Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the LoopInfo class that is used to identify natural loops
     11 // and determine the loop depth of various nodes of the CFG.  A natural loop
     12 // has exactly one entry-point, which is called the header. Note that natural
     13 // loops may actually be several loops that share the same header node.
     14 //
     15 // This analysis calculates the nesting structure of loops in a function.  For
     16 // each natural loop identified, this analysis identifies natural loops
     17 // contained entirely within the loop and the basic blocks the make up the loop.
     18 //
     19 // It can calculate on the fly various bits of information, for example:
     20 //
     21 //  * whether there is a preheader for the loop
     22 //  * the number of back edges to the header
     23 //  * whether or not a particular block branches out of the loop
     24 //  * the successor blocks of the loop
     25 //  * the loop depth
     26 //  * etc...
     27 //
     28 // Note that this analysis specifically identifies *Loops* not cycles or SCCs
     29 // in the CFG.  There can be strongly connected compontents in the CFG which
     30 // this analysis will not recognize and that will not be represented by a Loop
     31 // instance.  In particular, a Loop might be inside such a non-loop SCC, or a
     32 // non-loop SCC might contain a sub-SCC which is a Loop.
     33 //
     34 //===----------------------------------------------------------------------===//
     35 
     36 #ifndef LLVM_ANALYSIS_LOOPINFO_H
     37 #define LLVM_ANALYSIS_LOOPINFO_H
     38 
     39 #include "llvm/ADT/DenseMap.h"
     40 #include "llvm/ADT/DenseSet.h"
     41 #include "llvm/ADT/GraphTraits.h"
     42 #include "llvm/ADT/SmallPtrSet.h"
     43 #include "llvm/ADT/SmallVector.h"
     44 #include "llvm/IR/CFG.h"
     45 #include "llvm/IR/Instruction.h"
     46 #include "llvm/IR/Instructions.h"
     47 #include "llvm/IR/PassManager.h"
     48 #include "llvm/Pass.h"
     49 #include <algorithm>
     50 
     51 namespace llvm {
     52 
     53 class DominatorTree;
     54 class LoopInfo;
     55 class Loop;
     56 class MDNode;
     57 class PHINode;
     58 class raw_ostream;
     59 template<class N> class DominatorTreeBase;
     60 template<class N, class M> class LoopInfoBase;
     61 template<class N, class M> class LoopBase;
     62 
     63 //===----------------------------------------------------------------------===//
     64 /// Instances of this class are used to represent loops that are detected in the
     65 /// flow graph.
     66 ///
     67 template<class BlockT, class LoopT>
     68 class LoopBase {
     69   LoopT *ParentLoop;
     70   // Loops contained entirely within this one.
     71   std::vector<LoopT *> SubLoops;
     72 
     73   // The list of blocks in this loop. First entry is the header node.
     74   std::vector<BlockT*> Blocks;
     75 
     76   SmallPtrSet<const BlockT*, 8> DenseBlockSet;
     77 
     78   /// Indicator that this loop is no longer a valid loop.
     79   bool IsInvalid = false;
     80 
     81   LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
     82   const LoopBase<BlockT, LoopT>&
     83     operator=(const LoopBase<BlockT, LoopT> &) = delete;
     84 public:
     85   /// This creates an empty loop.
     86   LoopBase() : ParentLoop(nullptr) {}
     87   ~LoopBase() {
     88     for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
     89       delete SubLoops[i];
     90   }
     91 
     92   /// Return the nesting level of this loop.  An outer-most loop has depth 1,
     93   /// for consistency with loop depth values used for basic blocks, where depth
     94   /// 0 is used for blocks not inside any loops.
     95   unsigned getLoopDepth() const {
     96     unsigned D = 1;
     97     for (const LoopT *CurLoop = ParentLoop; CurLoop;
     98          CurLoop = CurLoop->ParentLoop)
     99       ++D;
    100     return D;
    101   }
    102   BlockT *getHeader() const { return Blocks.front(); }
    103   LoopT *getParentLoop() const { return ParentLoop; }
    104 
    105   /// This is a raw interface for bypassing addChildLoop.
    106   void setParentLoop(LoopT *L) { ParentLoop = L; }
    107 
    108   /// Return true if the specified loop is contained within in this loop.
    109   bool contains(const LoopT *L) const {
    110     if (L == this) return true;
    111     if (!L)        return false;
    112     return contains(L->getParentLoop());
    113   }
    114 
    115   /// Return true if the specified basic block is in this loop.
    116   bool contains(const BlockT *BB) const {
    117     return DenseBlockSet.count(BB);
    118   }
    119 
    120   /// Return true if the specified instruction is in this loop.
    121   template<class InstT>
    122   bool contains(const InstT *Inst) const {
    123     return contains(Inst->getParent());
    124   }
    125 
    126   /// Return the loops contained entirely within this loop.
    127   const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
    128   std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; }
    129   typedef typename std::vector<LoopT *>::const_iterator iterator;
    130   typedef typename std::vector<LoopT *>::const_reverse_iterator
    131     reverse_iterator;
    132   iterator begin() const { return SubLoops.begin(); }
    133   iterator end() const { return SubLoops.end(); }
    134   reverse_iterator rbegin() const { return SubLoops.rbegin(); }
    135   reverse_iterator rend() const { return SubLoops.rend(); }
    136   bool empty() const { return SubLoops.empty(); }
    137 
    138   /// Get a list of the basic blocks which make up this loop.
    139   const std::vector<BlockT*> &getBlocks() const { return Blocks; }
    140   typedef typename std::vector<BlockT*>::const_iterator block_iterator;
    141   block_iterator block_begin() const { return Blocks.begin(); }
    142   block_iterator block_end() const { return Blocks.end(); }
    143   inline iterator_range<block_iterator> blocks() const {
    144     return make_range(block_begin(), block_end());
    145   }
    146 
    147   /// Get the number of blocks in this loop in constant time.
    148   unsigned getNumBlocks() const {
    149     return Blocks.size();
    150   }
    151 
    152   /// Invalidate the loop, indicating that it is no longer a loop.
    153   void invalidate() { IsInvalid = true; }
    154 
    155   /// Return true if this loop is no longer valid.
    156   bool isInvalid() { return IsInvalid; }
    157 
    158   /// True if terminator in the block can branch to another block that is
    159   /// outside of the current loop.
    160   bool isLoopExiting(const BlockT *BB) const {
    161     typedef GraphTraits<const BlockT*> BlockTraits;
    162     for (typename BlockTraits::ChildIteratorType SI =
    163          BlockTraits::child_begin(BB),
    164          SE = BlockTraits::child_end(BB); SI != SE; ++SI) {
    165       if (!contains(*SI))
    166         return true;
    167     }
    168     return false;
    169   }
    170 
    171   /// Calculate the number of back edges to the loop header.
    172   unsigned getNumBackEdges() const {
    173     unsigned NumBackEdges = 0;
    174     BlockT *H = getHeader();
    175 
    176     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    177     for (typename InvBlockTraits::ChildIteratorType I =
    178          InvBlockTraits::child_begin(H),
    179          E = InvBlockTraits::child_end(H); I != E; ++I)
    180       if (contains(*I))
    181         ++NumBackEdges;
    182 
    183     return NumBackEdges;
    184   }
    185 
    186   //===--------------------------------------------------------------------===//
    187   // APIs for simple analysis of the loop.
    188   //
    189   // Note that all of these methods can fail on general loops (ie, there may not
    190   // be a preheader, etc).  For best success, the loop simplification and
    191   // induction variable canonicalization pass should be used to normalize loops
    192   // for easy analysis.  These methods assume canonical loops.
    193 
    194   /// Return all blocks inside the loop that have successors outside of the
    195   /// loop. These are the blocks _inside of the current loop_ which branch out.
    196   /// The returned list is always unique.
    197   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
    198 
    199   /// If getExitingBlocks would return exactly one block, return that block.
    200   /// Otherwise return null.
    201   BlockT *getExitingBlock() const;
    202 
    203   /// Return all of the successor blocks of this loop. These are the blocks
    204   /// _outside of the current loop_ which are branched to.
    205   void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const;
    206 
    207   /// If getExitBlocks would return exactly one block, return that block.
    208   /// Otherwise return null.
    209   BlockT *getExitBlock() const;
    210 
    211   /// Edge type.
    212   typedef std::pair<const BlockT*, const BlockT*> Edge;
    213 
    214   /// Return all pairs of (_inside_block_,_outside_block_).
    215   void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
    216 
    217   /// If there is a preheader for this loop, return it. A loop has a preheader
    218   /// if there is only one edge to the header of the loop from outside of the
    219   /// loop. If this is the case, the block branching to the header of the loop
    220   /// is the preheader node.
    221   ///
    222   /// This method returns null if there is no preheader for the loop.
    223   BlockT *getLoopPreheader() const;
    224 
    225   /// If the given loop's header has exactly one unique predecessor outside the
    226   /// loop, return it. Otherwise return null.
    227   ///  This is less strict that the loop "preheader" concept, which requires
    228   /// the predecessor to have exactly one successor.
    229   BlockT *getLoopPredecessor() const;
    230 
    231   /// If there is a single latch block for this loop, return it.
    232   /// A latch block is a block that contains a branch back to the header.
    233   BlockT *getLoopLatch() const;
    234 
    235   /// Return all loop latch blocks of this loop. A latch block is a block that
    236   /// contains a branch back to the header.
    237   void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
    238     BlockT *H = getHeader();
    239     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
    240     for (typename InvBlockTraits::ChildIteratorType I =
    241          InvBlockTraits::child_begin(H),
    242          E = InvBlockTraits::child_end(H); I != E; ++I)
    243       if (contains(*I))
    244         LoopLatches.push_back(*I);
    245   }
    246 
    247   //===--------------------------------------------------------------------===//
    248   // APIs for updating loop information after changing the CFG
    249   //
    250 
    251   /// This method is used by other analyses to update loop information.
    252   /// NewBB is set to be a new member of the current loop.
    253   /// Because of this, it is added as a member of all parent loops, and is added
    254   /// to the specified LoopInfo object as being in the current basic block.  It
    255   /// is not valid to replace the loop header with this method.
    256   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
    257 
    258   /// This is used when splitting loops up. It replaces the OldChild entry in
    259   /// our children list with NewChild, and updates the parent pointer of
    260   /// OldChild to be null and the NewChild to be this loop.
    261   /// This updates the loop depth of the new child.
    262   void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
    263 
    264   /// Add the specified loop to be a child of this loop.
    265   /// This updates the loop depth of the new child.
    266   void addChildLoop(LoopT *NewChild) {
    267     assert(!NewChild->ParentLoop && "NewChild already has a parent!");
    268     NewChild->ParentLoop = static_cast<LoopT *>(this);
    269     SubLoops.push_back(NewChild);
    270   }
    271 
    272   /// This removes the specified child from being a subloop of this loop. The
    273   /// loop is not deleted, as it will presumably be inserted into another loop.
    274   LoopT *removeChildLoop(iterator I) {
    275     assert(I != SubLoops.end() && "Cannot remove end iterator!");
    276     LoopT *Child = *I;
    277     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
    278     SubLoops.erase(SubLoops.begin()+(I-begin()));
    279     Child->ParentLoop = nullptr;
    280     return Child;
    281   }
    282 
    283   /// This adds a basic block directly to the basic block list.
    284   /// This should only be used by transformations that create new loops.  Other
    285   /// transformations should use addBasicBlockToLoop.
    286   void addBlockEntry(BlockT *BB) {
    287     Blocks.push_back(BB);
    288     DenseBlockSet.insert(BB);
    289   }
    290 
    291   /// interface to reverse Blocks[from, end of loop] in this loop
    292   void reverseBlock(unsigned from) {
    293     std::reverse(Blocks.begin() + from, Blocks.end());
    294   }
    295 
    296   /// interface to do reserve() for Blocks
    297   void reserveBlocks(unsigned size) {
    298     Blocks.reserve(size);
    299   }
    300 
    301   /// This method is used to move BB (which must be part of this loop) to be the
    302   /// loop header of the loop (the block that dominates all others).
    303   void moveToHeader(BlockT *BB) {
    304     if (Blocks[0] == BB) return;
    305     for (unsigned i = 0; ; ++i) {
    306       assert(i != Blocks.size() && "Loop does not contain BB!");
    307       if (Blocks[i] == BB) {
    308         Blocks[i] = Blocks[0];
    309         Blocks[0] = BB;
    310         return;
    311       }
    312     }
    313   }
    314 
    315   /// This removes the specified basic block from the current loop, updating the
    316   /// Blocks as appropriate. This does not update the mapping in the LoopInfo
    317   /// class.
    318   void removeBlockFromLoop(BlockT *BB) {
    319     auto I = std::find(Blocks.begin(), Blocks.end(), BB);
    320     assert(I != Blocks.end() && "N is not in this list!");
    321     Blocks.erase(I);
    322 
    323     DenseBlockSet.erase(BB);
    324   }
    325 
    326   /// Verify loop structure
    327   void verifyLoop() const;
    328 
    329   /// Verify loop structure of this loop and all nested loops.
    330   void verifyLoopNest(DenseSet<const LoopT*> *Loops) const;
    331 
    332   void print(raw_ostream &OS, unsigned Depth = 0) const;
    333 
    334 protected:
    335   friend class LoopInfoBase<BlockT, LoopT>;
    336   explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
    337     Blocks.push_back(BB);
    338     DenseBlockSet.insert(BB);
    339   }
    340 };
    341 
    342 template<class BlockT, class LoopT>
    343 raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
    344   Loop.print(OS);
    345   return OS;
    346 }
    347 
    348 // Implementation in LoopInfoImpl.h
    349 extern template class LoopBase<BasicBlock, Loop>;
    350 
    351 
    352 /// Represents a single loop in the control flow graph.  Note that not all SCCs
    353 /// in the CFG are neccessarily loops.
    354 class Loop : public LoopBase<BasicBlock, Loop> {
    355 public:
    356   Loop() {}
    357 
    358   /// Return true if the specified value is loop invariant.
    359   bool isLoopInvariant(const Value *V) const;
    360 
    361   /// Return true if all the operands of the specified instruction are loop
    362   /// invariant.
    363   bool hasLoopInvariantOperands(const Instruction *I) const;
    364 
    365   /// If the given value is an instruction inside of the loop and it can be
    366   /// hoisted, do so to make it trivially loop-invariant.
    367   /// Return true if the value after any hoisting is loop invariant. This
    368   /// function can be used as a slightly more aggressive replacement for
    369   /// isLoopInvariant.
    370   ///
    371   /// If InsertPt is specified, it is the point to hoist instructions to.
    372   /// If null, the terminator of the loop preheader is used.
    373   bool makeLoopInvariant(Value *V, bool &Changed,
    374                          Instruction *InsertPt = nullptr) const;
    375 
    376   /// If the given instruction is inside of the loop and it can be hoisted, do
    377   /// so to make it trivially loop-invariant.
    378   /// Return true if the instruction after any hoisting is loop invariant. This
    379   /// function can be used as a slightly more aggressive replacement for
    380   /// isLoopInvariant.
    381   ///
    382   /// If InsertPt is specified, it is the point to hoist instructions to.
    383   /// If null, the terminator of the loop preheader is used.
    384   ///
    385   bool makeLoopInvariant(Instruction *I, bool &Changed,
    386                          Instruction *InsertPt = nullptr) const;
    387 
    388   /// Check to see if the loop has a canonical induction variable: an integer
    389   /// recurrence that starts at 0 and increments by one each time through the
    390   /// loop. If so, return the phi node that corresponds to it.
    391   ///
    392   /// The IndVarSimplify pass transforms loops to have a canonical induction
    393   /// variable.
    394   ///
    395   PHINode *getCanonicalInductionVariable() const;
    396 
    397   /// Return true if the Loop is in LCSSA form.
    398   bool isLCSSAForm(DominatorTree &DT) const;
    399 
    400   /// Return true if this Loop and all inner subloops are in LCSSA form.
    401   bool isRecursivelyLCSSAForm(DominatorTree &DT) const;
    402 
    403   /// Return true if the Loop is in the form that the LoopSimplify form
    404   /// transforms loops to, which is sometimes called normal form.
    405   bool isLoopSimplifyForm() const;
    406 
    407   /// Return true if the loop body is safe to clone in practice.
    408   bool isSafeToClone() const;
    409 
    410   /// Returns true if the loop is annotated parallel.
    411   ///
    412   /// A parallel loop can be assumed to not contain any dependencies between
    413   /// iterations by the compiler. That is, any loop-carried dependency checking
    414   /// can be skipped completely when parallelizing the loop on the target
    415   /// machine. Thus, if the parallel loop information originates from the
    416   /// programmer, e.g. via the OpenMP parallel for pragma, it is the
    417   /// programmer's responsibility to ensure there are no loop-carried
    418   /// dependencies. The final execution order of the instructions across
    419   /// iterations is not guaranteed, thus, the end result might or might not
    420   /// implement actual concurrent execution of instructions across multiple
    421   /// iterations.
    422   bool isAnnotatedParallel() const;
    423 
    424   /// Return the llvm.loop loop id metadata node for this loop if it is present.
    425   ///
    426   /// If this loop contains the same llvm.loop metadata on each branch to the
    427   /// header then the node is returned. If any latch instruction does not
    428   /// contain llvm.loop or or if multiple latches contain different nodes then
    429   /// 0 is returned.
    430   MDNode *getLoopID() const;
    431   /// Set the llvm.loop loop id metadata for this loop.
    432   ///
    433   /// The LoopID metadata node will be added to each terminator instruction in
    434   /// the loop that branches to the loop header.
    435   ///
    436   /// The LoopID metadata node should have one or more operands and the first
    437   /// operand should should be the node itself.
    438   void setLoopID(MDNode *LoopID) const;
    439 
    440   /// Return true if no exit block for the loop has a predecessor that is
    441   /// outside the loop.
    442   bool hasDedicatedExits() const;
    443 
    444   /// Return all unique successor blocks of this loop.
    445   /// These are the blocks _outside of the current loop_ which are branched to.
    446   /// This assumes that loop exits are in canonical form.
    447   void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;
    448 
    449   /// If getUniqueExitBlocks would return exactly one block, return that block.
    450   /// Otherwise return null.
    451   BasicBlock *getUniqueExitBlock() const;
    452 
    453   void dump() const;
    454 
    455   /// Return the debug location of the start of this loop.
    456   /// This looks for a BB terminating instruction with a known debug
    457   /// location by looking at the preheader and header blocks. If it
    458   /// cannot find a terminating instruction with location information,
    459   /// it returns an unknown location.
    460   DebugLoc getStartLoc() const;
    461 
    462   StringRef getName() const {
    463     if (BasicBlock *Header = getHeader())
    464       if (Header->hasName())
    465         return Header->getName();
    466     return "<unnamed loop>";
    467   }
    468 
    469 private:
    470   friend class LoopInfoBase<BasicBlock, Loop>;
    471   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
    472 };
    473 
    474 //===----------------------------------------------------------------------===//
    475 /// This class builds and contains all of the top-level loop
    476 /// structures in the specified function.
    477 ///
    478 
    479 template<class BlockT, class LoopT>
    480 class LoopInfoBase {
    481   // BBMap - Mapping of basic blocks to the inner most loop they occur in
    482   DenseMap<const BlockT *, LoopT *> BBMap;
    483   std::vector<LoopT *> TopLevelLoops;
    484   std::vector<LoopT *> RemovedLoops;
    485 
    486   friend class LoopBase<BlockT, LoopT>;
    487   friend class LoopInfo;
    488 
    489   void operator=(const LoopInfoBase &) = delete;
    490   LoopInfoBase(const LoopInfoBase &) = delete;
    491 public:
    492   LoopInfoBase() { }
    493   ~LoopInfoBase() { releaseMemory(); }
    494 
    495   LoopInfoBase(LoopInfoBase &&Arg)
    496       : BBMap(std::move(Arg.BBMap)),
    497         TopLevelLoops(std::move(Arg.TopLevelLoops)) {
    498     // We have to clear the arguments top level loops as we've taken ownership.
    499     Arg.TopLevelLoops.clear();
    500   }
    501   LoopInfoBase &operator=(LoopInfoBase &&RHS) {
    502     BBMap = std::move(RHS.BBMap);
    503 
    504     for (auto *L : TopLevelLoops)
    505       delete L;
    506     TopLevelLoops = std::move(RHS.TopLevelLoops);
    507     RHS.TopLevelLoops.clear();
    508     return *this;
    509   }
    510 
    511   void releaseMemory() {
    512     BBMap.clear();
    513 
    514     for (auto *L : TopLevelLoops)
    515       delete L;
    516     TopLevelLoops.clear();
    517     for (auto *L : RemovedLoops)
    518       delete L;
    519     RemovedLoops.clear();
    520   }
    521 
    522   /// iterator/begin/end - The interface to the top-level loops in the current
    523   /// function.
    524   ///
    525   typedef typename std::vector<LoopT *>::const_iterator iterator;
    526   typedef typename std::vector<LoopT *>::const_reverse_iterator
    527     reverse_iterator;
    528   iterator begin() const { return TopLevelLoops.begin(); }
    529   iterator end() const { return TopLevelLoops.end(); }
    530   reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
    531   reverse_iterator rend() const { return TopLevelLoops.rend(); }
    532   bool empty() const { return TopLevelLoops.empty(); }
    533 
    534   /// Return the inner most loop that BB lives in. If a basic block is in no
    535   /// loop (for example the entry node), null is returned.
    536   LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
    537 
    538   /// Same as getLoopFor.
    539   const LoopT *operator[](const BlockT *BB) const {
    540     return getLoopFor(BB);
    541   }
    542 
    543   /// Return the loop nesting level of the specified block. A depth of 0 means
    544   /// the block is not inside any loop.
    545   unsigned getLoopDepth(const BlockT *BB) const {
    546     const LoopT *L = getLoopFor(BB);
    547     return L ? L->getLoopDepth() : 0;
    548   }
    549 
    550   // True if the block is a loop header node
    551   bool isLoopHeader(const BlockT *BB) const {
    552     const LoopT *L = getLoopFor(BB);
    553     return L && L->getHeader() == BB;
    554   }
    555 
    556   /// This removes the specified top-level loop from this loop info object.
    557   /// The loop is not deleted, as it will presumably be inserted into
    558   /// another loop.
    559   LoopT *removeLoop(iterator I) {
    560     assert(I != end() && "Cannot remove end iterator!");
    561     LoopT *L = *I;
    562     assert(!L->getParentLoop() && "Not a top-level loop!");
    563     TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
    564     return L;
    565   }
    566 
    567   /// Change the top-level loop that contains BB to the specified loop.
    568   /// This should be used by transformations that restructure the loop hierarchy
    569   /// tree.
    570   void changeLoopFor(BlockT *BB, LoopT *L) {
    571     if (!L) {
    572       BBMap.erase(BB);
    573       return;
    574     }
    575     BBMap[BB] = L;
    576   }
    577 
    578   /// Replace the specified loop in the top-level loops list with the indicated
    579   /// loop.
    580   void changeTopLevelLoop(LoopT *OldLoop,
    581                           LoopT *NewLoop) {
    582     auto I = std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
    583     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
    584     *I = NewLoop;
    585     assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
    586            "Loops already embedded into a subloop!");
    587   }
    588 
    589   /// This adds the specified loop to the collection of top-level loops.
    590   void addTopLevelLoop(LoopT *New) {
    591     assert(!New->getParentLoop() && "Loop already in subloop!");
    592     TopLevelLoops.push_back(New);
    593   }
    594 
    595   /// This method completely removes BB from all data structures,
    596   /// including all of the Loop objects it is nested in and our mapping from
    597   /// BasicBlocks to loops.
    598   void removeBlock(BlockT *BB) {
    599     auto I = BBMap.find(BB);
    600     if (I != BBMap.end()) {
    601       for (LoopT *L = I->second; L; L = L->getParentLoop())
    602         L->removeBlockFromLoop(BB);
    603 
    604       BBMap.erase(I);
    605     }
    606   }
    607 
    608   // Internals
    609 
    610   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
    611                                       const LoopT *ParentLoop) {
    612     if (!SubLoop) return true;
    613     if (SubLoop == ParentLoop) return false;
    614     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
    615   }
    616 
    617   /// Create the loop forest using a stable algorithm.
    618   void analyze(const DominatorTreeBase<BlockT> &DomTree);
    619 
    620   // Debugging
    621   void print(raw_ostream &OS) const;
    622 
    623   void verify() const;
    624 };
    625 
    626 // Implementation in LoopInfoImpl.h
    627 extern template class LoopInfoBase<BasicBlock, Loop>;
    628 
    629 class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
    630   typedef LoopInfoBase<BasicBlock, Loop> BaseT;
    631 
    632   friend class LoopBase<BasicBlock, Loop>;
    633 
    634   void operator=(const LoopInfo &) = delete;
    635   LoopInfo(const LoopInfo &) = delete;
    636 public:
    637   LoopInfo() {}
    638   explicit LoopInfo(const DominatorTreeBase<BasicBlock> &DomTree);
    639 
    640   LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
    641   LoopInfo &operator=(LoopInfo &&RHS) {
    642     BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
    643     return *this;
    644   }
    645 
    646   // Most of the public interface is provided via LoopInfoBase.
    647 
    648   /// Update LoopInfo after removing the last backedge from a loop. This updates
    649   /// the loop forest and parent loops for each block so that \c L is no longer
    650   /// referenced, but does not actually delete \c L immediately. The pointer
    651   /// will remain valid until this LoopInfo's memory is released.
    652   void markAsRemoved(Loop *L);
    653 
    654   /// Returns true if replacing From with To everywhere is guaranteed to
    655   /// preserve LCSSA form.
    656   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
    657     // Preserving LCSSA form is only problematic if the replacing value is an
    658     // instruction.
    659     Instruction *I = dyn_cast<Instruction>(To);
    660     if (!I) return true;
    661     // If both instructions are defined in the same basic block then replacement
    662     // cannot break LCSSA form.
    663     if (I->getParent() == From->getParent())
    664       return true;
    665     // If the instruction is not defined in a loop then it can safely replace
    666     // anything.
    667     Loop *ToLoop = getLoopFor(I->getParent());
    668     if (!ToLoop) return true;
    669     // If the replacing instruction is defined in the same loop as the original
    670     // instruction, or in a loop that contains it as an inner loop, then using
    671     // it as a replacement will not break LCSSA form.
    672     return ToLoop->contains(getLoopFor(From->getParent()));
    673   }
    674 
    675   /// Checks if moving a specific instruction can break LCSSA in any loop.
    676   ///
    677   /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
    678   /// assuming that the function containing \p Inst and \p NewLoc is currently
    679   /// in LCSSA form.
    680   bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
    681     assert(Inst->getFunction() == NewLoc->getFunction() &&
    682            "Can't reason about IPO!");
    683 
    684     auto *OldBB = Inst->getParent();
    685     auto *NewBB = NewLoc->getParent();
    686 
    687     // Movement within the same loop does not break LCSSA (the equality check is
    688     // to avoid doing a hashtable lookup in case of intra-block movement).
    689     if (OldBB == NewBB)
    690       return true;
    691 
    692     auto *OldLoop = getLoopFor(OldBB);
    693     auto *NewLoop = getLoopFor(NewBB);
    694 
    695     if (OldLoop == NewLoop)
    696       return true;
    697 
    698     // Check if Outer contains Inner; with the null loop counting as the
    699     // "outermost" loop.
    700     auto Contains = [](const Loop *Outer, const Loop *Inner) {
    701       return !Outer || Outer->contains(Inner);
    702     };
    703 
    704     // To check that the movement of Inst to before NewLoc does not break LCSSA,
    705     // we need to check two sets of uses for possible LCSSA violations at
    706     // NewLoc: the users of NewInst, and the operands of NewInst.
    707 
    708     // If we know we're hoisting Inst out of an inner loop to an outer loop,
    709     // then the uses *of* Inst don't need to be checked.
    710 
    711     if (!Contains(NewLoop, OldLoop)) {
    712       for (Use &U : Inst->uses()) {
    713         auto *UI = cast<Instruction>(U.getUser());
    714         auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
    715                                      : UI->getParent();
    716         if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
    717           return false;
    718       }
    719     }
    720 
    721     // If we know we're sinking Inst from an outer loop into an inner loop, then
    722     // the *operands* of Inst don't need to be checked.
    723 
    724     if (!Contains(OldLoop, NewLoop)) {
    725       // See below on why we can't handle phi nodes here.
    726       if (isa<PHINode>(Inst))
    727         return false;
    728 
    729       for (Use &U : Inst->operands()) {
    730         auto *DefI = dyn_cast<Instruction>(U.get());
    731         if (!DefI)
    732           return false;
    733 
    734         // This would need adjustment if we allow Inst to be a phi node -- the
    735         // new use block won't simply be NewBB.
    736 
    737         auto *DefBlock = DefI->getParent();
    738         if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
    739           return false;
    740       }
    741     }
    742 
    743     return true;
    744   }
    745 };
    746 
    747 // Allow clients to walk the list of nested loops...
    748 template <> struct GraphTraits<const Loop*> {
    749   typedef const Loop NodeType;
    750   typedef LoopInfo::iterator ChildIteratorType;
    751 
    752   static NodeType *getEntryNode(const Loop *L) { return L; }
    753   static inline ChildIteratorType child_begin(NodeType *N) {
    754     return N->begin();
    755   }
    756   static inline ChildIteratorType child_end(NodeType *N) {
    757     return N->end();
    758   }
    759 };
    760 
    761 template <> struct GraphTraits<Loop*> {
    762   typedef Loop NodeType;
    763   typedef LoopInfo::iterator ChildIteratorType;
    764 
    765   static NodeType *getEntryNode(Loop *L) { return L; }
    766   static inline ChildIteratorType child_begin(NodeType *N) {
    767     return N->begin();
    768   }
    769   static inline ChildIteratorType child_end(NodeType *N) {
    770     return N->end();
    771   }
    772 };
    773 
    774 /// \brief Analysis pass that exposes the \c LoopInfo for a function.
    775 class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
    776   friend AnalysisInfoMixin<LoopAnalysis>;
    777   static char PassID;
    778 
    779 public:
    780   typedef LoopInfo Result;
    781 
    782   LoopInfo run(Function &F, AnalysisManager<Function> &AM);
    783 };
    784 
    785 /// \brief Printer pass for the \c LoopAnalysis results.
    786 class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
    787   raw_ostream &OS;
    788 
    789 public:
    790   explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
    791   PreservedAnalyses run(Function &F, AnalysisManager<Function> &AM);
    792 };
    793 
    794 /// \brief The legacy pass manager's analysis pass to compute loop information.
    795 class LoopInfoWrapperPass : public FunctionPass {
    796   LoopInfo LI;
    797 
    798 public:
    799   static char ID; // Pass identification, replacement for typeid
    800 
    801   LoopInfoWrapperPass() : FunctionPass(ID) {
    802     initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
    803   }
    804 
    805   LoopInfo &getLoopInfo() { return LI; }
    806   const LoopInfo &getLoopInfo() const { return LI; }
    807 
    808   /// \brief Calculate the natural loop information for a given function.
    809   bool runOnFunction(Function &F) override;
    810 
    811   void verifyAnalysis() const override;
    812 
    813   void releaseMemory() override { LI.releaseMemory(); }
    814 
    815   void print(raw_ostream &O, const Module *M = nullptr) const override;
    816 
    817   void getAnalysisUsage(AnalysisUsage &AU) const override;
    818 };
    819 
    820 /// \brief Pass for printing a loop's contents as LLVM's text IR assembly.
    821 class PrintLoopPass : public PassInfoMixin<PrintLoopPass> {
    822   raw_ostream &OS;
    823   std::string Banner;
    824 
    825 public:
    826   PrintLoopPass();
    827   PrintLoopPass(raw_ostream &OS, const std::string &Banner = "");
    828 
    829   PreservedAnalyses run(Loop &L, AnalysisManager<Loop> &);
    830 };
    831 
    832 } // End llvm namespace
    833 
    834 #endif
    835