getWithInstruction(&I)))
   1406     return replaceInstUsesWith(I, V);
   1407 
   1408   if (SimplifyAssociativeOrCommutative(I))
   1409     return &I;
   1410 
   1411   if (Instruction *X = foldShuffledBinop(I))
   1412     return X;
   1413 
   1414   // See if we can simplify any instructions used by the instruction whose sole
   1415   // purpose is to compute bits we don't care about.
   1416   if (SimplifyDemandedInstructionBits(I))
   1417     return &I;
   1418 
   1419   // Do this before using distributive laws to catch simple and/or/not patterns.
   1420   if (Instruction *Xor = foldAndToXor(I, Builder))
   1421     return Xor;
   1422 
   1423   // (A|B)&(A|C) -> A|(B&C) etc
   1424   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1425     return replaceInstUsesWith(I, V);
   1426 
   1427   if (Value *V = SimplifyBSwap(I, Builder))
   1428     return replaceInstUsesWith(I, V);
   1429 
   1430   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1431   const APInt *C;
   1432   if (match(Op1, m_APInt(C))) {
   1433     Value *X, *Y;
   1434     if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
   1435         C->isOneValue()) {
   1436       // (1 << X) & 1 --> zext(X == 0)
   1437       // (1 >> X) & 1 --> zext(X == 0)
   1438       Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(I.getType(), 0));
   1439       return new ZExtInst(IsZero, I.getType());
   1440     }
   1441 
   1442     const APInt *XorC;
   1443     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
   1444       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
   1445       Constant *NewC = ConstantInt::get(I.getType(), *C & *XorC);
   1446       Value *And = Builder.CreateAnd(X, Op1);
   1447       And->takeName(Op0);
   1448       return BinaryOperator::CreateXor(And, NewC);
   1449     }
   1450 
   1451     const APInt *OrC;
   1452     if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
   1453       // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
   1454       // NOTE: This reduces the number of bits set in the & mask, which
   1455       // can expose opportunities for store narrowing for scalars.
   1456       // NOTE: SimplifyDemandedBits should have already removed bits from C1
   1457       // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
   1458       // above, but this feels safer.
   1459       APInt Together = *C & *OrC;
   1460       Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(),
   1461                                                          Together ^ *C));
   1462       And->takeName(Op0);
   1463       return BinaryOperator::CreateOr(And, ConstantInt::get(I.getType(),
   1464                                                             Together));
   1465     }
   1466 
   1467     // If the mask is only needed on one incoming arm, push the 'and' op up.
   1468     if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
   1469         match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
   1470       APInt NotAndMask(~(*C));
   1471       BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
   1472       if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
   1473         // Not masking anything out for the LHS, move mask to RHS.
   1474         // and ({x}or X, Y), C --> {x}or X, (and Y, C)
   1475         Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
   1476         return BinaryOperator::Create(BinOp, X, NewRHS);
   1477       }
   1478       if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
   1479         // Not masking anything out for the RHS, move mask to LHS.
   1480         // and ({x}or X, Y), C --> {x}or (and X, C), Y
   1481         Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
   1482         return BinaryOperator::Create(BinOp, NewLHS, Y);
   1483       }
   1484     }
   1485 
   1486   }
   1487 
   1488   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
   1489     const APInt &AndRHSMask = AndRHS->getValue();
   1490 
   1491     // Optimize a variety of ((val OP C1) & C2) combinations...
   1492     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   1493       // ((C1 OP zext(X)) & C2) -> zext((C1-X) & C2) if C2 fits in the bitwidth
   1494       // of X and OP behaves well when given trunc(C1) and X.
   1495       switch (Op0I->getOpcode()) {
   1496       default:
   1497         break;
   1498       case Instruction::Xor:
   1499       case Instruction::Or:
   1500       case Instruction::Mul:
   1501       case Instruction::Add:
   1502       case Instruction::Sub:
   1503         Value *X;
   1504         ConstantInt *C1;
   1505         if (match(Op0I, m_c_BinOp(m_ZExt(m_Value(X)), m_ConstantInt(C1)))) {
   1506           if (AndRHSMask.isIntN(X->getType()->getScalarSizeInBits())) {
   1507             auto *TruncC1 = ConstantExpr::getTrunc(C1, X->getType());
   1508             Value *BinOp;
   1509             Value *Op0LHS = Op0I->getOperand(0);
   1510             if (isa<ZExtInst>(Op0LHS))
   1511               BinOp = Builder.CreateBinOp(Op0I->getOpcode(), X, TruncC1);
   1512             else
   1513               BinOp = Builder.CreateBinOp(Op0I->getOpcode(), TruncC1, X);
   1514             auto *TruncC2 = ConstantExpr::getTrunc(AndRHS, X->getType());
   1515             auto *And = Builder.CreateAnd(BinOp, TruncC2);
   1516             return new ZExtInst(And, I.getType());
   1517           }
   1518         }
   1519       }
   1520 
   1521       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
   1522         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
   1523           return Res;
   1524     }
   1525 
   1526     // If this is an integer truncation, and if the source is an 'and' with
   1527     // immediate, transform it.  This frequently occurs for bitfield accesses.
   1528     {
   1529       Value *X = nullptr; ConstantInt *YC = nullptr;
   1530       if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
   1531         // Change: and (trunc (and X, YC) to T), C2
   1532         // into  : and (trunc X to T), trunc(YC) & C2
   1533         // This will fold the two constants together, which may allow
   1534         // other simplifications.
   1535         Value *NewCast = Builder.CreateTrunc(X, I.getType(), "and.shrunk");
   1536         Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
   1537         C3 = ConstantExpr::getAnd(C3, AndRHS);
   1538         return BinaryOperator::CreateAnd(NewCast, C3);
   1539       }
   1540     }
   1541   }
   1542 
   1543   if (Instruction *Z = narrowMaskedBinOp(I))
   1544     return Z;
   1545 
   1546   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
   1547     return FoldedLogic;
   1548 
   1549   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
   1550     return DeMorgan;
   1551 
   1552   {
   1553     Value *A, *B, *C;
   1554     // A & (A ^ B) --> A & ~B
   1555     if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
   1556       return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
   1557     // (A ^ B) & A --> A & ~B
   1558     if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
   1559       return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
   1560 
   1561     // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
   1562     if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
   1563       if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
   1564         if (Op1->hasOneUse() || IsFreeToInvert(C, C->hasOneUse()))
   1565           return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
   1566 
   1567     // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
   1568     if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
   1569       if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
   1570         if (Op0->hasOneUse() || IsFreeToInvert(C, C->hasOneUse()))
   1571           return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
   1572 
   1573     // (A | B) & ((~A) ^ B) -> (A & B)
   1574     // (A | B) & (B ^ (~A)) -> (A & B)
   1575     // (B | A) & ((~A) ^ B) -> (A & B)
   1576     // (B | A) & (B ^ (~A)) -> (A & B)
   1577     if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
   1578         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
   1579       return BinaryOperator::CreateAnd(A, B);
   1580 
   1581     // ((~A) ^ B) & (A | B) -> (A & B)
   1582     // ((~A) ^ B) & (B | A) -> (A & B)
   1583     // (B ^ (~A)) & (A | B) -> (A & B)
   1584     // (B ^ (~A)) & (B | A) -> (A & B)
   1585     if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
   1586         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
   1587       return BinaryOperator::CreateAnd(A, B);
   1588   }
   1589 
   1590   {
   1591     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
   1592     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
   1593     if (LHS && RHS)
   1594       if (Value *Res = foldAndOfICmps(LHS, RHS, I))
   1595         return replaceInstUsesWith(I, Res);
   1596 
   1597     // TODO: Make this recursive; it's a little tricky because an arbitrary
   1598     // number of 'and' instructions might have to be created.
   1599     Value *X, *Y;
   1600     if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
   1601       if (auto *Cmp = dyn_cast<ICmpInst>(X))
   1602         if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
   1603           return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
   1604       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
   1605         if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
   1606           return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
   1607     }
   1608     if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
   1609       if (auto *Cmp = dyn_cast<ICmpInst>(X))
   1610         if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
   1611           return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
   1612       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
   1613         if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
   1614           return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
   1615     }
   1616   }
   1617 
   1618   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   1619     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   1620       if (Value *Res = foldLogicOfFCmps(LHS, RHS, true))
   1621         return replaceInstUsesWith(I, Res);
   1622 
   1623   if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
   1624     return CastedAnd;
   1625 
   1626   // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
   1627   Value *A;
   1628   if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
   1629       A->getType()->isIntOrIntVectorTy(1))
   1630     return SelectInst::Create(A, Op1, Constant::getNullValue(I.getType()));
   1631   if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
   1632       A->getType()->isIntOrIntVectorTy(1))
   1633     return SelectInst::Create(A, Op0, Constant::getNullValue(I.getType()));
   1634 
   1635   return nullptr;
   1636 }
   1637 
   1638 /// Given an OR instruction, check to see if this is a bswap idiom. If so,
   1639 /// insert the new intrinsic and return it.
   1640 Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
   1641   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1642 
   1643   // Look through zero extends.
   1644   if (Instruction *Ext = dyn_cast<ZExtInst>(Op0))
   1645     Op0 = Ext->getOperand(0);
   1646 
   1647   if (Instruction *Ext = dyn_cast<ZExtInst>(Op1))
   1648     Op1 = Ext->getOperand(0);
   1649 
   1650   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
   1651   bool OrOfOrs = match(Op0, m_Or(m_Value(), m_Value())) ||
   1652                  match(Op1, m_Or(m_Value(), m_Value()));
   1653 
   1654   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
   1655   bool OrOfShifts = match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
   1656                     match(Op1, m_LogicalShift(m_Value(), m_Value()));
   1657 
   1658   // (A & B) | (C & D)                              -> bswap if possible.
   1659   bool OrOfAnds = match(Op0, m_And(m_Value(), m_Value())) &&
   1660                   match(Op1, m_And(m_Value(), m_Value()));
   1661 
   1662   // (A << B) | (C & D)                              -> bswap if possible.
   1663   // The bigger pattern here is ((A & C1) << C2) | ((B >> C2) & C1), which is a
   1664   // part of the bswap idiom for specific values of C1, C2 (e.g. C1 = 16711935,
   1665   // C2 = 8 for i32).
   1666   // This pattern can occur when the operands of the 'or' are not canonicalized
   1667   // for some reason (not having only one use, for example).
   1668   bool OrOfAndAndSh = (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
   1669                        match(Op1, m_And(m_Value(), m_Value()))) ||
   1670                       (match(Op0, m_And(m_Value(), m_Value())) &&
   1671                        match(Op1, m_LogicalShift(m_Value(), m_Value())));
   1672 
   1673   if (!OrOfOrs && !OrOfShifts && !OrOfAnds && !OrOfAndAndSh)
   1674     return nullptr;
   1675 
   1676   SmallVector<Instruction*, 4> Insts;
   1677   if (!recognizeBSwapOrBitReverseIdiom(&I, true, false, Insts))
   1678     return nullptr;
   1679   Instruction *LastInst = Insts.pop_back_val();
   1680   LastInst->removeFromParent();
   1681 
   1682   for (auto *Inst : Insts)
   1683     Worklist.Add(Inst);
   1684   return LastInst;
   1685 }
   1686 
   1687 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
   1688 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
   1689   unsigned NumElts = C1->getType()->getVectorNumElements();
   1690   for (unsigned i = 0; i != NumElts; ++i) {
   1691     Constant *EltC1 = C1->getAggregateElement(i);
   1692     Constant *EltC2 = C2->getAggregateElement(i);
   1693     if (!EltC1 || !EltC2)
   1694       return false;
   1695 
   1696     // One element must be all ones, and the other must be all zeros.
   1697     if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
   1698           (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
   1699       return false;
   1700   }
   1701   return true;
   1702 }
   1703 
   1704 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
   1705 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
   1706 /// B, it can be used as the condition operand of a select instruction.
   1707 static Value *getSelectCondition(Value *A, Value *B,
   1708                                  InstCombiner::BuilderTy &Builder) {
   1709   // If these are scalars or vectors of i1, A can be used directly.
   1710   Type *Ty = A->getType();
   1711   if (match(A, m_Not(m_Specific(B))) && Ty->isIntOrIntVectorTy(1))
   1712     return A;
   1713 
   1714   // If A and B are sign-extended, look through the sexts to find the booleans.
   1715   Value *Cond;
   1716   Value *NotB;
   1717   if (match(A, m_SExt(m_Value(Cond))) &&
   1718       Cond->getType()->isIntOrIntVectorTy(1) &&
   1719       match(B, m_OneUse(m_Not(m_Value(NotB))))) {
   1720     NotB = peekThroughBitcast(NotB, true);
   1721     if (match(NotB, m_SExt(m_Specific(Cond))))
   1722       return Cond;
   1723   }
   1724 
   1725   // All scalar (and most vector) possibilities should be handled now.
   1726   // Try more matches that only apply to non-splat constant vectors.
   1727   if (!Ty->isVectorTy())
   1728     return nullptr;
   1729 
   1730   // If both operands are constants, see if the constants are inverse bitmasks.
   1731   Constant *AC, *BC;
   1732   if (match(A, m_Constant(AC)) && match(B, m_Constant(BC)) &&
   1733       areInverseVectorBitmasks(AC, BC)) {
   1734     return Builder.CreateZExtOrTrunc(AC, CmpInst::makeCmpResultType(Ty));
   1735   }
   1736 
   1737   // If both operands are xor'd with constants using the same sexted boolean
   1738   // operand, see if the constants are inverse bitmasks.
   1739   if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AC)))) &&
   1740       match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BC)))) &&
   1741       Cond->getType()->isIntOrIntVectorTy(1) &&
   1742       areInverseVectorBitmasks(AC, BC)) {
   1743     AC = ConstantExpr::getTrunc(AC, CmpInst::makeCmpResultType(Ty));
   1744     return Builder.CreateXor(Cond, AC);
   1745   }
   1746   return nullptr;
   1747 }
   1748 
   1749 /// We have an expression of the form (A & C) | (B & D). Try to simplify this
   1750 /// to "A' ? C : D", where A' is a boolean or vector of booleans.
   1751 static Value *matchSelectFromAndOr(Value *A, Value *C, Value *B, Value *D,
   1752                                    InstCombiner::BuilderTy &Builder) {
   1753   // The potential condition of the select may be bitcasted. In that case, look
   1754   // through its bitcast and the corresponding bitcast of the 'not' condition.
   1755   Type *OrigType = A->getType();
   1756   A = peekThroughBitcast(A, true);
   1757   B = peekThroughBitcast(B, true);
   1758 
   1759   if (Value *Cond = getSelectCondition(A, B, Builder)) {
   1760     // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
   1761     // The bitcasts will either all exist or all not exist. The builder will
   1762     // not create unnecessary casts if the types already match.
   1763     Value *BitcastC = Builder.CreateBitCast(C, A->getType());
   1764     Value *BitcastD = Builder.CreateBitCast(D, A->getType());
   1765     Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
   1766     return Builder.CreateBitCast(Select, OrigType);
   1767   }
   1768 
   1769   return nullptr;
   1770 }
   1771 
   1772 /// Fold (icmp)|(icmp) if possible.
   1773 Value *InstCombiner::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
   1774                                    Instruction &CxtI) {
   1775   // Fold (iszero(A & K1) | iszero(A & K2)) ->  (A & (K1 | K2)) != (K1 | K2)
   1776   // if K1 and K2 are a one-bit mask.
   1777   if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, false, CxtI))
   1778     return V;
   1779 
   1780   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
   1781 
   1782   ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS->getOperand(1));
   1783   ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS->getOperand(1));
   1784 
   1785   // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
   1786   //                   -->  (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
   1787   // The original condition actually refers to the following two ranges:
   1788   // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
   1789   // We can fold these two ranges if:
   1790   // 1) C1 and C2 is unsigned greater than C3.
   1791   // 2) The two ranges are separated.
   1792   // 3) C1 ^ C2 is one-bit mask.
   1793   // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
   1794   // This implies all values in the two ranges differ by exactly one bit.
   1795 
   1796   if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) &&
   1797       PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() &&
   1798       LHSC->getType() == RHSC->getType() &&
   1799       LHSC->getValue() == (RHSC->getValue())) {
   1800 
   1801     Value *LAdd = LHS->getOperand(0);
   1802     Value *RAdd = RHS->getOperand(0);
   1803 
   1804     Value *LAddOpnd, *RAddOpnd;
   1805     ConstantInt *LAddC, *RAddC;
   1806     if (match(LAdd, m_Add(m_Value(LAddOpnd), m_ConstantInt(LAddC))) &&
   1807         match(RAdd, m_Add(m_Value(RAddOpnd), m_ConstantInt(RAddC))) &&
   1808         LAddC->getValue().ugt(LHSC->getValue()) &&
   1809         RAddC->getValue().ugt(LHSC->getValue())) {
   1810 
   1811       APInt DiffC = LAddC->getValue() ^ RAddC->getValue();
   1812       if (LAddOpnd == RAddOpnd && DiffC.isPowerOf2()) {
   1813         ConstantInt *MaxAddC = nullptr;
   1814         if (LAddC->getValue().ult(RAddC->getValue()))
   1815           MaxAddC = RAddC;
   1816         else
   1817           MaxAddC = LAddC;
   1818 
   1819         APInt RRangeLow = -RAddC->getValue();
   1820         APInt RRangeHigh = RRangeLow + LHSC->getValue();
   1821         APInt LRangeLow = -LAddC->getValue();
   1822         APInt LRangeHigh = LRangeLow + LHSC->getValue();
   1823         APInt LowRangeDiff = RRangeLow ^ LRangeLow;
   1824         APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
   1825         APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
   1826                                                    : RRangeLow - LRangeLow;
   1827 
   1828         if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
   1829             RangeDiff.ugt(LHSC->getValue())) {
   1830           Value *MaskC = ConstantInt::get(LAddC->getType(), ~DiffC);
   1831 
   1832           Value *NewAnd = Builder.CreateAnd(LAddOpnd, MaskC);
   1833           Value *NewAdd = Builder.CreateAdd(NewAnd, MaxAddC);
   1834           return Builder.CreateICmp(LHS->getPredicate(), NewAdd, LHSC);
   1835         }
   1836       }
   1837     }
   1838   }
   1839 
   1840   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
   1841   if (PredicatesFoldable(PredL, PredR)) {
   1842     if (LHS->getOperand(0) == RHS->getOperand(1) &&
   1843         LHS->getOperand(1) == RHS->getOperand(0))
   1844       LHS->swapOperands();
   1845     if (LHS->getOperand(0) == RHS->getOperand(0) &&
   1846         LHS->getOperand(1) == RHS->getOperand(1)) {
   1847       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   1848       unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
   1849       bool isSigned = LHS->isSigned() || RHS->isSigned();
   1850       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
   1851     }
   1852   }
   1853 
   1854   // handle (roughly):
   1855   // (icmp ne (A & B), C) | (icmp ne (A & D), E)
   1856   if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
   1857     return V;
   1858 
   1859   Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
   1860   if (LHS->hasOneUse() || RHS->hasOneUse()) {
   1861     // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
   1862     // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
   1863     Value *A = nullptr, *B = nullptr;
   1864     if (PredL == ICmpInst::ICMP_EQ && LHSC && LHSC->isZero()) {
   1865       B = LHS0;
   1866       if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS->getOperand(1))
   1867         A = RHS0;
   1868       else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0)
   1869         A = RHS->getOperand(1);
   1870     }
   1871     // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
   1872     // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
   1873     else if (PredR == ICmpInst::ICMP_EQ && RHSC && RHSC->isZero()) {
   1874       B = RHS0;
   1875       if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS->getOperand(1))
   1876         A = LHS0;
   1877       else if (PredL == ICmpInst::ICMP_UGT && LHS0 == RHS0)
   1878         A = LHS->getOperand(1);
   1879     }
   1880     if (A && B)
   1881       return Builder.CreateICmp(
   1882           ICmpInst::ICMP_UGE,
   1883           Builder.CreateAdd(B, ConstantInt::getSigned(B->getType(), -1)), A);
   1884   }
   1885 
   1886   // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
   1887   if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
   1888     return V;
   1889 
   1890   // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
   1891   if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
   1892     return V;
   1893 
   1894   if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder))
   1895     return V;
   1896 
   1897   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
   1898   if (!LHSC || !RHSC)
   1899     return nullptr;
   1900 
   1901   if (LHSC == RHSC && PredL == PredR) {
   1902     // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
   1903     if (PredL == ICmpInst::ICMP_NE && LHSC->isZero()) {
   1904       Value *NewOr = Builder.CreateOr(LHS0, RHS0);
   1905       return Builder.CreateICmp(PredL, NewOr, LHSC);
   1906     }
   1907   }
   1908 
   1909   // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
   1910   //   iff C2 + CA == C1.
   1911   if (PredL == ICmpInst::ICMP_ULT && PredR == ICmpInst::ICMP_EQ) {
   1912     ConstantInt *AddC;
   1913     if (match(LHS0, m_Add(m_Specific(RHS0), m_ConstantInt(AddC))))
   1914       if (RHSC->getValue() + AddC->getValue() == LHSC->getValue())
   1915         return Builder.CreateICmpULE(LHS0, LHSC);
   1916   }
   1917 
   1918   // From here on, we only handle:
   1919   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
   1920   if (LHS0 != RHS0)
   1921     return nullptr;
   1922 
   1923   // ICMP_[US][GL]E X, C is folded to ICMP_[US][GL]T elsewhere.
   1924   if (PredL == ICmpInst::ICMP_UGE || PredL == ICmpInst::ICMP_ULE ||
   1925       PredR == ICmpInst::ICMP_UGE || PredR == ICmpInst::ICMP_ULE ||
   1926       PredL == ICmpInst::ICMP_SGE || PredL == ICmpInst::ICMP_SLE ||
   1927       PredR == ICmpInst::ICMP_SGE || PredR == ICmpInst::ICMP_SLE)
   1928     return nullptr;
   1929 
   1930   // We can't fold (ugt x, C) | (sgt x, C2).
   1931   if (!PredicatesFoldable(PredL, PredR))
   1932     return nullptr;
   1933 
   1934   // Ensure that the larger constant is on the RHS.
   1935   bool ShouldSwap;
   1936   if (CmpInst::isSigned(PredL) ||
   1937       (ICmpInst::isEquality(PredL) && CmpInst::isSigned(PredR)))
   1938     ShouldSwap = LHSC->getValue().sgt(RHSC->getValue());
   1939   else
   1940     ShouldSwap = LHSC->getValue().ugt(RHSC->getValue());
   1941 
   1942   if (ShouldSwap) {
   1943     std::swap(LHS, RHS);
   1944     std::swap(LHSC, RHSC);
   1945     std::swap(PredL, PredR);
   1946   }
   1947 
   1948   // At this point, we know we have two icmp instructions
   1949   // comparing a value against two constants and or'ing the result
   1950   // together.  Because of the above check, we know that we only have
   1951   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
   1952   // icmp folding check above), that the two constants are not
   1953   // equal.
   1954   assert(LHSC != RHSC && "Compares not folded above?");
   1955 
   1956   switch (PredL) {
   1957   default:
   1958     llvm_unreachable("Unknown integer condition code!");
   1959   case ICmpInst::ICMP_EQ:
   1960     switch (PredR) {
   1961     default:
   1962       llvm_unreachable("Unknown integer condition code!");
   1963     case ICmpInst::ICMP_EQ:
   1964       // Potential folds for this case should already be handled.
   1965       break;
   1966     case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
   1967     case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
   1968       break;
   1969     }
   1970     break;
   1971   case ICmpInst::ICMP_ULT:
   1972     switch (PredR) {
   1973     default:
   1974       llvm_unreachable("Unknown integer condition code!");
   1975     case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
   1976       break;
   1977     case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
   1978       assert(!RHSC->isMaxValue(false) && "Missed icmp simplification");
   1979       return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1,
   1980                              false, false);
   1981     }
   1982     break;
   1983   case ICmpInst::ICMP_SLT:
   1984     switch (PredR) {
   1985     default:
   1986       llvm_unreachable("Unknown integer condition code!");
   1987     case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
   1988       break;
   1989     case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
   1990       assert(!RHSC->isMaxValue(true) && "Missed icmp simplification");
   1991       return insertRangeTest(LHS0, LHSC->getValue(), RHSC->getValue() + 1, true,
   1992                              false);
   1993     }
   1994     break;
   1995   }
   1996   return nullptr;
   1997 }
   1998 
   1999 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
   2000 // here. We should standardize that construct where it is needed or choose some
   2001 // other way to ensure that commutated variants of patterns are not missed.
   2002 Instruction *InstCombiner::visitOr(BinaryOperator &I) {
   2003   if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1),
   2004                                 SQ.getWithInstruction(&I)))
   2005     return replaceInstUsesWith(I, V);
   2006 
   2007   if (SimplifyAssociativeOrCommutative(I))
   2008     return &I;
   2009 
   2010   if (Instruction *X = foldShuffledBinop(I))
   2011     return X;
   2012 
   2013   // See if we can simplify any instructions used by the instruction whose sole
   2014   // purpose is to compute bits we don't care about.
   2015   if (SimplifyDemandedInstructionBits(I))
   2016     return &I;
   2017 
   2018   // Do this before using distributive laws to catch simple and/or/not patterns.
   2019   if (Instruction *Xor = foldOrToXor(I, Builder))
   2020     return Xor;
   2021 
   2022   // (A&B)|(A&C) -> A&(B|C) etc
   2023   if (Value *V = SimplifyUsingDistributiveLaws(I))
   2024     return replaceInstUsesWith(I, V);
   2025 
   2026   if (Value *V = SimplifyBSwap(I, Builder))
   2027     return replaceInstUsesWith(I, V);
   2028 
   2029   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
   2030     return FoldedLogic;
   2031 
   2032   // Given an OR instruction, check to see if this is a bswap.
   2033   if (Instruction *BSwap = MatchBSwap(I))
   2034     return BSwap;
   2035 
   2036   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2037   {
   2038     Value *A;
   2039     const APInt *C;
   2040     // (X^C)|Y -> (X|Y)^C iff Y&C == 0
   2041     if (match(Op0, m_OneUse(m_Xor(m_Value(A), m_APInt(C)))) &&
   2042         MaskedValueIsZero(Op1, *C, 0, &I)) {
   2043       Value *NOr = Builder.CreateOr(A, Op1);
   2044       NOr->takeName(Op0);
   2045       return BinaryOperator::CreateXor(NOr,
   2046                                        ConstantInt::get(NOr->getType(), *C));
   2047     }
   2048 
   2049     // Y|(X^C) -> (X|Y)^C iff Y&C == 0
   2050     if (match(Op1, m_OneUse(m_Xor(m_Value(A), m_APInt(C)))) &&
   2051         MaskedValueIsZero(Op0, *C, 0, &I)) {
   2052       Value *NOr = Builder.CreateOr(A, Op0);
   2053       NOr->takeName(Op0);
   2054       return BinaryOperator::CreateXor(NOr,
   2055                                        ConstantInt::get(NOr->getType(), *C));
   2056     }
   2057   }
   2058 
   2059   Value *A, *B;
   2060 
   2061   // (A & C)|(B & D)
   2062   Value *C = nullptr, *D = nullptr;
   2063   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
   2064       match(Op1, m_And(m_Value(B), m_Value(D)))) {
   2065     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
   2066     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
   2067     if (C1 && C2) {  // (A & C1)|(B & C2)
   2068       Value *V1 = nullptr, *V2 = nullptr;
   2069       if ((C1->getValue() & C2->getValue()).isNullValue()) {
   2070         // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
   2071         // iff (C1&C2) == 0 and (N&~C1) == 0
   2072         if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
   2073             ((V1 == B &&
   2074               MaskedValueIsZero(V2, ~C1->getValue(), 0, &I)) || // (V|N)
   2075              (V2 == B &&
   2076               MaskedValueIsZero(V1, ~C1->getValue(), 0, &I))))  // (N|V)
   2077           return BinaryOperator::CreateAnd(A,
   2078                                 Builder.getInt(C1->getValue()|C2->getValue()));
   2079         // Or commutes, try both ways.
   2080         if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
   2081             ((V1 == A &&
   2082               MaskedValueIsZero(V2, ~C2->getValue(), 0, &I)) || // (V|N)
   2083              (V2 == A &&
   2084               MaskedValueIsZero(V1, ~C2->getValue(), 0, &I))))  // (N|V)
   2085           return BinaryOperator::CreateAnd(B,
   2086                                  Builder.getInt(C1->getValue()|C2->getValue()));
   2087 
   2088         // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
   2089         // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
   2090         ConstantInt *C3 = nullptr, *C4 = nullptr;
   2091         if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
   2092             (C3->getValue() & ~C1->getValue()).isNullValue() &&
   2093             match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
   2094             (C4->getValue() & ~C2->getValue()).isNullValue()) {
   2095           V2 = Builder.CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
   2096           return BinaryOperator::CreateAnd(V2,
   2097                                  Builder.getInt(C1->getValue()|C2->getValue()));
   2098         }
   2099       }
   2100 
   2101       if (C1->getValue() == ~C2->getValue()) {
   2102         Value *X;
   2103 
   2104         // ((X|B)&C1)|(B&C2) -> (X&C1) | B iff C1 == ~C2
   2105         if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
   2106           return BinaryOperator::CreateOr(Builder.CreateAnd(X, C1), B);
   2107         // (A&C2)|((X|A)&C1) -> (X&C2) | A iff C1 == ~C2
   2108         if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
   2109           return BinaryOperator::CreateOr(Builder.CreateAnd(X, C2), A);
   2110 
   2111         // ((X^B)&C1)|(B&C2) -> (X&C1) ^ B iff C1 == ~C2
   2112         if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
   2113           return BinaryOperator::CreateXor(Builder.CreateAnd(X, C1), B);
   2114         // (A&C2)|((X^A)&C1) -> (X&C2) ^ A iff C1 == ~C2
   2115         if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
   2116           return BinaryOperator::CreateXor(Builder.CreateAnd(X, C2), A);
   2117       }
   2118     }
   2119 
   2120     // Don't try to form a select if it's unlikely that we'll get rid of at
   2121     // least one of the operands. A select is generally more expensive than the
   2122     // 'or' that it is replacing.
   2123     if (Op0->hasOneUse() || Op1->hasOneUse()) {
   2124       // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
   2125       if (Value *V = matchSelectFromAndOr(A, C, B, D, Builder))
   2126         return replaceInstUsesWith(I, V);
   2127       if (Value *V = matchSelectFromAndOr(A, C, D, B, Builder))
   2128         return replaceInstUsesWith(I, V);
   2129       if (Value *V = matchSelectFromAndOr(C, A, B, D, Builder))
   2130         return replaceInstUsesWith(I, V);
   2131       if (Value *V = matchSelectFromAndOr(C, A, D, B, Builder))
   2132         return replaceInstUsesWith(I, V);
   2133       if (Value *V = matchSelectFromAndOr(B, D, A, C, Builder))
   2134         return replaceInstUsesWith(I, V);
   2135       if (Value *V = matchSelectFromAndOr(B, D, C, A, Builder))
   2136         return replaceInstUsesWith(I, V);
   2137       if (Value *V = matchSelectFromAndOr(D, B, A, C, Builder))
   2138         return replaceInstUsesWith(I, V);
   2139       if (Value *V = matchSelectFromAndOr(D, B, C, A, Builder))
   2140         return replaceInstUsesWith(I, V);
   2141     }
   2142   }
   2143 
   2144   // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
   2145   if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
   2146     if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
   2147       return BinaryOperator::CreateOr(Op0, C);
   2148 
   2149   // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
   2150   if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
   2151     if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
   2152       return BinaryOperator::CreateOr(Op1, C);
   2153 
   2154   // ((B | C) & A) | B -> B | (A & C)
   2155   if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
   2156     return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
   2157 
   2158   if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
   2159     return DeMorgan;
   2160 
   2161   // Canonicalize xor to the RHS.
   2162   bool SwappedForXor = false;
   2163   if (match(Op0, m_Xor(m_Value(), m_Value()))) {
   2164     std::swap(Op0, Op1);
   2165     SwappedForXor = true;
   2166   }
   2167 
   2168   // A | ( A ^ B) -> A |  B
   2169   // A | (~A ^ B) -> A | ~B
   2170   // (A & B) | (A ^ B)
   2171   if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
   2172     if (Op0 == A || Op0 == B)
   2173       return BinaryOperator::CreateOr(A, B);
   2174 
   2175     if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
   2176         match(Op0, m_And(m_Specific(B), m_Specific(A))))
   2177       return BinaryOperator::CreateOr(A, B);
   2178 
   2179     if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
   2180       Value *Not = Builder.CreateNot(B, B->getName() + ".not");
   2181       return BinaryOperator::CreateOr(Not, Op0);
   2182     }
   2183     if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
   2184       Value *Not = Builder.CreateNot(A, A->getName() + ".not");
   2185       return BinaryOperator::CreateOr(Not, Op0);
   2186     }
   2187   }
   2188 
   2189   // A | ~(A | B) -> A | ~B
   2190   // A | ~(A ^ B) -> A | ~B
   2191   if (match(Op1, m_Not(m_Value(A))))
   2192     if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
   2193       if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
   2194           Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
   2195                                B->getOpcode() == Instruction::Xor)) {
   2196         Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
   2197                                                  B->getOperand(0);
   2198         Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
   2199         return BinaryOperator::CreateOr(Not, Op0);
   2200       }
   2201 
   2202   if (SwappedForXor)
   2203     std::swap(Op0, Op1);
   2204 
   2205   {
   2206     ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
   2207     ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
   2208     if (LHS && RHS)
   2209       if (Value *Res = foldOrOfICmps(LHS, RHS, I))
   2210         return replaceInstUsesWith(I, Res);
   2211 
   2212     // TODO: Make this recursive; it's a little tricky because an arbitrary
   2213     // number of 'or' instructions might have to be created.
   2214     Value *X, *Y;
   2215     if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
   2216       if (auto *Cmp = dyn_cast<ICmpInst>(X))
   2217         if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
   2218           return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
   2219       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
   2220         if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
   2221           return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
   2222     }
   2223     if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
   2224       if (auto *Cmp = dyn_cast<ICmpInst>(X))
   2225         if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
   2226           return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
   2227       if (auto *Cmp = dyn_cast<ICmpInst>(Y))
   2228         if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
   2229           return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
   2230     }
   2231   }
   2232 
   2233   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
   2234     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
   2235       if (Value *Res = foldLogicOfFCmps(LHS, RHS, false))
   2236         return replaceInstUsesWith(I, Res);
   2237 
   2238   if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
   2239     return CastedOr;
   2240 
   2241   // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
   2242   if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
   2243       A->getType()->isIntOrIntVectorTy(1))
   2244     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
   2245   if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
   2246       A->getType()->isIntOrIntVectorTy(1))
   2247     return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
   2248 
   2249   // Note: If we've gotten to the point of visiting the outer OR, then the
   2250   // inner one couldn't be simplified.  If it was a constant, then it won't
   2251   // be simplified by a later pass either, so we try swapping the inner/outer
   2252   // ORs in the hopes that we'll be able to simplify it this way.
   2253   // (X|C) | V --> (X|V) | C
   2254   ConstantInt *C1;
   2255   if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
   2256       match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
   2257     Value *Inner = Builder.CreateOr(A, Op1);
   2258     Inner->takeName(Op0);
   2259     return BinaryOperator::CreateOr(Inner, C1);
   2260   }
   2261 
   2262   // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
   2263   // Since this OR statement hasn't been optimized further yet, we hope
   2264   // that this transformation will allow the new ORs to be optimized.
   2265   {
   2266     Value *X = nullptr, *Y = nullptr;
   2267     if (Op0->hasOneUse() && Op1->hasOneUse() &&
   2268         match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
   2269         match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
   2270       Value *orTrue = Builder.CreateOr(A, C);
   2271       Value *orFalse = Builder.CreateOr(B, D);
   2272       return SelectInst::Create(X, orTrue, orFalse);
   2273     }
   2274   }
   2275 
   2276   return nullptr;
   2277 }
   2278 
   2279 /// A ^ B can be specified using other logic ops in a variety of patterns. We
   2280 /// can fold these early and efficiently by morphing an existing instruction.
   2281 static Instruction *foldXorToXor(BinaryOperator &I,
   2282                                  InstCombiner::BuilderTy &Builder) {
   2283   assert(I.getOpcode() == Instruction::Xor);
   2284   Value *Op0 = I.getOperand(0);
   2285   Value *Op1 = I.getOperand(1);
   2286   Value *A, *B;
   2287 
   2288   // There are 4 commuted variants for each of the basic patterns.
   2289 
   2290   // (A & B) ^ (A | B) -> A ^ B
   2291   // (A & B) ^ (B | A) -> A ^ B
   2292   // (A | B) ^ (A & B) -> A ^ B
   2293   // (A | B) ^ (B & A) -> A ^ B
   2294   if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
   2295                         m_c_Or(m_Deferred(A), m_Deferred(B))))) {
   2296     I.setOperand(0, A);
   2297     I.setOperand(1, B);
   2298     return &I;
   2299   }
   2300 
   2301   // (A | ~B) ^ (~A | B) -> A ^ B
   2302   // (~B | A) ^ (~A | B) -> A ^ B
   2303   // (~A | B) ^ (A | ~B) -> A ^ B
   2304   // (B | ~A) ^ (A | ~B) -> A ^ B
   2305   if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
   2306                       m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) {
   2307     I.setOperand(0, A);
   2308     I.setOperand(1, B);
   2309     return &I;
   2310   }
   2311 
   2312   // (A & ~B) ^ (~A & B) -> A ^ B
   2313   // (~B & A) ^ (~A & B) -> A ^ B
   2314   // (~A & B) ^ (A & ~B) -> A ^ B
   2315   // (B & ~A) ^ (A & ~B) -> A ^ B
   2316   if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
   2317                       m_c_And(m_Not(m_Deferred(A)), m_Deferred(B))))) {
   2318     I.setOperand(0, A);
   2319     I.setOperand(1, B);
   2320     return &I;
   2321   }
   2322 
   2323   // For the remaining cases we need to get rid of one of the operands.
   2324   if (!Op0->hasOneUse() && !Op1->hasOneUse())
   2325     return nullptr;
   2326 
   2327   // (A | B) ^ ~(A & B) -> ~(A ^ B)
   2328   // (A | B) ^ ~(B & A) -> ~(A ^ B)
   2329   // (A & B) ^ ~(A | B) -> ~(A ^ B)
   2330   // (A & B) ^ ~(B | A) -> ~(A ^ B)
   2331   // Complexity sorting ensures the not will be on the right side.
   2332   if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   2333        match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
   2334       (match(Op0, m_And(m_Value(A), m_Value(B))) &&
   2335        match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
   2336     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
   2337 
   2338   return nullptr;
   2339 }
   2340 
   2341 Value *InstCombiner::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
   2342   if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
   2343     if (LHS->getOperand(0) == RHS->getOperand(1) &&
   2344         LHS->getOperand(1) == RHS->getOperand(0))
   2345       LHS->swapOperands();
   2346     if (LHS->getOperand(0) == RHS->getOperand(0) &&
   2347         LHS->getOperand(1) == RHS->getOperand(1)) {
   2348       // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
   2349       Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
   2350       unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
   2351       bool isSigned = LHS->isSigned() || RHS->isSigned();
   2352       return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
   2353     }
   2354   }
   2355 
   2356   // TODO: This can be generalized to compares of non-signbits using
   2357   // decomposeBitTestICmp(). It could be enhanced more by using (something like)
   2358   // foldLogOpOfMaskedICmps().
   2359   ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
   2360   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
   2361   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
   2362   if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
   2363       LHS0->getType() == RHS0->getType()) {
   2364     // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
   2365     // (X <  0) ^ (Y <  0) --> (X ^ Y) < 0
   2366     if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
   2367          PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) ||
   2368         (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
   2369          PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) {
   2370       Value *Zero = ConstantInt::getNullValue(LHS0->getType());
   2371       return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero);
   2372     }
   2373     // (X > -1) ^ (Y <  0) --> (X ^ Y) > -1
   2374     // (X <  0) ^ (Y > -1) --> (X ^ Y) > -1
   2375     if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
   2376          PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) ||
   2377         (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
   2378          PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) {
   2379       Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType());
   2380       return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne);
   2381     }
   2382   }
   2383 
   2384   // Instead of trying to imitate the folds for and/or, decompose this 'xor'
   2385   // into those logic ops. That is, try to turn this into an and-of-icmps
   2386   // because we have many folds for that pattern.
   2387   //
   2388   // This is based on a truth table definition of xor:
   2389   // X ^ Y --> (X | Y) & !(X & Y)
   2390   if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
   2391     // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
   2392     // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
   2393     if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
   2394       // TODO: Independently handle cases where the 'and' side is a constant.
   2395       if (OrICmp == LHS && AndICmp == RHS && RHS->hasOneUse()) {
   2396         // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS
   2397         RHS->setPredicate(RHS->getInversePredicate());
   2398         return Builder.CreateAnd(LHS, RHS);
   2399       }
   2400       if (OrICmp == RHS && AndICmp == LHS && LHS->hasOneUse()) {
   2401         // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS
   2402         LHS->setPredicate(LHS->getInversePredicate());
   2403         return Builder.CreateAnd(LHS, RHS);
   2404       }
   2405     }
   2406   }
   2407 
   2408   return nullptr;
   2409 }
   2410 
   2411 /// If we have a masked merge, in the canonical form of:
   2412 /// (assuming that A only has one use.)
   2413 ///   |        A  |  |B|
   2414 ///   ((x ^ y) & M) ^ y
   2415 ///    |  D  |
   2416 /// * If M is inverted:
   2417 ///      |  D  |
   2418 ///     ((x ^ y) & ~M) ^ y
   2419 ///   We can canonicalize by swapping the final xor operand
   2420 ///   to eliminate the 'not' of the mask.
   2421 ///     ((x ^ y) & M) ^ x
   2422 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
   2423 ///   because that shortens the dependency chain and improves analysis:
   2424 ///     (x & M) | (y & ~M)
   2425 static Instruction *visitMaskedMerge(BinaryOperator &I,
   2426                                      InstCombiner::BuilderTy &Builder) {
   2427   Value *B, *X, *D;
   2428   Value *M;
   2429   if (!match(&I, m_c_Xor(m_Value(B),
   2430                          m_OneUse(m_c_And(
   2431                              m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
   2432                                           m_Value(D)),
   2433                              m_Value(M))))))
   2434     return nullptr;
   2435 
   2436   Value *NotM;
   2437   if (match(M, m_Not(m_Value(NotM)))) {
   2438     // De-invert the mask and swap the value in B part.
   2439     Value *NewA = Builder.CreateAnd(D, NotM);
   2440     return BinaryOperator::CreateXor(NewA, X);
   2441   }
   2442 
   2443   Constant *C;
   2444   if (D->hasOneUse() && match(M, m_Constant(C))) {
   2445     // Unfold.
   2446     Value *LHS = Builder.CreateAnd(X, C);
   2447     Value *NotC = Builder.CreateNot(C);
   2448     Value *RHS = Builder.CreateAnd(B, NotC);
   2449     return BinaryOperator::CreateOr(LHS, RHS);
   2450   }
   2451 
   2452   return nullptr;
   2453 }
   2454 
   2455 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
   2456 // here. We should standardize that construct where it is needed or choose some
   2457 // other way to ensure that commutated variants of patterns are not missed.
   2458 Instruction *InstCombiner::visitXor(BinaryOperator &I) {
   2459   if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1),
   2460                                  SQ.getWithInstruction(&I)))
   2461     return replaceInstUsesWith(I, V);
   2462 
   2463   if (SimplifyAssociativeOrCommutative(I))
   2464     return &I;
   2465 
   2466   if (Instruction *X = foldShuffledBinop(I))
   2467     return X;
   2468 
   2469   if (Instruction *NewXor = foldXorToXor(I, Builder))
   2470     return NewXor;
   2471 
   2472   // (A&B)^(A&C) -> A&(B^C) etc
   2473   if (Value *V = SimplifyUsingDistributiveLaws(I))
   2474     return replaceInstUsesWith(I, V);
   2475 
   2476   // See if we can simplify any instructions used by the instruction whose sole
   2477   // purpose is to compute bits we don't care about.
   2478   if (SimplifyDemandedInstructionBits(I))
   2479     return &I;
   2480 
   2481   if (Value *V = SimplifyBSwap(I, Builder))
   2482     return replaceInstUsesWith(I, V);
   2483 
   2484   // A^B --> A|B iff A and B have no bits set in common.
   2485   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2486   if (haveNoCommonBitsSet(Op0, Op1, DL, &AC, &I, &DT))
   2487     return BinaryOperator::CreateOr(Op0, Op1);
   2488 
   2489   // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
   2490   Value *X, *Y;
   2491 
   2492   // We must eliminate the and/or (one-use) for these transforms to not increase
   2493   // the instruction count.
   2494   // ~(~X & Y) --> (X | ~Y)
   2495   // ~(Y & ~X) --> (X | ~Y)
   2496   if (match(&I, m_Not(m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y)))))) {
   2497     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
   2498     return BinaryOperator::CreateOr(X, NotY);
   2499   }
   2500   // ~(~X | Y) --> (X & ~Y)
   2501   // ~(Y | ~X) --> (X & ~Y)
   2502   if (match(&I, m_Not(m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y)))))) {
   2503     Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
   2504     return BinaryOperator::CreateAnd(X, NotY);
   2505   }
   2506 
   2507   if (Instruction *Xor = visitMaskedMerge(I, Builder))
   2508     return Xor;
   2509 
   2510   // Is this a 'not' (~) fed by a binary operator?
   2511   BinaryOperator *NotVal;
   2512   if (match(&I, m_Not(m_BinOp(NotVal)))) {
   2513     if (NotVal->getOpcode() == Instruction::And ||
   2514         NotVal->getOpcode() == Instruction::Or) {
   2515       // Apply DeMorgan's Law when inverts are free:
   2516       // ~(X & Y) --> (~X | ~Y)
   2517       // ~(X | Y) --> (~X & ~Y)
   2518       if (IsFreeToInvert(NotVal->getOperand(0),
   2519                          NotVal->getOperand(0)->hasOneUse()) &&
   2520           IsFreeToInvert(NotVal->getOperand(1),
   2521                          NotVal->getOperand(1)->hasOneUse())) {
   2522         Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs");
   2523         Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs");
   2524         if (NotVal->getOpcode() == Instruction::And)
   2525           return BinaryOperator::CreateOr(NotX, NotY);
   2526         return BinaryOperator::CreateAnd(NotX, NotY);
   2527       }
   2528     }
   2529 
   2530     // ~(X - Y) --> ~X + Y
   2531     if (match(NotVal, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))))
   2532       return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
   2533 
   2534     // ~(~X >>s Y) --> (X >>s Y)
   2535     if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
   2536       return BinaryOperator::CreateAShr(X, Y);
   2537 
   2538     // If we are inverting a right-shifted constant, we may be able to eliminate
   2539     // the 'not' by inverting the constant and using the opposite shift type.
   2540     // Canonicalization rules ensure that only a negative constant uses 'ashr',
   2541     // but we must check that in case that transform has not fired yet.
   2542     Constant *C;
   2543     if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
   2544         match(C, m_Negative())) {
   2545       // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
   2546       Constant *NotC = ConstantExpr::getNot(C);
   2547       return BinaryOperator::CreateLShr(NotC, Y);
   2548     }
   2549 
   2550     if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
   2551         match(C, m_NonNegative())) {
   2552       // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
   2553       Constant *NotC = ConstantExpr::getNot(C);
   2554       return BinaryOperator::CreateAShr(NotC, Y);
   2555     }
   2556   }
   2557 
   2558   // not (cmp A, B) = !cmp A, B
   2559   CmpInst::Predicate Pred;
   2560   if (match(&I, m_Not(m_OneUse(m_Cmp(Pred, m_Value(), m_Value()))))) {
   2561     cast<CmpInst>(Op0)->setPredicate(CmpInst::getInversePredicate(Pred));
   2562     return replaceInstUsesWith(I, Op0);
   2563   }
   2564 
   2565   {
   2566     const APInt *RHSC;
   2567     if (match(Op1, m_APInt(RHSC))) {
   2568       Value *X;
   2569       const APInt *C;
   2570       if (match(Op0, m_Sub(m_APInt(C), m_Value(X)))) {
   2571         // ~(c-X) == X-c-1 == X+(-c-1)
   2572         if (RHSC->isAllOnesValue()) {
   2573           Constant *NewC = ConstantInt::get(I.getType(), -(*C) - 1);
   2574           return BinaryOperator::CreateAdd(X, NewC);
   2575         }
   2576         if (RHSC->isSignMask()) {
   2577           // (C - X) ^ signmask -> (C + signmask - X)
   2578           Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
   2579           return BinaryOperator::CreateSub(NewC, X);
   2580         }
   2581       } else if (match(Op0, m_Add(m_Value(X), m_APInt(C)))) {
   2582         // ~(X-c) --> (-c-1)-X
   2583         if (RHSC->isAllOnesValue()) {
   2584           Constant *NewC = ConstantInt::get(I.getType(), -(*C) - 1);
   2585           return BinaryOperator::CreateSub(NewC, X);
   2586         }
   2587         if (RHSC->isSignMask()) {
   2588           // (X + C) ^ signmask -> (X + C + signmask)
   2589           Constant *NewC = ConstantInt::get(I.getType(), *C + *RHSC);
   2590           return BinaryOperator::CreateAdd(X, NewC);
   2591         }
   2592       }
   2593 
   2594       // (X|C1)^C2 -> X^(C1^C2) iff X&~C1 == 0
   2595       if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
   2596           MaskedValueIsZero(X, *C, 0, &I)) {
   2597         Constant *NewC = ConstantInt::get(I.getType(), *C ^ *RHSC);
   2598         Worklist.Add(cast<Instruction>(Op0));
   2599         I.setOperand(0, X);
   2600         I.setOperand(1, NewC);
   2601         return &I;
   2602       }
   2603     }
   2604   }
   2605 
   2606   if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1)) {
   2607     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
   2608       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
   2609         if (Op0I->getOpcode() == Instruction::LShr) {
   2610           // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
   2611           // E1 = "X ^ C1"
   2612           BinaryOperator *E1;
   2613           ConstantInt *C1;
   2614           if (Op0I->hasOneUse() &&
   2615               (E1 = dyn_cast<BinaryOperator>(Op0I->getOperand(0))) &&
   2616               E1->getOpcode() == Instruction::Xor &&
   2617               (C1 = dyn_cast<ConstantInt>(E1->getOperand(1)))) {
   2618             // fold (C1 >> C2) ^ C3
   2619             ConstantInt *C2 = Op0CI, *C3 = RHSC;
   2620             APInt FoldConst = C1->getValue().lshr(C2->getValue());
   2621             FoldConst ^= C3->getValue();
   2622             // Prepare the two operands.
   2623             Value *Opnd0 = Builder.CreateLShr(E1->getOperand(0), C2);
   2624             Opnd0->takeName(Op0I);
   2625             cast<Instruction>(Opnd0)->setDebugLoc(I.getDebugLoc());
   2626             Value *FoldVal = ConstantInt::get(Opnd0->getType(), FoldConst);
   2627 
   2628             return BinaryOperator::CreateXor(Opnd0, FoldVal);
   2629           }
   2630         }
   2631       }
   2632     }
   2633   }
   2634 
   2635   if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
   2636     return FoldedLogic;
   2637 
   2638   {
   2639     Value *A, *B;
   2640     if (match(Op1, m_OneUse(m_Or(m_Value(A), m_Value(B))))) {
   2641       if (A == Op0) {                                      // A^(A|B) == A^(B|A)
   2642         cast<BinaryOperator>(Op1)->swapOperands();
   2643         std::swap(A, B);
   2644       }
   2645       if (B == Op0) {                                      // A^(B|A) == (B|A)^A
   2646         I.swapOperands();     // Simplified below.
   2647         std::swap(Op0, Op1);
   2648       }
   2649     } else if (match(Op1, m_OneUse(m_And(m_Value(A), m_Value(B))))) {
   2650       if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
   2651         cast<BinaryOperator>(Op1)->swapOperands();
   2652         std::swap(A, B);
   2653       }
   2654       if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
   2655         I.swapOperands();     // Simplified below.
   2656         std::swap(Op0, Op1);
   2657       }
   2658     }
   2659   }
   2660 
   2661   {
   2662     Value *A, *B;
   2663     if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B))))) {
   2664       if (A == Op1)                                  // (B|A)^B == (A|B)^B
   2665         std::swap(A, B);
   2666       if (B == Op1)                                  // (A|B)^B == A & ~B
   2667         return BinaryOperator::CreateAnd(A, Builder.CreateNot(Op1));
   2668     } else if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B))))) {
   2669       if (A == Op1)                                        // (A&B)^A -> (B&A)^A
   2670         std::swap(A, B);
   2671       const APInt *C;
   2672       if (B == Op1 &&                                      // (B&A)^A == ~B & A
   2673           !match(Op1, m_APInt(C))) {  // Canonical form is (B&C)^C
   2674         return BinaryOperator::CreateAnd(Builder.CreateNot(A), Op1);
   2675       }
   2676     }
   2677   }
   2678 
   2679   {
   2680     Value *A, *B, *C, *D;
   2681     // (A ^ C)^(A | B) -> ((~A) & B) ^ C
   2682     if (match(Op0, m_Xor(m_Value(D), m_Value(C))) &&
   2683         match(Op1, m_Or(m_Value(A), m_Value(B)))) {
   2684       if (D == A)
   2685         return BinaryOperator::CreateXor(
   2686             Builder.CreateAnd(Builder.CreateNot(A), B), C);
   2687       if (D == B)
   2688         return BinaryOperator::CreateXor(
   2689             Builder.CreateAnd(Builder.CreateNot(B), A), C);
   2690     }
   2691     // (A | B)^(A ^ C) -> ((~A) & B) ^ C
   2692     if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
   2693         match(Op1, m_Xor(m_Value(D), m_Value(C)))) {
   2694       if (D == A)
   2695         return BinaryOperator::CreateXor(
   2696             Builder.CreateAnd(Builder.CreateNot(A), B), C);
   2697       if (D == B)
   2698         return BinaryOperator::CreateXor(
   2699             Builder.CreateAnd(Builder.CreateNot(B), A), C);
   2700     }
   2701     // (A & B) ^ (A ^ B) -> (A | B)
   2702     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
   2703         match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
   2704       return BinaryOperator::CreateOr(A, B);
   2705     // (A ^ B) ^ (A & B) -> (A | B)
   2706     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
   2707         match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
   2708       return BinaryOperator::CreateOr(A, B);
   2709   }
   2710 
   2711   // (A & ~B) ^ ~A -> ~(A & B)
   2712   // (~B & A) ^ ~A -> ~(A & B)
   2713   Value *A, *B;
   2714   if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
   2715       match(Op1, m_Not(m_Specific(A))))
   2716     return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
   2717 
   2718   if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
   2719     if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
   2720       if (Value *V = foldXorOfICmps(LHS, RHS))
   2721         return replaceInstUsesWith(I, V);
   2722 
   2723   if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
   2724     return CastedXor;
   2725 
   2726   // Canonicalize a shifty way to code absolute value to the common pattern.
   2727   // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
   2728   // We're relying on the fact that we only do this transform when the shift has
   2729   // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
   2730   // instructions).
   2731   if (Op0->hasNUses(2))
   2732     std::swap(Op0, Op1);
   2733 
   2734   const APInt *ShAmt;
   2735   Type *Ty = I.getType();
   2736   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
   2737       Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
   2738       match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
   2739     // B = ashr i32 A, 31 ; smear the sign bit
   2740     // xor (add A, B), B  ; add -1 and flip bits if negative
   2741     // --> (A < 0) ? -A : A
   2742     Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
   2743     // Copy the nuw/nsw flags from the add to the negate.
   2744     auto *Add = cast<BinaryOperator>(Op0);
   2745     Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
   2746                                    Add->hasNoSignedWrap());
   2747     return SelectInst::Create(Cmp, Neg, A);
   2748   }
   2749 
   2750   // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
   2751   //
   2752   //   %notx = xor i32 %x, -1
   2753   //   %cmp1 = icmp sgt i32 %notx, %y
   2754   //   %smax = select i1 %cmp1, i32 %notx, i32 %y
   2755   //   %res = xor i32 %smax, -1
   2756   // =>
   2757   //   %noty = xor i32 %y, -1
   2758   //   %cmp2 = icmp slt %x, %noty
   2759   //   %res = select i1 %cmp2, i32 %x, i32 %noty
   2760   //
   2761   // Same is applicable for smin/umax/umin.
   2762   {
   2763     Value *LHS, *RHS;
   2764     SelectPatternFlavor SPF = matchSelectPattern(Op0, LHS, RHS).Flavor;
   2765     if (Op0->hasOneUse() && SelectPatternResult::isMinOrMax(SPF) &&
   2766         match(Op1, m_AllOnes())) {
   2767 
   2768       Value *X;
   2769       if (match(RHS, m_Not(m_Value(X))))
   2770         std::swap(RHS, LHS);
   2771 
   2772       if (match(LHS, m_Not(m_Value(X)))) {
   2773         Value *NotY = Builder.CreateNot(RHS);
   2774         return SelectInst::Create(
   2775             Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY);
   2776       }
   2777     }
   2778   }
   2779 
   2780   return nullptr;
   2781 }
   2782