Home | History | Annotate | Download | only in Writer
      1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Bitcode writer implementation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Bitcode/ReaderWriter.h"
     15 #include "llvm/Bitcode/BitstreamWriter.h"
     16 #include "llvm/Bitcode/LLVMBitCodes.h"
     17 #include "ValueEnumerator.h"
     18 #include "llvm/Constants.h"
     19 #include "llvm/DerivedTypes.h"
     20 #include "llvm/InlineAsm.h"
     21 #include "llvm/Instructions.h"
     22 #include "llvm/Module.h"
     23 #include "llvm/Operator.h"
     24 #include "llvm/ValueSymbolTable.h"
     25 #include "llvm/ADT/Triple.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/MathExtras.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include "llvm/Support/Program.h"
     30 #include <cctype>
     31 #include <map>
     32 using namespace llvm;
     33 
     34 /// These are manifest constants used by the bitcode writer. They do not need to
     35 /// be kept in sync with the reader, but need to be consistent within this file.
     36 enum {
     37   CurVersion = 0,
     38 
     39   // VALUE_SYMTAB_BLOCK abbrev id's.
     40   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     41   VST_ENTRY_7_ABBREV,
     42   VST_ENTRY_6_ABBREV,
     43   VST_BBENTRY_6_ABBREV,
     44 
     45   // CONSTANTS_BLOCK abbrev id's.
     46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     47   CONSTANTS_INTEGER_ABBREV,
     48   CONSTANTS_CE_CAST_Abbrev,
     49   CONSTANTS_NULL_Abbrev,
     50 
     51   // FUNCTION_BLOCK abbrev id's.
     52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     53   FUNCTION_INST_BINOP_ABBREV,
     54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
     55   FUNCTION_INST_CAST_ABBREV,
     56   FUNCTION_INST_RET_VOID_ABBREV,
     57   FUNCTION_INST_RET_VAL_ABBREV,
     58   FUNCTION_INST_UNREACHABLE_ABBREV
     59 };
     60 
     61 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
     62   switch (Opcode) {
     63   default: llvm_unreachable("Unknown cast instruction!");
     64   case Instruction::Trunc   : return bitc::CAST_TRUNC;
     65   case Instruction::ZExt    : return bitc::CAST_ZEXT;
     66   case Instruction::SExt    : return bitc::CAST_SEXT;
     67   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
     68   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
     69   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
     70   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
     71   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
     72   case Instruction::FPExt   : return bitc::CAST_FPEXT;
     73   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
     74   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
     75   case Instruction::BitCast : return bitc::CAST_BITCAST;
     76   }
     77 }
     78 
     79 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
     80   switch (Opcode) {
     81   default: llvm_unreachable("Unknown binary instruction!");
     82   case Instruction::Add:
     83   case Instruction::FAdd: return bitc::BINOP_ADD;
     84   case Instruction::Sub:
     85   case Instruction::FSub: return bitc::BINOP_SUB;
     86   case Instruction::Mul:
     87   case Instruction::FMul: return bitc::BINOP_MUL;
     88   case Instruction::UDiv: return bitc::BINOP_UDIV;
     89   case Instruction::FDiv:
     90   case Instruction::SDiv: return bitc::BINOP_SDIV;
     91   case Instruction::URem: return bitc::BINOP_UREM;
     92   case Instruction::FRem:
     93   case Instruction::SRem: return bitc::BINOP_SREM;
     94   case Instruction::Shl:  return bitc::BINOP_SHL;
     95   case Instruction::LShr: return bitc::BINOP_LSHR;
     96   case Instruction::AShr: return bitc::BINOP_ASHR;
     97   case Instruction::And:  return bitc::BINOP_AND;
     98   case Instruction::Or:   return bitc::BINOP_OR;
     99   case Instruction::Xor:  return bitc::BINOP_XOR;
    100   }
    101 }
    102 
    103 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
    104   switch (Op) {
    105   default: llvm_unreachable("Unknown RMW operation!");
    106   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
    107   case AtomicRMWInst::Add: return bitc::RMW_ADD;
    108   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
    109   case AtomicRMWInst::And: return bitc::RMW_AND;
    110   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
    111   case AtomicRMWInst::Or: return bitc::RMW_OR;
    112   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
    113   case AtomicRMWInst::Max: return bitc::RMW_MAX;
    114   case AtomicRMWInst::Min: return bitc::RMW_MIN;
    115   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
    116   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
    117   }
    118 }
    119 
    120 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
    121   switch (Ordering) {
    122   default: llvm_unreachable("Unknown atomic ordering");
    123   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
    124   case Unordered: return bitc::ORDERING_UNORDERED;
    125   case Monotonic: return bitc::ORDERING_MONOTONIC;
    126   case Acquire: return bitc::ORDERING_ACQUIRE;
    127   case Release: return bitc::ORDERING_RELEASE;
    128   case AcquireRelease: return bitc::ORDERING_ACQREL;
    129   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
    130   }
    131 }
    132 
    133 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
    134   switch (SynchScope) {
    135   default: llvm_unreachable("Unknown synchronization scope");
    136   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
    137   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
    138   }
    139 }
    140 
    141 static void WriteStringRecord(unsigned Code, StringRef Str,
    142                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
    143   SmallVector<unsigned, 64> Vals;
    144 
    145   // Code: [strchar x N]
    146   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    147     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
    148       AbbrevToUse = 0;
    149     Vals.push_back(Str[i]);
    150   }
    151 
    152   // Emit the finished record.
    153   Stream.EmitRecord(Code, Vals, AbbrevToUse);
    154 }
    155 
    156 // Emit information about parameter attributes.
    157 static void WriteAttributeTable(const ValueEnumerator &VE,
    158                                 BitstreamWriter &Stream) {
    159   const std::vector<AttrListPtr> &Attrs = VE.getAttributes();
    160   if (Attrs.empty()) return;
    161 
    162   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
    163 
    164   SmallVector<uint64_t, 64> Record;
    165   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
    166     const AttrListPtr &A = Attrs[i];
    167     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) {
    168       const AttributeWithIndex &PAWI = A.getSlot(i);
    169       Record.push_back(PAWI.Index);
    170 
    171       // FIXME: remove in LLVM 3.0
    172       // Store the alignment in the bitcode as a 16-bit raw value instead of a
    173       // 5-bit log2 encoded value. Shift the bits above the alignment up by
    174       // 11 bits.
    175       uint64_t FauxAttr = PAWI.Attrs & 0xffff;
    176       if (PAWI.Attrs & Attribute::Alignment)
    177         FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16);
    178       FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11;
    179 
    180       Record.push_back(FauxAttr);
    181     }
    182 
    183     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
    184     Record.clear();
    185   }
    186 
    187   Stream.ExitBlock();
    188 }
    189 
    190 /// WriteTypeTable - Write out the type table for a module.
    191 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
    192   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
    193 
    194   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
    195   SmallVector<uint64_t, 64> TypeVals;
    196 
    197   // Abbrev for TYPE_CODE_POINTER.
    198   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    199   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
    200   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    201                             Log2_32_Ceil(VE.getTypes().size()+1)));
    202   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
    203   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
    204 
    205   // Abbrev for TYPE_CODE_FUNCTION.
    206   Abbv = new BitCodeAbbrev();
    207   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
    208   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
    209   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
    210   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    211   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    212                             Log2_32_Ceil(VE.getTypes().size()+1)));
    213   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
    214 
    215   // Abbrev for TYPE_CODE_STRUCT_ANON.
    216   Abbv = new BitCodeAbbrev();
    217   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
    218   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    219   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    220   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    221                             Log2_32_Ceil(VE.getTypes().size()+1)));
    222   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
    223 
    224   // Abbrev for TYPE_CODE_STRUCT_NAME.
    225   Abbv = new BitCodeAbbrev();
    226   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
    227   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    228   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    229   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
    230 
    231   // Abbrev for TYPE_CODE_STRUCT_NAMED.
    232   Abbv = new BitCodeAbbrev();
    233   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
    234   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    235   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    236   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    237                             Log2_32_Ceil(VE.getTypes().size()+1)));
    238   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
    239 
    240   // Abbrev for TYPE_CODE_ARRAY.
    241   Abbv = new BitCodeAbbrev();
    242   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
    243   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
    244   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    245                             Log2_32_Ceil(VE.getTypes().size()+1)));
    246   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
    247 
    248   // Emit an entry count so the reader can reserve space.
    249   TypeVals.push_back(TypeList.size());
    250   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
    251   TypeVals.clear();
    252 
    253   // Loop over all of the types, emitting each in turn.
    254   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    255     Type *T = TypeList[i];
    256     int AbbrevToUse = 0;
    257     unsigned Code = 0;
    258 
    259     switch (T->getTypeID()) {
    260     default: llvm_unreachable("Unknown type!");
    261     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
    262     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
    263     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
    264     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
    265     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
    266     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
    267     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
    268     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
    269     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
    270     case Type::IntegerTyID:
    271       // INTEGER: [width]
    272       Code = bitc::TYPE_CODE_INTEGER;
    273       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
    274       break;
    275     case Type::PointerTyID: {
    276       PointerType *PTy = cast<PointerType>(T);
    277       // POINTER: [pointee type, address space]
    278       Code = bitc::TYPE_CODE_POINTER;
    279       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
    280       unsigned AddressSpace = PTy->getAddressSpace();
    281       TypeVals.push_back(AddressSpace);
    282       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
    283       break;
    284     }
    285     case Type::FunctionTyID: {
    286       FunctionType *FT = cast<FunctionType>(T);
    287       // FUNCTION: [isvararg, attrid, retty, paramty x N]
    288       Code = bitc::TYPE_CODE_FUNCTION;
    289       TypeVals.push_back(FT->isVarArg());
    290       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
    291       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
    292       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
    293         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
    294       AbbrevToUse = FunctionAbbrev;
    295       break;
    296     }
    297     case Type::StructTyID: {
    298       StructType *ST = cast<StructType>(T);
    299       // STRUCT: [ispacked, eltty x N]
    300       TypeVals.push_back(ST->isPacked());
    301       // Output all of the element types.
    302       for (StructType::element_iterator I = ST->element_begin(),
    303            E = ST->element_end(); I != E; ++I)
    304         TypeVals.push_back(VE.getTypeID(*I));
    305 
    306       if (ST->isLiteral()) {
    307         Code = bitc::TYPE_CODE_STRUCT_ANON;
    308         AbbrevToUse = StructAnonAbbrev;
    309       } else {
    310         if (ST->isOpaque()) {
    311           Code = bitc::TYPE_CODE_OPAQUE;
    312         } else {
    313           Code = bitc::TYPE_CODE_STRUCT_NAMED;
    314           AbbrevToUse = StructNamedAbbrev;
    315         }
    316 
    317         // Emit the name if it is present.
    318         if (!ST->getName().empty())
    319           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
    320                             StructNameAbbrev, Stream);
    321       }
    322       break;
    323     }
    324     case Type::ArrayTyID: {
    325       ArrayType *AT = cast<ArrayType>(T);
    326       // ARRAY: [numelts, eltty]
    327       Code = bitc::TYPE_CODE_ARRAY;
    328       TypeVals.push_back(AT->getNumElements());
    329       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
    330       AbbrevToUse = ArrayAbbrev;
    331       break;
    332     }
    333     case Type::VectorTyID: {
    334       VectorType *VT = cast<VectorType>(T);
    335       // VECTOR [numelts, eltty]
    336       Code = bitc::TYPE_CODE_VECTOR;
    337       TypeVals.push_back(VT->getNumElements());
    338       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
    339       break;
    340     }
    341     }
    342 
    343     // Emit the finished record.
    344     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
    345     TypeVals.clear();
    346   }
    347 
    348   Stream.ExitBlock();
    349 }
    350 
    351 static unsigned getEncodedLinkage(const GlobalValue *GV) {
    352   switch (GV->getLinkage()) {
    353   default: llvm_unreachable("Invalid linkage!");
    354   case GlobalValue::ExternalLinkage:                 return 0;
    355   case GlobalValue::WeakAnyLinkage:                  return 1;
    356   case GlobalValue::AppendingLinkage:                return 2;
    357   case GlobalValue::InternalLinkage:                 return 3;
    358   case GlobalValue::LinkOnceAnyLinkage:              return 4;
    359   case GlobalValue::DLLImportLinkage:                return 5;
    360   case GlobalValue::DLLExportLinkage:                return 6;
    361   case GlobalValue::ExternalWeakLinkage:             return 7;
    362   case GlobalValue::CommonLinkage:                   return 8;
    363   case GlobalValue::PrivateLinkage:                  return 9;
    364   case GlobalValue::WeakODRLinkage:                  return 10;
    365   case GlobalValue::LinkOnceODRLinkage:              return 11;
    366   case GlobalValue::AvailableExternallyLinkage:      return 12;
    367   case GlobalValue::LinkerPrivateLinkage:            return 13;
    368   case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
    369   case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15;
    370   }
    371 }
    372 
    373 static unsigned getEncodedVisibility(const GlobalValue *GV) {
    374   switch (GV->getVisibility()) {
    375   default: llvm_unreachable("Invalid visibility!");
    376   case GlobalValue::DefaultVisibility:   return 0;
    377   case GlobalValue::HiddenVisibility:    return 1;
    378   case GlobalValue::ProtectedVisibility: return 2;
    379   }
    380 }
    381 
    382 // Emit top-level description of module, including target triple, inline asm,
    383 // descriptors for global variables, and function prototype info.
    384 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
    385                             BitstreamWriter &Stream) {
    386   // Emit the list of dependent libraries for the Module.
    387   for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I)
    388     WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream);
    389 
    390   // Emit various pieces of data attached to a module.
    391   if (!M->getTargetTriple().empty())
    392     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
    393                       0/*TODO*/, Stream);
    394   if (!M->getDataLayout().empty())
    395     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
    396                       0/*TODO*/, Stream);
    397   if (!M->getModuleInlineAsm().empty())
    398     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
    399                       0/*TODO*/, Stream);
    400 
    401   // Emit information about sections and GC, computing how many there are. Also
    402   // compute the maximum alignment value.
    403   std::map<std::string, unsigned> SectionMap;
    404   std::map<std::string, unsigned> GCMap;
    405   unsigned MaxAlignment = 0;
    406   unsigned MaxGlobalType = 0;
    407   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
    408        GV != E; ++GV) {
    409     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
    410     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
    411     if (GV->hasSection()) {
    412       // Give section names unique ID's.
    413       unsigned &Entry = SectionMap[GV->getSection()];
    414       if (!Entry) {
    415         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
    416                           0/*TODO*/, Stream);
    417         Entry = SectionMap.size();
    418       }
    419     }
    420   }
    421   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    422     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
    423     if (F->hasSection()) {
    424       // Give section names unique ID's.
    425       unsigned &Entry = SectionMap[F->getSection()];
    426       if (!Entry) {
    427         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
    428                           0/*TODO*/, Stream);
    429         Entry = SectionMap.size();
    430       }
    431     }
    432     if (F->hasGC()) {
    433       // Same for GC names.
    434       unsigned &Entry = GCMap[F->getGC()];
    435       if (!Entry) {
    436         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
    437                           0/*TODO*/, Stream);
    438         Entry = GCMap.size();
    439       }
    440     }
    441   }
    442 
    443   // Emit abbrev for globals, now that we know # sections and max alignment.
    444   unsigned SimpleGVarAbbrev = 0;
    445   if (!M->global_empty()) {
    446     // Add an abbrev for common globals with no visibility or thread localness.
    447     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    448     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
    449     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    450                               Log2_32_Ceil(MaxGlobalType+1)));
    451     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
    452     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
    453     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
    454     if (MaxAlignment == 0)                                      // Alignment.
    455       Abbv->Add(BitCodeAbbrevOp(0));
    456     else {
    457       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
    458       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    459                                Log2_32_Ceil(MaxEncAlignment+1)));
    460     }
    461     if (SectionMap.empty())                                    // Section.
    462       Abbv->Add(BitCodeAbbrevOp(0));
    463     else
    464       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    465                                Log2_32_Ceil(SectionMap.size()+1)));
    466     // Don't bother emitting vis + thread local.
    467     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
    468   }
    469 
    470   // Emit the global variable information.
    471   SmallVector<unsigned, 64> Vals;
    472   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
    473        GV != E; ++GV) {
    474     unsigned AbbrevToUse = 0;
    475 
    476     // GLOBALVAR: [type, isconst, initid,
    477     //             linkage, alignment, section, visibility, threadlocal,
    478     //             unnamed_addr]
    479     Vals.push_back(VE.getTypeID(GV->getType()));
    480     Vals.push_back(GV->isConstant());
    481     Vals.push_back(GV->isDeclaration() ? 0 :
    482                    (VE.getValueID(GV->getInitializer()) + 1));
    483     Vals.push_back(getEncodedLinkage(GV));
    484     Vals.push_back(Log2_32(GV->getAlignment())+1);
    485     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
    486     if (GV->isThreadLocal() ||
    487         GV->getVisibility() != GlobalValue::DefaultVisibility ||
    488         GV->hasUnnamedAddr()) {
    489       Vals.push_back(getEncodedVisibility(GV));
    490       Vals.push_back(GV->isThreadLocal());
    491       Vals.push_back(GV->hasUnnamedAddr());
    492     } else {
    493       AbbrevToUse = SimpleGVarAbbrev;
    494     }
    495 
    496     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
    497     Vals.clear();
    498   }
    499 
    500   // Emit the function proto information.
    501   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    502     // FUNCTION:  [type, callingconv, isproto, paramattr,
    503     //             linkage, alignment, section, visibility, gc, unnamed_addr]
    504     Vals.push_back(VE.getTypeID(F->getType()));
    505     Vals.push_back(F->getCallingConv());
    506     Vals.push_back(F->isDeclaration());
    507     Vals.push_back(getEncodedLinkage(F));
    508     Vals.push_back(VE.getAttributeID(F->getAttributes()));
    509     Vals.push_back(Log2_32(F->getAlignment())+1);
    510     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
    511     Vals.push_back(getEncodedVisibility(F));
    512     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
    513     Vals.push_back(F->hasUnnamedAddr());
    514 
    515     unsigned AbbrevToUse = 0;
    516     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
    517     Vals.clear();
    518   }
    519 
    520   // Emit the alias information.
    521   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
    522        AI != E; ++AI) {
    523     Vals.push_back(VE.getTypeID(AI->getType()));
    524     Vals.push_back(VE.getValueID(AI->getAliasee()));
    525     Vals.push_back(getEncodedLinkage(AI));
    526     Vals.push_back(getEncodedVisibility(AI));
    527     unsigned AbbrevToUse = 0;
    528     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
    529     Vals.clear();
    530   }
    531 }
    532 
    533 static uint64_t GetOptimizationFlags(const Value *V) {
    534   uint64_t Flags = 0;
    535 
    536   if (const OverflowingBinaryOperator *OBO =
    537         dyn_cast<OverflowingBinaryOperator>(V)) {
    538     if (OBO->hasNoSignedWrap())
    539       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
    540     if (OBO->hasNoUnsignedWrap())
    541       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
    542   } else if (const PossiblyExactOperator *PEO =
    543                dyn_cast<PossiblyExactOperator>(V)) {
    544     if (PEO->isExact())
    545       Flags |= 1 << bitc::PEO_EXACT;
    546   }
    547 
    548   return Flags;
    549 }
    550 
    551 static void WriteMDNode(const MDNode *N,
    552                         const ValueEnumerator &VE,
    553                         BitstreamWriter &Stream,
    554                         SmallVector<uint64_t, 64> &Record) {
    555   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    556     if (N->getOperand(i)) {
    557       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
    558       Record.push_back(VE.getValueID(N->getOperand(i)));
    559     } else {
    560       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
    561       Record.push_back(0);
    562     }
    563   }
    564   unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
    565                                            bitc::METADATA_NODE;
    566   Stream.EmitRecord(MDCode, Record, 0);
    567   Record.clear();
    568 }
    569 
    570 static void WriteModuleMetadata(const Module *M,
    571                                 const ValueEnumerator &VE,
    572                                 BitstreamWriter &Stream) {
    573   const ValueEnumerator::ValueList &Vals = VE.getMDValues();
    574   bool StartedMetadataBlock = false;
    575   unsigned MDSAbbrev = 0;
    576   SmallVector<uint64_t, 64> Record;
    577   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
    578 
    579     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
    580       if (!N->isFunctionLocal() || !N->getFunction()) {
    581         if (!StartedMetadataBlock) {
    582           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    583           StartedMetadataBlock = true;
    584         }
    585         WriteMDNode(N, VE, Stream, Record);
    586       }
    587     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
    588       if (!StartedMetadataBlock)  {
    589         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    590 
    591         // Abbrev for METADATA_STRING.
    592         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    593         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
    594         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    595         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    596         MDSAbbrev = Stream.EmitAbbrev(Abbv);
    597         StartedMetadataBlock = true;
    598       }
    599 
    600       // Code: [strchar x N]
    601       Record.append(MDS->begin(), MDS->end());
    602 
    603       // Emit the finished record.
    604       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
    605       Record.clear();
    606     }
    607   }
    608 
    609   // Write named metadata.
    610   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
    611        E = M->named_metadata_end(); I != E; ++I) {
    612     const NamedMDNode *NMD = I;
    613     if (!StartedMetadataBlock)  {
    614       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    615       StartedMetadataBlock = true;
    616     }
    617 
    618     // Write name.
    619     StringRef Str = NMD->getName();
    620     for (unsigned i = 0, e = Str.size(); i != e; ++i)
    621       Record.push_back(Str[i]);
    622     Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
    623     Record.clear();
    624 
    625     // Write named metadata operands.
    626     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
    627       Record.push_back(VE.getValueID(NMD->getOperand(i)));
    628     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
    629     Record.clear();
    630   }
    631 
    632   if (StartedMetadataBlock)
    633     Stream.ExitBlock();
    634 }
    635 
    636 static void WriteFunctionLocalMetadata(const Function &F,
    637                                        const ValueEnumerator &VE,
    638                                        BitstreamWriter &Stream) {
    639   bool StartedMetadataBlock = false;
    640   SmallVector<uint64_t, 64> Record;
    641   const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
    642   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
    643     if (const MDNode *N = Vals[i])
    644       if (N->isFunctionLocal() && N->getFunction() == &F) {
    645         if (!StartedMetadataBlock) {
    646           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    647           StartedMetadataBlock = true;
    648         }
    649         WriteMDNode(N, VE, Stream, Record);
    650       }
    651 
    652   if (StartedMetadataBlock)
    653     Stream.ExitBlock();
    654 }
    655 
    656 static void WriteMetadataAttachment(const Function &F,
    657                                     const ValueEnumerator &VE,
    658                                     BitstreamWriter &Stream) {
    659   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
    660 
    661   SmallVector<uint64_t, 64> Record;
    662 
    663   // Write metadata attachments
    664   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
    665   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
    666 
    667   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    668     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
    669          I != E; ++I) {
    670       MDs.clear();
    671       I->getAllMetadataOtherThanDebugLoc(MDs);
    672 
    673       // If no metadata, ignore instruction.
    674       if (MDs.empty()) continue;
    675 
    676       Record.push_back(VE.getInstructionID(I));
    677 
    678       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
    679         Record.push_back(MDs[i].first);
    680         Record.push_back(VE.getValueID(MDs[i].second));
    681       }
    682       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
    683       Record.clear();
    684     }
    685 
    686   Stream.ExitBlock();
    687 }
    688 
    689 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
    690   SmallVector<uint64_t, 64> Record;
    691 
    692   // Write metadata kinds
    693   // METADATA_KIND - [n x [id, name]]
    694   SmallVector<StringRef, 4> Names;
    695   M->getMDKindNames(Names);
    696 
    697   if (Names.empty()) return;
    698 
    699   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    700 
    701   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
    702     Record.push_back(MDKindID);
    703     StringRef KName = Names[MDKindID];
    704     Record.append(KName.begin(), KName.end());
    705 
    706     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
    707     Record.clear();
    708   }
    709 
    710   Stream.ExitBlock();
    711 }
    712 
    713 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
    714                            const ValueEnumerator &VE,
    715                            BitstreamWriter &Stream, bool isGlobal) {
    716   if (FirstVal == LastVal) return;
    717 
    718   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
    719 
    720   unsigned AggregateAbbrev = 0;
    721   unsigned String8Abbrev = 0;
    722   unsigned CString7Abbrev = 0;
    723   unsigned CString6Abbrev = 0;
    724   // If this is a constant pool for the module, emit module-specific abbrevs.
    725   if (isGlobal) {
    726     // Abbrev for CST_CODE_AGGREGATE.
    727     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    728     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
    729     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    730     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
    731     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
    732 
    733     // Abbrev for CST_CODE_STRING.
    734     Abbv = new BitCodeAbbrev();
    735     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
    736     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    737     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    738     String8Abbrev = Stream.EmitAbbrev(Abbv);
    739     // Abbrev for CST_CODE_CSTRING.
    740     Abbv = new BitCodeAbbrev();
    741     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    742     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    743     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    744     CString7Abbrev = Stream.EmitAbbrev(Abbv);
    745     // Abbrev for CST_CODE_CSTRING.
    746     Abbv = new BitCodeAbbrev();
    747     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    748     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    749     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    750     CString6Abbrev = Stream.EmitAbbrev(Abbv);
    751   }
    752 
    753   SmallVector<uint64_t, 64> Record;
    754 
    755   const ValueEnumerator::ValueList &Vals = VE.getValues();
    756   Type *LastTy = 0;
    757   for (unsigned i = FirstVal; i != LastVal; ++i) {
    758     const Value *V = Vals[i].first;
    759     // If we need to switch types, do so now.
    760     if (V->getType() != LastTy) {
    761       LastTy = V->getType();
    762       Record.push_back(VE.getTypeID(LastTy));
    763       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
    764                         CONSTANTS_SETTYPE_ABBREV);
    765       Record.clear();
    766     }
    767 
    768     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
    769       Record.push_back(unsigned(IA->hasSideEffects()) |
    770                        unsigned(IA->isAlignStack()) << 1);
    771 
    772       // Add the asm string.
    773       const std::string &AsmStr = IA->getAsmString();
    774       Record.push_back(AsmStr.size());
    775       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
    776         Record.push_back(AsmStr[i]);
    777 
    778       // Add the constraint string.
    779       const std::string &ConstraintStr = IA->getConstraintString();
    780       Record.push_back(ConstraintStr.size());
    781       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
    782         Record.push_back(ConstraintStr[i]);
    783       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
    784       Record.clear();
    785       continue;
    786     }
    787     const Constant *C = cast<Constant>(V);
    788     unsigned Code = -1U;
    789     unsigned AbbrevToUse = 0;
    790     if (C->isNullValue()) {
    791       Code = bitc::CST_CODE_NULL;
    792     } else if (isa<UndefValue>(C)) {
    793       Code = bitc::CST_CODE_UNDEF;
    794     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
    795       if (IV->getBitWidth() <= 64) {
    796         uint64_t V = IV->getSExtValue();
    797         if ((int64_t)V >= 0)
    798           Record.push_back(V << 1);
    799         else
    800           Record.push_back((-V << 1) | 1);
    801         Code = bitc::CST_CODE_INTEGER;
    802         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
    803       } else {                             // Wide integers, > 64 bits in size.
    804         // We have an arbitrary precision integer value to write whose
    805         // bit width is > 64. However, in canonical unsigned integer
    806         // format it is likely that the high bits are going to be zero.
    807         // So, we only write the number of active words.
    808         unsigned NWords = IV->getValue().getActiveWords();
    809         const uint64_t *RawWords = IV->getValue().getRawData();
    810         for (unsigned i = 0; i != NWords; ++i) {
    811           int64_t V = RawWords[i];
    812           if (V >= 0)
    813             Record.push_back(V << 1);
    814           else
    815             Record.push_back((-V << 1) | 1);
    816         }
    817         Code = bitc::CST_CODE_WIDE_INTEGER;
    818       }
    819     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    820       Code = bitc::CST_CODE_FLOAT;
    821       Type *Ty = CFP->getType();
    822       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
    823         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    824       } else if (Ty->isX86_FP80Ty()) {
    825         // api needed to prevent premature destruction
    826         // bits are not in the same order as a normal i80 APInt, compensate.
    827         APInt api = CFP->getValueAPF().bitcastToAPInt();
    828         const uint64_t *p = api.getRawData();
    829         Record.push_back((p[1] << 48) | (p[0] >> 16));
    830         Record.push_back(p[0] & 0xffffLL);
    831       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
    832         APInt api = CFP->getValueAPF().bitcastToAPInt();
    833         const uint64_t *p = api.getRawData();
    834         Record.push_back(p[0]);
    835         Record.push_back(p[1]);
    836       } else {
    837         assert (0 && "Unknown FP type!");
    838       }
    839     } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
    840       const ConstantArray *CA = cast<ConstantArray>(C);
    841       // Emit constant strings specially.
    842       unsigned NumOps = CA->getNumOperands();
    843       // If this is a null-terminated string, use the denser CSTRING encoding.
    844       if (CA->getOperand(NumOps-1)->isNullValue()) {
    845         Code = bitc::CST_CODE_CSTRING;
    846         --NumOps;  // Don't encode the null, which isn't allowed by char6.
    847       } else {
    848         Code = bitc::CST_CODE_STRING;
    849         AbbrevToUse = String8Abbrev;
    850       }
    851       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
    852       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
    853       for (unsigned i = 0; i != NumOps; ++i) {
    854         unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue();
    855         Record.push_back(V);
    856         isCStr7 &= (V & 128) == 0;
    857         if (isCStrChar6)
    858           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
    859       }
    860 
    861       if (isCStrChar6)
    862         AbbrevToUse = CString6Abbrev;
    863       else if (isCStr7)
    864         AbbrevToUse = CString7Abbrev;
    865     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) ||
    866                isa<ConstantVector>(V)) {
    867       Code = bitc::CST_CODE_AGGREGATE;
    868       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
    869         Record.push_back(VE.getValueID(C->getOperand(i)));
    870       AbbrevToUse = AggregateAbbrev;
    871     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    872       switch (CE->getOpcode()) {
    873       default:
    874         if (Instruction::isCast(CE->getOpcode())) {
    875           Code = bitc::CST_CODE_CE_CAST;
    876           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
    877           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    878           Record.push_back(VE.getValueID(C->getOperand(0)));
    879           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
    880         } else {
    881           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
    882           Code = bitc::CST_CODE_CE_BINOP;
    883           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
    884           Record.push_back(VE.getValueID(C->getOperand(0)));
    885           Record.push_back(VE.getValueID(C->getOperand(1)));
    886           uint64_t Flags = GetOptimizationFlags(CE);
    887           if (Flags != 0)
    888             Record.push_back(Flags);
    889         }
    890         break;
    891       case Instruction::GetElementPtr:
    892         Code = bitc::CST_CODE_CE_GEP;
    893         if (cast<GEPOperator>(C)->isInBounds())
    894           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
    895         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
    896           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
    897           Record.push_back(VE.getValueID(C->getOperand(i)));
    898         }
    899         break;
    900       case Instruction::Select:
    901         Code = bitc::CST_CODE_CE_SELECT;
    902         Record.push_back(VE.getValueID(C->getOperand(0)));
    903         Record.push_back(VE.getValueID(C->getOperand(1)));
    904         Record.push_back(VE.getValueID(C->getOperand(2)));
    905         break;
    906       case Instruction::ExtractElement:
    907         Code = bitc::CST_CODE_CE_EXTRACTELT;
    908         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    909         Record.push_back(VE.getValueID(C->getOperand(0)));
    910         Record.push_back(VE.getValueID(C->getOperand(1)));
    911         break;
    912       case Instruction::InsertElement:
    913         Code = bitc::CST_CODE_CE_INSERTELT;
    914         Record.push_back(VE.getValueID(C->getOperand(0)));
    915         Record.push_back(VE.getValueID(C->getOperand(1)));
    916         Record.push_back(VE.getValueID(C->getOperand(2)));
    917         break;
    918       case Instruction::ShuffleVector:
    919         // If the return type and argument types are the same, this is a
    920         // standard shufflevector instruction.  If the types are different,
    921         // then the shuffle is widening or truncating the input vectors, and
    922         // the argument type must also be encoded.
    923         if (C->getType() == C->getOperand(0)->getType()) {
    924           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
    925         } else {
    926           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
    927           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    928         }
    929         Record.push_back(VE.getValueID(C->getOperand(0)));
    930         Record.push_back(VE.getValueID(C->getOperand(1)));
    931         Record.push_back(VE.getValueID(C->getOperand(2)));
    932         break;
    933       case Instruction::ICmp:
    934       case Instruction::FCmp:
    935         Code = bitc::CST_CODE_CE_CMP;
    936         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    937         Record.push_back(VE.getValueID(C->getOperand(0)));
    938         Record.push_back(VE.getValueID(C->getOperand(1)));
    939         Record.push_back(CE->getPredicate());
    940         break;
    941       }
    942     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
    943       Code = bitc::CST_CODE_BLOCKADDRESS;
    944       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
    945       Record.push_back(VE.getValueID(BA->getFunction()));
    946       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
    947     } else {
    948 #ifndef NDEBUG
    949       C->dump();
    950 #endif
    951       llvm_unreachable("Unknown constant!");
    952     }
    953     Stream.EmitRecord(Code, Record, AbbrevToUse);
    954     Record.clear();
    955   }
    956 
    957   Stream.ExitBlock();
    958 }
    959 
    960 static void WriteModuleConstants(const ValueEnumerator &VE,
    961                                  BitstreamWriter &Stream) {
    962   const ValueEnumerator::ValueList &Vals = VE.getValues();
    963 
    964   // Find the first constant to emit, which is the first non-globalvalue value.
    965   // We know globalvalues have been emitted by WriteModuleInfo.
    966   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
    967     if (!isa<GlobalValue>(Vals[i].first)) {
    968       WriteConstants(i, Vals.size(), VE, Stream, true);
    969       return;
    970     }
    971   }
    972 }
    973 
    974 /// PushValueAndType - The file has to encode both the value and type id for
    975 /// many values, because we need to know what type to create for forward
    976 /// references.  However, most operands are not forward references, so this type
    977 /// field is not needed.
    978 ///
    979 /// This function adds V's value ID to Vals.  If the value ID is higher than the
    980 /// instruction ID, then it is a forward reference, and it also includes the
    981 /// type ID.
    982 static bool PushValueAndType(const Value *V, unsigned InstID,
    983                              SmallVector<unsigned, 64> &Vals,
    984                              ValueEnumerator &VE) {
    985   unsigned ValID = VE.getValueID(V);
    986   Vals.push_back(ValID);
    987   if (ValID >= InstID) {
    988     Vals.push_back(VE.getTypeID(V->getType()));
    989     return true;
    990   }
    991   return false;
    992 }
    993 
    994 /// WriteInstruction - Emit an instruction to the specified stream.
    995 static void WriteInstruction(const Instruction &I, unsigned InstID,
    996                              ValueEnumerator &VE, BitstreamWriter &Stream,
    997                              SmallVector<unsigned, 64> &Vals) {
    998   unsigned Code = 0;
    999   unsigned AbbrevToUse = 0;
   1000   VE.setInstructionID(&I);
   1001   switch (I.getOpcode()) {
   1002   default:
   1003     if (Instruction::isCast(I.getOpcode())) {
   1004       Code = bitc::FUNC_CODE_INST_CAST;
   1005       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1006         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
   1007       Vals.push_back(VE.getTypeID(I.getType()));
   1008       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
   1009     } else {
   1010       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
   1011       Code = bitc::FUNC_CODE_INST_BINOP;
   1012       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1013         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
   1014       Vals.push_back(VE.getValueID(I.getOperand(1)));
   1015       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
   1016       uint64_t Flags = GetOptimizationFlags(&I);
   1017       if (Flags != 0) {
   1018         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
   1019           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
   1020         Vals.push_back(Flags);
   1021       }
   1022     }
   1023     break;
   1024 
   1025   case Instruction::GetElementPtr:
   1026     Code = bitc::FUNC_CODE_INST_GEP;
   1027     if (cast<GEPOperator>(&I)->isInBounds())
   1028       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
   1029     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1030       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1031     break;
   1032   case Instruction::ExtractValue: {
   1033     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
   1034     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1035     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
   1036     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
   1037       Vals.push_back(*i);
   1038     break;
   1039   }
   1040   case Instruction::InsertValue: {
   1041     Code = bitc::FUNC_CODE_INST_INSERTVAL;
   1042     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1043     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1044     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
   1045     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
   1046       Vals.push_back(*i);
   1047     break;
   1048   }
   1049   case Instruction::Select:
   1050     Code = bitc::FUNC_CODE_INST_VSELECT;
   1051     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1052     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1053     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1054     break;
   1055   case Instruction::ExtractElement:
   1056     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
   1057     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1058     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1059     break;
   1060   case Instruction::InsertElement:
   1061     Code = bitc::FUNC_CODE_INST_INSERTELT;
   1062     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1063     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1064     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1065     break;
   1066   case Instruction::ShuffleVector:
   1067     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
   1068     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1069     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1070     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1071     break;
   1072   case Instruction::ICmp:
   1073   case Instruction::FCmp:
   1074     // compare returning Int1Ty or vector of Int1Ty
   1075     Code = bitc::FUNC_CODE_INST_CMP2;
   1076     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1077     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1078     Vals.push_back(cast<CmpInst>(I).getPredicate());
   1079     break;
   1080 
   1081   case Instruction::Ret:
   1082     {
   1083       Code = bitc::FUNC_CODE_INST_RET;
   1084       unsigned NumOperands = I.getNumOperands();
   1085       if (NumOperands == 0)
   1086         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
   1087       else if (NumOperands == 1) {
   1088         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1089           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
   1090       } else {
   1091         for (unsigned i = 0, e = NumOperands; i != e; ++i)
   1092           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1093       }
   1094     }
   1095     break;
   1096   case Instruction::Br:
   1097     {
   1098       Code = bitc::FUNC_CODE_INST_BR;
   1099       BranchInst &II = cast<BranchInst>(I);
   1100       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
   1101       if (II.isConditional()) {
   1102         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
   1103         Vals.push_back(VE.getValueID(II.getCondition()));
   1104       }
   1105     }
   1106     break;
   1107   case Instruction::Switch:
   1108     Code = bitc::FUNC_CODE_INST_SWITCH;
   1109     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1110     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1111       Vals.push_back(VE.getValueID(I.getOperand(i)));
   1112     break;
   1113   case Instruction::IndirectBr:
   1114     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
   1115     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1116     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1117       Vals.push_back(VE.getValueID(I.getOperand(i)));
   1118     break;
   1119 
   1120   case Instruction::Invoke: {
   1121     const InvokeInst *II = cast<InvokeInst>(&I);
   1122     const Value *Callee(II->getCalledValue());
   1123     PointerType *PTy = cast<PointerType>(Callee->getType());
   1124     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1125     Code = bitc::FUNC_CODE_INST_INVOKE;
   1126 
   1127     Vals.push_back(VE.getAttributeID(II->getAttributes()));
   1128     Vals.push_back(II->getCallingConv());
   1129     Vals.push_back(VE.getValueID(II->getNormalDest()));
   1130     Vals.push_back(VE.getValueID(II->getUnwindDest()));
   1131     PushValueAndType(Callee, InstID, Vals, VE);
   1132 
   1133     // Emit value #'s for the fixed parameters.
   1134     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1135       Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
   1136 
   1137     // Emit type/value pairs for varargs params.
   1138     if (FTy->isVarArg()) {
   1139       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
   1140            i != e; ++i)
   1141         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
   1142     }
   1143     break;
   1144   }
   1145   case Instruction::Resume:
   1146     Code = bitc::FUNC_CODE_INST_RESUME;
   1147     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1148     break;
   1149   case Instruction::Unwind:
   1150     Code = bitc::FUNC_CODE_INST_UNWIND;
   1151     break;
   1152   case Instruction::Unreachable:
   1153     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
   1154     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
   1155     break;
   1156 
   1157   case Instruction::PHI: {
   1158     const PHINode &PN = cast<PHINode>(I);
   1159     Code = bitc::FUNC_CODE_INST_PHI;
   1160     Vals.push_back(VE.getTypeID(PN.getType()));
   1161     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   1162       Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
   1163       Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
   1164     }
   1165     break;
   1166   }
   1167 
   1168   case Instruction::LandingPad: {
   1169     const LandingPadInst &LP = cast<LandingPadInst>(I);
   1170     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
   1171     Vals.push_back(VE.getTypeID(LP.getType()));
   1172     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
   1173     Vals.push_back(LP.isCleanup());
   1174     Vals.push_back(LP.getNumClauses());
   1175     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
   1176       if (LP.isCatch(I))
   1177         Vals.push_back(LandingPadInst::Catch);
   1178       else
   1179         Vals.push_back(LandingPadInst::Filter);
   1180       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
   1181     }
   1182     break;
   1183   }
   1184 
   1185   case Instruction::Alloca:
   1186     Code = bitc::FUNC_CODE_INST_ALLOCA;
   1187     Vals.push_back(VE.getTypeID(I.getType()));
   1188     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1189     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
   1190     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
   1191     break;
   1192 
   1193   case Instruction::Load:
   1194     if (cast<LoadInst>(I).isAtomic()) {
   1195       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
   1196       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1197     } else {
   1198       Code = bitc::FUNC_CODE_INST_LOAD;
   1199       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
   1200         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
   1201     }
   1202     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
   1203     Vals.push_back(cast<LoadInst>(I).isVolatile());
   1204     if (cast<LoadInst>(I).isAtomic()) {
   1205       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
   1206       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
   1207     }
   1208     break;
   1209   case Instruction::Store:
   1210     if (cast<StoreInst>(I).isAtomic())
   1211       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
   1212     else
   1213       Code = bitc::FUNC_CODE_INST_STORE;
   1214     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
   1215     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
   1216     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
   1217     Vals.push_back(cast<StoreInst>(I).isVolatile());
   1218     if (cast<StoreInst>(I).isAtomic()) {
   1219       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
   1220       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
   1221     }
   1222     break;
   1223   case Instruction::AtomicCmpXchg:
   1224     Code = bitc::FUNC_CODE_INST_CMPXCHG;
   1225     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
   1226     Vals.push_back(VE.getValueID(I.getOperand(1)));       // cmp.
   1227     Vals.push_back(VE.getValueID(I.getOperand(2)));       // newval.
   1228     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
   1229     Vals.push_back(GetEncodedOrdering(
   1230                      cast<AtomicCmpXchgInst>(I).getOrdering()));
   1231     Vals.push_back(GetEncodedSynchScope(
   1232                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
   1233     break;
   1234   case Instruction::AtomicRMW:
   1235     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
   1236     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
   1237     Vals.push_back(VE.getValueID(I.getOperand(1)));       // val.
   1238     Vals.push_back(GetEncodedRMWOperation(
   1239                      cast<AtomicRMWInst>(I).getOperation()));
   1240     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
   1241     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
   1242     Vals.push_back(GetEncodedSynchScope(
   1243                      cast<AtomicRMWInst>(I).getSynchScope()));
   1244     break;
   1245   case Instruction::Fence:
   1246     Code = bitc::FUNC_CODE_INST_FENCE;
   1247     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
   1248     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
   1249     break;
   1250   case Instruction::Call: {
   1251     const CallInst &CI = cast<CallInst>(I);
   1252     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
   1253     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1254 
   1255     Code = bitc::FUNC_CODE_INST_CALL;
   1256 
   1257     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
   1258     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
   1259     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
   1260 
   1261     // Emit value #'s for the fixed parameters.
   1262     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1263       Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
   1264 
   1265     // Emit type/value pairs for varargs params.
   1266     if (FTy->isVarArg()) {
   1267       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
   1268            i != e; ++i)
   1269         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
   1270     }
   1271     break;
   1272   }
   1273   case Instruction::VAArg:
   1274     Code = bitc::FUNC_CODE_INST_VAARG;
   1275     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
   1276     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
   1277     Vals.push_back(VE.getTypeID(I.getType())); // restype.
   1278     break;
   1279   }
   1280 
   1281   Stream.EmitRecord(Code, Vals, AbbrevToUse);
   1282   Vals.clear();
   1283 }
   1284 
   1285 // Emit names for globals/functions etc.
   1286 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
   1287                                   const ValueEnumerator &VE,
   1288                                   BitstreamWriter &Stream) {
   1289   if (VST.empty()) return;
   1290   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
   1291 
   1292   // FIXME: Set up the abbrev, we know how many values there are!
   1293   // FIXME: We know if the type names can use 7-bit ascii.
   1294   SmallVector<unsigned, 64> NameVals;
   1295 
   1296   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
   1297        SI != SE; ++SI) {
   1298 
   1299     const ValueName &Name = *SI;
   1300 
   1301     // Figure out the encoding to use for the name.
   1302     bool is7Bit = true;
   1303     bool isChar6 = true;
   1304     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
   1305          C != E; ++C) {
   1306       if (isChar6)
   1307         isChar6 = BitCodeAbbrevOp::isChar6(*C);
   1308       if ((unsigned char)*C & 128) {
   1309         is7Bit = false;
   1310         break;  // don't bother scanning the rest.
   1311       }
   1312     }
   1313 
   1314     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
   1315 
   1316     // VST_ENTRY:   [valueid, namechar x N]
   1317     // VST_BBENTRY: [bbid, namechar x N]
   1318     unsigned Code;
   1319     if (isa<BasicBlock>(SI->getValue())) {
   1320       Code = bitc::VST_CODE_BBENTRY;
   1321       if (isChar6)
   1322         AbbrevToUse = VST_BBENTRY_6_ABBREV;
   1323     } else {
   1324       Code = bitc::VST_CODE_ENTRY;
   1325       if (isChar6)
   1326         AbbrevToUse = VST_ENTRY_6_ABBREV;
   1327       else if (is7Bit)
   1328         AbbrevToUse = VST_ENTRY_7_ABBREV;
   1329     }
   1330 
   1331     NameVals.push_back(VE.getValueID(SI->getValue()));
   1332     for (const char *P = Name.getKeyData(),
   1333          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
   1334       NameVals.push_back((unsigned char)*P);
   1335 
   1336     // Emit the finished record.
   1337     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
   1338     NameVals.clear();
   1339   }
   1340   Stream.ExitBlock();
   1341 }
   1342 
   1343 /// WriteFunction - Emit a function body to the module stream.
   1344 static void WriteFunction(const Function &F, ValueEnumerator &VE,
   1345                           BitstreamWriter &Stream) {
   1346   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
   1347   VE.incorporateFunction(F);
   1348 
   1349   SmallVector<unsigned, 64> Vals;
   1350 
   1351   // Emit the number of basic blocks, so the reader can create them ahead of
   1352   // time.
   1353   Vals.push_back(VE.getBasicBlocks().size());
   1354   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
   1355   Vals.clear();
   1356 
   1357   // If there are function-local constants, emit them now.
   1358   unsigned CstStart, CstEnd;
   1359   VE.getFunctionConstantRange(CstStart, CstEnd);
   1360   WriteConstants(CstStart, CstEnd, VE, Stream, false);
   1361 
   1362   // If there is function-local metadata, emit it now.
   1363   WriteFunctionLocalMetadata(F, VE, Stream);
   1364 
   1365   // Keep a running idea of what the instruction ID is.
   1366   unsigned InstID = CstEnd;
   1367 
   1368   bool NeedsMetadataAttachment = false;
   1369 
   1370   DebugLoc LastDL;
   1371 
   1372   // Finally, emit all the instructions, in order.
   1373   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
   1374     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
   1375          I != E; ++I) {
   1376       WriteInstruction(*I, InstID, VE, Stream, Vals);
   1377 
   1378       if (!I->getType()->isVoidTy())
   1379         ++InstID;
   1380 
   1381       // If the instruction has metadata, write a metadata attachment later.
   1382       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
   1383 
   1384       // If the instruction has a debug location, emit it.
   1385       DebugLoc DL = I->getDebugLoc();
   1386       if (DL.isUnknown()) {
   1387         // nothing todo.
   1388       } else if (DL == LastDL) {
   1389         // Just repeat the same debug loc as last time.
   1390         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
   1391       } else {
   1392         MDNode *Scope, *IA;
   1393         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
   1394 
   1395         Vals.push_back(DL.getLine());
   1396         Vals.push_back(DL.getCol());
   1397         Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
   1398         Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
   1399         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
   1400         Vals.clear();
   1401 
   1402         LastDL = DL;
   1403       }
   1404     }
   1405 
   1406   // Emit names for all the instructions etc.
   1407   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
   1408 
   1409   if (NeedsMetadataAttachment)
   1410     WriteMetadataAttachment(F, VE, Stream);
   1411   VE.purgeFunction();
   1412   Stream.ExitBlock();
   1413 }
   1414 
   1415 // Emit blockinfo, which defines the standard abbreviations etc.
   1416 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
   1417   // We only want to emit block info records for blocks that have multiple
   1418   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
   1419   // blocks can defined their abbrevs inline.
   1420   Stream.EnterBlockInfoBlock(2);
   1421 
   1422   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
   1423     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1424     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
   1425     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1426     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1427     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   1428     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1429                                    Abbv) != VST_ENTRY_8_ABBREV)
   1430       llvm_unreachable("Unexpected abbrev ordering!");
   1431   }
   1432 
   1433   { // 7-bit fixed width VST_ENTRY strings.
   1434     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1435     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1436     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1437     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1438     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   1439     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1440                                    Abbv) != VST_ENTRY_7_ABBREV)
   1441       llvm_unreachable("Unexpected abbrev ordering!");
   1442   }
   1443   { // 6-bit char6 VST_ENTRY strings.
   1444     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1445     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1446     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1447     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1448     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1449     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1450                                    Abbv) != VST_ENTRY_6_ABBREV)
   1451       llvm_unreachable("Unexpected abbrev ordering!");
   1452   }
   1453   { // 6-bit char6 VST_BBENTRY strings.
   1454     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1455     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
   1456     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1457     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1458     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1459     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1460                                    Abbv) != VST_BBENTRY_6_ABBREV)
   1461       llvm_unreachable("Unexpected abbrev ordering!");
   1462   }
   1463 
   1464 
   1465 
   1466   { // SETTYPE abbrev for CONSTANTS_BLOCK.
   1467     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1468     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
   1469     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   1470                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1471     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1472                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
   1473       llvm_unreachable("Unexpected abbrev ordering!");
   1474   }
   1475 
   1476   { // INTEGER abbrev for CONSTANTS_BLOCK.
   1477     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1478     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
   1479     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1480     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1481                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
   1482       llvm_unreachable("Unexpected abbrev ordering!");
   1483   }
   1484 
   1485   { // CE_CAST abbrev for CONSTANTS_BLOCK.
   1486     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1487     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
   1488     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
   1489     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
   1490                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1491     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
   1492 
   1493     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1494                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
   1495       llvm_unreachable("Unexpected abbrev ordering!");
   1496   }
   1497   { // NULL abbrev for CONSTANTS_BLOCK.
   1498     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1499     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
   1500     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1501                                    Abbv) != CONSTANTS_NULL_Abbrev)
   1502       llvm_unreachable("Unexpected abbrev ordering!");
   1503   }
   1504 
   1505   // FIXME: This should only use space for first class types!
   1506 
   1507   { // INST_LOAD abbrev for FUNCTION_BLOCK.
   1508     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1509     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
   1510     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
   1511     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
   1512     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
   1513     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1514                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
   1515       llvm_unreachable("Unexpected abbrev ordering!");
   1516   }
   1517   { // INST_BINOP abbrev for FUNCTION_BLOCK.
   1518     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1519     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1520     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1521     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1522     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1523     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1524                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
   1525       llvm_unreachable("Unexpected abbrev ordering!");
   1526   }
   1527   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
   1528     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1529     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1530     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1531     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1532     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1533     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
   1534     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1535                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
   1536       llvm_unreachable("Unexpected abbrev ordering!");
   1537   }
   1538   { // INST_CAST abbrev for FUNCTION_BLOCK.
   1539     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1540     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
   1541     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
   1542     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
   1543                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1544     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
   1545     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1546                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
   1547       llvm_unreachable("Unexpected abbrev ordering!");
   1548   }
   1549 
   1550   { // INST_RET abbrev for FUNCTION_BLOCK.
   1551     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1552     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1553     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1554                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
   1555       llvm_unreachable("Unexpected abbrev ordering!");
   1556   }
   1557   { // INST_RET abbrev for FUNCTION_BLOCK.
   1558     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1559     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1560     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
   1561     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1562                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
   1563       llvm_unreachable("Unexpected abbrev ordering!");
   1564   }
   1565   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
   1566     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1567     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
   1568     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1569                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
   1570       llvm_unreachable("Unexpected abbrev ordering!");
   1571   }
   1572 
   1573   Stream.ExitBlock();
   1574 }
   1575 
   1576 
   1577 /// WriteModule - Emit the specified module to the bitstream.
   1578 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
   1579   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
   1580 
   1581   // Emit the version number if it is non-zero.
   1582   if (CurVersion) {
   1583     SmallVector<unsigned, 1> Vals;
   1584     Vals.push_back(CurVersion);
   1585     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
   1586   }
   1587 
   1588   // Analyze the module, enumerating globals, functions, etc.
   1589   ValueEnumerator VE(M);
   1590 
   1591   // Emit blockinfo, which defines the standard abbreviations etc.
   1592   WriteBlockInfo(VE, Stream);
   1593 
   1594   // Emit information about parameter attributes.
   1595   WriteAttributeTable(VE, Stream);
   1596 
   1597   // Emit information describing all of the types in the module.
   1598   WriteTypeTable(VE, Stream);
   1599 
   1600   // Emit top-level description of module, including target triple, inline asm,
   1601   // descriptors for global variables, and function prototype info.
   1602   WriteModuleInfo(M, VE, Stream);
   1603 
   1604   // Emit constants.
   1605   WriteModuleConstants(VE, Stream);
   1606 
   1607   // Emit metadata.
   1608   WriteModuleMetadata(M, VE, Stream);
   1609 
   1610   // Emit function bodies.
   1611   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
   1612     if (!F->isDeclaration())
   1613       WriteFunction(*F, VE, Stream);
   1614 
   1615   // Emit metadata.
   1616   WriteModuleMetadataStore(M, Stream);
   1617 
   1618   // Emit names for globals/functions etc.
   1619   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
   1620 
   1621   Stream.ExitBlock();
   1622 }
   1623 
   1624 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
   1625 /// header and trailer to make it compatible with the system archiver.  To do
   1626 /// this we emit the following header, and then emit a trailer that pads the
   1627 /// file out to be a multiple of 16 bytes.
   1628 ///
   1629 /// struct bc_header {
   1630 ///   uint32_t Magic;         // 0x0B17C0DE
   1631 ///   uint32_t Version;       // Version, currently always 0.
   1632 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
   1633 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
   1634 ///   uint32_t CPUType;       // CPU specifier.
   1635 ///   ... potentially more later ...
   1636 /// };
   1637 enum {
   1638   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
   1639   DarwinBCHeaderSize = 5*4
   1640 };
   1641 
   1642 static void EmitDarwinBCHeader(BitstreamWriter &Stream, const Triple &TT) {
   1643   unsigned CPUType = ~0U;
   1644 
   1645   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
   1646   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
   1647   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
   1648   // specific constants here because they are implicitly part of the Darwin ABI.
   1649   enum {
   1650     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
   1651     DARWIN_CPU_TYPE_X86        = 7,
   1652     DARWIN_CPU_TYPE_ARM        = 12,
   1653     DARWIN_CPU_TYPE_POWERPC    = 18
   1654   };
   1655 
   1656   Triple::ArchType Arch = TT.getArch();
   1657   if (Arch == Triple::x86_64)
   1658     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
   1659   else if (Arch == Triple::x86)
   1660     CPUType = DARWIN_CPU_TYPE_X86;
   1661   else if (Arch == Triple::ppc)
   1662     CPUType = DARWIN_CPU_TYPE_POWERPC;
   1663   else if (Arch == Triple::ppc64)
   1664     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
   1665   else if (Arch == Triple::arm || Arch == Triple::thumb)
   1666     CPUType = DARWIN_CPU_TYPE_ARM;
   1667 
   1668   // Traditional Bitcode starts after header.
   1669   unsigned BCOffset = DarwinBCHeaderSize;
   1670 
   1671   Stream.Emit(0x0B17C0DE, 32);
   1672   Stream.Emit(0         , 32);  // Version.
   1673   Stream.Emit(BCOffset  , 32);
   1674   Stream.Emit(0         , 32);  // Filled in later.
   1675   Stream.Emit(CPUType   , 32);
   1676 }
   1677 
   1678 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
   1679 /// finalize the header.
   1680 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) {
   1681   // Update the size field in the header.
   1682   Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize);
   1683 
   1684   // If the file is not a multiple of 16 bytes, insert dummy padding.
   1685   while (BufferSize & 15) {
   1686     Stream.Emit(0, 8);
   1687     ++BufferSize;
   1688   }
   1689 }
   1690 
   1691 
   1692 /// WriteBitcodeToFile - Write the specified module to the specified output
   1693 /// stream.
   1694 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
   1695   std::vector<unsigned char> Buffer;
   1696   BitstreamWriter Stream(Buffer);
   1697 
   1698   Buffer.reserve(256*1024);
   1699 
   1700   WriteBitcodeToStream( M, Stream );
   1701 
   1702   // Write the generated bitstream to "Out".
   1703   Out.write((char*)&Buffer.front(), Buffer.size());
   1704 }
   1705 
   1706 /// WriteBitcodeToStream - Write the specified module to the specified output
   1707 /// stream.
   1708 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) {
   1709   // If this is darwin or another generic macho target, emit a file header and
   1710   // trailer if needed.
   1711   Triple TT(M->getTargetTriple());
   1712   if (TT.isOSDarwin())
   1713     EmitDarwinBCHeader(Stream, TT);
   1714 
   1715   // Emit the file header.
   1716   Stream.Emit((unsigned)'B', 8);
   1717   Stream.Emit((unsigned)'C', 8);
   1718   Stream.Emit(0x0, 4);
   1719   Stream.Emit(0xC, 4);
   1720   Stream.Emit(0xE, 4);
   1721   Stream.Emit(0xD, 4);
   1722 
   1723   // Emit the module.
   1724   WriteModule(M, Stream);
   1725 
   1726   if (TT.isOSDarwin())
   1727     EmitDarwinBCTrailer(Stream, Stream.getBuffer().size());
   1728 }
   1729