Home | History | Annotate | Download | only in ic
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/ic/stub-cache.h"
      6 
      7 #include "src/ast/ast.h"
      8 #include "src/base/bits.h"
      9 #include "src/counters.h"
     10 #include "src/heap/heap.h"
     11 #include "src/ic/ic-inl.h"
     12 
     13 namespace v8 {
     14 namespace internal {
     15 
     16 StubCache::StubCache(Isolate* isolate) : isolate_(isolate) {
     17   // Ensure the nullptr (aka Smi::kZero) which StubCache::Get() returns
     18   // when the entry is not found is not considered as a handler.
     19   DCHECK(!IC::IsHandler(nullptr));
     20 }
     21 
     22 void StubCache::Initialize() {
     23   DCHECK(base::bits::IsPowerOfTwo(kPrimaryTableSize));
     24   DCHECK(base::bits::IsPowerOfTwo(kSecondaryTableSize));
     25   Clear();
     26 }
     27 
     28 // Hash algorithm for the primary table.  This algorithm is replicated in
     29 // assembler for every architecture.  Returns an index into the table that
     30 // is scaled by 1 << kCacheIndexShift.
     31 int StubCache::PrimaryOffset(Name* name, Map* map) {
     32   STATIC_ASSERT(kCacheIndexShift == Name::kHashShift);
     33   // Compute the hash of the name (use entire hash field).
     34   DCHECK(name->HasHashCode());
     35   uint32_t field = name->hash_field();
     36   // Using only the low bits in 64-bit mode is unlikely to increase the
     37   // risk of collision even if the heap is spread over an area larger than
     38   // 4Gb (and not at all if it isn't).
     39   uint32_t map_low32bits =
     40       static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map));
     41   // Base the offset on a simple combination of name and map.
     42   uint32_t key = map_low32bits + field;
     43   return key & ((kPrimaryTableSize - 1) << kCacheIndexShift);
     44 }
     45 
     46 // Hash algorithm for the secondary table.  This algorithm is replicated in
     47 // assembler for every architecture.  Returns an index into the table that
     48 // is scaled by 1 << kCacheIndexShift.
     49 int StubCache::SecondaryOffset(Name* name, int seed) {
     50   // Use the seed from the primary cache in the secondary cache.
     51   uint32_t name_low32bits =
     52       static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name));
     53   uint32_t key = (seed - name_low32bits) + kSecondaryMagic;
     54   return key & ((kSecondaryTableSize - 1) << kCacheIndexShift);
     55 }
     56 
     57 #ifdef DEBUG
     58 namespace {
     59 
     60 bool CommonStubCacheChecks(StubCache* stub_cache, Name* name, Map* map,
     61                            MaybeObject* handler) {
     62   // Validate that the name and handler do not move on scavenge, and that we
     63   // can use identity checks instead of structural equality checks.
     64   DCHECK(!Heap::InNewSpace(name));
     65   DCHECK(!Heap::InNewSpace(handler));
     66   DCHECK(name->IsUniqueName());
     67   DCHECK(name->HasHashCode());
     68   if (handler) DCHECK(IC::IsHandler(handler));
     69   return true;
     70 }
     71 
     72 }  // namespace
     73 #endif
     74 
     75 MaybeObject* StubCache::Set(Name* name, Map* map, MaybeObject* handler) {
     76   DCHECK(CommonStubCacheChecks(this, name, map, handler));
     77 
     78   // Compute the primary entry.
     79   int primary_offset = PrimaryOffset(name, map);
     80   Entry* primary = entry(primary_, primary_offset);
     81   MaybeObject* old_handler = primary->value;
     82 
     83   // If the primary entry has useful data in it, we retire it to the
     84   // secondary cache before overwriting it.
     85   if (old_handler != MaybeObject::FromObject(
     86                          isolate_->builtins()->builtin(Builtins::kIllegal))) {
     87     Map* old_map = primary->map;
     88     int seed = PrimaryOffset(primary->key, old_map);
     89     int secondary_offset = SecondaryOffset(primary->key, seed);
     90     Entry* secondary = entry(secondary_, secondary_offset);
     91     *secondary = *primary;
     92   }
     93 
     94   // Update primary cache.
     95   primary->key = name;
     96   primary->value = handler;
     97   primary->map = map;
     98   isolate()->counters()->megamorphic_stub_cache_updates()->Increment();
     99   return handler;
    100 }
    101 
    102 MaybeObject* StubCache::Get(Name* name, Map* map) {
    103   DCHECK(CommonStubCacheChecks(this, name, map, nullptr));
    104   int primary_offset = PrimaryOffset(name, map);
    105   Entry* primary = entry(primary_, primary_offset);
    106   if (primary->key == name && primary->map == map) {
    107     return primary->value;
    108   }
    109   int secondary_offset = SecondaryOffset(name, primary_offset);
    110   Entry* secondary = entry(secondary_, secondary_offset);
    111   if (secondary->key == name && secondary->map == map) {
    112     return secondary->value;
    113   }
    114   return nullptr;
    115 }
    116 
    117 
    118 void StubCache::Clear() {
    119   MaybeObject* empty = MaybeObject::FromObject(
    120       isolate_->builtins()->builtin(Builtins::kIllegal));
    121   Name* empty_string = ReadOnlyRoots(isolate()).empty_string();
    122   for (int i = 0; i < kPrimaryTableSize; i++) {
    123     primary_[i].key = empty_string;
    124     primary_[i].map = nullptr;
    125     primary_[i].value = empty;
    126   }
    127   for (int j = 0; j < kSecondaryTableSize; j++) {
    128     secondary_[j].key = empty_string;
    129     secondary_[j].map = nullptr;
    130     secondary_[j].value = empty;
    131   }
    132 }
    133 
    134 }  // namespace internal
    135 }  // namespace v8
    136