Home | History | Annotate | Download | only in bugpoint
      1 //===- Miscompilation.cpp - Debug program miscompilations -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements optimizer and code generation miscompilation debugging
     11 // support.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "BugDriver.h"
     16 #include "ListReducer.h"
     17 #include "ToolRunner.h"
     18 #include "llvm/Config/config.h" // for HAVE_LINK_R
     19 #include "llvm/IR/Constants.h"
     20 #include "llvm/IR/DerivedTypes.h"
     21 #include "llvm/IR/Instructions.h"
     22 #include "llvm/IR/Module.h"
     23 #include "llvm/IR/Verifier.h"
     24 #include "llvm/Linker/Linker.h"
     25 #include "llvm/Pass.h"
     26 #include "llvm/Support/CommandLine.h"
     27 #include "llvm/Support/FileUtilities.h"
     28 #include "llvm/Transforms/Utils/Cloning.h"
     29 
     30 using namespace llvm;
     31 
     32 namespace llvm {
     33 extern cl::opt<std::string> OutputPrefix;
     34 extern cl::list<std::string> InputArgv;
     35 } // end namespace llvm
     36 
     37 namespace {
     38 static llvm::cl::opt<bool> DisableLoopExtraction(
     39     "disable-loop-extraction",
     40     cl::desc("Don't extract loops when searching for miscompilations"),
     41     cl::init(false));
     42 static llvm::cl::opt<bool> DisableBlockExtraction(
     43     "disable-block-extraction",
     44     cl::desc("Don't extract blocks when searching for miscompilations"),
     45     cl::init(false));
     46 
     47 class ReduceMiscompilingPasses : public ListReducer<std::string> {
     48   BugDriver &BD;
     49 
     50 public:
     51   ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}
     52 
     53   Expected<TestResult> doTest(std::vector<std::string> &Prefix,
     54                               std::vector<std::string> &Suffix) override;
     55 };
     56 } // end anonymous namespace
     57 
     58 /// TestResult - After passes have been split into a test group and a control
     59 /// group, see if they still break the program.
     60 ///
     61 Expected<ReduceMiscompilingPasses::TestResult>
     62 ReduceMiscompilingPasses::doTest(std::vector<std::string> &Prefix,
     63                                  std::vector<std::string> &Suffix) {
     64   // First, run the program with just the Suffix passes.  If it is still broken
     65   // with JUST the kept passes, discard the prefix passes.
     66   outs() << "Checking to see if '" << getPassesString(Suffix)
     67          << "' compiles correctly: ";
     68 
     69   std::string BitcodeResult;
     70   if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false /*delete*/,
     71                    true /*quiet*/)) {
     72     errs() << " Error running this sequence of passes"
     73            << " on the input program!\n";
     74     BD.setPassesToRun(Suffix);
     75     BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false);
     76     // TODO: This should propagate the error instead of exiting.
     77     if (Error E = BD.debugOptimizerCrash())
     78       exit(1);
     79     exit(0);
     80   }
     81 
     82   // Check to see if the finished program matches the reference output...
     83   Expected<bool> Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "",
     84                                        true /*delete bitcode*/);
     85   if (Error E = Diff.takeError())
     86     return std::move(E);
     87   if (*Diff) {
     88     outs() << " nope.\n";
     89     if (Suffix.empty()) {
     90       errs() << BD.getToolName() << ": I'm confused: the test fails when "
     91              << "no passes are run, nondeterministic program?\n";
     92       exit(1);
     93     }
     94     return KeepSuffix; // Miscompilation detected!
     95   }
     96   outs() << " yup.\n"; // No miscompilation!
     97 
     98   if (Prefix.empty())
     99     return NoFailure;
    100 
    101   // Next, see if the program is broken if we run the "prefix" passes first,
    102   // then separately run the "kept" passes.
    103   outs() << "Checking to see if '" << getPassesString(Prefix)
    104          << "' compiles correctly: ";
    105 
    106   // If it is not broken with the kept passes, it's possible that the prefix
    107   // passes must be run before the kept passes to break it.  If the program
    108   // WORKS after the prefix passes, but then fails if running the prefix AND
    109   // kept passes, we can update our bitcode file to include the result of the
    110   // prefix passes, then discard the prefix passes.
    111   //
    112   if (BD.runPasses(BD.getProgram(), Prefix, BitcodeResult, false /*delete*/,
    113                    true /*quiet*/)) {
    114     errs() << " Error running this sequence of passes"
    115            << " on the input program!\n";
    116     BD.setPassesToRun(Prefix);
    117     BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false);
    118     // TODO: This should propagate the error instead of exiting.
    119     if (Error E = BD.debugOptimizerCrash())
    120       exit(1);
    121     exit(0);
    122   }
    123 
    124   // If the prefix maintains the predicate by itself, only keep the prefix!
    125   Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "", false);
    126   if (Error E = Diff.takeError())
    127     return std::move(E);
    128   if (*Diff) {
    129     outs() << " nope.\n";
    130     sys::fs::remove(BitcodeResult);
    131     return KeepPrefix;
    132   }
    133   outs() << " yup.\n"; // No miscompilation!
    134 
    135   // Ok, so now we know that the prefix passes work, try running the suffix
    136   // passes on the result of the prefix passes.
    137   //
    138   std::unique_ptr<Module> PrefixOutput =
    139       parseInputFile(BitcodeResult, BD.getContext());
    140   if (!PrefixOutput) {
    141     errs() << BD.getToolName() << ": Error reading bitcode file '"
    142            << BitcodeResult << "'!\n";
    143     exit(1);
    144   }
    145   sys::fs::remove(BitcodeResult);
    146 
    147   // Don't check if there are no passes in the suffix.
    148   if (Suffix.empty())
    149     return NoFailure;
    150 
    151   outs() << "Checking to see if '" << getPassesString(Suffix)
    152          << "' passes compile correctly after the '" << getPassesString(Prefix)
    153          << "' passes: ";
    154 
    155   std::unique_ptr<Module> OriginalInput =
    156       BD.swapProgramIn(std::move(PrefixOutput));
    157   if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false /*delete*/,
    158                    true /*quiet*/)) {
    159     errs() << " Error running this sequence of passes"
    160            << " on the input program!\n";
    161     BD.setPassesToRun(Suffix);
    162     BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false);
    163     // TODO: This should propagate the error instead of exiting.
    164     if (Error E = BD.debugOptimizerCrash())
    165       exit(1);
    166     exit(0);
    167   }
    168 
    169   // Run the result...
    170   Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "",
    171                         true /*delete bitcode*/);
    172   if (Error E = Diff.takeError())
    173     return std::move(E);
    174   if (*Diff) {
    175     outs() << " nope.\n";
    176     return KeepSuffix;
    177   }
    178 
    179   // Otherwise, we must not be running the bad pass anymore.
    180   outs() << " yup.\n"; // No miscompilation!
    181   // Restore orig program & free test.
    182   BD.setNewProgram(std::move(OriginalInput));
    183   return NoFailure;
    184 }
    185 
    186 namespace {
    187 class ReduceMiscompilingFunctions : public ListReducer<Function *> {
    188   BugDriver &BD;
    189   Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
    190                            std::unique_ptr<Module>);
    191 
    192 public:
    193   ReduceMiscompilingFunctions(BugDriver &bd,
    194                               Expected<bool> (*F)(BugDriver &,
    195                                                   std::unique_ptr<Module>,
    196                                                   std::unique_ptr<Module>))
    197       : BD(bd), TestFn(F) {}
    198 
    199   Expected<TestResult> doTest(std::vector<Function *> &Prefix,
    200                               std::vector<Function *> &Suffix) override {
    201     if (!Suffix.empty()) {
    202       Expected<bool> Ret = TestFuncs(Suffix);
    203       if (Error E = Ret.takeError())
    204         return std::move(E);
    205       if (*Ret)
    206         return KeepSuffix;
    207     }
    208     if (!Prefix.empty()) {
    209       Expected<bool> Ret = TestFuncs(Prefix);
    210       if (Error E = Ret.takeError())
    211         return std::move(E);
    212       if (*Ret)
    213         return KeepPrefix;
    214     }
    215     return NoFailure;
    216   }
    217 
    218   Expected<bool> TestFuncs(const std::vector<Function *> &Prefix);
    219 };
    220 } // end anonymous namespace
    221 
    222 /// Given two modules, link them together and run the program, checking to see
    223 /// if the program matches the diff. If there is an error, return NULL. If not,
    224 /// return the merged module. The Broken argument will be set to true if the
    225 /// output is different. If the DeleteInputs argument is set to true then this
    226 /// function deletes both input modules before it returns.
    227 ///
    228 static Expected<std::unique_ptr<Module>> testMergedProgram(const BugDriver &BD,
    229                                                            const Module &M1,
    230                                                            const Module &M2,
    231                                                            bool &Broken) {
    232   // Resulting merge of M1 and M2.
    233   auto Merged = CloneModule(M1);
    234   if (Linker::linkModules(*Merged, CloneModule(M2)))
    235     // TODO: Shouldn't we thread the error up instead of exiting?
    236     exit(1);
    237 
    238   // Execute the program.
    239   Expected<bool> Diff = BD.diffProgram(*Merged, "", "", false);
    240   if (Error E = Diff.takeError())
    241     return std::move(E);
    242   Broken = *Diff;
    243   return std::move(Merged);
    244 }
    245 
    246 /// split functions in a Module into two groups: those that are under
    247 /// consideration for miscompilation vs. those that are not, and test
    248 /// accordingly. Each group of functions becomes a separate Module.
    249 Expected<bool>
    250 ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function *> &Funcs) {
    251   // Test to see if the function is misoptimized if we ONLY run it on the
    252   // functions listed in Funcs.
    253   outs() << "Checking to see if the program is misoptimized when "
    254          << (Funcs.size() == 1 ? "this function is" : "these functions are")
    255          << " run through the pass"
    256          << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
    257   PrintFunctionList(Funcs);
    258   outs() << '\n';
    259 
    260   // Create a clone for two reasons:
    261   // * If the optimization passes delete any function, the deleted function
    262   //   will be in the clone and Funcs will still point to valid memory
    263   // * If the optimization passes use interprocedural information to break
    264   //   a function, we want to continue with the original function. Otherwise
    265   //   we can conclude that a function triggers the bug when in fact one
    266   //   needs a larger set of original functions to do so.
    267   ValueToValueMapTy VMap;
    268   std::unique_ptr<Module> Clone = CloneModule(BD.getProgram(), VMap);
    269   std::unique_ptr<Module> Orig = BD.swapProgramIn(std::move(Clone));
    270 
    271   std::vector<Function *> FuncsOnClone;
    272   for (unsigned i = 0, e = Funcs.size(); i != e; ++i) {
    273     Function *F = cast<Function>(VMap[Funcs[i]]);
    274     FuncsOnClone.push_back(F);
    275   }
    276 
    277   // Split the module into the two halves of the program we want.
    278   VMap.clear();
    279   std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap);
    280   std::unique_ptr<Module> ToOptimize =
    281       SplitFunctionsOutOfModule(ToNotOptimize.get(), FuncsOnClone, VMap);
    282 
    283   Expected<bool> Broken =
    284       TestFn(BD, std::move(ToOptimize), std::move(ToNotOptimize));
    285 
    286   BD.setNewProgram(std::move(Orig));
    287 
    288   return Broken;
    289 }
    290 
    291 /// Give anonymous global values names.
    292 static void DisambiguateGlobalSymbols(Module &M) {
    293   for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E;
    294        ++I)
    295     if (!I->hasName())
    296       I->setName("anon_global");
    297   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
    298     if (!I->hasName())
    299       I->setName("anon_fn");
    300 }
    301 
    302 /// Given a reduced list of functions that still exposed the bug, check to see
    303 /// if we can extract the loops in the region without obscuring the bug.  If so,
    304 /// it reduces the amount of code identified.
    305 ///
    306 static Expected<bool>
    307 ExtractLoops(BugDriver &BD,
    308              Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
    309                                       std::unique_ptr<Module>),
    310              std::vector<Function *> &MiscompiledFunctions) {
    311   bool MadeChange = false;
    312   while (1) {
    313     if (BugpointIsInterrupted)
    314       return MadeChange;
    315 
    316     ValueToValueMapTy VMap;
    317     std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap);
    318     std::unique_ptr<Module> ToOptimize = SplitFunctionsOutOfModule(
    319         ToNotOptimize.get(), MiscompiledFunctions, VMap);
    320     std::unique_ptr<Module> ToOptimizeLoopExtracted =
    321         BD.extractLoop(ToOptimize.get());
    322     if (!ToOptimizeLoopExtracted)
    323       // If the loop extractor crashed or if there were no extractible loops,
    324       // then this chapter of our odyssey is over with.
    325       return MadeChange;
    326 
    327     errs() << "Extracted a loop from the breaking portion of the program.\n";
    328 
    329     // Bugpoint is intentionally not very trusting of LLVM transformations.  In
    330     // particular, we're not going to assume that the loop extractor works, so
    331     // we're going to test the newly loop extracted program to make sure nothing
    332     // has broken.  If something broke, then we'll inform the user and stop
    333     // extraction.
    334     AbstractInterpreter *AI = BD.switchToSafeInterpreter();
    335     bool Failure;
    336     Expected<std::unique_ptr<Module>> New = testMergedProgram(
    337         BD, *ToOptimizeLoopExtracted, *ToNotOptimize, Failure);
    338     if (Error E = New.takeError())
    339       return std::move(E);
    340     if (!*New)
    341       return false;
    342 
    343     // Delete the original and set the new program.
    344     std::unique_ptr<Module> Old = BD.swapProgramIn(std::move(*New));
    345     for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
    346       MiscompiledFunctions[i] = cast<Function>(VMap[MiscompiledFunctions[i]]);
    347 
    348     if (Failure) {
    349       BD.switchToInterpreter(AI);
    350 
    351       // Merged program doesn't work anymore!
    352       errs() << "  *** ERROR: Loop extraction broke the program. :("
    353              << " Please report a bug!\n";
    354       errs() << "      Continuing on with un-loop-extracted version.\n";
    355 
    356       BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-tno.bc",
    357                             *ToNotOptimize);
    358       BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to.bc",
    359                             *ToOptimize);
    360       BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to-le.bc",
    361                             *ToOptimizeLoopExtracted);
    362 
    363       errs() << "Please submit the " << OutputPrefix
    364              << "-loop-extract-fail-*.bc files.\n";
    365       return MadeChange;
    366     }
    367     BD.switchToInterpreter(AI);
    368 
    369     outs() << "  Testing after loop extraction:\n";
    370     // Clone modules, the tester function will free them.
    371     std::unique_ptr<Module> TOLEBackup =
    372         CloneModule(*ToOptimizeLoopExtracted, VMap);
    373     std::unique_ptr<Module> TNOBackup = CloneModule(*ToNotOptimize, VMap);
    374 
    375     for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
    376       MiscompiledFunctions[i] = cast<Function>(VMap[MiscompiledFunctions[i]]);
    377 
    378     Expected<bool> Result = TestFn(BD, std::move(ToOptimizeLoopExtracted),
    379                                    std::move(ToNotOptimize));
    380     if (Error E = Result.takeError())
    381       return std::move(E);
    382 
    383     ToOptimizeLoopExtracted = std::move(TOLEBackup);
    384     ToNotOptimize = std::move(TNOBackup);
    385 
    386     if (!*Result) {
    387       outs() << "*** Loop extraction masked the problem.  Undoing.\n";
    388       // If the program is not still broken, then loop extraction did something
    389       // that masked the error.  Stop loop extraction now.
    390 
    391       std::vector<std::pair<std::string, FunctionType *>> MisCompFunctions;
    392       for (Function *F : MiscompiledFunctions) {
    393         MisCompFunctions.emplace_back(F->getName(), F->getFunctionType());
    394       }
    395 
    396       if (Linker::linkModules(*ToNotOptimize,
    397                               std::move(ToOptimizeLoopExtracted)))
    398         exit(1);
    399 
    400       MiscompiledFunctions.clear();
    401       for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
    402         Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);
    403 
    404         assert(NewF && "Function not found??");
    405         MiscompiledFunctions.push_back(NewF);
    406       }
    407 
    408       BD.setNewProgram(std::move(ToNotOptimize));
    409       return MadeChange;
    410     }
    411 
    412     outs() << "*** Loop extraction successful!\n";
    413 
    414     std::vector<std::pair<std::string, FunctionType *>> MisCompFunctions;
    415     for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
    416                           E = ToOptimizeLoopExtracted->end();
    417          I != E; ++I)
    418       if (!I->isDeclaration())
    419         MisCompFunctions.emplace_back(I->getName(), I->getFunctionType());
    420 
    421     // Okay, great!  Now we know that we extracted a loop and that loop
    422     // extraction both didn't break the program, and didn't mask the problem.
    423     // Replace the current program with the loop extracted version, and try to
    424     // extract another loop.
    425     if (Linker::linkModules(*ToNotOptimize, std::move(ToOptimizeLoopExtracted)))
    426       exit(1);
    427 
    428     // All of the Function*'s in the MiscompiledFunctions list are in the old
    429     // module.  Update this list to include all of the functions in the
    430     // optimized and loop extracted module.
    431     MiscompiledFunctions.clear();
    432     for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
    433       Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);
    434 
    435       assert(NewF && "Function not found??");
    436       MiscompiledFunctions.push_back(NewF);
    437     }
    438 
    439     BD.setNewProgram(std::move(ToNotOptimize));
    440     MadeChange = true;
    441   }
    442 }
    443 
    444 namespace {
    445 class ReduceMiscompiledBlocks : public ListReducer<BasicBlock *> {
    446   BugDriver &BD;
    447   Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
    448                            std::unique_ptr<Module>);
    449   std::vector<Function *> FunctionsBeingTested;
    450 
    451 public:
    452   ReduceMiscompiledBlocks(BugDriver &bd,
    453                           Expected<bool> (*F)(BugDriver &,
    454                                               std::unique_ptr<Module>,
    455                                               std::unique_ptr<Module>),
    456                           const std::vector<Function *> &Fns)
    457       : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}
    458 
    459   Expected<TestResult> doTest(std::vector<BasicBlock *> &Prefix,
    460                               std::vector<BasicBlock *> &Suffix) override {
    461     if (!Suffix.empty()) {
    462       Expected<bool> Ret = TestFuncs(Suffix);
    463       if (Error E = Ret.takeError())
    464         return std::move(E);
    465       if (*Ret)
    466         return KeepSuffix;
    467     }
    468     if (!Prefix.empty()) {
    469       Expected<bool> Ret = TestFuncs(Prefix);
    470       if (Error E = Ret.takeError())
    471         return std::move(E);
    472       if (*Ret)
    473         return KeepPrefix;
    474     }
    475     return NoFailure;
    476   }
    477 
    478   Expected<bool> TestFuncs(const std::vector<BasicBlock *> &BBs);
    479 };
    480 } // end anonymous namespace
    481 
    482 /// TestFuncs - Extract all blocks for the miscompiled functions except for the
    483 /// specified blocks.  If the problem still exists, return true.
    484 ///
    485 Expected<bool>
    486 ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock *> &BBs) {
    487   // Test to see if the function is misoptimized if we ONLY run it on the
    488   // functions listed in Funcs.
    489   outs() << "Checking to see if the program is misoptimized when all ";
    490   if (!BBs.empty()) {
    491     outs() << "but these " << BBs.size() << " blocks are extracted: ";
    492     for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
    493       outs() << BBs[i]->getName() << " ";
    494     if (BBs.size() > 10)
    495       outs() << "...";
    496   } else {
    497     outs() << "blocks are extracted.";
    498   }
    499   outs() << '\n';
    500 
    501   // Split the module into the two halves of the program we want.
    502   ValueToValueMapTy VMap;
    503   std::unique_ptr<Module> Clone = CloneModule(BD.getProgram(), VMap);
    504   std::unique_ptr<Module> Orig = BD.swapProgramIn(std::move(Clone));
    505   std::vector<Function *> FuncsOnClone;
    506   std::vector<BasicBlock *> BBsOnClone;
    507   for (unsigned i = 0, e = FunctionsBeingTested.size(); i != e; ++i) {
    508     Function *F = cast<Function>(VMap[FunctionsBeingTested[i]]);
    509     FuncsOnClone.push_back(F);
    510   }
    511   for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
    512     BasicBlock *BB = cast<BasicBlock>(VMap[BBs[i]]);
    513     BBsOnClone.push_back(BB);
    514   }
    515   VMap.clear();
    516 
    517   std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap);
    518   std::unique_ptr<Module> ToOptimize =
    519       SplitFunctionsOutOfModule(ToNotOptimize.get(), FuncsOnClone, VMap);
    520 
    521   // Try the extraction.  If it doesn't work, then the block extractor crashed
    522   // or something, in which case bugpoint can't chase down this possibility.
    523   if (std::unique_ptr<Module> New =
    524           BD.extractMappedBlocksFromModule(BBsOnClone, ToOptimize.get())) {
    525     Expected<bool> Ret = TestFn(BD, std::move(New), std::move(ToNotOptimize));
    526     BD.setNewProgram(std::move(Orig));
    527     return Ret;
    528   }
    529   BD.setNewProgram(std::move(Orig));
    530   return false;
    531 }
    532 
    533 /// Given a reduced list of functions that still expose the bug, extract as many
    534 /// basic blocks from the region as possible without obscuring the bug.
    535 ///
    536 static Expected<bool>
    537 ExtractBlocks(BugDriver &BD,
    538               Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
    539                                        std::unique_ptr<Module>),
    540               std::vector<Function *> &MiscompiledFunctions) {
    541   if (BugpointIsInterrupted)
    542     return false;
    543 
    544   std::vector<BasicBlock *> Blocks;
    545   for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
    546     for (BasicBlock &BB : *MiscompiledFunctions[i])
    547       Blocks.push_back(&BB);
    548 
    549   // Use the list reducer to identify blocks that can be extracted without
    550   // obscuring the bug.  The Blocks list will end up containing blocks that must
    551   // be retained from the original program.
    552   unsigned OldSize = Blocks.size();
    553 
    554   // Check to see if all blocks are extractible first.
    555   Expected<bool> Ret = ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions)
    556                            .TestFuncs(std::vector<BasicBlock *>());
    557   if (Error E = Ret.takeError())
    558     return std::move(E);
    559   if (*Ret) {
    560     Blocks.clear();
    561   } else {
    562     Expected<bool> Ret =
    563         ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions)
    564             .reduceList(Blocks);
    565     if (Error E = Ret.takeError())
    566       return std::move(E);
    567     if (Blocks.size() == OldSize)
    568       return false;
    569   }
    570 
    571   ValueToValueMapTy VMap;
    572   std::unique_ptr<Module> ProgClone = CloneModule(BD.getProgram(), VMap);
    573   std::unique_ptr<Module> ToExtract =
    574       SplitFunctionsOutOfModule(ProgClone.get(), MiscompiledFunctions, VMap);
    575   std::unique_ptr<Module> Extracted =
    576       BD.extractMappedBlocksFromModule(Blocks, ToExtract.get());
    577   if (!Extracted) {
    578     // Weird, extraction should have worked.
    579     errs() << "Nondeterministic problem extracting blocks??\n";
    580     return false;
    581   }
    582 
    583   // Otherwise, block extraction succeeded.  Link the two program fragments back
    584   // together.
    585 
    586   std::vector<std::pair<std::string, FunctionType *>> MisCompFunctions;
    587   for (Module::iterator I = Extracted->begin(), E = Extracted->end(); I != E;
    588        ++I)
    589     if (!I->isDeclaration())
    590       MisCompFunctions.emplace_back(I->getName(), I->getFunctionType());
    591 
    592   if (Linker::linkModules(*ProgClone, std::move(Extracted)))
    593     exit(1);
    594 
    595   // Set the new program and delete the old one.
    596   BD.setNewProgram(std::move(ProgClone));
    597 
    598   // Update the list of miscompiled functions.
    599   MiscompiledFunctions.clear();
    600 
    601   for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
    602     Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first);
    603     assert(NewF && "Function not found??");
    604     MiscompiledFunctions.push_back(NewF);
    605   }
    606 
    607   return true;
    608 }
    609 
    610 /// This is a generic driver to narrow down miscompilations, either in an
    611 /// optimization or a code generator.
    612 ///
    613 static Expected<std::vector<Function *>> DebugAMiscompilation(
    614     BugDriver &BD,
    615     Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
    616                              std::unique_ptr<Module>)) {
    617   // Okay, now that we have reduced the list of passes which are causing the
    618   // failure, see if we can pin down which functions are being
    619   // miscompiled... first build a list of all of the non-external functions in
    620   // the program.
    621   std::vector<Function *> MiscompiledFunctions;
    622   Module &Prog = BD.getProgram();
    623   for (Function &F : Prog)
    624     if (!F.isDeclaration())
    625       MiscompiledFunctions.push_back(&F);
    626 
    627   // Do the reduction...
    628   if (!BugpointIsInterrupted) {
    629     Expected<bool> Ret = ReduceMiscompilingFunctions(BD, TestFn)
    630                              .reduceList(MiscompiledFunctions);
    631     if (Error E = Ret.takeError()) {
    632       errs() << "\n***Cannot reduce functions: ";
    633       return std::move(E);
    634     }
    635   }
    636   outs() << "\n*** The following function"
    637          << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
    638          << " being miscompiled: ";
    639   PrintFunctionList(MiscompiledFunctions);
    640   outs() << '\n';
    641 
    642   // See if we can rip any loops out of the miscompiled functions and still
    643   // trigger the problem.
    644 
    645   if (!BugpointIsInterrupted && !DisableLoopExtraction) {
    646     Expected<bool> Ret = ExtractLoops(BD, TestFn, MiscompiledFunctions);
    647     if (Error E = Ret.takeError())
    648       return std::move(E);
    649     if (*Ret) {
    650       // Okay, we extracted some loops and the problem still appears.  See if
    651       // we can eliminate some of the created functions from being candidates.
    652       DisambiguateGlobalSymbols(BD.getProgram());
    653 
    654       // Do the reduction...
    655       if (!BugpointIsInterrupted)
    656         Ret = ReduceMiscompilingFunctions(BD, TestFn)
    657                   .reduceList(MiscompiledFunctions);
    658       if (Error E = Ret.takeError())
    659         return std::move(E);
    660 
    661       outs() << "\n*** The following function"
    662              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
    663              << " being miscompiled: ";
    664       PrintFunctionList(MiscompiledFunctions);
    665       outs() << '\n';
    666     }
    667   }
    668 
    669   if (!BugpointIsInterrupted && !DisableBlockExtraction) {
    670     Expected<bool> Ret = ExtractBlocks(BD, TestFn, MiscompiledFunctions);
    671     if (Error E = Ret.takeError())
    672       return std::move(E);
    673     if (*Ret) {
    674       // Okay, we extracted some blocks and the problem still appears.  See if
    675       // we can eliminate some of the created functions from being candidates.
    676       DisambiguateGlobalSymbols(BD.getProgram());
    677 
    678       // Do the reduction...
    679       Ret = ReduceMiscompilingFunctions(BD, TestFn)
    680                 .reduceList(MiscompiledFunctions);
    681       if (Error E = Ret.takeError())
    682         return std::move(E);
    683 
    684       outs() << "\n*** The following function"
    685              << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
    686              << " being miscompiled: ";
    687       PrintFunctionList(MiscompiledFunctions);
    688       outs() << '\n';
    689     }
    690   }
    691 
    692   return MiscompiledFunctions;
    693 }
    694 
    695 /// This is the predicate function used to check to see if the "Test" portion of
    696 /// the program is misoptimized.  If so, return true.  In any case, both module
    697 /// arguments are deleted.
    698 ///
    699 static Expected<bool> TestOptimizer(BugDriver &BD, std::unique_ptr<Module> Test,
    700                                     std::unique_ptr<Module> Safe) {
    701   // Run the optimization passes on ToOptimize, producing a transformed version
    702   // of the functions being tested.
    703   outs() << "  Optimizing functions being tested: ";
    704   std::unique_ptr<Module> Optimized =
    705       BD.runPassesOn(Test.get(), BD.getPassesToRun());
    706   if (!Optimized) {
    707     errs() << " Error running this sequence of passes"
    708            << " on the input program!\n";
    709     BD.setNewProgram(std::move(Test));
    710     BD.EmitProgressBitcode(*Test, "pass-error", false);
    711     if (Error E = BD.debugOptimizerCrash())
    712       return std::move(E);
    713     return false;
    714   }
    715   outs() << "done.\n";
    716 
    717   outs() << "  Checking to see if the merged program executes correctly: ";
    718   bool Broken;
    719   auto Result = testMergedProgram(BD, *Optimized, *Safe, Broken);
    720   if (Error E = Result.takeError())
    721     return std::move(E);
    722   if (auto New = std::move(*Result)) {
    723     outs() << (Broken ? " nope.\n" : " yup.\n");
    724     // Delete the original and set the new program.
    725     BD.setNewProgram(std::move(New));
    726   }
    727   return Broken;
    728 }
    729 
    730 /// debugMiscompilation - This method is used when the passes selected are not
    731 /// crashing, but the generated output is semantically different from the
    732 /// input.
    733 ///
    734 Error BugDriver::debugMiscompilation() {
    735   // Make sure something was miscompiled...
    736   if (!BugpointIsInterrupted) {
    737     Expected<bool> Result =
    738         ReduceMiscompilingPasses(*this).reduceList(PassesToRun);
    739     if (Error E = Result.takeError())
    740       return E;
    741     if (!*Result)
    742       return make_error<StringError>(
    743           "*** Optimized program matches reference output!  No problem"
    744           " detected...\nbugpoint can't help you with your problem!\n",
    745           inconvertibleErrorCode());
    746   }
    747 
    748   outs() << "\n*** Found miscompiling pass"
    749          << (getPassesToRun().size() == 1 ? "" : "es") << ": "
    750          << getPassesString(getPassesToRun()) << '\n';
    751   EmitProgressBitcode(*Program, "passinput");
    752 
    753   Expected<std::vector<Function *>> MiscompiledFunctions =
    754       DebugAMiscompilation(*this, TestOptimizer);
    755   if (Error E = MiscompiledFunctions.takeError())
    756     return E;
    757 
    758   // Output a bunch of bitcode files for the user...
    759   outs() << "Outputting reduced bitcode files which expose the problem:\n";
    760   ValueToValueMapTy VMap;
    761   Module *ToNotOptimize = CloneModule(getProgram(), VMap).release();
    762   Module *ToOptimize =
    763       SplitFunctionsOutOfModule(ToNotOptimize, *MiscompiledFunctions, VMap)
    764           .release();
    765 
    766   outs() << "  Non-optimized portion: ";
    767   EmitProgressBitcode(*ToNotOptimize, "tonotoptimize", true);
    768   delete ToNotOptimize; // Delete hacked module.
    769 
    770   outs() << "  Portion that is input to optimizer: ";
    771   EmitProgressBitcode(*ToOptimize, "tooptimize");
    772   delete ToOptimize; // Delete hacked module.
    773 
    774   return Error::success();
    775 }
    776 
    777 /// Get the specified modules ready for code generator testing.
    778 ///
    779 static std::unique_ptr<Module>
    780 CleanupAndPrepareModules(BugDriver &BD, std::unique_ptr<Module> Test,
    781                          Module *Safe) {
    782   // Clean up the modules, removing extra cruft that we don't need anymore...
    783   Test = BD.performFinalCleanups(std::move(Test));
    784 
    785   // If we are executing the JIT, we have several nasty issues to take care of.
    786   if (!BD.isExecutingJIT())
    787     return Test;
    788 
    789   // First, if the main function is in the Safe module, we must add a stub to
    790   // the Test module to call into it.  Thus, we create a new function `main'
    791   // which just calls the old one.
    792   if (Function *oldMain = Safe->getFunction("main"))
    793     if (!oldMain->isDeclaration()) {
    794       // Rename it
    795       oldMain->setName("llvm_bugpoint_old_main");
    796       // Create a NEW `main' function with same type in the test module.
    797       Function *newMain =
    798           Function::Create(oldMain->getFunctionType(),
    799                            GlobalValue::ExternalLinkage, "main", Test.get());
    800       // Create an `oldmain' prototype in the test module, which will
    801       // corresponds to the real main function in the same module.
    802       Function *oldMainProto = Function::Create(oldMain->getFunctionType(),
    803                                                 GlobalValue::ExternalLinkage,
    804                                                 oldMain->getName(), Test.get());
    805       // Set up and remember the argument list for the main function.
    806       std::vector<Value *> args;
    807       for (Function::arg_iterator I = newMain->arg_begin(),
    808                                   E = newMain->arg_end(),
    809                                   OI = oldMain->arg_begin();
    810            I != E; ++I, ++OI) {
    811         I->setName(OI->getName()); // Copy argument names from oldMain
    812         args.push_back(&*I);
    813       }
    814 
    815       // Call the old main function and return its result
    816       BasicBlock *BB = BasicBlock::Create(Safe->getContext(), "entry", newMain);
    817       CallInst *call = CallInst::Create(oldMainProto, args, "", BB);
    818 
    819       // If the type of old function wasn't void, return value of call
    820       ReturnInst::Create(Safe->getContext(), call, BB);
    821     }
    822 
    823   // The second nasty issue we must deal with in the JIT is that the Safe
    824   // module cannot directly reference any functions defined in the test
    825   // module.  Instead, we use a JIT API call to dynamically resolve the
    826   // symbol.
    827 
    828   // Add the resolver to the Safe module.
    829   // Prototype: void *getPointerToNamedFunction(const char* Name)
    830   Constant *resolverFunc = Safe->getOrInsertFunction(
    831       "getPointerToNamedFunction", Type::getInt8PtrTy(Safe->getContext()),
    832       Type::getInt8PtrTy(Safe->getContext()));
    833 
    834   // Use the function we just added to get addresses of functions we need.
    835   for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
    836     if (F->isDeclaration() && !F->use_empty() && &*F != resolverFunc &&
    837         !F->isIntrinsic() /* ignore intrinsics */) {
    838       Function *TestFn = Test->getFunction(F->getName());
    839 
    840       // Don't forward functions which are external in the test module too.
    841       if (TestFn && !TestFn->isDeclaration()) {
    842         // 1. Add a string constant with its name to the global file
    843         Constant *InitArray =
    844             ConstantDataArray::getString(F->getContext(), F->getName());
    845         GlobalVariable *funcName = new GlobalVariable(
    846             *Safe, InitArray->getType(), true /*isConstant*/,
    847             GlobalValue::InternalLinkage, InitArray, F->getName() + "_name");
    848 
    849         // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
    850         // sbyte* so it matches the signature of the resolver function.
    851 
    852         // GetElementPtr *funcName, ulong 0, ulong 0
    853         std::vector<Constant *> GEPargs(
    854             2, Constant::getNullValue(Type::getInt32Ty(F->getContext())));
    855         Value *GEP = ConstantExpr::getGetElementPtr(InitArray->getType(),
    856                                                     funcName, GEPargs);
    857         std::vector<Value *> ResolverArgs;
    858         ResolverArgs.push_back(GEP);
    859 
    860         // Rewrite uses of F in global initializers, etc. to uses of a wrapper
    861         // function that dynamically resolves the calls to F via our JIT API
    862         if (!F->use_empty()) {
    863           // Create a new global to hold the cached function pointer.
    864           Constant *NullPtr = ConstantPointerNull::get(F->getType());
    865           GlobalVariable *Cache = new GlobalVariable(
    866               *F->getParent(), F->getType(), false,
    867               GlobalValue::InternalLinkage, NullPtr, F->getName() + ".fpcache");
    868 
    869           // Construct a new stub function that will re-route calls to F
    870           FunctionType *FuncTy = F->getFunctionType();
    871           Function *FuncWrapper =
    872               Function::Create(FuncTy, GlobalValue::InternalLinkage,
    873                                F->getName() + "_wrapper", F->getParent());
    874           BasicBlock *EntryBB =
    875               BasicBlock::Create(F->getContext(), "entry", FuncWrapper);
    876           BasicBlock *DoCallBB =
    877               BasicBlock::Create(F->getContext(), "usecache", FuncWrapper);
    878           BasicBlock *LookupBB =
    879               BasicBlock::Create(F->getContext(), "lookupfp", FuncWrapper);
    880 
    881           // Check to see if we already looked up the value.
    882           Value *CachedVal = new LoadInst(Cache, "fpcache", EntryBB);
    883           Value *IsNull = new ICmpInst(*EntryBB, ICmpInst::ICMP_EQ, CachedVal,
    884                                        NullPtr, "isNull");
    885           BranchInst::Create(LookupBB, DoCallBB, IsNull, EntryBB);
    886 
    887           // Resolve the call to function F via the JIT API:
    888           //
    889           // call resolver(GetElementPtr...)
    890           CallInst *Resolver = CallInst::Create(resolverFunc, ResolverArgs,
    891                                                 "resolver", LookupBB);
    892 
    893           // Cast the result from the resolver to correctly-typed function.
    894           CastInst *CastedResolver = new BitCastInst(
    895               Resolver, PointerType::getUnqual(F->getFunctionType()),
    896               "resolverCast", LookupBB);
    897 
    898           // Save the value in our cache.
    899           new StoreInst(CastedResolver, Cache, LookupBB);
    900           BranchInst::Create(DoCallBB, LookupBB);
    901 
    902           PHINode *FuncPtr =
    903               PHINode::Create(NullPtr->getType(), 2, "fp", DoCallBB);
    904           FuncPtr->addIncoming(CastedResolver, LookupBB);
    905           FuncPtr->addIncoming(CachedVal, EntryBB);
    906 
    907           // Save the argument list.
    908           std::vector<Value *> Args;
    909           for (Argument &A : FuncWrapper->args())
    910             Args.push_back(&A);
    911 
    912           // Pass on the arguments to the real function, return its result
    913           if (F->getReturnType()->isVoidTy()) {
    914             CallInst::Create(FuncPtr, Args, "", DoCallBB);
    915             ReturnInst::Create(F->getContext(), DoCallBB);
    916           } else {
    917             CallInst *Call =
    918                 CallInst::Create(FuncPtr, Args, "retval", DoCallBB);
    919             ReturnInst::Create(F->getContext(), Call, DoCallBB);
    920           }
    921 
    922           // Use the wrapper function instead of the old function
    923           F->replaceAllUsesWith(FuncWrapper);
    924         }
    925       }
    926     }
    927   }
    928 
    929   if (verifyModule(*Test) || verifyModule(*Safe)) {
    930     errs() << "Bugpoint has a bug, which corrupted a module!!\n";
    931     abort();
    932   }
    933 
    934   return Test;
    935 }
    936 
    937 /// This is the predicate function used to check to see if the "Test" portion of
    938 /// the program is miscompiled by the code generator under test.  If so, return
    939 /// true.  In any case, both module arguments are deleted.
    940 ///
    941 static Expected<bool> TestCodeGenerator(BugDriver &BD,
    942                                         std::unique_ptr<Module> Test,
    943                                         std::unique_ptr<Module> Safe) {
    944   Test = CleanupAndPrepareModules(BD, std::move(Test), Safe.get());
    945 
    946   SmallString<128> TestModuleBC;
    947   int TestModuleFD;
    948   std::error_code EC = sys::fs::createTemporaryFile("bugpoint.test", "bc",
    949                                                     TestModuleFD, TestModuleBC);
    950   if (EC) {
    951     errs() << BD.getToolName()
    952            << "Error making unique filename: " << EC.message() << "\n";
    953     exit(1);
    954   }
    955   if (BD.writeProgramToFile(TestModuleBC.str(), TestModuleFD, *Test)) {
    956     errs() << "Error writing bitcode to `" << TestModuleBC.str()
    957            << "'\nExiting.";
    958     exit(1);
    959   }
    960 
    961   FileRemover TestModuleBCRemover(TestModuleBC.str(), !SaveTemps);
    962 
    963   // Make the shared library
    964   SmallString<128> SafeModuleBC;
    965   int SafeModuleFD;
    966   EC = sys::fs::createTemporaryFile("bugpoint.safe", "bc", SafeModuleFD,
    967                                     SafeModuleBC);
    968   if (EC) {
    969     errs() << BD.getToolName()
    970            << "Error making unique filename: " << EC.message() << "\n";
    971     exit(1);
    972   }
    973 
    974   if (BD.writeProgramToFile(SafeModuleBC.str(), SafeModuleFD, *Safe)) {
    975     errs() << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
    976     exit(1);
    977   }
    978 
    979   FileRemover SafeModuleBCRemover(SafeModuleBC.str(), !SaveTemps);
    980 
    981   Expected<std::string> SharedObject =
    982       BD.compileSharedObject(SafeModuleBC.str());
    983   if (Error E = SharedObject.takeError())
    984     return std::move(E);
    985 
    986   FileRemover SharedObjectRemover(*SharedObject, !SaveTemps);
    987 
    988   // Run the code generator on the `Test' code, loading the shared library.
    989   // The function returns whether or not the new output differs from reference.
    990   Expected<bool> Result =
    991       BD.diffProgram(BD.getProgram(), TestModuleBC.str(), *SharedObject, false);
    992   if (Error E = Result.takeError())
    993     return std::move(E);
    994 
    995   if (*Result)
    996     errs() << ": still failing!\n";
    997   else
    998     errs() << ": didn't fail.\n";
    999 
   1000   return Result;
   1001 }
   1002 
   1003 /// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
   1004 ///
   1005 Error BugDriver::debugCodeGenerator() {
   1006   if ((void *)SafeInterpreter == (void *)Interpreter) {
   1007     Expected<std::string> Result =
   1008         executeProgramSafely(*Program, "bugpoint.safe.out");
   1009     if (Result) {
   1010       outs() << "\n*** The \"safe\" i.e. 'known good' backend cannot match "
   1011              << "the reference diff.  This may be due to a\n    front-end "
   1012              << "bug or a bug in the original program, but this can also "
   1013              << "happen if bugpoint isn't running the program with the "
   1014              << "right flags or input.\n    I left the result of executing "
   1015              << "the program with the \"safe\" backend in this file for "
   1016              << "you: '" << *Result << "'.\n";
   1017     }
   1018     return Error::success();
   1019   }
   1020 
   1021   DisambiguateGlobalSymbols(*Program);
   1022 
   1023   Expected<std::vector<Function *>> Funcs =
   1024       DebugAMiscompilation(*this, TestCodeGenerator);
   1025   if (Error E = Funcs.takeError())
   1026     return E;
   1027 
   1028   // Split the module into the two halves of the program we want.
   1029   ValueToValueMapTy VMap;
   1030   std::unique_ptr<Module> ToNotCodeGen = CloneModule(getProgram(), VMap);
   1031   std::unique_ptr<Module> ToCodeGen =
   1032       SplitFunctionsOutOfModule(ToNotCodeGen.get(), *Funcs, VMap);
   1033 
   1034   // Condition the modules
   1035   ToCodeGen =
   1036       CleanupAndPrepareModules(*this, std::move(ToCodeGen), ToNotCodeGen.get());
   1037 
   1038   SmallString<128> TestModuleBC;
   1039   int TestModuleFD;
   1040   std::error_code EC = sys::fs::createTemporaryFile("bugpoint.test", "bc",
   1041                                                     TestModuleFD, TestModuleBC);
   1042   if (EC) {
   1043     errs() << getToolName() << "Error making unique filename: " << EC.message()
   1044            << "\n";
   1045     exit(1);
   1046   }
   1047 
   1048   if (writeProgramToFile(TestModuleBC.str(), TestModuleFD, *ToCodeGen)) {
   1049     errs() << "Error writing bitcode to `" << TestModuleBC << "'\nExiting.";
   1050     exit(1);
   1051   }
   1052 
   1053   // Make the shared library
   1054   SmallString<128> SafeModuleBC;
   1055   int SafeModuleFD;
   1056   EC = sys::fs::createTemporaryFile("bugpoint.safe", "bc", SafeModuleFD,
   1057                                     SafeModuleBC);
   1058   if (EC) {
   1059     errs() << getToolName() << "Error making unique filename: " << EC.message()
   1060            << "\n";
   1061     exit(1);
   1062   }
   1063 
   1064   if (writeProgramToFile(SafeModuleBC.str(), SafeModuleFD, *ToNotCodeGen)) {
   1065     errs() << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
   1066     exit(1);
   1067   }
   1068   Expected<std::string> SharedObject = compileSharedObject(SafeModuleBC.str());
   1069   if (Error E = SharedObject.takeError())
   1070     return E;
   1071 
   1072   outs() << "You can reproduce the problem with the command line: \n";
   1073   if (isExecutingJIT()) {
   1074     outs() << "  lli -load " << *SharedObject << " " << TestModuleBC;
   1075   } else {
   1076     outs() << "  llc " << TestModuleBC << " -o " << TestModuleBC << ".s\n";
   1077     outs() << "  cc " << *SharedObject << " " << TestModuleBC.str() << ".s -o "
   1078            << TestModuleBC << ".exe\n";
   1079     outs() << "  ./" << TestModuleBC << ".exe";
   1080   }
   1081   for (unsigned i = 0, e = InputArgv.size(); i != e; ++i)
   1082     outs() << " " << InputArgv[i];
   1083   outs() << '\n';
   1084   outs() << "The shared object was created with:\n  llc -march=c "
   1085          << SafeModuleBC.str() << " -o temporary.c\n"
   1086          << "  cc -xc temporary.c -O2 -o " << *SharedObject;
   1087   if (TargetTriple.getArch() == Triple::sparc)
   1088     outs() << " -G"; // Compile a shared library, `-G' for Sparc
   1089   else
   1090     outs() << " -fPIC -shared"; // `-shared' for Linux/X86, maybe others
   1091 
   1092   outs() << " -fno-strict-aliasing\n";
   1093 
   1094   return Error::success();
   1095 }
   1096