Home | History | Annotate | Download | only in products
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_H
     11 #define EIGEN_TRIANGULAR_SOLVER_MATRIX_H
     12 
     13 namespace Eigen {
     14 
     15 namespace internal {
     16 
     17 // if the rhs is row major, let's transpose the product
     18 template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder>
     19 struct triangular_solve_matrix<Scalar,Index,Side,Mode,Conjugate,TriStorageOrder,RowMajor>
     20 {
     21   static void run(
     22     Index size, Index cols,
     23     const Scalar*  tri, Index triStride,
     24     Scalar* _other, Index otherStride,
     25     level3_blocking<Scalar,Scalar>& blocking)
     26   {
     27     triangular_solve_matrix<
     28       Scalar, Index, Side==OnTheLeft?OnTheRight:OnTheLeft,
     29       (Mode&UnitDiag) | ((Mode&Upper) ? Lower : Upper),
     30       NumTraits<Scalar>::IsComplex && Conjugate,
     31       TriStorageOrder==RowMajor ? ColMajor : RowMajor, ColMajor>
     32       ::run(size, cols, tri, triStride, _other, otherStride, blocking);
     33   }
     34 };
     35 
     36 /* Optimized triangular solver with multiple right hand side and the triangular matrix on the left
     37  */
     38 template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
     39 struct triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor>
     40 {
     41   static EIGEN_DONT_INLINE void run(
     42     Index size, Index otherSize,
     43     const Scalar* _tri, Index triStride,
     44     Scalar* _other, Index otherStride,
     45     level3_blocking<Scalar,Scalar>& blocking);
     46 };
     47 template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
     48 EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor>::run(
     49     Index size, Index otherSize,
     50     const Scalar* _tri, Index triStride,
     51     Scalar* _other, Index otherStride,
     52     level3_blocking<Scalar,Scalar>& blocking)
     53   {
     54     Index cols = otherSize;
     55 
     56     typedef const_blas_data_mapper<Scalar, Index, TriStorageOrder> TriMapper;
     57     typedef blas_data_mapper<Scalar, Index, ColMajor> OtherMapper;
     58     TriMapper tri(_tri, triStride);
     59     OtherMapper other(_other, otherStride);
     60 
     61     typedef gebp_traits<Scalar,Scalar> Traits;
     62 
     63     enum {
     64       SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
     65       IsLower = (Mode&Lower) == Lower
     66     };
     67 
     68     Index kc = blocking.kc();                   // cache block size along the K direction
     69     Index mc = (std::min)(size,blocking.mc());  // cache block size along the M direction
     70 
     71     std::size_t sizeA = kc*mc;
     72     std::size_t sizeB = kc*cols;
     73 
     74     ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
     75     ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
     76 
     77     conj_if<Conjugate> conj;
     78     gebp_kernel<Scalar, Scalar, Index, OtherMapper, Traits::mr, Traits::nr, Conjugate, false> gebp_kernel;
     79     gemm_pack_lhs<Scalar, Index, TriMapper, Traits::mr, Traits::LhsProgress, TriStorageOrder> pack_lhs;
     80     gemm_pack_rhs<Scalar, Index, OtherMapper, Traits::nr, ColMajor, false, true> pack_rhs;
     81 
     82     // the goal here is to subdivise the Rhs panels such that we keep some cache
     83     // coherence when accessing the rhs elements
     84     std::ptrdiff_t l1, l2, l3;
     85     manage_caching_sizes(GetAction, &l1, &l2, &l3);
     86     Index subcols = cols>0 ? l2/(4 * sizeof(Scalar) * std::max<Index>(otherStride,size)) : 0;
     87     subcols = std::max<Index>((subcols/Traits::nr)*Traits::nr, Traits::nr);
     88 
     89     for(Index k2=IsLower ? 0 : size;
     90         IsLower ? k2<size : k2>0;
     91         IsLower ? k2+=kc : k2-=kc)
     92     {
     93       const Index actual_kc = (std::min)(IsLower ? size-k2 : k2, kc);
     94 
     95       // We have selected and packed a big horizontal panel R1 of rhs. Let B be the packed copy of this panel,
     96       // and R2 the remaining part of rhs. The corresponding vertical panel of lhs is split into
     97       // A11 (the triangular part) and A21 the remaining rectangular part.
     98       // Then the high level algorithm is:
     99       //  - B = R1                    => general block copy (done during the next step)
    100       //  - R1 = A11^-1 B             => tricky part
    101       //  - update B from the new R1  => actually this has to be performed continuously during the above step
    102       //  - R2 -= A21 * B             => GEPP
    103 
    104       // The tricky part: compute R1 = A11^-1 B while updating B from R1
    105       // The idea is to split A11 into multiple small vertical panels.
    106       // Each panel can be split into a small triangular part T1k which is processed without optimization,
    107       // and the remaining small part T2k which is processed using gebp with appropriate block strides
    108       for(Index j2=0; j2<cols; j2+=subcols)
    109       {
    110         Index actual_cols = (std::min)(cols-j2,subcols);
    111         // for each small vertical panels [T1k^T, T2k^T]^T of lhs
    112         for (Index k1=0; k1<actual_kc; k1+=SmallPanelWidth)
    113         {
    114           Index actualPanelWidth = std::min<Index>(actual_kc-k1, SmallPanelWidth);
    115           // tr solve
    116           for (Index k=0; k<actualPanelWidth; ++k)
    117           {
    118             // TODO write a small kernel handling this (can be shared with trsv)
    119             Index i  = IsLower ? k2+k1+k : k2-k1-k-1;
    120             Index rs = actualPanelWidth - k - 1; // remaining size
    121             Index s  = TriStorageOrder==RowMajor ? (IsLower ? k2+k1 : i+1)
    122                                                  :  IsLower ? i+1 : i-rs;
    123 
    124             Scalar a = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(tri(i,i));
    125             for (Index j=j2; j<j2+actual_cols; ++j)
    126             {
    127               if (TriStorageOrder==RowMajor)
    128               {
    129                 Scalar b(0);
    130                 const Scalar* l = &tri(i,s);
    131                 Scalar* r = &other(s,j);
    132                 for (Index i3=0; i3<k; ++i3)
    133                   b += conj(l[i3]) * r[i3];
    134 
    135                 other(i,j) = (other(i,j) - b)*a;
    136               }
    137               else
    138               {
    139                 Scalar b = (other(i,j) *= a);
    140                 Scalar* r = &other(s,j);
    141                 const Scalar* l = &tri(s,i);
    142                 for (Index i3=0;i3<rs;++i3)
    143                   r[i3] -= b * conj(l[i3]);
    144               }
    145             }
    146           }
    147 
    148           Index lengthTarget = actual_kc-k1-actualPanelWidth;
    149           Index startBlock   = IsLower ? k2+k1 : k2-k1-actualPanelWidth;
    150           Index blockBOffset = IsLower ? k1 : lengthTarget;
    151 
    152           // update the respective rows of B from other
    153           pack_rhs(blockB+actual_kc*j2, other.getSubMapper(startBlock,j2), actualPanelWidth, actual_cols, actual_kc, blockBOffset);
    154 
    155           // GEBP
    156           if (lengthTarget>0)
    157           {
    158             Index startTarget  = IsLower ? k2+k1+actualPanelWidth : k2-actual_kc;
    159 
    160             pack_lhs(blockA, tri.getSubMapper(startTarget,startBlock), actualPanelWidth, lengthTarget);
    161 
    162             gebp_kernel(other.getSubMapper(startTarget,j2), blockA, blockB+actual_kc*j2, lengthTarget, actualPanelWidth, actual_cols, Scalar(-1),
    163                         actualPanelWidth, actual_kc, 0, blockBOffset);
    164           }
    165         }
    166       }
    167 
    168       // R2 -= A21 * B => GEPP
    169       {
    170         Index start = IsLower ? k2+kc : 0;
    171         Index end   = IsLower ? size : k2-kc;
    172         for(Index i2=start; i2<end; i2+=mc)
    173         {
    174           const Index actual_mc = (std::min)(mc,end-i2);
    175           if (actual_mc>0)
    176           {
    177             pack_lhs(blockA, tri.getSubMapper(i2, IsLower ? k2 : k2-kc), actual_kc, actual_mc);
    178 
    179             gebp_kernel(other.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, Scalar(-1), -1, -1, 0, 0);
    180           }
    181         }
    182       }
    183     }
    184   }
    185 
    186 /* Optimized triangular solver with multiple left hand sides and the triangular matrix on the right
    187  */
    188 template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
    189 struct triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor>
    190 {
    191   static EIGEN_DONT_INLINE void run(
    192     Index size, Index otherSize,
    193     const Scalar* _tri, Index triStride,
    194     Scalar* _other, Index otherStride,
    195     level3_blocking<Scalar,Scalar>& blocking);
    196 };
    197 template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
    198 EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor>::run(
    199     Index size, Index otherSize,
    200     const Scalar* _tri, Index triStride,
    201     Scalar* _other, Index otherStride,
    202     level3_blocking<Scalar,Scalar>& blocking)
    203   {
    204     Index rows = otherSize;
    205     typedef typename NumTraits<Scalar>::Real RealScalar;
    206 
    207     typedef blas_data_mapper<Scalar, Index, ColMajor> LhsMapper;
    208     typedef const_blas_data_mapper<Scalar, Index, TriStorageOrder> RhsMapper;
    209     LhsMapper lhs(_other, otherStride);
    210     RhsMapper rhs(_tri, triStride);
    211 
    212     typedef gebp_traits<Scalar,Scalar> Traits;
    213     enum {
    214       RhsStorageOrder   = TriStorageOrder,
    215       SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
    216       IsLower = (Mode&Lower) == Lower
    217     };
    218 
    219     Index kc = blocking.kc();                   // cache block size along the K direction
    220     Index mc = (std::min)(rows,blocking.mc());  // cache block size along the M direction
    221 
    222     std::size_t sizeA = kc*mc;
    223     std::size_t sizeB = kc*size;
    224 
    225     ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
    226     ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
    227 
    228     conj_if<Conjugate> conj;
    229     gebp_kernel<Scalar, Scalar, Index, LhsMapper, Traits::mr, Traits::nr, false, Conjugate> gebp_kernel;
    230     gemm_pack_rhs<Scalar, Index, RhsMapper, Traits::nr, RhsStorageOrder> pack_rhs;
    231     gemm_pack_rhs<Scalar, Index, RhsMapper, Traits::nr, RhsStorageOrder,false,true> pack_rhs_panel;
    232     gemm_pack_lhs<Scalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, ColMajor, false, true> pack_lhs_panel;
    233 
    234     for(Index k2=IsLower ? size : 0;
    235         IsLower ? k2>0 : k2<size;
    236         IsLower ? k2-=kc : k2+=kc)
    237     {
    238       const Index actual_kc = (std::min)(IsLower ? k2 : size-k2, kc);
    239       Index actual_k2 = IsLower ? k2-actual_kc : k2 ;
    240 
    241       Index startPanel = IsLower ? 0 : k2+actual_kc;
    242       Index rs = IsLower ? actual_k2 : size - actual_k2 - actual_kc;
    243       Scalar* geb = blockB+actual_kc*actual_kc;
    244 
    245       if (rs>0) pack_rhs(geb, rhs.getSubMapper(actual_k2,startPanel), actual_kc, rs);
    246 
    247       // triangular packing (we only pack the panels off the diagonal,
    248       // neglecting the blocks overlapping the diagonal
    249       {
    250         for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
    251         {
    252           Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
    253           Index actual_j2 = actual_k2 + j2;
    254           Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
    255           Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2;
    256 
    257           if (panelLength>0)
    258           pack_rhs_panel(blockB+j2*actual_kc,
    259                          rhs.getSubMapper(actual_k2+panelOffset, actual_j2),
    260                          panelLength, actualPanelWidth,
    261                          actual_kc, panelOffset);
    262         }
    263       }
    264 
    265       for(Index i2=0; i2<rows; i2+=mc)
    266       {
    267         const Index actual_mc = (std::min)(mc,rows-i2);
    268 
    269         // triangular solver kernel
    270         {
    271           // for each small block of the diagonal (=> vertical panels of rhs)
    272           for (Index j2 = IsLower
    273                       ? (actual_kc - ((actual_kc%SmallPanelWidth) ? Index(actual_kc%SmallPanelWidth)
    274                                                                   : Index(SmallPanelWidth)))
    275                       : 0;
    276                IsLower ? j2>=0 : j2<actual_kc;
    277                IsLower ? j2-=SmallPanelWidth : j2+=SmallPanelWidth)
    278           {
    279             Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
    280             Index absolute_j2 = actual_k2 + j2;
    281             Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
    282             Index panelLength = IsLower ? actual_kc - j2 - actualPanelWidth : j2;
    283 
    284             // GEBP
    285             if(panelLength>0)
    286             {
    287               gebp_kernel(lhs.getSubMapper(i2,absolute_j2),
    288                           blockA, blockB+j2*actual_kc,
    289                           actual_mc, panelLength, actualPanelWidth,
    290                           Scalar(-1),
    291                           actual_kc, actual_kc, // strides
    292                           panelOffset, panelOffset); // offsets
    293             }
    294 
    295             // unblocked triangular solve
    296             for (Index k=0; k<actualPanelWidth; ++k)
    297             {
    298               Index j = IsLower ? absolute_j2+actualPanelWidth-k-1 : absolute_j2+k;
    299 
    300               Scalar* r = &lhs(i2,j);
    301               for (Index k3=0; k3<k; ++k3)
    302               {
    303                 Scalar b = conj(rhs(IsLower ? j+1+k3 : absolute_j2+k3,j));
    304                 Scalar* a = &lhs(i2,IsLower ? j+1+k3 : absolute_j2+k3);
    305                 for (Index i=0; i<actual_mc; ++i)
    306                   r[i] -= a[i] * b;
    307               }
    308               if((Mode & UnitDiag)==0)
    309               {
    310                 Scalar inv_rjj = RealScalar(1)/conj(rhs(j,j));
    311                 for (Index i=0; i<actual_mc; ++i)
    312                   r[i] *= inv_rjj;
    313               }
    314             }
    315 
    316             // pack the just computed part of lhs to A
    317             pack_lhs_panel(blockA, LhsMapper(_other+absolute_j2*otherStride+i2, otherStride),
    318                            actualPanelWidth, actual_mc,
    319                            actual_kc, j2);
    320           }
    321         }
    322 
    323         if (rs>0)
    324           gebp_kernel(lhs.getSubMapper(i2, startPanel), blockA, geb,
    325                       actual_mc, actual_kc, rs, Scalar(-1),
    326                       -1, -1, 0, 0);
    327       }
    328     }
    329   }
    330 
    331 } // end namespace internal
    332 
    333 } // end namespace Eigen
    334 
    335 #endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_H
    336