Home | History | Annotate | Download | only in Scalar
      1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass implements an idiom recognizer that transforms simple loops into a
     11 // non-loop form.  In cases that this kicks in, it can be a significant
     12 // performance win.
     13 //
     14 // If compiling for code size we avoid idiom recognition if the resulting
     15 // code could be larger than the code for the original loop. One way this could
     16 // happen is if the loop is not removable after idiom recognition due to the
     17 // presence of non-idiom instructions. The initial implementation of the
     18 // heuristics applies to idioms in multi-block loops.
     19 //
     20 //===----------------------------------------------------------------------===//
     21 //
     22 // TODO List:
     23 //
     24 // Future loop memory idioms to recognize:
     25 //   memcmp, memmove, strlen, etc.
     26 // Future floating point idioms to recognize in -ffast-math mode:
     27 //   fpowi
     28 // Future integer operation idioms to recognize:
     29 //   ctpop, ctlz, cttz
     30 //
     31 // Beware that isel's default lowering for ctpop is highly inefficient for
     32 // i64 and larger types when i64 is legal and the value has few bits set.  It
     33 // would be good to enhance isel to emit a loop for ctpop in this case.
     34 //
     35 // This could recognize common matrix multiplies and dot product idioms and
     36 // replace them with calls to BLAS (if linked in??).
     37 //
     38 //===----------------------------------------------------------------------===//
     39 
     40 #include "llvm/ADT/APInt.h"
     41 #include "llvm/ADT/ArrayRef.h"
     42 #include "llvm/ADT/DenseMap.h"
     43 #include "llvm/ADT/MapVector.h"
     44 #include "llvm/ADT/SetVector.h"
     45 #include "llvm/ADT/SmallPtrSet.h"
     46 #include "llvm/ADT/SmallVector.h"
     47 #include "llvm/ADT/Statistic.h"
     48 #include "llvm/ADT/StringRef.h"
     49 #include "llvm/Analysis/AliasAnalysis.h"
     50 #include "llvm/Analysis/LoopAccessAnalysis.h"
     51 #include "llvm/Analysis/LoopInfo.h"
     52 #include "llvm/Analysis/LoopPass.h"
     53 #include "llvm/Analysis/MemoryLocation.h"
     54 #include "llvm/Analysis/ScalarEvolution.h"
     55 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     56 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     57 #include "llvm/Analysis/TargetLibraryInfo.h"
     58 #include "llvm/Analysis/TargetTransformInfo.h"
     59 #include "llvm/Transforms/Utils/Local.h"
     60 #include "llvm/Analysis/ValueTracking.h"
     61 #include "llvm/IR/Attributes.h"
     62 #include "llvm/IR/BasicBlock.h"
     63 #include "llvm/IR/Constant.h"
     64 #include "llvm/IR/Constants.h"
     65 #include "llvm/IR/DataLayout.h"
     66 #include "llvm/IR/DebugLoc.h"
     67 #include "llvm/IR/DerivedTypes.h"
     68 #include "llvm/IR/Dominators.h"
     69 #include "llvm/IR/GlobalValue.h"
     70 #include "llvm/IR/GlobalVariable.h"
     71 #include "llvm/IR/IRBuilder.h"
     72 #include "llvm/IR/InstrTypes.h"
     73 #include "llvm/IR/Instruction.h"
     74 #include "llvm/IR/Instructions.h"
     75 #include "llvm/IR/IntrinsicInst.h"
     76 #include "llvm/IR/Intrinsics.h"
     77 #include "llvm/IR/LLVMContext.h"
     78 #include "llvm/IR/Module.h"
     79 #include "llvm/IR/PassManager.h"
     80 #include "llvm/IR/Type.h"
     81 #include "llvm/IR/User.h"
     82 #include "llvm/IR/Value.h"
     83 #include "llvm/IR/ValueHandle.h"
     84 #include "llvm/Pass.h"
     85 #include "llvm/Support/Casting.h"
     86 #include "llvm/Support/CommandLine.h"
     87 #include "llvm/Support/Debug.h"
     88 #include "llvm/Support/raw_ostream.h"
     89 #include "llvm/Transforms/Scalar.h"
     90 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
     91 #include "llvm/Transforms/Utils/BuildLibCalls.h"
     92 #include "llvm/Transforms/Utils/LoopUtils.h"
     93 #include <algorithm>
     94 #include <cassert>
     95 #include <cstdint>
     96 #include <utility>
     97 #include <vector>
     98 
     99 using namespace llvm;
    100 
    101 #define DEBUG_TYPE "loop-idiom"
    102 
    103 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
    104 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
    105 
    106 static cl::opt<bool> UseLIRCodeSizeHeurs(
    107     "use-lir-code-size-heurs",
    108     cl::desc("Use loop idiom recognition code size heuristics when compiling"
    109              "with -Os/-Oz"),
    110     cl::init(true), cl::Hidden);
    111 
    112 namespace {
    113 
    114 class LoopIdiomRecognize {
    115   Loop *CurLoop = nullptr;
    116   AliasAnalysis *AA;
    117   DominatorTree *DT;
    118   LoopInfo *LI;
    119   ScalarEvolution *SE;
    120   TargetLibraryInfo *TLI;
    121   const TargetTransformInfo *TTI;
    122   const DataLayout *DL;
    123   bool ApplyCodeSizeHeuristics;
    124 
    125 public:
    126   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
    127                               LoopInfo *LI, ScalarEvolution *SE,
    128                               TargetLibraryInfo *TLI,
    129                               const TargetTransformInfo *TTI,
    130                               const DataLayout *DL)
    131       : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL) {}
    132 
    133   bool runOnLoop(Loop *L);
    134 
    135 private:
    136   using StoreList = SmallVector<StoreInst *, 8>;
    137   using StoreListMap = MapVector<Value *, StoreList>;
    138 
    139   StoreListMap StoreRefsForMemset;
    140   StoreListMap StoreRefsForMemsetPattern;
    141   StoreList StoreRefsForMemcpy;
    142   bool HasMemset;
    143   bool HasMemsetPattern;
    144   bool HasMemcpy;
    145 
    146   /// Return code for isLegalStore()
    147   enum LegalStoreKind {
    148     None = 0,
    149     Memset,
    150     MemsetPattern,
    151     Memcpy,
    152     UnorderedAtomicMemcpy,
    153     DontUse // Dummy retval never to be used. Allows catching errors in retval
    154             // handling.
    155   };
    156 
    157   /// \name Countable Loop Idiom Handling
    158   /// @{
    159 
    160   bool runOnCountableLoop();
    161   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
    162                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
    163 
    164   void collectStores(BasicBlock *BB);
    165   LegalStoreKind isLegalStore(StoreInst *SI);
    166   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
    167                          bool ForMemset);
    168   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
    169 
    170   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
    171                                unsigned StoreAlignment, Value *StoredVal,
    172                                Instruction *TheStore,
    173                                SmallPtrSetImpl<Instruction *> &Stores,
    174                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
    175                                bool NegStride, bool IsLoopMemset = false);
    176   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
    177   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
    178                                  bool IsLoopMemset = false);
    179 
    180   /// @}
    181   /// \name Noncountable Loop Idiom Handling
    182   /// @{
    183 
    184   bool runOnNoncountableLoop();
    185 
    186   bool recognizePopcount();
    187   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
    188                                PHINode *CntPhi, Value *Var);
    189   bool recognizeAndInsertCTLZ();
    190   void transformLoopToCountable(BasicBlock *PreCondBB, Instruction *CntInst,
    191                                 PHINode *CntPhi, Value *Var, Instruction *DefX,
    192                                 const DebugLoc &DL, bool ZeroCheck,
    193                                 bool IsCntPhiUsedOutsideLoop);
    194 
    195   /// @}
    196 };
    197 
    198 class LoopIdiomRecognizeLegacyPass : public LoopPass {
    199 public:
    200   static char ID;
    201 
    202   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
    203     initializeLoopIdiomRecognizeLegacyPassPass(
    204         *PassRegistry::getPassRegistry());
    205   }
    206 
    207   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    208     if (skipLoop(L))
    209       return false;
    210 
    211     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    212     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    213     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    214     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    215     TargetLibraryInfo *TLI =
    216         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    217     const TargetTransformInfo *TTI =
    218         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
    219             *L->getHeader()->getParent());
    220     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
    221 
    222     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL);
    223     return LIR.runOnLoop(L);
    224   }
    225 
    226   /// This transformation requires natural loop information & requires that
    227   /// loop preheaders be inserted into the CFG.
    228   void getAnalysisUsage(AnalysisUsage &AU) const override {
    229     AU.addRequired<TargetLibraryInfoWrapperPass>();
    230     AU.addRequired<TargetTransformInfoWrapperPass>();
    231     getLoopAnalysisUsage(AU);
    232   }
    233 };
    234 
    235 } // end anonymous namespace
    236 
    237 char LoopIdiomRecognizeLegacyPass::ID = 0;
    238 
    239 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
    240                                               LoopStandardAnalysisResults &AR,
    241                                               LPMUpdater &) {
    242   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
    243 
    244   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL);
    245   if (!LIR.runOnLoop(&L))
    246     return PreservedAnalyses::all();
    247 
    248   return getLoopPassPreservedAnalyses();
    249 }
    250 
    251 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
    252                       "Recognize loop idioms", false, false)
    253 INITIALIZE_PASS_DEPENDENCY(LoopPass)
    254 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    255 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
    256 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
    257                     "Recognize loop idioms", false, false)
    258 
    259 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
    260 
    261 static void deleteDeadInstruction(Instruction *I) {
    262   I->replaceAllUsesWith(UndefValue::get(I->getType()));
    263   I->eraseFromParent();
    264 }
    265 
    266 //===----------------------------------------------------------------------===//
    267 //
    268 //          Implementation of LoopIdiomRecognize
    269 //
    270 //===----------------------------------------------------------------------===//
    271 
    272 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
    273   CurLoop = L;
    274   // If the loop could not be converted to canonical form, it must have an
    275   // indirectbr in it, just give up.
    276   if (!L->getLoopPreheader())
    277     return false;
    278 
    279   // Disable loop idiom recognition if the function's name is a common idiom.
    280   StringRef Name = L->getHeader()->getParent()->getName();
    281   if (Name == "memset" || Name == "memcpy")
    282     return false;
    283 
    284   // Determine if code size heuristics need to be applied.
    285   ApplyCodeSizeHeuristics =
    286       L->getHeader()->getParent()->optForSize() && UseLIRCodeSizeHeurs;
    287 
    288   HasMemset = TLI->has(LibFunc_memset);
    289   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
    290   HasMemcpy = TLI->has(LibFunc_memcpy);
    291 
    292   if (HasMemset || HasMemsetPattern || HasMemcpy)
    293     if (SE->hasLoopInvariantBackedgeTakenCount(L))
    294       return runOnCountableLoop();
    295 
    296   return runOnNoncountableLoop();
    297 }
    298 
    299 bool LoopIdiomRecognize::runOnCountableLoop() {
    300   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
    301   assert(!isa<SCEVCouldNotCompute>(BECount) &&
    302          "runOnCountableLoop() called on a loop without a predictable"
    303          "backedge-taken count");
    304 
    305   // If this loop executes exactly one time, then it should be peeled, not
    306   // optimized by this pass.
    307   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
    308     if (BECst->getAPInt() == 0)
    309       return false;
    310 
    311   SmallVector<BasicBlock *, 8> ExitBlocks;
    312   CurLoop->getUniqueExitBlocks(ExitBlocks);
    313 
    314   LLVM_DEBUG(dbgs() << "loop-idiom Scanning: F["
    315                     << CurLoop->getHeader()->getParent()->getName()
    316                     << "] Loop %" << CurLoop->getHeader()->getName() << "\n");
    317 
    318   bool MadeChange = false;
    319 
    320   // The following transforms hoist stores/memsets into the loop pre-header.
    321   // Give up if the loop has instructions may throw.
    322   LoopSafetyInfo SafetyInfo;
    323   computeLoopSafetyInfo(&SafetyInfo, CurLoop);
    324   if (SafetyInfo.MayThrow)
    325     return MadeChange;
    326 
    327   // Scan all the blocks in the loop that are not in subloops.
    328   for (auto *BB : CurLoop->getBlocks()) {
    329     // Ignore blocks in subloops.
    330     if (LI->getLoopFor(BB) != CurLoop)
    331       continue;
    332 
    333     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
    334   }
    335   return MadeChange;
    336 }
    337 
    338 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
    339   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
    340   return ConstStride->getAPInt();
    341 }
    342 
    343 /// getMemSetPatternValue - If a strided store of the specified value is safe to
    344 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
    345 /// be passed in.  Otherwise, return null.
    346 ///
    347 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
    348 /// just replicate their input array and then pass on to memset_pattern16.
    349 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
    350   // If the value isn't a constant, we can't promote it to being in a constant
    351   // array.  We could theoretically do a store to an alloca or something, but
    352   // that doesn't seem worthwhile.
    353   Constant *C = dyn_cast<Constant>(V);
    354   if (!C)
    355     return nullptr;
    356 
    357   // Only handle simple values that are a power of two bytes in size.
    358   uint64_t Size = DL->getTypeSizeInBits(V->getType());
    359   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
    360     return nullptr;
    361 
    362   // Don't care enough about darwin/ppc to implement this.
    363   if (DL->isBigEndian())
    364     return nullptr;
    365 
    366   // Convert to size in bytes.
    367   Size /= 8;
    368 
    369   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
    370   // if the top and bottom are the same (e.g. for vectors and large integers).
    371   if (Size > 16)
    372     return nullptr;
    373 
    374   // If the constant is exactly 16 bytes, just use it.
    375   if (Size == 16)
    376     return C;
    377 
    378   // Otherwise, we'll use an array of the constants.
    379   unsigned ArraySize = 16 / Size;
    380   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
    381   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
    382 }
    383 
    384 LoopIdiomRecognize::LegalStoreKind
    385 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
    386   // Don't touch volatile stores.
    387   if (SI->isVolatile())
    388     return LegalStoreKind::None;
    389   // We only want simple or unordered-atomic stores.
    390   if (!SI->isUnordered())
    391     return LegalStoreKind::None;
    392 
    393   // Don't convert stores of non-integral pointer types to memsets (which stores
    394   // integers).
    395   if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
    396     return LegalStoreKind::None;
    397 
    398   // Avoid merging nontemporal stores.
    399   if (SI->getMetadata(LLVMContext::MD_nontemporal))
    400     return LegalStoreKind::None;
    401 
    402   Value *StoredVal = SI->getValueOperand();
    403   Value *StorePtr = SI->getPointerOperand();
    404 
    405   // Reject stores that are so large that they overflow an unsigned.
    406   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
    407   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
    408     return LegalStoreKind::None;
    409 
    410   // See if the pointer expression is an AddRec like {base,+,1} on the current
    411   // loop, which indicates a strided store.  If we have something else, it's a
    412   // random store we can't handle.
    413   const SCEVAddRecExpr *StoreEv =
    414       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
    415   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
    416     return LegalStoreKind::None;
    417 
    418   // Check to see if we have a constant stride.
    419   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
    420     return LegalStoreKind::None;
    421 
    422   // See if the store can be turned into a memset.
    423 
    424   // If the stored value is a byte-wise value (like i32 -1), then it may be
    425   // turned into a memset of i8 -1, assuming that all the consecutive bytes
    426   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
    427   // but it can be turned into memset_pattern if the target supports it.
    428   Value *SplatValue = isBytewiseValue(StoredVal);
    429   Constant *PatternValue = nullptr;
    430 
    431   // Note: memset and memset_pattern on unordered-atomic is yet not supported
    432   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
    433 
    434   // If we're allowed to form a memset, and the stored value would be
    435   // acceptable for memset, use it.
    436   if (!UnorderedAtomic && HasMemset && SplatValue &&
    437       // Verify that the stored value is loop invariant.  If not, we can't
    438       // promote the memset.
    439       CurLoop->isLoopInvariant(SplatValue)) {
    440     // It looks like we can use SplatValue.
    441     return LegalStoreKind::Memset;
    442   } else if (!UnorderedAtomic && HasMemsetPattern &&
    443              // Don't create memset_pattern16s with address spaces.
    444              StorePtr->getType()->getPointerAddressSpace() == 0 &&
    445              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
    446     // It looks like we can use PatternValue!
    447     return LegalStoreKind::MemsetPattern;
    448   }
    449 
    450   // Otherwise, see if the store can be turned into a memcpy.
    451   if (HasMemcpy) {
    452     // Check to see if the stride matches the size of the store.  If so, then we
    453     // know that every byte is touched in the loop.
    454     APInt Stride = getStoreStride(StoreEv);
    455     unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
    456     if (StoreSize != Stride && StoreSize != -Stride)
    457       return LegalStoreKind::None;
    458 
    459     // The store must be feeding a non-volatile load.
    460     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
    461 
    462     // Only allow non-volatile loads
    463     if (!LI || LI->isVolatile())
    464       return LegalStoreKind::None;
    465     // Only allow simple or unordered-atomic loads
    466     if (!LI->isUnordered())
    467       return LegalStoreKind::None;
    468 
    469     // See if the pointer expression is an AddRec like {base,+,1} on the current
    470     // loop, which indicates a strided load.  If we have something else, it's a
    471     // random load we can't handle.
    472     const SCEVAddRecExpr *LoadEv =
    473         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
    474     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
    475       return LegalStoreKind::None;
    476 
    477     // The store and load must share the same stride.
    478     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
    479       return LegalStoreKind::None;
    480 
    481     // Success.  This store can be converted into a memcpy.
    482     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
    483     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
    484                            : LegalStoreKind::Memcpy;
    485   }
    486   // This store can't be transformed into a memset/memcpy.
    487   return LegalStoreKind::None;
    488 }
    489 
    490 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
    491   StoreRefsForMemset.clear();
    492   StoreRefsForMemsetPattern.clear();
    493   StoreRefsForMemcpy.clear();
    494   for (Instruction &I : *BB) {
    495     StoreInst *SI = dyn_cast<StoreInst>(&I);
    496     if (!SI)
    497       continue;
    498 
    499     // Make sure this is a strided store with a constant stride.
    500     switch (isLegalStore(SI)) {
    501     case LegalStoreKind::None:
    502       // Nothing to do
    503       break;
    504     case LegalStoreKind::Memset: {
    505       // Find the base pointer.
    506       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
    507       StoreRefsForMemset[Ptr].push_back(SI);
    508     } break;
    509     case LegalStoreKind::MemsetPattern: {
    510       // Find the base pointer.
    511       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
    512       StoreRefsForMemsetPattern[Ptr].push_back(SI);
    513     } break;
    514     case LegalStoreKind::Memcpy:
    515     case LegalStoreKind::UnorderedAtomicMemcpy:
    516       StoreRefsForMemcpy.push_back(SI);
    517       break;
    518     default:
    519       assert(false && "unhandled return value");
    520       break;
    521     }
    522   }
    523 }
    524 
    525 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
    526 /// with the specified backedge count.  This block is known to be in the current
    527 /// loop and not in any subloops.
    528 bool LoopIdiomRecognize::runOnLoopBlock(
    529     BasicBlock *BB, const SCEV *BECount,
    530     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
    531   // We can only promote stores in this block if they are unconditionally
    532   // executed in the loop.  For a block to be unconditionally executed, it has
    533   // to dominate all the exit blocks of the loop.  Verify this now.
    534   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    535     if (!DT->dominates(BB, ExitBlocks[i]))
    536       return false;
    537 
    538   bool MadeChange = false;
    539   // Look for store instructions, which may be optimized to memset/memcpy.
    540   collectStores(BB);
    541 
    542   // Look for a single store or sets of stores with a common base, which can be
    543   // optimized into a memset (memset_pattern).  The latter most commonly happens
    544   // with structs and handunrolled loops.
    545   for (auto &SL : StoreRefsForMemset)
    546     MadeChange |= processLoopStores(SL.second, BECount, true);
    547 
    548   for (auto &SL : StoreRefsForMemsetPattern)
    549     MadeChange |= processLoopStores(SL.second, BECount, false);
    550 
    551   // Optimize the store into a memcpy, if it feeds an similarly strided load.
    552   for (auto &SI : StoreRefsForMemcpy)
    553     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
    554 
    555   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
    556     Instruction *Inst = &*I++;
    557     // Look for memset instructions, which may be optimized to a larger memset.
    558     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
    559       WeakTrackingVH InstPtr(&*I);
    560       if (!processLoopMemSet(MSI, BECount))
    561         continue;
    562       MadeChange = true;
    563 
    564       // If processing the memset invalidated our iterator, start over from the
    565       // top of the block.
    566       if (!InstPtr)
    567         I = BB->begin();
    568       continue;
    569     }
    570   }
    571 
    572   return MadeChange;
    573 }
    574 
    575 /// processLoopStores - See if this store(s) can be promoted to a memset.
    576 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
    577                                            const SCEV *BECount,
    578                                            bool ForMemset) {
    579   // Try to find consecutive stores that can be transformed into memsets.
    580   SetVector<StoreInst *> Heads, Tails;
    581   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
    582 
    583   // Do a quadratic search on all of the given stores and find
    584   // all of the pairs of stores that follow each other.
    585   SmallVector<unsigned, 16> IndexQueue;
    586   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
    587     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
    588 
    589     Value *FirstStoredVal = SL[i]->getValueOperand();
    590     Value *FirstStorePtr = SL[i]->getPointerOperand();
    591     const SCEVAddRecExpr *FirstStoreEv =
    592         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
    593     APInt FirstStride = getStoreStride(FirstStoreEv);
    594     unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
    595 
    596     // See if we can optimize just this store in isolation.
    597     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
    598       Heads.insert(SL[i]);
    599       continue;
    600     }
    601 
    602     Value *FirstSplatValue = nullptr;
    603     Constant *FirstPatternValue = nullptr;
    604 
    605     if (ForMemset)
    606       FirstSplatValue = isBytewiseValue(FirstStoredVal);
    607     else
    608       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
    609 
    610     assert((FirstSplatValue || FirstPatternValue) &&
    611            "Expected either splat value or pattern value.");
    612 
    613     IndexQueue.clear();
    614     // If a store has multiple consecutive store candidates, search Stores
    615     // array according to the sequence: from i+1 to e, then from i-1 to 0.
    616     // This is because usually pairing with immediate succeeding or preceding
    617     // candidate create the best chance to find memset opportunity.
    618     unsigned j = 0;
    619     for (j = i + 1; j < e; ++j)
    620       IndexQueue.push_back(j);
    621     for (j = i; j > 0; --j)
    622       IndexQueue.push_back(j - 1);
    623 
    624     for (auto &k : IndexQueue) {
    625       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
    626       Value *SecondStorePtr = SL[k]->getPointerOperand();
    627       const SCEVAddRecExpr *SecondStoreEv =
    628           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
    629       APInt SecondStride = getStoreStride(SecondStoreEv);
    630 
    631       if (FirstStride != SecondStride)
    632         continue;
    633 
    634       Value *SecondStoredVal = SL[k]->getValueOperand();
    635       Value *SecondSplatValue = nullptr;
    636       Constant *SecondPatternValue = nullptr;
    637 
    638       if (ForMemset)
    639         SecondSplatValue = isBytewiseValue(SecondStoredVal);
    640       else
    641         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
    642 
    643       assert((SecondSplatValue || SecondPatternValue) &&
    644              "Expected either splat value or pattern value.");
    645 
    646       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
    647         if (ForMemset) {
    648           if (FirstSplatValue != SecondSplatValue)
    649             continue;
    650         } else {
    651           if (FirstPatternValue != SecondPatternValue)
    652             continue;
    653         }
    654         Tails.insert(SL[k]);
    655         Heads.insert(SL[i]);
    656         ConsecutiveChain[SL[i]] = SL[k];
    657         break;
    658       }
    659     }
    660   }
    661 
    662   // We may run into multiple chains that merge into a single chain. We mark the
    663   // stores that we transformed so that we don't visit the same store twice.
    664   SmallPtrSet<Value *, 16> TransformedStores;
    665   bool Changed = false;
    666 
    667   // For stores that start but don't end a link in the chain:
    668   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
    669        it != e; ++it) {
    670     if (Tails.count(*it))
    671       continue;
    672 
    673     // We found a store instr that starts a chain. Now follow the chain and try
    674     // to transform it.
    675     SmallPtrSet<Instruction *, 8> AdjacentStores;
    676     StoreInst *I = *it;
    677 
    678     StoreInst *HeadStore = I;
    679     unsigned StoreSize = 0;
    680 
    681     // Collect the chain into a list.
    682     while (Tails.count(I) || Heads.count(I)) {
    683       if (TransformedStores.count(I))
    684         break;
    685       AdjacentStores.insert(I);
    686 
    687       StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
    688       // Move to the next value in the chain.
    689       I = ConsecutiveChain[I];
    690     }
    691 
    692     Value *StoredVal = HeadStore->getValueOperand();
    693     Value *StorePtr = HeadStore->getPointerOperand();
    694     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
    695     APInt Stride = getStoreStride(StoreEv);
    696 
    697     // Check to see if the stride matches the size of the stores.  If so, then
    698     // we know that every byte is touched in the loop.
    699     if (StoreSize != Stride && StoreSize != -Stride)
    700       continue;
    701 
    702     bool NegStride = StoreSize == -Stride;
    703 
    704     if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(),
    705                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
    706                                 BECount, NegStride)) {
    707       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
    708       Changed = true;
    709     }
    710   }
    711 
    712   return Changed;
    713 }
    714 
    715 /// processLoopMemSet - See if this memset can be promoted to a large memset.
    716 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
    717                                            const SCEV *BECount) {
    718   // We can only handle non-volatile memsets with a constant size.
    719   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
    720     return false;
    721 
    722   // If we're not allowed to hack on memset, we fail.
    723   if (!HasMemset)
    724     return false;
    725 
    726   Value *Pointer = MSI->getDest();
    727 
    728   // See if the pointer expression is an AddRec like {base,+,1} on the current
    729   // loop, which indicates a strided store.  If we have something else, it's a
    730   // random store we can't handle.
    731   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
    732   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
    733     return false;
    734 
    735   // Reject memsets that are so large that they overflow an unsigned.
    736   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
    737   if ((SizeInBytes >> 32) != 0)
    738     return false;
    739 
    740   // Check to see if the stride matches the size of the memset.  If so, then we
    741   // know that every byte is touched in the loop.
    742   const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
    743   if (!ConstStride)
    744     return false;
    745 
    746   APInt Stride = ConstStride->getAPInt();
    747   if (SizeInBytes != Stride && SizeInBytes != -Stride)
    748     return false;
    749 
    750   // Verify that the memset value is loop invariant.  If not, we can't promote
    751   // the memset.
    752   Value *SplatValue = MSI->getValue();
    753   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
    754     return false;
    755 
    756   SmallPtrSet<Instruction *, 1> MSIs;
    757   MSIs.insert(MSI);
    758   bool NegStride = SizeInBytes == -Stride;
    759   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
    760                                  MSI->getDestAlignment(), SplatValue, MSI, MSIs,
    761                                  Ev, BECount, NegStride, /*IsLoopMemset=*/true);
    762 }
    763 
    764 /// mayLoopAccessLocation - Return true if the specified loop might access the
    765 /// specified pointer location, which is a loop-strided access.  The 'Access'
    766 /// argument specifies what the verboten forms of access are (read or write).
    767 static bool
    768 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
    769                       const SCEV *BECount, unsigned StoreSize,
    770                       AliasAnalysis &AA,
    771                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
    772   // Get the location that may be stored across the loop.  Since the access is
    773   // strided positively through memory, we say that the modified location starts
    774   // at the pointer and has infinite size.
    775   uint64_t AccessSize = MemoryLocation::UnknownSize;
    776 
    777   // If the loop iterates a fixed number of times, we can refine the access size
    778   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
    779   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
    780     AccessSize = (BECst->getValue()->getZExtValue() + 1) * StoreSize;
    781 
    782   // TODO: For this to be really effective, we have to dive into the pointer
    783   // operand in the store.  Store to &A[i] of 100 will always return may alias
    784   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
    785   // which will then no-alias a store to &A[100].
    786   MemoryLocation StoreLoc(Ptr, AccessSize);
    787 
    788   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
    789        ++BI)
    790     for (Instruction &I : **BI)
    791       if (IgnoredStores.count(&I) == 0 &&
    792           isModOrRefSet(
    793               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
    794         return true;
    795 
    796   return false;
    797 }
    798 
    799 // If we have a negative stride, Start refers to the end of the memory location
    800 // we're trying to memset.  Therefore, we need to recompute the base pointer,
    801 // which is just Start - BECount*Size.
    802 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
    803                                         Type *IntPtr, unsigned StoreSize,
    804                                         ScalarEvolution *SE) {
    805   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
    806   if (StoreSize != 1)
    807     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
    808                            SCEV::FlagNUW);
    809   return SE->getMinusSCEV(Start, Index);
    810 }
    811 
    812 /// Compute the number of bytes as a SCEV from the backedge taken count.
    813 ///
    814 /// This also maps the SCEV into the provided type and tries to handle the
    815 /// computation in a way that will fold cleanly.
    816 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
    817                                unsigned StoreSize, Loop *CurLoop,
    818                                const DataLayout *DL, ScalarEvolution *SE) {
    819   const SCEV *NumBytesS;
    820   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
    821   // pointer size if it isn't already.
    822   //
    823   // If we're going to need to zero extend the BE count, check if we can add
    824   // one to it prior to zero extending without overflow. Provided this is safe,
    825   // it allows better simplification of the +1.
    826   if (DL->getTypeSizeInBits(BECount->getType()) <
    827           DL->getTypeSizeInBits(IntPtr) &&
    828       SE->isLoopEntryGuardedByCond(
    829           CurLoop, ICmpInst::ICMP_NE, BECount,
    830           SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
    831     NumBytesS = SE->getZeroExtendExpr(
    832         SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
    833         IntPtr);
    834   } else {
    835     NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
    836                                SE->getOne(IntPtr), SCEV::FlagNUW);
    837   }
    838 
    839   // And scale it based on the store size.
    840   if (StoreSize != 1) {
    841     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
    842                                SCEV::FlagNUW);
    843   }
    844   return NumBytesS;
    845 }
    846 
    847 /// processLoopStridedStore - We see a strided store of some value.  If we can
    848 /// transform this into a memset or memset_pattern in the loop preheader, do so.
    849 bool LoopIdiomRecognize::processLoopStridedStore(
    850     Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
    851     Value *StoredVal, Instruction *TheStore,
    852     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
    853     const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
    854   Value *SplatValue = isBytewiseValue(StoredVal);
    855   Constant *PatternValue = nullptr;
    856 
    857   if (!SplatValue)
    858     PatternValue = getMemSetPatternValue(StoredVal, DL);
    859 
    860   assert((SplatValue || PatternValue) &&
    861          "Expected either splat value or pattern value.");
    862 
    863   // The trip count of the loop and the base pointer of the addrec SCEV is
    864   // guaranteed to be loop invariant, which means that it should dominate the
    865   // header.  This allows us to insert code for it in the preheader.
    866   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
    867   BasicBlock *Preheader = CurLoop->getLoopPreheader();
    868   IRBuilder<> Builder(Preheader->getTerminator());
    869   SCEVExpander Expander(*SE, *DL, "loop-idiom");
    870 
    871   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
    872   Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
    873 
    874   const SCEV *Start = Ev->getStart();
    875   // Handle negative strided loops.
    876   if (NegStride)
    877     Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
    878 
    879   // TODO: ideally we should still be able to generate memset if SCEV expander
    880   // is taught to generate the dependencies at the latest point.
    881   if (!isSafeToExpand(Start, *SE))
    882     return false;
    883 
    884   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
    885   // this into a memset in the loop preheader now if we want.  However, this
    886   // would be unsafe to do if there is anything else in the loop that may read
    887   // or write to the aliased location.  Check for any overlap by generating the
    888   // base pointer and checking the region.
    889   Value *BasePtr =
    890       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
    891   if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
    892                             StoreSize, *AA, Stores)) {
    893     Expander.clear();
    894     // If we generated new code for the base pointer, clean up.
    895     RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
    896     return false;
    897   }
    898 
    899   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
    900     return false;
    901 
    902   // Okay, everything looks good, insert the memset.
    903 
    904   const SCEV *NumBytesS =
    905       getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE);
    906 
    907   // TODO: ideally we should still be able to generate memset if SCEV expander
    908   // is taught to generate the dependencies at the latest point.
    909   if (!isSafeToExpand(NumBytesS, *SE))
    910     return false;
    911 
    912   Value *NumBytes =
    913       Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
    914 
    915   CallInst *NewCall;
    916   if (SplatValue) {
    917     NewCall =
    918         Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
    919   } else {
    920     // Everything is emitted in default address space
    921     Type *Int8PtrTy = DestInt8PtrTy;
    922 
    923     Module *M = TheStore->getModule();
    924     StringRef FuncName = "memset_pattern16";
    925     Value *MSP =
    926         M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
    927                                Int8PtrTy, Int8PtrTy, IntPtr);
    928     inferLibFuncAttributes(M, FuncName, *TLI);
    929 
    930     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
    931     // an constant array of 16-bytes.  Plop the value into a mergable global.
    932     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
    933                                             GlobalValue::PrivateLinkage,
    934                                             PatternValue, ".memset_pattern");
    935     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
    936     GV->setAlignment(16);
    937     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
    938     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
    939   }
    940 
    941   LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
    942                     << "    from store to: " << *Ev << " at: " << *TheStore
    943                     << "\n");
    944   NewCall->setDebugLoc(TheStore->getDebugLoc());
    945 
    946   // Okay, the memset has been formed.  Zap the original store and anything that
    947   // feeds into it.
    948   for (auto *I : Stores)
    949     deleteDeadInstruction(I);
    950   ++NumMemSet;
    951   return true;
    952 }
    953 
    954 /// If the stored value is a strided load in the same loop with the same stride
    955 /// this may be transformable into a memcpy.  This kicks in for stuff like
    956 /// for (i) A[i] = B[i];
    957 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
    958                                                     const SCEV *BECount) {
    959   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
    960 
    961   Value *StorePtr = SI->getPointerOperand();
    962   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
    963   APInt Stride = getStoreStride(StoreEv);
    964   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
    965   bool NegStride = StoreSize == -Stride;
    966 
    967   // The store must be feeding a non-volatile load.
    968   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
    969   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
    970 
    971   // See if the pointer expression is an AddRec like {base,+,1} on the current
    972   // loop, which indicates a strided load.  If we have something else, it's a
    973   // random load we can't handle.
    974   const SCEVAddRecExpr *LoadEv =
    975       cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
    976 
    977   // The trip count of the loop and the base pointer of the addrec SCEV is
    978   // guaranteed to be loop invariant, which means that it should dominate the
    979   // header.  This allows us to insert code for it in the preheader.
    980   BasicBlock *Preheader = CurLoop->getLoopPreheader();
    981   IRBuilder<> Builder(Preheader->getTerminator());
    982   SCEVExpander Expander(*SE, *DL, "loop-idiom");
    983 
    984   const SCEV *StrStart = StoreEv->getStart();
    985   unsigned StrAS = SI->getPointerAddressSpace();
    986   Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
    987 
    988   // Handle negative strided loops.
    989   if (NegStride)
    990     StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
    991 
    992   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
    993   // this into a memcpy in the loop preheader now if we want.  However, this
    994   // would be unsafe to do if there is anything else in the loop that may read
    995   // or write the memory region we're storing to.  This includes the load that
    996   // feeds the stores.  Check for an alias by generating the base address and
    997   // checking everything.
    998   Value *StoreBasePtr = Expander.expandCodeFor(
    999       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
   1000 
   1001   SmallPtrSet<Instruction *, 1> Stores;
   1002   Stores.insert(SI);
   1003   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
   1004                             StoreSize, *AA, Stores)) {
   1005     Expander.clear();
   1006     // If we generated new code for the base pointer, clean up.
   1007     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
   1008     return false;
   1009   }
   1010 
   1011   const SCEV *LdStart = LoadEv->getStart();
   1012   unsigned LdAS = LI->getPointerAddressSpace();
   1013 
   1014   // Handle negative strided loops.
   1015   if (NegStride)
   1016     LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
   1017 
   1018   // For a memcpy, we have to make sure that the input array is not being
   1019   // mutated by the loop.
   1020   Value *LoadBasePtr = Expander.expandCodeFor(
   1021       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
   1022 
   1023   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
   1024                             StoreSize, *AA, Stores)) {
   1025     Expander.clear();
   1026     // If we generated new code for the base pointer, clean up.
   1027     RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
   1028     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
   1029     return false;
   1030   }
   1031 
   1032   if (avoidLIRForMultiBlockLoop())
   1033     return false;
   1034 
   1035   // Okay, everything is safe, we can transform this!
   1036 
   1037   const SCEV *NumBytesS =
   1038       getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE);
   1039 
   1040   Value *NumBytes =
   1041       Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
   1042 
   1043   CallInst *NewCall = nullptr;
   1044   // Check whether to generate an unordered atomic memcpy:
   1045   //  If the load or store are atomic, then they must necessarily be unordered
   1046   //  by previous checks.
   1047   if (!SI->isAtomic() && !LI->isAtomic())
   1048     NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(),
   1049                                    LoadBasePtr, LI->getAlignment(), NumBytes);
   1050   else {
   1051     // We cannot allow unaligned ops for unordered load/store, so reject
   1052     // anything where the alignment isn't at least the element size.
   1053     unsigned Align = std::min(SI->getAlignment(), LI->getAlignment());
   1054     if (Align < StoreSize)
   1055       return false;
   1056 
   1057     // If the element.atomic memcpy is not lowered into explicit
   1058     // loads/stores later, then it will be lowered into an element-size
   1059     // specific lib call. If the lib call doesn't exist for our store size, then
   1060     // we shouldn't generate the memcpy.
   1061     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
   1062       return false;
   1063 
   1064     // Create the call.
   1065     // Note that unordered atomic loads/stores are *required* by the spec to
   1066     // have an alignment but non-atomic loads/stores may not.
   1067     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
   1068         StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(),
   1069         NumBytes, StoreSize);
   1070   }
   1071   NewCall->setDebugLoc(SI->getDebugLoc());
   1072 
   1073   LLVM_DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
   1074                     << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
   1075                     << "    from store ptr=" << *StoreEv << " at: " << *SI
   1076                     << "\n");
   1077 
   1078   // Okay, the memcpy has been formed.  Zap the original store and anything that
   1079   // feeds into it.
   1080   deleteDeadInstruction(SI);
   1081   ++NumMemCpy;
   1082   return true;
   1083 }
   1084 
   1085 // When compiling for codesize we avoid idiom recognition for a multi-block loop
   1086 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
   1087 //
   1088 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
   1089                                                    bool IsLoopMemset) {
   1090   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
   1091     if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
   1092       LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
   1093                         << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
   1094                         << " avoided: multi-block top-level loop\n");
   1095       return true;
   1096     }
   1097   }
   1098 
   1099   return false;
   1100 }
   1101 
   1102 bool LoopIdiomRecognize::runOnNoncountableLoop() {
   1103   return recognizePopcount() || recognizeAndInsertCTLZ();
   1104 }
   1105 
   1106 /// Check if the given conditional branch is based on the comparison between
   1107 /// a variable and zero, and if the variable is non-zero, the control yields to
   1108 /// the loop entry. If the branch matches the behavior, the variable involved
   1109 /// in the comparison is returned. This function will be called to see if the
   1110 /// precondition and postcondition of the loop are in desirable form.
   1111 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry) {
   1112   if (!BI || !BI->isConditional())
   1113     return nullptr;
   1114 
   1115   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
   1116   if (!Cond)
   1117     return nullptr;
   1118 
   1119   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
   1120   if (!CmpZero || !CmpZero->isZero())
   1121     return nullptr;
   1122 
   1123   ICmpInst::Predicate Pred = Cond->getPredicate();
   1124   if ((Pred == ICmpInst::ICMP_NE && BI->getSuccessor(0) == LoopEntry) ||
   1125       (Pred == ICmpInst::ICMP_EQ && BI->getSuccessor(1) == LoopEntry))
   1126     return Cond->getOperand(0);
   1127 
   1128   return nullptr;
   1129 }
   1130 
   1131 // Check if the recurrence variable `VarX` is in the right form to create
   1132 // the idiom. Returns the value coerced to a PHINode if so.
   1133 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
   1134                                  BasicBlock *LoopEntry) {
   1135   auto *PhiX = dyn_cast<PHINode>(VarX);
   1136   if (PhiX && PhiX->getParent() == LoopEntry &&
   1137       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
   1138     return PhiX;
   1139   return nullptr;
   1140 }
   1141 
   1142 /// Return true iff the idiom is detected in the loop.
   1143 ///
   1144 /// Additionally:
   1145 /// 1) \p CntInst is set to the instruction counting the population bit.
   1146 /// 2) \p CntPhi is set to the corresponding phi node.
   1147 /// 3) \p Var is set to the value whose population bits are being counted.
   1148 ///
   1149 /// The core idiom we are trying to detect is:
   1150 /// \code
   1151 ///    if (x0 != 0)
   1152 ///      goto loop-exit // the precondition of the loop
   1153 ///    cnt0 = init-val;
   1154 ///    do {
   1155 ///       x1 = phi (x0, x2);
   1156 ///       cnt1 = phi(cnt0, cnt2);
   1157 ///
   1158 ///       cnt2 = cnt1 + 1;
   1159 ///        ...
   1160 ///       x2 = x1 & (x1 - 1);
   1161 ///        ...
   1162 ///    } while(x != 0);
   1163 ///
   1164 /// loop-exit:
   1165 /// \endcode
   1166 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
   1167                                 Instruction *&CntInst, PHINode *&CntPhi,
   1168                                 Value *&Var) {
   1169   // step 1: Check to see if the look-back branch match this pattern:
   1170   //    "if (a!=0) goto loop-entry".
   1171   BasicBlock *LoopEntry;
   1172   Instruction *DefX2, *CountInst;
   1173   Value *VarX1, *VarX0;
   1174   PHINode *PhiX, *CountPhi;
   1175 
   1176   DefX2 = CountInst = nullptr;
   1177   VarX1 = VarX0 = nullptr;
   1178   PhiX = CountPhi = nullptr;
   1179   LoopEntry = *(CurLoop->block_begin());
   1180 
   1181   // step 1: Check if the loop-back branch is in desirable form.
   1182   {
   1183     if (Value *T = matchCondition(
   1184             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
   1185       DefX2 = dyn_cast<Instruction>(T);
   1186     else
   1187       return false;
   1188   }
   1189 
   1190   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
   1191   {
   1192     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
   1193       return false;
   1194 
   1195     BinaryOperator *SubOneOp;
   1196 
   1197     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
   1198       VarX1 = DefX2->getOperand(1);
   1199     else {
   1200       VarX1 = DefX2->getOperand(0);
   1201       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
   1202     }
   1203     if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
   1204       return false;
   1205 
   1206     ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
   1207     if (!Dec ||
   1208         !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
   1209           (SubOneOp->getOpcode() == Instruction::Add &&
   1210            Dec->isMinusOne()))) {
   1211       return false;
   1212     }
   1213   }
   1214 
   1215   // step 3: Check the recurrence of variable X
   1216   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
   1217   if (!PhiX)
   1218     return false;
   1219 
   1220   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
   1221   {
   1222     CountInst = nullptr;
   1223     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
   1224                               IterE = LoopEntry->end();
   1225          Iter != IterE; Iter++) {
   1226       Instruction *Inst = &*Iter;
   1227       if (Inst->getOpcode() != Instruction::Add)
   1228         continue;
   1229 
   1230       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
   1231       if (!Inc || !Inc->isOne())
   1232         continue;
   1233 
   1234       PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
   1235       if (!Phi)
   1236         continue;
   1237 
   1238       // Check if the result of the instruction is live of the loop.
   1239       bool LiveOutLoop = false;
   1240       for (User *U : Inst->users()) {
   1241         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
   1242           LiveOutLoop = true;
   1243           break;
   1244         }
   1245       }
   1246 
   1247       if (LiveOutLoop) {
   1248         CountInst = Inst;
   1249         CountPhi = Phi;
   1250         break;
   1251       }
   1252     }
   1253 
   1254     if (!CountInst)
   1255       return false;
   1256   }
   1257 
   1258   // step 5: check if the precondition is in this form:
   1259   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
   1260   {
   1261     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
   1262     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
   1263     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
   1264       return false;
   1265 
   1266     CntInst = CountInst;
   1267     CntPhi = CountPhi;
   1268     Var = T;
   1269   }
   1270 
   1271   return true;
   1272 }
   1273 
   1274 /// Return true if the idiom is detected in the loop.
   1275 ///
   1276 /// Additionally:
   1277 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
   1278 ///       or nullptr if there is no such.
   1279 /// 2) \p CntPhi is set to the corresponding phi node
   1280 ///       or nullptr if there is no such.
   1281 /// 3) \p Var is set to the value whose CTLZ could be used.
   1282 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
   1283 ///
   1284 /// The core idiom we are trying to detect is:
   1285 /// \code
   1286 ///    if (x0 == 0)
   1287 ///      goto loop-exit // the precondition of the loop
   1288 ///    cnt0 = init-val;
   1289 ///    do {
   1290 ///       x = phi (x0, x.next);   //PhiX
   1291 ///       cnt = phi(cnt0, cnt.next);
   1292 ///
   1293 ///       cnt.next = cnt + 1;
   1294 ///        ...
   1295 ///       x.next = x >> 1;   // DefX
   1296 ///        ...
   1297 ///    } while(x.next != 0);
   1298 ///
   1299 /// loop-exit:
   1300 /// \endcode
   1301 static bool detectCTLZIdiom(Loop *CurLoop, PHINode *&PhiX,
   1302                             Instruction *&CntInst, PHINode *&CntPhi,
   1303                             Instruction *&DefX) {
   1304   BasicBlock *LoopEntry;
   1305   Value *VarX = nullptr;
   1306 
   1307   DefX = nullptr;
   1308   PhiX = nullptr;
   1309   CntInst = nullptr;
   1310   CntPhi = nullptr;
   1311   LoopEntry = *(CurLoop->block_begin());
   1312 
   1313   // step 1: Check if the loop-back branch is in desirable form.
   1314   if (Value *T = matchCondition(
   1315           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
   1316     DefX = dyn_cast<Instruction>(T);
   1317   else
   1318     return false;
   1319 
   1320   // step 2: detect instructions corresponding to "x.next = x >> 1"
   1321   if (!DefX || (DefX->getOpcode() != Instruction::AShr &&
   1322                 DefX->getOpcode() != Instruction::LShr))
   1323     return false;
   1324   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
   1325   if (!Shft || !Shft->isOne())
   1326     return false;
   1327   VarX = DefX->getOperand(0);
   1328 
   1329   // step 3: Check the recurrence of variable X
   1330   PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
   1331   if (!PhiX)
   1332     return false;
   1333 
   1334   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
   1335   // TODO: We can skip the step. If loop trip count is known (CTLZ),
   1336   //       then all uses of "cnt.next" could be optimized to the trip count
   1337   //       plus "cnt0". Currently it is not optimized.
   1338   //       This step could be used to detect POPCNT instruction:
   1339   //       cnt.next = cnt + (x.next & 1)
   1340   for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
   1341                             IterE = LoopEntry->end();
   1342        Iter != IterE; Iter++) {
   1343     Instruction *Inst = &*Iter;
   1344     if (Inst->getOpcode() != Instruction::Add)
   1345       continue;
   1346 
   1347     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
   1348     if (!Inc || !Inc->isOne())
   1349       continue;
   1350 
   1351     PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
   1352     if (!Phi)
   1353       continue;
   1354 
   1355     CntInst = Inst;
   1356     CntPhi = Phi;
   1357     break;
   1358   }
   1359   if (!CntInst)
   1360     return false;
   1361 
   1362   return true;
   1363 }
   1364 
   1365 /// Recognize CTLZ idiom in a non-countable loop and convert the loop
   1366 /// to countable (with CTLZ trip count).
   1367 /// If CTLZ inserted as a new trip count returns true; otherwise, returns false.
   1368 bool LoopIdiomRecognize::recognizeAndInsertCTLZ() {
   1369   // Give up if the loop has multiple blocks or multiple backedges.
   1370   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
   1371     return false;
   1372 
   1373   Instruction *CntInst, *DefX;
   1374   PHINode *CntPhi, *PhiX;
   1375   if (!detectCTLZIdiom(CurLoop, PhiX, CntInst, CntPhi, DefX))
   1376     return false;
   1377 
   1378   bool IsCntPhiUsedOutsideLoop = false;
   1379   for (User *U : CntPhi->users())
   1380     if (!CurLoop->contains(cast<Instruction>(U))) {
   1381       IsCntPhiUsedOutsideLoop = true;
   1382       break;
   1383     }
   1384   bool IsCntInstUsedOutsideLoop = false;
   1385   for (User *U : CntInst->users())
   1386     if (!CurLoop->contains(cast<Instruction>(U))) {
   1387       IsCntInstUsedOutsideLoop = true;
   1388       break;
   1389     }
   1390   // If both CntInst and CntPhi are used outside the loop the profitability
   1391   // is questionable.
   1392   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
   1393     return false;
   1394 
   1395   // For some CPUs result of CTLZ(X) intrinsic is undefined
   1396   // when X is 0. If we can not guarantee X != 0, we need to check this
   1397   // when expand.
   1398   bool ZeroCheck = false;
   1399   // It is safe to assume Preheader exist as it was checked in
   1400   // parent function RunOnLoop.
   1401   BasicBlock *PH = CurLoop->getLoopPreheader();
   1402   Value *InitX = PhiX->getIncomingValueForBlock(PH);
   1403 
   1404   // Make sure the initial value can't be negative otherwise the ashr in the
   1405   // loop might never reach zero which would make the loop infinite.
   1406   if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, *DL))
   1407     return false;
   1408 
   1409   // If we are using the count instruction outside the loop, make sure we
   1410   // have a zero check as a precondition. Without the check the loop would run
   1411   // one iteration for before any check of the input value. This means 0 and 1
   1412   // would have identical behavior in the original loop and thus
   1413   if (!IsCntPhiUsedOutsideLoop) {
   1414     auto *PreCondBB = PH->getSinglePredecessor();
   1415     if (!PreCondBB)
   1416       return false;
   1417     auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
   1418     if (!PreCondBI)
   1419       return false;
   1420     if (matchCondition(PreCondBI, PH) != InitX)
   1421       return false;
   1422     ZeroCheck = true;
   1423   }
   1424 
   1425   // Check if CTLZ intrinsic is profitable. Assume it is always profitable
   1426   // if we delete the loop (the loop has only 6 instructions):
   1427   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
   1428   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
   1429   //  %shr = ashr %n.addr.0, 1
   1430   //  %tobool = icmp eq %shr, 0
   1431   //  %inc = add nsw %i.0, 1
   1432   //  br i1 %tobool
   1433 
   1434   const Value *Args[] =
   1435       {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext())
   1436                         : ConstantInt::getFalse(InitX->getContext())};
   1437   if (CurLoop->getHeader()->size() != 6 &&
   1438       TTI->getIntrinsicCost(Intrinsic::ctlz, InitX->getType(), Args) >
   1439           TargetTransformInfo::TCC_Basic)
   1440     return false;
   1441 
   1442   transformLoopToCountable(PH, CntInst, CntPhi, InitX, DefX,
   1443                            DefX->getDebugLoc(), ZeroCheck,
   1444                            IsCntPhiUsedOutsideLoop);
   1445   return true;
   1446 }
   1447 
   1448 /// Recognizes a population count idiom in a non-countable loop.
   1449 ///
   1450 /// If detected, transforms the relevant code to issue the popcount intrinsic
   1451 /// function call, and returns true; otherwise, returns false.
   1452 bool LoopIdiomRecognize::recognizePopcount() {
   1453   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
   1454     return false;
   1455 
   1456   // Counting population are usually conducted by few arithmetic instructions.
   1457   // Such instructions can be easily "absorbed" by vacant slots in a
   1458   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
   1459   // in a compact loop.
   1460 
   1461   // Give up if the loop has multiple blocks or multiple backedges.
   1462   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
   1463     return false;
   1464 
   1465   BasicBlock *LoopBody = *(CurLoop->block_begin());
   1466   if (LoopBody->size() >= 20) {
   1467     // The loop is too big, bail out.
   1468     return false;
   1469   }
   1470 
   1471   // It should have a preheader containing nothing but an unconditional branch.
   1472   BasicBlock *PH = CurLoop->getLoopPreheader();
   1473   if (!PH || &PH->front() != PH->getTerminator())
   1474     return false;
   1475   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
   1476   if (!EntryBI || EntryBI->isConditional())
   1477     return false;
   1478 
   1479   // It should have a precondition block where the generated popcount intrinsic
   1480   // function can be inserted.
   1481   auto *PreCondBB = PH->getSinglePredecessor();
   1482   if (!PreCondBB)
   1483     return false;
   1484   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
   1485   if (!PreCondBI || PreCondBI->isUnconditional())
   1486     return false;
   1487 
   1488   Instruction *CntInst;
   1489   PHINode *CntPhi;
   1490   Value *Val;
   1491   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
   1492     return false;
   1493 
   1494   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
   1495   return true;
   1496 }
   1497 
   1498 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
   1499                                        const DebugLoc &DL) {
   1500   Value *Ops[] = {Val};
   1501   Type *Tys[] = {Val->getType()};
   1502 
   1503   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
   1504   Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
   1505   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
   1506   CI->setDebugLoc(DL);
   1507 
   1508   return CI;
   1509 }
   1510 
   1511 static CallInst *createCTLZIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
   1512                                      const DebugLoc &DL, bool ZeroCheck) {
   1513   Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
   1514   Type *Tys[] = {Val->getType()};
   1515 
   1516   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
   1517   Value *Func = Intrinsic::getDeclaration(M, Intrinsic::ctlz, Tys);
   1518   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
   1519   CI->setDebugLoc(DL);
   1520 
   1521   return CI;
   1522 }
   1523 
   1524 /// Transform the following loop:
   1525 /// loop:
   1526 ///   CntPhi = PHI [Cnt0, CntInst]
   1527 ///   PhiX = PHI [InitX, DefX]
   1528 ///   CntInst = CntPhi + 1
   1529 ///   DefX = PhiX >> 1
   1530 ///   LOOP_BODY
   1531 ///   Br: loop if (DefX != 0)
   1532 /// Use(CntPhi) or Use(CntInst)
   1533 ///
   1534 /// Into:
   1535 /// If CntPhi used outside the loop:
   1536 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
   1537 ///   Count = CountPrev + 1
   1538 /// else
   1539 ///   Count = BitWidth(InitX) - CTLZ(InitX)
   1540 /// loop:
   1541 ///   CntPhi = PHI [Cnt0, CntInst]
   1542 ///   PhiX = PHI [InitX, DefX]
   1543 ///   PhiCount = PHI [Count, Dec]
   1544 ///   CntInst = CntPhi + 1
   1545 ///   DefX = PhiX >> 1
   1546 ///   Dec = PhiCount - 1
   1547 ///   LOOP_BODY
   1548 ///   Br: loop if (Dec != 0)
   1549 /// Use(CountPrev + Cnt0) // Use(CntPhi)
   1550 /// or
   1551 /// Use(Count + Cnt0) // Use(CntInst)
   1552 ///
   1553 /// If LOOP_BODY is empty the loop will be deleted.
   1554 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
   1555 void LoopIdiomRecognize::transformLoopToCountable(
   1556     BasicBlock *Preheader, Instruction *CntInst, PHINode *CntPhi, Value *InitX,
   1557     Instruction *DefX, const DebugLoc &DL, bool ZeroCheck,
   1558     bool IsCntPhiUsedOutsideLoop) {
   1559   BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
   1560 
   1561   // Step 1: Insert the CTLZ instruction at the end of the preheader block
   1562   //   Count = BitWidth - CTLZ(InitX);
   1563   // If there are uses of CntPhi create:
   1564   //   CountPrev = BitWidth - CTLZ(InitX >> 1);
   1565   IRBuilder<> Builder(PreheaderBr);
   1566   Builder.SetCurrentDebugLocation(DL);
   1567   Value *CTLZ, *Count, *CountPrev, *NewCount, *InitXNext;
   1568 
   1569   if (IsCntPhiUsedOutsideLoop) {
   1570     if (DefX->getOpcode() == Instruction::AShr)
   1571       InitXNext =
   1572           Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
   1573     else if (DefX->getOpcode() == Instruction::LShr)
   1574       InitXNext =
   1575           Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
   1576     else
   1577       llvm_unreachable("Unexpected opcode!");
   1578   } else
   1579     InitXNext = InitX;
   1580   CTLZ = createCTLZIntrinsic(Builder, InitXNext, DL, ZeroCheck);
   1581   Count = Builder.CreateSub(
   1582       ConstantInt::get(CTLZ->getType(),
   1583                        CTLZ->getType()->getIntegerBitWidth()),
   1584       CTLZ);
   1585   if (IsCntPhiUsedOutsideLoop) {
   1586     CountPrev = Count;
   1587     Count = Builder.CreateAdd(
   1588         CountPrev,
   1589         ConstantInt::get(CountPrev->getType(), 1));
   1590   }
   1591   if (IsCntPhiUsedOutsideLoop)
   1592     NewCount = Builder.CreateZExtOrTrunc(CountPrev,
   1593         cast<IntegerType>(CntInst->getType()));
   1594   else
   1595     NewCount = Builder.CreateZExtOrTrunc(Count,
   1596         cast<IntegerType>(CntInst->getType()));
   1597 
   1598   // If the CTLZ counter's initial value is not zero, insert Add Inst.
   1599   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
   1600   ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
   1601   if (!InitConst || !InitConst->isZero())
   1602     NewCount = Builder.CreateAdd(NewCount, CntInitVal);
   1603 
   1604   // Step 2: Insert new IV and loop condition:
   1605   // loop:
   1606   //   ...
   1607   //   PhiCount = PHI [Count, Dec]
   1608   //   ...
   1609   //   Dec = PhiCount - 1
   1610   //   ...
   1611   //   Br: loop if (Dec != 0)
   1612   BasicBlock *Body = *(CurLoop->block_begin());
   1613   auto *LbBr = cast<BranchInst>(Body->getTerminator());
   1614   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
   1615   Type *Ty = Count->getType();
   1616 
   1617   PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
   1618 
   1619   Builder.SetInsertPoint(LbCond);
   1620   Instruction *TcDec = cast<Instruction>(
   1621       Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
   1622                         "tcdec", false, true));
   1623 
   1624   TcPhi->addIncoming(Count, Preheader);
   1625   TcPhi->addIncoming(TcDec, Body);
   1626 
   1627   CmpInst::Predicate Pred =
   1628       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
   1629   LbCond->setPredicate(Pred);
   1630   LbCond->setOperand(0, TcDec);
   1631   LbCond->setOperand(1, ConstantInt::get(Ty, 0));
   1632 
   1633   // Step 3: All the references to the original counter outside
   1634   //  the loop are replaced with the NewCount -- the value returned from
   1635   //  __builtin_ctlz(x).
   1636   if (IsCntPhiUsedOutsideLoop)
   1637     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
   1638   else
   1639     CntInst->replaceUsesOutsideBlock(NewCount, Body);
   1640 
   1641   // step 4: Forget the "non-computable" trip-count SCEV associated with the
   1642   //   loop. The loop would otherwise not be deleted even if it becomes empty.
   1643   SE->forgetLoop(CurLoop);
   1644 }
   1645 
   1646 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
   1647                                                  Instruction *CntInst,
   1648                                                  PHINode *CntPhi, Value *Var) {
   1649   BasicBlock *PreHead = CurLoop->getLoopPreheader();
   1650   auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
   1651   const DebugLoc &DL = CntInst->getDebugLoc();
   1652 
   1653   // Assuming before transformation, the loop is following:
   1654   //  if (x) // the precondition
   1655   //     do { cnt++; x &= x - 1; } while(x);
   1656 
   1657   // Step 1: Insert the ctpop instruction at the end of the precondition block
   1658   IRBuilder<> Builder(PreCondBr);
   1659   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
   1660   {
   1661     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
   1662     NewCount = PopCntZext =
   1663         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
   1664 
   1665     if (NewCount != PopCnt)
   1666       (cast<Instruction>(NewCount))->setDebugLoc(DL);
   1667 
   1668     // TripCnt is exactly the number of iterations the loop has
   1669     TripCnt = NewCount;
   1670 
   1671     // If the population counter's initial value is not zero, insert Add Inst.
   1672     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
   1673     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
   1674     if (!InitConst || !InitConst->isZero()) {
   1675       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
   1676       (cast<Instruction>(NewCount))->setDebugLoc(DL);
   1677     }
   1678   }
   1679 
   1680   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
   1681   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
   1682   //   function would be partial dead code, and downstream passes will drag
   1683   //   it back from the precondition block to the preheader.
   1684   {
   1685     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
   1686 
   1687     Value *Opnd0 = PopCntZext;
   1688     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
   1689     if (PreCond->getOperand(0) != Var)
   1690       std::swap(Opnd0, Opnd1);
   1691 
   1692     ICmpInst *NewPreCond = cast<ICmpInst>(
   1693         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
   1694     PreCondBr->setCondition(NewPreCond);
   1695 
   1696     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
   1697   }
   1698 
   1699   // Step 3: Note that the population count is exactly the trip count of the
   1700   // loop in question, which enable us to convert the loop from noncountable
   1701   // loop into a countable one. The benefit is twofold:
   1702   //
   1703   //  - If the loop only counts population, the entire loop becomes dead after
   1704   //    the transformation. It is a lot easier to prove a countable loop dead
   1705   //    than to prove a noncountable one. (In some C dialects, an infinite loop
   1706   //    isn't dead even if it computes nothing useful. In general, DCE needs
   1707   //    to prove a noncountable loop finite before safely delete it.)
   1708   //
   1709   //  - If the loop also performs something else, it remains alive.
   1710   //    Since it is transformed to countable form, it can be aggressively
   1711   //    optimized by some optimizations which are in general not applicable
   1712   //    to a noncountable loop.
   1713   //
   1714   // After this step, this loop (conceptually) would look like following:
   1715   //   newcnt = __builtin_ctpop(x);
   1716   //   t = newcnt;
   1717   //   if (x)
   1718   //     do { cnt++; x &= x-1; t--) } while (t > 0);
   1719   BasicBlock *Body = *(CurLoop->block_begin());
   1720   {
   1721     auto *LbBr = cast<BranchInst>(Body->getTerminator());
   1722     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
   1723     Type *Ty = TripCnt->getType();
   1724 
   1725     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
   1726 
   1727     Builder.SetInsertPoint(LbCond);
   1728     Instruction *TcDec = cast<Instruction>(
   1729         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
   1730                           "tcdec", false, true));
   1731 
   1732     TcPhi->addIncoming(TripCnt, PreHead);
   1733     TcPhi->addIncoming(TcDec, Body);
   1734 
   1735     CmpInst::Predicate Pred =
   1736         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
   1737     LbCond->setPredicate(Pred);
   1738     LbCond->setOperand(0, TcDec);
   1739     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
   1740   }
   1741 
   1742   // Step 4: All the references to the original population counter outside
   1743   //  the loop are replaced with the NewCount -- the value returned from
   1744   //  __builtin_ctpop().
   1745   CntInst->replaceUsesOutsideBlock(NewCount, Body);
   1746 
   1747   // step 5: Forget the "non-computable" trip-count SCEV associated with the
   1748   //   loop. The loop would otherwise not be deleted even if it becomes empty.
   1749   SE->forgetLoop(CurLoop);
   1750 }
   1751