Home | History | Annotate | Download | only in securemessage
      1 /* Copyright 2018 Google LLC
      2  *
      3  * Licensed under the Apache License, Version 2.0 (the "License");
      4  * you may not use this file except in compliance with the License.
      5  * You may obtain a copy of the License at
      6  *
      7  *     https://www.apache.org/licenses/LICENSE-2.0
      8  *
      9  * Unless required by applicable law or agreed to in writing, software
     10  * distributed under the License is distributed on an "AS IS" BASIS,
     11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12  * See the License for the specific language governing permissions and
     13  * limitations under the License.
     14  */
     15 package com.google.security.cryptauth.lib.securemessage;
     16 
     17 import com.google.security.annotations.SuppressInsecureCipherModeCheckerReviewed;
     18 import java.io.UnsupportedEncodingException;
     19 import java.security.InvalidAlgorithmParameterException;
     20 import java.security.InvalidKeyException;
     21 import java.security.Key;
     22 import java.security.MessageDigest;
     23 import java.security.NoSuchAlgorithmException;
     24 import java.security.PrivateKey;
     25 import java.security.PublicKey;
     26 import java.security.SecureRandom;
     27 import java.security.Signature;
     28 import java.security.SignatureException;
     29 import javax.annotation.Nullable;
     30 import javax.crypto.BadPaddingException;
     31 import javax.crypto.Cipher;
     32 import javax.crypto.IllegalBlockSizeException;
     33 import javax.crypto.Mac;
     34 import javax.crypto.NoSuchPaddingException;
     35 import javax.crypto.SecretKey;
     36 import javax.crypto.spec.IvParameterSpec;
     37 import javax.crypto.spec.SecretKeySpec;
     38 
     39 /**
     40  * Encapsulates the cryptographic operations used by the {@code SecureMessage*} classes.
     41  */
     42 public class CryptoOps {
     43 
     44   private CryptoOps() {}  // Do not instantiate
     45 
     46   /**
     47    * Enum of supported signature types, with additional mappings to indicate the name of the
     48    * underlying JCA algorithm used to create the signature.
     49    * @see <a href=
     50    * "http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html">
     51    * Java Cryptography Architecture, Standard Algorithm Name Documentation</a>
     52    */
     53   public enum SigType {
     54     HMAC_SHA256(SecureMessageProto.SigScheme.HMAC_SHA256, "HmacSHA256", false),
     55     ECDSA_P256_SHA256(SecureMessageProto.SigScheme.ECDSA_P256_SHA256, "SHA256withECDSA", true),
     56     RSA2048_SHA256(SecureMessageProto.SigScheme.RSA2048_SHA256, "SHA256withRSA", true);
     57 
     58     public SecureMessageProto.SigScheme getSigScheme() {
     59       return sigScheme;
     60     }
     61 
     62     public String getJcaName() {
     63       return jcaName;
     64     }
     65 
     66     public boolean isPublicKeyScheme() {
     67       return publicKeyScheme;
     68     }
     69 
     70     public static SigType valueOf(SecureMessageProto.SigScheme sigScheme) {
     71       for (SigType value : values()) {
     72         if (value.sigScheme.equals(sigScheme)) {
     73           return value;
     74         }
     75       }
     76       throw new IllegalArgumentException("Unsupported SigType: " + sigScheme);
     77     }
     78 
     79     private final SecureMessageProto.SigScheme sigScheme;
     80     private final String jcaName;
     81     private final boolean publicKeyScheme;
     82 
     83     SigType(SecureMessageProto.SigScheme sigType, String jcaName, boolean publicKeyScheme) {
     84       this.sigScheme = sigType;
     85       this.jcaName = jcaName;
     86       this.publicKeyScheme = publicKeyScheme;
     87     }
     88   }
     89 
     90   /**
     91    * Enum of supported encryption types, with additional mappings to indicate the name of the
     92    * underlying JCA algorithm used to perform the encryption.
     93    * @see <a href=
     94    * "http://docs.oracle.com/javase/7/docs/technotes/guides/security/StandardNames.html">
     95    * Java Cryptography Architecture, Standard Algorithm Name Documentation</a>
     96    */
     97   public enum EncType {
     98     NONE(SecureMessageProto.EncScheme.NONE, "InvalidDoNotUseForJCA"),
     99     AES_256_CBC(SecureMessageProto.EncScheme.AES_256_CBC, "AES/CBC/PKCS5Padding");
    100 
    101     public SecureMessageProto.EncScheme getEncScheme() {
    102       return encScheme;
    103     }
    104 
    105     public String getJcaName() {
    106       return jcaName;
    107     }
    108 
    109     public static EncType valueOf(SecureMessageProto.EncScheme encScheme) {
    110       for (EncType value : values()) {
    111         if (value.encScheme.equals(encScheme)) {
    112           return value;
    113         }
    114       }
    115       throw new IllegalArgumentException("Unsupported EncType: " + encScheme);
    116     }
    117 
    118     private final SecureMessageProto.EncScheme encScheme;
    119     private final String jcaName;
    120 
    121     EncType(SecureMessageProto.EncScheme encScheme, String jcaName) {
    122       this.encScheme = encScheme;
    123       this.jcaName = jcaName;
    124     }
    125   }
    126 
    127   /**
    128    * Truncated hash output length, in bytes.
    129    */
    130   static final int DIGEST_LENGTH = 20;
    131   /**
    132    * A salt value specific to this library, generated as SHA-256("SecureMessage")
    133    */
    134   private static final byte[] SALT = sha256("SecureMessage");
    135   private static final byte[] CONSTANT_01 = { 0x01 };  // For convenience
    136 
    137   /**
    138    * Signs {@code data} using the algorithm specified by {@code sigType} with {@code signingKey}.
    139    *
    140    * @param rng is required for public key signature schemes
    141    * @return raw signature
    142    * @throws InvalidKeyException if {@code signingKey} is incompatible with {@code sigType}
    143    * @throws NoSuchAlgorithmException if the security provider is inadequate for {@code sigType}
    144    */
    145   static byte[] sign(
    146       SigType sigType, Key signingKey, @Nullable SecureRandom rng, byte[] data)
    147       throws InvalidKeyException, NoSuchAlgorithmException {
    148     if ((signingKey == null) || (data == null)) {
    149       throw new NullPointerException();
    150     }
    151     if (sigType.isPublicKeyScheme()) {
    152       if (rng == null) {
    153         throw new NullPointerException();
    154       }
    155       if (!(signingKey instanceof PrivateKey)) {
    156         throw new InvalidKeyException("Expected a PrivateKey");
    157       }
    158       Signature sigScheme = Signature.getInstance(sigType.getJcaName());
    159       sigScheme.initSign((PrivateKey) signingKey, rng);
    160       try {
    161         // We include a fixed magic value (salt) in the signature so that if the signing key is
    162         // reused in another context we can't be confused -- provided that the other user of the
    163         // signing key only signs statements that do not begin with this salt.
    164         sigScheme.update(SALT);
    165         sigScheme.update(data);
    166         return sigScheme.sign();
    167       } catch (SignatureException e) {
    168         throw new IllegalStateException(e);  // Consistent with failures in Mac.doFinal
    169       }
    170     } else {
    171       Mac macScheme = Mac.getInstance(sigType.getJcaName());
    172       // Note that an AES-256 SecretKey should work with most Mac schemes
    173       SecretKey derivedKey = deriveAes256KeyFor(getSecretKey(signingKey), getPurpose(sigType));
    174       macScheme.init(derivedKey);
    175       return macScheme.doFinal(data);
    176     }
    177   }
    178 
    179   /**
    180    * Verifies the {@code signature} on {@code data} using the algorithm specified by
    181    * {@code sigType} with {@code verificationKey}.
    182    *
    183    * @return true iff the signature is verified
    184    * @throws NoSuchAlgorithmException if the security provider is inadequate for {@code sigType}
    185    * @throws InvalidKeyException if {@code verificationKey} is incompatible with {@code sigType}
    186    * @throws SignatureException
    187    */
    188   static boolean verify(Key verificationKey, SigType sigType, byte[] signature, byte[] data)
    189       throws NoSuchAlgorithmException, InvalidKeyException, SignatureException {
    190     if ((verificationKey == null) || (signature == null) || (data == null)) {
    191       throw new NullPointerException();
    192     }
    193     if (sigType.isPublicKeyScheme()) {
    194       if (!(verificationKey instanceof PublicKey)) {
    195         throw new InvalidKeyException("Expected a PublicKey");
    196       }
    197       Signature sigScheme = Signature.getInstance(sigType.getJcaName());
    198       sigScheme.initVerify((PublicKey) verificationKey);
    199       sigScheme.update(SALT);  // See the comments in sign() for more on this
    200       sigScheme.update(data);
    201       return sigScheme.verify(signature);
    202     } else {
    203       Mac macScheme = Mac.getInstance(sigType.getJcaName());
    204       SecretKey derivedKey =
    205           deriveAes256KeyFor(getSecretKey(verificationKey), getPurpose(sigType));
    206       macScheme.init(derivedKey);
    207       return constantTimeArrayEquals(signature, macScheme.doFinal(data));
    208     }
    209   }
    210 
    211   /**
    212    * Generate a random IV appropriate for use with the algorithm specified in {@code encType}.
    213    *
    214    * @return a freshly generated IV (a random byte sequence of appropriate length)
    215    * @throws NoSuchAlgorithmException if the security provider is inadequate for {@code encType}
    216    */
    217   @SuppressInsecureCipherModeCheckerReviewed
    218   // See b/26525455 for security review.
    219   static byte[] generateIv(EncType encType, SecureRandom rng) throws NoSuchAlgorithmException {
    220     if (rng == null) {
    221       throw new NullPointerException();
    222     }
    223     try {
    224       Cipher encrypter = Cipher.getInstance(encType.getJcaName());
    225       byte[] iv = new byte[encrypter.getBlockSize()];
    226       rng.nextBytes(iv);
    227       return iv;
    228     } catch (NoSuchPaddingException e) {
    229       throw new NoSuchAlgorithmException(e);  // Consolidate into NoSuchAlgorithmException
    230     }
    231   }
    232 
    233   /**
    234    * Encrypts {@code plaintext} using the algorithm specified in {@code encType}, with the specified
    235    * {@code iv} and {@code encryptionKey}.
    236    *
    237    * @param rng source of randomness to be used with the specified cipher, if necessary
    238    * @return encrypted data
    239    * @throws NoSuchAlgorithmException if the security provider is inadequate for {@code encType}
    240    * @throws InvalidKeyException if {@code encryptionKey} is incompatible with {@code encType}
    241    */
    242   @SuppressInsecureCipherModeCheckerReviewed
    243   // See b/26525455 for security review.
    244   static byte[] encrypt(
    245       Key encryptionKey, EncType encType, @Nullable SecureRandom rng, byte[] iv, byte[] plaintext)
    246       throws NoSuchAlgorithmException, InvalidKeyException {
    247     if ((encryptionKey == null) || (iv == null) || (plaintext == null)) {
    248       throw new NullPointerException();
    249     }
    250     if (encType == EncType.NONE) {
    251       throw new NoSuchAlgorithmException("Cannot use NONE type here");
    252     }
    253     try {
    254       Cipher encrypter = Cipher.getInstance(encType.getJcaName());
    255       SecretKey derivedKey =
    256           deriveAes256KeyFor(getSecretKey(encryptionKey), getPurpose(encType));
    257       encrypter.init(Cipher.ENCRYPT_MODE, derivedKey, new IvParameterSpec(iv), rng);
    258       return encrypter.doFinal(plaintext);
    259     } catch (InvalidAlgorithmParameterException e) {
    260       throw new AssertionError(e);  // Should never happen
    261     } catch (IllegalBlockSizeException e) {
    262       throw new AssertionError(e);  // Should never happen
    263     } catch (BadPaddingException e) {
    264       throw new AssertionError(e);  // Should never happen
    265     } catch (NoSuchPaddingException e) {
    266       throw new NoSuchAlgorithmException(e);  // Consolidate into NoSuchAlgorithmException
    267     }
    268   }
    269 
    270   /**
    271    * Decrypts {@code ciphertext} using the algorithm specified in {@code encType}, with the
    272    * specified {@code iv} and {@code decryptionKey}.
    273    *
    274    * @return the plaintext (decrypted) data
    275    * @throws NoSuchAlgorithmException if the security provider is inadequate for {@code encType}
    276    * @throws InvalidKeyException if {@code decryptionKey} is incompatible with {@code encType}
    277    * @throws InvalidAlgorithmParameterException if {@code encType} exceeds legal cryptographic
    278    * strength limits in this jurisdiction
    279    * @throws IllegalBlockSizeException if {@code ciphertext} contains an illegal block
    280    * @throws BadPaddingException if {@code ciphertext} contains an illegal padding
    281    */
    282   @SuppressInsecureCipherModeCheckerReviewed
    283   // See b/26525455 for security review
    284   static byte[] decrypt(Key decryptionKey, EncType encType, byte[] iv, byte[] ciphertext)
    285       throws NoSuchAlgorithmException, InvalidKeyException, InvalidAlgorithmParameterException,
    286           IllegalBlockSizeException, BadPaddingException {
    287     if ((decryptionKey == null) || (iv == null) || (ciphertext == null)) {
    288       throw new NullPointerException();
    289     }
    290     if (encType == EncType.NONE) {
    291       throw new NoSuchAlgorithmException("Cannot use NONE type here");
    292     }
    293     try {
    294       Cipher decrypter = Cipher.getInstance(encType.getJcaName());
    295       SecretKey derivedKey =
    296           deriveAes256KeyFor(getSecretKey(decryptionKey), getPurpose(encType));
    297       decrypter.init(Cipher.DECRYPT_MODE, derivedKey, new IvParameterSpec(iv));
    298       return decrypter.doFinal(ciphertext);
    299     } catch (NoSuchPaddingException e) {
    300       throw new AssertionError(e);  // Should never happen
    301     }
    302   }
    303 
    304   /**
    305    * Computes a collision-resistant hash of {@link #DIGEST_LENGTH} bytes
    306    * (using a truncated SHA-256 output).
    307    */
    308   static byte[] digest(byte[] data) throws NoSuchAlgorithmException {
    309     MessageDigest sha256 = MessageDigest.getInstance("SHA-256");
    310     byte[] truncatedHash = new byte[DIGEST_LENGTH];
    311     System.arraycopy(sha256.digest(data), 0, truncatedHash, 0, DIGEST_LENGTH);
    312     return truncatedHash;
    313   }
    314 
    315   /**
    316    * Returns {@code true} if the two arrays are equal to one another.
    317    * When the two arrays differ in length, trivially returns {@code false}.
    318    * When the two arrays are equal in length, does a constant-time comparison
    319    * of the two, i.e. does not abort the comparison when the first differing
    320    * element is found.
    321    *
    322    * <p>NOTE: This is a copy of {@code java/com/google/math/crypto/ConstantTime#arrayEquals}.
    323    *
    324    * @param a An array to compare
    325    * @param b Another array to compare
    326    * @return {@code true} if these arrays are both null or if they have equal
    327    *         length and equal bytes in all elements
    328    */
    329   static boolean constantTimeArrayEquals(@Nullable byte[] a, @Nullable byte[] b) {
    330     if (a == null || b == null) {
    331       return (a == b);
    332     }
    333     if (a.length != b.length) {
    334       return false;
    335     }
    336     byte result = 0;
    337     for (int i = 0; i < b.length; i++) {
    338       result = (byte) (result | a[i] ^ b[i]);
    339     }
    340     return (result == 0);
    341   }
    342 
    343   // @VisibleForTesting
    344   static String getPurpose(SigType sigType) {
    345     return "SIG:" + sigType.getSigScheme().getNumber();
    346   }
    347 
    348   // @VisibleForTesting
    349   static String getPurpose(EncType encType) {
    350     return "ENC:" + encType.getEncScheme().getNumber();
    351   }
    352 
    353   private static SecretKey getSecretKey(Key key) throws InvalidKeyException {
    354     if (!(key instanceof SecretKey)) {
    355       throw new InvalidKeyException("Expected a SecretKey");
    356     }
    357     return (SecretKey) key;
    358   }
    359 
    360   /**
    361    * @return the UTF-8 encoding of the given string
    362    * @throws RuntimeException if the UTF-8 charset is not present.
    363    */
    364   public static byte[] utf8StringToBytes(String input) {
    365     try {
    366       return input.getBytes("UTF-8");
    367     } catch (UnsupportedEncodingException e) {
    368       throw new RuntimeException(e);  // Shouldn't happen, UTF-8 is universal
    369     }
    370   }
    371 
    372   /**
    373    * @return SHA-256(UTF-8 encoded input)
    374    */
    375   public static byte[] sha256(String input) {
    376     MessageDigest sha256;
    377     try {
    378       sha256 = MessageDigest.getInstance("SHA-256");
    379       return sha256.digest(utf8StringToBytes(input));
    380     } catch (NoSuchAlgorithmException e) {
    381       throw new RuntimeException("No security provider initialized yet?", e);
    382     }
    383   }
    384 
    385   /**
    386    * A key derivation function specific to this library, which accepts a {@code masterKey} and an
    387    * arbitrary {@code purpose} describing the intended application of the derived sub-key,
    388    * and produces a derived AES-256 key safe to use as if it were independent of any other
    389    * derived key which used a different {@code purpose}.
    390    *
    391    * @param masterKey any key suitable for use with HmacSHA256
    392    * @param purpose a UTF-8 encoded string describing the intended purpose of derived key
    393    * @return a derived SecretKey suitable for use with AES-256
    394    * @throws InvalidKeyException if the encoded form of {@code masterKey} cannot be accessed
    395    */
    396   static SecretKey deriveAes256KeyFor(SecretKey masterKey, String purpose)
    397       throws NoSuchAlgorithmException, InvalidKeyException {
    398     return new SecretKeySpec(hkdf(masterKey, SALT, utf8StringToBytes(purpose)), "AES");
    399   }
    400 
    401   /**
    402    * Implements HKDF (RFC 5869) with the SHA-256 hash and a 256-bit output key length.
    403    *
    404    * Please make sure to select a salt that is fixed and unique for your codebase, and use the
    405    * {@code info} parameter to specify any additional bits that should influence the derived key.
    406    *
    407    * @param inputKeyMaterial master key from which to derive sub-keys
    408    * @param salt a (public) randomly generated 256-bit input that can be re-used
    409    * @param info arbitrary information that is bound to the derived key (i.e., used in its creation)
    410    * @return raw derived key bytes = HKDF-SHA256(inputKeyMaterial, salt, info)
    411    * @throws InvalidKeyException if the encoded form of {@code inputKeyMaterial} cannot be accessed
    412    */
    413   public static byte[] hkdf(SecretKey inputKeyMaterial, byte[] salt, byte[] info)
    414       throws NoSuchAlgorithmException, InvalidKeyException {
    415     if ((inputKeyMaterial == null) || (salt == null) || (info == null)) {
    416       throw new NullPointerException();
    417     }
    418     return hkdfSha256Expand(hkdfSha256Extract(inputKeyMaterial, salt), info);
    419   }
    420 
    421   /**
    422    * @return the concatenation of {@code a} and {@code b}, treating {@code null} as the empty array.
    423    */
    424   static byte[] concat(@Nullable byte[] a, @Nullable byte[] b) {
    425     if ((a == null) && (b == null)) {
    426       return new byte[] { };
    427     }
    428     if (a == null) {
    429       return b;
    430     }
    431     if (b == null) {
    432       return a;
    433     }
    434     byte[] result = new byte[a.length + b.length];
    435     System.arraycopy(a, 0, result, 0, a.length);
    436     System.arraycopy(b, 0, result, a.length, b.length);
    437     return result;
    438   }
    439 
    440   /**
    441    * Since {@code Arrays.copyOfRange(...)} is not available on older Android platforms,
    442    * a custom method for computing a subarray is provided here.
    443    *
    444    * @return the substring of {@code in} from {@code beginIndex} (inclusive)
    445    *   up to {@code endIndex} (exclusive)
    446    */
    447   static byte[] subarray(byte[] in, int beginIndex, int endIndex) {
    448     if (in == null) {
    449       throw new NullPointerException();
    450     }
    451     int length = endIndex - beginIndex;
    452     if ((length < 0)
    453         || (beginIndex < 0)
    454         || (endIndex < 0)
    455         || (beginIndex >= in.length)
    456         || (endIndex > in.length)) {
    457       throw new IndexOutOfBoundsException();
    458     }
    459     byte[] result = new byte[length];
    460     if (length > 0) {
    461       System.arraycopy(in, beginIndex, result, 0, length);
    462     }
    463     return result;
    464   }
    465 
    466   /**
    467    * The HKDF (RFC 5869) extraction function, using the SHA-256 hash function. This function is
    468    * used to pre-process the inputKeyMaterial and mix it with the salt, producing output suitable
    469    * for use with HKDF expansion function (which produces the actual derived key).
    470    *
    471    * @see #hkdfSha256Expand(byte[], byte[])
    472    * @return HMAC-SHA256(salt, inputKeyMaterial)  (salt is the "key" for the HMAC)
    473    * @throws InvalidKeyException if the encoded form of {@code inputKeyMaterial} cannot be accessed
    474    * @throws NoSuchAlgorithmException if the HmacSHA256 or AES algorithms are unavailable
    475    */
    476   private static byte[] hkdfSha256Extract(SecretKey inputKeyMaterial, byte[] salt)
    477       throws NoSuchAlgorithmException, InvalidKeyException {
    478     Mac macScheme = Mac.getInstance("HmacSHA256");
    479     try {
    480       macScheme.init(new SecretKeySpec(salt, "AES"));
    481     } catch (InvalidKeyException e) {
    482       throw new AssertionError(e);  // This should never happen
    483     }
    484     // Note that the SecretKey encoding format is defined to be RAW, so the encoded form should be
    485     // consistent across implementations.
    486     byte[] encodedKeyMaterial = inputKeyMaterial.getEncoded();
    487     if (encodedKeyMaterial == null) {
    488       throw new InvalidKeyException("Cannot get encoded form of SecretKey");
    489     }
    490     return macScheme.doFinal(encodedKeyMaterial);
    491   }
    492 
    493   /**
    494    * Special case of HKDF (RFC 5869) expansion function, using the SHA-256 hash function and
    495    * allowing for a maximum output length of 256 bits.
    496    *
    497    * @param pseudoRandomKey should be generated by {@link #hkdfSha256Expand(byte[], byte[])}
    498    * @param info arbitrary information the derived key should be bound to
    499    * @return raw derived key bytes = HMAC-SHA256(pseudoRandomKey, info | 0x01)
    500    * @throws NoSuchAlgorithmException if the HmacSHA256 or AES algorithms are unavailable
    501    */
    502   private static byte[] hkdfSha256Expand(byte[] pseudoRandomKey, byte[] info)
    503       throws NoSuchAlgorithmException {
    504     Mac macScheme = Mac.getInstance("HmacSHA256");
    505     try {
    506       macScheme.init(new SecretKeySpec(pseudoRandomKey, "AES"));
    507     } catch (InvalidKeyException e) {
    508       throw new AssertionError(e);  // This should never happen
    509     }
    510     // Arbitrary "info" to be included in the MAC.
    511     macScheme.update(info);
    512     // Note that RFC 5869 computes number of blocks N = ceil(hash length / output length), but
    513     // here we only deal with a 256 bit hash up to a 256 bit output, yielding N=1.
    514     return macScheme.doFinal(CONSTANT_01);
    515   }
    516 
    517 }
    518