Home | History | Annotate | Download | only in llvm-objcopy
      1 //===- Object.cpp ---------------------------------------------------------===//
      2 //
      3 //                      The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "Object.h"
     11 #include "llvm-objcopy.h"
     12 #include "llvm/ADT/ArrayRef.h"
     13 #include "llvm/ADT/STLExtras.h"
     14 #include "llvm/ADT/StringRef.h"
     15 #include "llvm/ADT/Twine.h"
     16 #include "llvm/ADT/iterator_range.h"
     17 #include "llvm/BinaryFormat/ELF.h"
     18 #include "llvm/Object/ELFObjectFile.h"
     19 #include "llvm/Support/ErrorHandling.h"
     20 #include "llvm/Support/FileOutputBuffer.h"
     21 #include "llvm/Support/Path.h"
     22 #include <algorithm>
     23 #include <cstddef>
     24 #include <cstdint>
     25 #include <iterator>
     26 #include <utility>
     27 #include <vector>
     28 
     29 using namespace llvm;
     30 using namespace llvm::objcopy;
     31 using namespace object;
     32 using namespace ELF;
     33 
     34 Buffer::~Buffer() {}
     35 
     36 void FileBuffer::allocate(size_t Size) {
     37   Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
     38       FileOutputBuffer::create(getName(), Size, FileOutputBuffer::F_executable);
     39   handleAllErrors(BufferOrErr.takeError(), [this](const ErrorInfoBase &E) {
     40     error("failed to open " + getName() + ": " + E.message());
     41   });
     42   Buf = std::move(*BufferOrErr);
     43 }
     44 
     45 Error FileBuffer::commit() { return Buf->commit(); }
     46 
     47 uint8_t *FileBuffer::getBufferStart() {
     48   return reinterpret_cast<uint8_t *>(Buf->getBufferStart());
     49 }
     50 
     51 void MemBuffer::allocate(size_t Size) {
     52   Buf = WritableMemoryBuffer::getNewMemBuffer(Size, getName());
     53 }
     54 
     55 Error MemBuffer::commit() { return Error::success(); }
     56 
     57 uint8_t *MemBuffer::getBufferStart() {
     58   return reinterpret_cast<uint8_t *>(Buf->getBufferStart());
     59 }
     60 
     61 std::unique_ptr<WritableMemoryBuffer> MemBuffer::releaseMemoryBuffer() {
     62   return std::move(Buf);
     63 }
     64 
     65 template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
     66   using Elf_Phdr = typename ELFT::Phdr;
     67 
     68   uint8_t *B = Buf.getBufferStart();
     69   B += Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr);
     70   Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
     71   Phdr.p_type = Seg.Type;
     72   Phdr.p_flags = Seg.Flags;
     73   Phdr.p_offset = Seg.Offset;
     74   Phdr.p_vaddr = Seg.VAddr;
     75   Phdr.p_paddr = Seg.PAddr;
     76   Phdr.p_filesz = Seg.FileSize;
     77   Phdr.p_memsz = Seg.MemSize;
     78   Phdr.p_align = Seg.Align;
     79 }
     80 
     81 void SectionBase::removeSectionReferences(const SectionBase *Sec) {}
     82 void SectionBase::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {}
     83 void SectionBase::initialize(SectionTableRef SecTable) {}
     84 void SectionBase::finalize() {}
     85 void SectionBase::markSymbols() {}
     86 
     87 template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
     88   uint8_t *B = Buf.getBufferStart();
     89   B += Sec.HeaderOffset;
     90   typename ELFT::Shdr &Shdr = *reinterpret_cast<typename ELFT::Shdr *>(B);
     91   Shdr.sh_name = Sec.NameIndex;
     92   Shdr.sh_type = Sec.Type;
     93   Shdr.sh_flags = Sec.Flags;
     94   Shdr.sh_addr = Sec.Addr;
     95   Shdr.sh_offset = Sec.Offset;
     96   Shdr.sh_size = Sec.Size;
     97   Shdr.sh_link = Sec.Link;
     98   Shdr.sh_info = Sec.Info;
     99   Shdr.sh_addralign = Sec.Align;
    100   Shdr.sh_entsize = Sec.EntrySize;
    101 }
    102 
    103 SectionVisitor::~SectionVisitor() {}
    104 
    105 void BinarySectionWriter::visit(const SectionIndexSection &Sec) {
    106   error("Cannot write symbol section index table '" + Sec.Name + "' ");
    107 }
    108 
    109 void BinarySectionWriter::visit(const SymbolTableSection &Sec) {
    110   error("Cannot write symbol table '" + Sec.Name + "' out to binary");
    111 }
    112 
    113 void BinarySectionWriter::visit(const RelocationSection &Sec) {
    114   error("Cannot write relocation section '" + Sec.Name + "' out to binary");
    115 }
    116 
    117 void BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
    118   error("Cannot write '" + Sec.Name + "' out to binary");
    119 }
    120 
    121 void BinarySectionWriter::visit(const GroupSection &Sec) {
    122   error("Cannot write '" + Sec.Name + "' out to binary");
    123 }
    124 
    125 void SectionWriter::visit(const Section &Sec) {
    126   if (Sec.Type == SHT_NOBITS)
    127     return;
    128   uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
    129   std::copy(std::begin(Sec.Contents), std::end(Sec.Contents), Buf);
    130 }
    131 
    132 void Section::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); }
    133 
    134 void SectionWriter::visit(const OwnedDataSection &Sec) {
    135   uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
    136   std::copy(std::begin(Sec.Data), std::end(Sec.Data), Buf);
    137 }
    138 
    139 void OwnedDataSection::accept(SectionVisitor &Visitor) const {
    140   Visitor.visit(*this);
    141 }
    142 
    143 void StringTableSection::addString(StringRef Name) {
    144   StrTabBuilder.add(Name);
    145   Size = StrTabBuilder.getSize();
    146 }
    147 
    148 uint32_t StringTableSection::findIndex(StringRef Name) const {
    149   return StrTabBuilder.getOffset(Name);
    150 }
    151 
    152 void StringTableSection::finalize() { StrTabBuilder.finalize(); }
    153 
    154 void SectionWriter::visit(const StringTableSection &Sec) {
    155   Sec.StrTabBuilder.write(Out.getBufferStart() + Sec.Offset);
    156 }
    157 
    158 void StringTableSection::accept(SectionVisitor &Visitor) const {
    159   Visitor.visit(*this);
    160 }
    161 
    162 template <class ELFT>
    163 void ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
    164   uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
    165   auto *IndexesBuffer = reinterpret_cast<typename ELFT::Word *>(Buf);
    166   std::copy(std::begin(Sec.Indexes), std::end(Sec.Indexes), IndexesBuffer);
    167 }
    168 
    169 void SectionIndexSection::initialize(SectionTableRef SecTable) {
    170   Size = 0;
    171   setSymTab(SecTable.getSectionOfType<SymbolTableSection>(
    172       Link,
    173       "Link field value " + Twine(Link) + " in section " + Name + " is invalid",
    174       "Link field value " + Twine(Link) + " in section " + Name +
    175           " is not a symbol table"));
    176   Symbols->setShndxTable(this);
    177 }
    178 
    179 void SectionIndexSection::finalize() { Link = Symbols->Index; }
    180 
    181 void SectionIndexSection::accept(SectionVisitor &Visitor) const {
    182   Visitor.visit(*this);
    183 }
    184 
    185 static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
    186   switch (Index) {
    187   case SHN_ABS:
    188   case SHN_COMMON:
    189     return true;
    190   }
    191   if (Machine == EM_HEXAGON) {
    192     switch (Index) {
    193     case SHN_HEXAGON_SCOMMON:
    194     case SHN_HEXAGON_SCOMMON_2:
    195     case SHN_HEXAGON_SCOMMON_4:
    196     case SHN_HEXAGON_SCOMMON_8:
    197       return true;
    198     }
    199   }
    200   return false;
    201 }
    202 
    203 // Large indexes force us to clarify exactly what this function should do. This
    204 // function should return the value that will appear in st_shndx when written
    205 // out.
    206 uint16_t Symbol::getShndx() const {
    207   if (DefinedIn != nullptr) {
    208     if (DefinedIn->Index >= SHN_LORESERVE)
    209       return SHN_XINDEX;
    210     return DefinedIn->Index;
    211   }
    212   switch (ShndxType) {
    213   // This means that we don't have a defined section but we do need to
    214   // output a legitimate section index.
    215   case SYMBOL_SIMPLE_INDEX:
    216     return SHN_UNDEF;
    217   case SYMBOL_ABS:
    218   case SYMBOL_COMMON:
    219   case SYMBOL_HEXAGON_SCOMMON:
    220   case SYMBOL_HEXAGON_SCOMMON_2:
    221   case SYMBOL_HEXAGON_SCOMMON_4:
    222   case SYMBOL_HEXAGON_SCOMMON_8:
    223   case SYMBOL_XINDEX:
    224     return static_cast<uint16_t>(ShndxType);
    225   }
    226   llvm_unreachable("Symbol with invalid ShndxType encountered");
    227 }
    228 
    229 void SymbolTableSection::assignIndices() {
    230   uint32_t Index = 0;
    231   for (auto &Sym : Symbols)
    232     Sym->Index = Index++;
    233 }
    234 
    235 void SymbolTableSection::addSymbol(StringRef Name, uint8_t Bind, uint8_t Type,
    236                                    SectionBase *DefinedIn, uint64_t Value,
    237                                    uint8_t Visibility, uint16_t Shndx,
    238                                    uint64_t Sz) {
    239   Symbol Sym;
    240   Sym.Name = Name;
    241   Sym.Binding = Bind;
    242   Sym.Type = Type;
    243   Sym.DefinedIn = DefinedIn;
    244   if (DefinedIn != nullptr)
    245     DefinedIn->HasSymbol = true;
    246   if (DefinedIn == nullptr) {
    247     if (Shndx >= SHN_LORESERVE)
    248       Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
    249     else
    250       Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
    251   }
    252   Sym.Value = Value;
    253   Sym.Visibility = Visibility;
    254   Sym.Size = Sz;
    255   Sym.Index = Symbols.size();
    256   Symbols.emplace_back(llvm::make_unique<Symbol>(Sym));
    257   Size += this->EntrySize;
    258 }
    259 
    260 void SymbolTableSection::removeSectionReferences(const SectionBase *Sec) {
    261   if (SectionIndexTable == Sec)
    262     SectionIndexTable = nullptr;
    263   if (SymbolNames == Sec) {
    264     error("String table " + SymbolNames->Name +
    265           " cannot be removed because it is referenced by the symbol table " +
    266           this->Name);
    267   }
    268   removeSymbols([Sec](const Symbol &Sym) { return Sym.DefinedIn == Sec; });
    269 }
    270 
    271 void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
    272   std::for_each(std::begin(Symbols) + 1, std::end(Symbols),
    273                 [Callable](SymPtr &Sym) { Callable(*Sym); });
    274   std::stable_partition(
    275       std::begin(Symbols), std::end(Symbols),
    276       [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
    277   assignIndices();
    278 }
    279 
    280 void SymbolTableSection::removeSymbols(
    281     function_ref<bool(const Symbol &)> ToRemove) {
    282   Symbols.erase(
    283       std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
    284                      [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
    285       std::end(Symbols));
    286   Size = Symbols.size() * EntrySize;
    287   assignIndices();
    288 }
    289 
    290 void SymbolTableSection::initialize(SectionTableRef SecTable) {
    291   Size = 0;
    292   setStrTab(SecTable.getSectionOfType<StringTableSection>(
    293       Link,
    294       "Symbol table has link index of " + Twine(Link) +
    295           " which is not a valid index",
    296       "Symbol table has link index of " + Twine(Link) +
    297           " which is not a string table"));
    298 }
    299 
    300 void SymbolTableSection::finalize() {
    301   // Make sure SymbolNames is finalized before getting name indexes.
    302   SymbolNames->finalize();
    303 
    304   uint32_t MaxLocalIndex = 0;
    305   for (auto &Sym : Symbols) {
    306     Sym->NameIndex = SymbolNames->findIndex(Sym->Name);
    307     if (Sym->Binding == STB_LOCAL)
    308       MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
    309   }
    310   // Now we need to set the Link and Info fields.
    311   Link = SymbolNames->Index;
    312   Info = MaxLocalIndex + 1;
    313 }
    314 
    315 void SymbolTableSection::prepareForLayout() {
    316   // Add all potential section indexes before file layout so that the section
    317   // index section has the approprite size.
    318   if (SectionIndexTable != nullptr) {
    319     for (const auto &Sym : Symbols) {
    320       if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
    321         SectionIndexTable->addIndex(Sym->DefinedIn->Index);
    322       else
    323         SectionIndexTable->addIndex(SHN_UNDEF);
    324     }
    325   }
    326   // Add all of our strings to SymbolNames so that SymbolNames has the right
    327   // size before layout is decided.
    328   for (auto &Sym : Symbols)
    329     SymbolNames->addString(Sym->Name);
    330 }
    331 
    332 const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
    333   if (Symbols.size() <= Index)
    334     error("Invalid symbol index: " + Twine(Index));
    335   return Symbols[Index].get();
    336 }
    337 
    338 Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) {
    339   return const_cast<Symbol *>(
    340       static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index));
    341 }
    342 
    343 template <class ELFT>
    344 void ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
    345   uint8_t *Buf = Out.getBufferStart();
    346   Buf += Sec.Offset;
    347   typename ELFT::Sym *Sym = reinterpret_cast<typename ELFT::Sym *>(Buf);
    348   // Loop though symbols setting each entry of the symbol table.
    349   for (auto &Symbol : Sec.Symbols) {
    350     Sym->st_name = Symbol->NameIndex;
    351     Sym->st_value = Symbol->Value;
    352     Sym->st_size = Symbol->Size;
    353     Sym->st_other = Symbol->Visibility;
    354     Sym->setBinding(Symbol->Binding);
    355     Sym->setType(Symbol->Type);
    356     Sym->st_shndx = Symbol->getShndx();
    357     ++Sym;
    358   }
    359 }
    360 
    361 void SymbolTableSection::accept(SectionVisitor &Visitor) const {
    362   Visitor.visit(*this);
    363 }
    364 
    365 template <class SymTabType>
    366 void RelocSectionWithSymtabBase<SymTabType>::removeSectionReferences(
    367     const SectionBase *Sec) {
    368   if (Symbols == Sec) {
    369     error("Symbol table " + Symbols->Name +
    370           " cannot be removed because it is "
    371           "referenced by the relocation "
    372           "section " +
    373           this->Name);
    374   }
    375 }
    376 
    377 template <class SymTabType>
    378 void RelocSectionWithSymtabBase<SymTabType>::initialize(
    379     SectionTableRef SecTable) {
    380   setSymTab(SecTable.getSectionOfType<SymTabType>(
    381       Link,
    382       "Link field value " + Twine(Link) + " in section " + Name + " is invalid",
    383       "Link field value " + Twine(Link) + " in section " + Name +
    384           " is not a symbol table"));
    385 
    386   if (Info != SHN_UNDEF)
    387     setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) +
    388                                              " in section " + Name +
    389                                              " is invalid"));
    390   else
    391     setSection(nullptr);
    392 }
    393 
    394 template <class SymTabType>
    395 void RelocSectionWithSymtabBase<SymTabType>::finalize() {
    396   this->Link = Symbols->Index;
    397   if (SecToApplyRel != nullptr)
    398     this->Info = SecToApplyRel->Index;
    399 }
    400 
    401 template <class ELFT>
    402 static void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}
    403 
    404 template <class ELFT>
    405 static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
    406   Rela.r_addend = Addend;
    407 }
    408 
    409 template <class RelRange, class T>
    410 static void writeRel(const RelRange &Relocations, T *Buf) {
    411   for (const auto &Reloc : Relocations) {
    412     Buf->r_offset = Reloc.Offset;
    413     setAddend(*Buf, Reloc.Addend);
    414     Buf->setSymbolAndType(Reloc.RelocSymbol->Index, Reloc.Type, false);
    415     ++Buf;
    416   }
    417 }
    418 
    419 template <class ELFT>
    420 void ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
    421   uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
    422   if (Sec.Type == SHT_REL)
    423     writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf));
    424   else
    425     writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf));
    426 }
    427 
    428 void RelocationSection::accept(SectionVisitor &Visitor) const {
    429   Visitor.visit(*this);
    430 }
    431 
    432 void RelocationSection::removeSymbols(
    433     function_ref<bool(const Symbol &)> ToRemove) {
    434   for (const Relocation &Reloc : Relocations)
    435     if (ToRemove(*Reloc.RelocSymbol))
    436       error("not stripping symbol `" + Reloc.RelocSymbol->Name +
    437             "' because it is named in a relocation");
    438 }
    439 
    440 void RelocationSection::markSymbols() {
    441   for (const Relocation &Reloc : Relocations)
    442     Reloc.RelocSymbol->Referenced = true;
    443 }
    444 
    445 void SectionWriter::visit(const DynamicRelocationSection &Sec) {
    446   std::copy(std::begin(Sec.Contents), std::end(Sec.Contents),
    447             Out.getBufferStart() + Sec.Offset);
    448 }
    449 
    450 void DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
    451   Visitor.visit(*this);
    452 }
    453 
    454 void Section::removeSectionReferences(const SectionBase *Sec) {
    455   if (LinkSection == Sec) {
    456     error("Section " + LinkSection->Name +
    457           " cannot be removed because it is "
    458           "referenced by the section " +
    459           this->Name);
    460   }
    461 }
    462 
    463 void GroupSection::finalize() {
    464   this->Info = Sym->Index;
    465   this->Link = SymTab->Index;
    466 }
    467 
    468 void GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
    469   if (ToRemove(*Sym)) {
    470     error("Symbol " + Sym->Name +
    471           " cannot be removed because it is "
    472           "referenced by the section " +
    473           this->Name + "[" + Twine(this->Index) + "]");
    474   }
    475 }
    476 
    477 void GroupSection::markSymbols() {
    478   if (Sym)
    479     Sym->Referenced = true;
    480 }
    481 
    482 void Section::initialize(SectionTableRef SecTable) {
    483   if (Link != ELF::SHN_UNDEF) {
    484     LinkSection =
    485         SecTable.getSection(Link, "Link field value " + Twine(Link) +
    486                                       " in section " + Name + " is invalid");
    487     if (LinkSection->Type == ELF::SHT_SYMTAB)
    488       LinkSection = nullptr;
    489   }
    490 }
    491 
    492 void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
    493 
    494 void GnuDebugLinkSection::init(StringRef File, StringRef Data) {
    495   FileName = sys::path::filename(File);
    496   // The format for the .gnu_debuglink starts with the file name and is
    497   // followed by a null terminator and then the CRC32 of the file. The CRC32
    498   // should be 4 byte aligned. So we add the FileName size, a 1 for the null
    499   // byte, and then finally push the size to alignment and add 4.
    500   Size = alignTo(FileName.size() + 1, 4) + 4;
    501   // The CRC32 will only be aligned if we align the whole section.
    502   Align = 4;
    503   Type = ELF::SHT_PROGBITS;
    504   Name = ".gnu_debuglink";
    505   // For sections not found in segments, OriginalOffset is only used to
    506   // establish the order that sections should go in. By using the maximum
    507   // possible offset we cause this section to wind up at the end.
    508   OriginalOffset = std::numeric_limits<uint64_t>::max();
    509   JamCRC crc;
    510   crc.update(ArrayRef<char>(Data.data(), Data.size()));
    511   // The CRC32 value needs to be complemented because the JamCRC dosn't
    512   // finalize the CRC32 value. It also dosn't negate the initial CRC32 value
    513   // but it starts by default at 0xFFFFFFFF which is the complement of zero.
    514   CRC32 = ~crc.getCRC();
    515 }
    516 
    517 GnuDebugLinkSection::GnuDebugLinkSection(StringRef File) : FileName(File) {
    518   // Read in the file to compute the CRC of it.
    519   auto DebugOrErr = MemoryBuffer::getFile(File);
    520   if (!DebugOrErr)
    521     error("'" + File + "': " + DebugOrErr.getError().message());
    522   auto Debug = std::move(*DebugOrErr);
    523   init(File, Debug->getBuffer());
    524 }
    525 
    526 template <class ELFT>
    527 void ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
    528   auto Buf = Out.getBufferStart() + Sec.Offset;
    529   char *File = reinterpret_cast<char *>(Buf);
    530   Elf_Word *CRC =
    531       reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
    532   *CRC = Sec.CRC32;
    533   std::copy(std::begin(Sec.FileName), std::end(Sec.FileName), File);
    534 }
    535 
    536 void GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
    537   Visitor.visit(*this);
    538 }
    539 
    540 template <class ELFT>
    541 void ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
    542   ELF::Elf32_Word *Buf =
    543       reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
    544   *Buf++ = Sec.FlagWord;
    545   for (const auto *S : Sec.GroupMembers)
    546     support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
    547 }
    548 
    549 void GroupSection::accept(SectionVisitor &Visitor) const {
    550   Visitor.visit(*this);
    551 }
    552 
    553 // Returns true IFF a section is wholly inside the range of a segment
    554 static bool sectionWithinSegment(const SectionBase &Section,
    555                                  const Segment &Segment) {
    556   // If a section is empty it should be treated like it has a size of 1. This is
    557   // to clarify the case when an empty section lies on a boundary between two
    558   // segments and ensures that the section "belongs" to the second segment and
    559   // not the first.
    560   uint64_t SecSize = Section.Size ? Section.Size : 1;
    561   return Segment.Offset <= Section.OriginalOffset &&
    562          Segment.Offset + Segment.FileSize >= Section.OriginalOffset + SecSize;
    563 }
    564 
    565 // Returns true IFF a segment's original offset is inside of another segment's
    566 // range.
    567 static bool segmentOverlapsSegment(const Segment &Child,
    568                                    const Segment &Parent) {
    569 
    570   return Parent.OriginalOffset <= Child.OriginalOffset &&
    571          Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
    572 }
    573 
    574 static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
    575   // Any segment without a parent segment should come before a segment
    576   // that has a parent segment.
    577   if (A->OriginalOffset < B->OriginalOffset)
    578     return true;
    579   if (A->OriginalOffset > B->OriginalOffset)
    580     return false;
    581   return A->Index < B->Index;
    582 }
    583 
    584 static bool compareSegmentsByPAddr(const Segment *A, const Segment *B) {
    585   if (A->PAddr < B->PAddr)
    586     return true;
    587   if (A->PAddr > B->PAddr)
    588     return false;
    589   return A->Index < B->Index;
    590 }
    591 
    592 template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
    593   for (auto &Parent : Obj.segments()) {
    594     // Every segment will overlap with itself but we don't want a segment to
    595     // be it's own parent so we avoid that situation.
    596     if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
    597       // We want a canonical "most parental" segment but this requires
    598       // inspecting the ParentSegment.
    599       if (compareSegmentsByOffset(&Parent, &Child))
    600         if (Child.ParentSegment == nullptr ||
    601             compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
    602           Child.ParentSegment = &Parent;
    603         }
    604     }
    605   }
    606 }
    607 
    608 template <class ELFT> void ELFBuilder<ELFT>::readProgramHeaders() {
    609   uint32_t Index = 0;
    610   for (const auto &Phdr : unwrapOrError(ElfFile.program_headers())) {
    611     ArrayRef<uint8_t> Data{ElfFile.base() + Phdr.p_offset,
    612                            (size_t)Phdr.p_filesz};
    613     Segment &Seg = Obj.addSegment(Data);
    614     Seg.Type = Phdr.p_type;
    615     Seg.Flags = Phdr.p_flags;
    616     Seg.OriginalOffset = Phdr.p_offset;
    617     Seg.Offset = Phdr.p_offset;
    618     Seg.VAddr = Phdr.p_vaddr;
    619     Seg.PAddr = Phdr.p_paddr;
    620     Seg.FileSize = Phdr.p_filesz;
    621     Seg.MemSize = Phdr.p_memsz;
    622     Seg.Align = Phdr.p_align;
    623     Seg.Index = Index++;
    624     for (auto &Section : Obj.sections()) {
    625       if (sectionWithinSegment(Section, Seg)) {
    626         Seg.addSection(&Section);
    627         if (!Section.ParentSegment ||
    628             Section.ParentSegment->Offset > Seg.Offset) {
    629           Section.ParentSegment = &Seg;
    630         }
    631       }
    632     }
    633   }
    634 
    635   auto &ElfHdr = Obj.ElfHdrSegment;
    636   // Creating multiple PT_PHDR segments technically is not valid, but PT_LOAD
    637   // segments must not overlap, and other types fit even less.
    638   ElfHdr.Type = PT_PHDR;
    639   ElfHdr.Flags = 0;
    640   ElfHdr.OriginalOffset = ElfHdr.Offset = 0;
    641   ElfHdr.VAddr = 0;
    642   ElfHdr.PAddr = 0;
    643   ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
    644   ElfHdr.Align = 0;
    645   ElfHdr.Index = Index++;
    646 
    647   const auto &Ehdr = *ElfFile.getHeader();
    648   auto &PrHdr = Obj.ProgramHdrSegment;
    649   PrHdr.Type = PT_PHDR;
    650   PrHdr.Flags = 0;
    651   // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
    652   // Whereas this works automatically for ElfHdr, here OriginalOffset is
    653   // always non-zero and to ensure the equation we assign the same value to
    654   // VAddr as well.
    655   PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = Ehdr.e_phoff;
    656   PrHdr.PAddr = 0;
    657   PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
    658   // The spec requires us to naturally align all the fields.
    659   PrHdr.Align = sizeof(Elf_Addr);
    660   PrHdr.Index = Index++;
    661 
    662   // Now we do an O(n^2) loop through the segments in order to match up
    663   // segments.
    664   for (auto &Child : Obj.segments())
    665     setParentSegment(Child);
    666   setParentSegment(ElfHdr);
    667   setParentSegment(PrHdr);
    668 }
    669 
    670 template <class ELFT>
    671 void ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
    672   auto SecTable = Obj.sections();
    673   auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
    674       GroupSec->Link,
    675       "Link field value " + Twine(GroupSec->Link) + " in section " +
    676           GroupSec->Name + " is invalid",
    677       "Link field value " + Twine(GroupSec->Link) + " in section " +
    678           GroupSec->Name + " is not a symbol table");
    679   auto Sym = SymTab->getSymbolByIndex(GroupSec->Info);
    680   if (!Sym)
    681     error("Info field value " + Twine(GroupSec->Info) + " in section " +
    682           GroupSec->Name + " is not a valid symbol index");
    683   GroupSec->setSymTab(SymTab);
    684   GroupSec->setSymbol(Sym);
    685   if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
    686       GroupSec->Contents.empty())
    687     error("The content of the section " + GroupSec->Name + " is malformed");
    688   const ELF::Elf32_Word *Word =
    689       reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
    690   const ELF::Elf32_Word *End =
    691       Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
    692   GroupSec->setFlagWord(*Word++);
    693   for (; Word != End; ++Word) {
    694     uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
    695     GroupSec->addMember(SecTable.getSection(
    696         Index, "Group member index " + Twine(Index) + " in section " +
    697                    GroupSec->Name + " is invalid"));
    698   }
    699 }
    700 
    701 template <class ELFT>
    702 void ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
    703   const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
    704   StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
    705   ArrayRef<Elf_Word> ShndxData;
    706 
    707   auto Symbols = unwrapOrError(ElfFile.symbols(&Shdr));
    708   for (const auto &Sym : Symbols) {
    709     SectionBase *DefSection = nullptr;
    710     StringRef Name = unwrapOrError(Sym.getName(StrTabData));
    711 
    712     if (Sym.st_shndx == SHN_XINDEX) {
    713       if (SymTab->getShndxTable() == nullptr)
    714         error("Symbol '" + Name +
    715               "' has index SHN_XINDEX but no SHT_SYMTAB_SHNDX section exists.");
    716       if (ShndxData.data() == nullptr) {
    717         const Elf_Shdr &ShndxSec =
    718             *unwrapOrError(ElfFile.getSection(SymTab->getShndxTable()->Index));
    719         ShndxData = unwrapOrError(
    720             ElfFile.template getSectionContentsAsArray<Elf_Word>(&ShndxSec));
    721         if (ShndxData.size() != Symbols.size())
    722           error("Symbol section index table does not have the same number of "
    723                 "entries as the symbol table.");
    724       }
    725       Elf_Word Index = ShndxData[&Sym - Symbols.begin()];
    726       DefSection = Obj.sections().getSection(
    727           Index,
    728           "Symbol '" + Name + "' has invalid section index " +
    729               Twine(Index));
    730     } else if (Sym.st_shndx >= SHN_LORESERVE) {
    731       if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
    732         error(
    733             "Symbol '" + Name +
    734             "' has unsupported value greater than or equal to SHN_LORESERVE: " +
    735             Twine(Sym.st_shndx));
    736       }
    737     } else if (Sym.st_shndx != SHN_UNDEF) {
    738       DefSection = Obj.sections().getSection(
    739           Sym.st_shndx, "Symbol '" + Name +
    740                             "' is defined has invalid section index " +
    741                             Twine(Sym.st_shndx));
    742     }
    743 
    744     SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
    745                       Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
    746   }
    747 }
    748 
    749 template <class ELFT>
    750 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}
    751 
    752 template <class ELFT>
    753 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
    754   ToSet = Rela.r_addend;
    755 }
    756 
    757 template <class T>
    758 static void initRelocations(RelocationSection *Relocs,
    759                             SymbolTableSection *SymbolTable, T RelRange) {
    760   for (const auto &Rel : RelRange) {
    761     Relocation ToAdd;
    762     ToAdd.Offset = Rel.r_offset;
    763     getAddend(ToAdd.Addend, Rel);
    764     ToAdd.Type = Rel.getType(false);
    765     ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Rel.getSymbol(false));
    766     Relocs->addRelocation(ToAdd);
    767   }
    768 }
    769 
    770 SectionBase *SectionTableRef::getSection(uint32_t Index, Twine ErrMsg) {
    771   if (Index == SHN_UNDEF || Index > Sections.size())
    772     error(ErrMsg);
    773   return Sections[Index - 1].get();
    774 }
    775 
    776 template <class T>
    777 T *SectionTableRef::getSectionOfType(uint32_t Index, Twine IndexErrMsg,
    778                                      Twine TypeErrMsg) {
    779   if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
    780     return Sec;
    781   error(TypeErrMsg);
    782 }
    783 
    784 template <class ELFT>
    785 SectionBase &ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
    786   ArrayRef<uint8_t> Data;
    787   switch (Shdr.sh_type) {
    788   case SHT_REL:
    789   case SHT_RELA:
    790     if (Shdr.sh_flags & SHF_ALLOC) {
    791       Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    792       return Obj.addSection<DynamicRelocationSection>(Data);
    793     }
    794     return Obj.addSection<RelocationSection>();
    795   case SHT_STRTAB:
    796     // If a string table is allocated we don't want to mess with it. That would
    797     // mean altering the memory image. There are no special link types or
    798     // anything so we can just use a Section.
    799     if (Shdr.sh_flags & SHF_ALLOC) {
    800       Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    801       return Obj.addSection<Section>(Data);
    802     }
    803     return Obj.addSection<StringTableSection>();
    804   case SHT_HASH:
    805   case SHT_GNU_HASH:
    806     // Hash tables should refer to SHT_DYNSYM which we're not going to change.
    807     // Because of this we don't need to mess with the hash tables either.
    808     Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    809     return Obj.addSection<Section>(Data);
    810   case SHT_GROUP:
    811     Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    812     return Obj.addSection<GroupSection>(Data);
    813   case SHT_DYNSYM:
    814     Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    815     return Obj.addSection<DynamicSymbolTableSection>(Data);
    816   case SHT_DYNAMIC:
    817     Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    818     return Obj.addSection<DynamicSection>(Data);
    819   case SHT_SYMTAB: {
    820     auto &SymTab = Obj.addSection<SymbolTableSection>();
    821     Obj.SymbolTable = &SymTab;
    822     return SymTab;
    823   }
    824   case SHT_SYMTAB_SHNDX: {
    825     auto &ShndxSection = Obj.addSection<SectionIndexSection>();
    826     Obj.SectionIndexTable = &ShndxSection;
    827     return ShndxSection;
    828   }
    829   case SHT_NOBITS:
    830     return Obj.addSection<Section>(Data);
    831   default:
    832     Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    833     return Obj.addSection<Section>(Data);
    834   }
    835 }
    836 
    837 template <class ELFT> void ELFBuilder<ELFT>::readSectionHeaders() {
    838   uint32_t Index = 0;
    839   for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
    840     if (Index == 0) {
    841       ++Index;
    842       continue;
    843     }
    844     auto &Sec = makeSection(Shdr);
    845     Sec.Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
    846     Sec.Type = Shdr.sh_type;
    847     Sec.Flags = Shdr.sh_flags;
    848     Sec.Addr = Shdr.sh_addr;
    849     Sec.Offset = Shdr.sh_offset;
    850     Sec.OriginalOffset = Shdr.sh_offset;
    851     Sec.Size = Shdr.sh_size;
    852     Sec.Link = Shdr.sh_link;
    853     Sec.Info = Shdr.sh_info;
    854     Sec.Align = Shdr.sh_addralign;
    855     Sec.EntrySize = Shdr.sh_entsize;
    856     Sec.Index = Index++;
    857   }
    858 
    859   // If a section index table exists we'll need to initialize it before we
    860   // initialize the symbol table because the symbol table might need to
    861   // reference it.
    862   if (Obj.SectionIndexTable)
    863     Obj.SectionIndexTable->initialize(Obj.sections());
    864 
    865   // Now that all of the sections have been added we can fill out some extra
    866   // details about symbol tables. We need the symbol table filled out before
    867   // any relocations.
    868   if (Obj.SymbolTable) {
    869     Obj.SymbolTable->initialize(Obj.sections());
    870     initSymbolTable(Obj.SymbolTable);
    871   }
    872 
    873   // Now that all sections and symbols have been added we can add
    874   // relocations that reference symbols and set the link and info fields for
    875   // relocation sections.
    876   for (auto &Section : Obj.sections()) {
    877     if (&Section == Obj.SymbolTable)
    878       continue;
    879     Section.initialize(Obj.sections());
    880     if (auto RelSec = dyn_cast<RelocationSection>(&Section)) {
    881       auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
    882       if (RelSec->Type == SHT_REL)
    883         initRelocations(RelSec, Obj.SymbolTable,
    884                         unwrapOrError(ElfFile.rels(Shdr)));
    885       else
    886         initRelocations(RelSec, Obj.SymbolTable,
    887                         unwrapOrError(ElfFile.relas(Shdr)));
    888     } else if (auto GroupSec = dyn_cast<GroupSection>(&Section)) {
    889       initGroupSection(GroupSec);
    890     }
    891   }
    892 }
    893 
    894 template <class ELFT> void ELFBuilder<ELFT>::build() {
    895   const auto &Ehdr = *ElfFile.getHeader();
    896 
    897   std::copy(Ehdr.e_ident, Ehdr.e_ident + 16, Obj.Ident);
    898   Obj.Type = Ehdr.e_type;
    899   Obj.Machine = Ehdr.e_machine;
    900   Obj.Version = Ehdr.e_version;
    901   Obj.Entry = Ehdr.e_entry;
    902   Obj.Flags = Ehdr.e_flags;
    903 
    904   readSectionHeaders();
    905   readProgramHeaders();
    906 
    907   uint32_t ShstrIndex = Ehdr.e_shstrndx;
    908   if (ShstrIndex == SHN_XINDEX)
    909     ShstrIndex = unwrapOrError(ElfFile.getSection(0))->sh_link;
    910 
    911   Obj.SectionNames =
    912       Obj.sections().template getSectionOfType<StringTableSection>(
    913           ShstrIndex,
    914           "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) +
    915               " in elf header " + " is invalid",
    916           "e_shstrndx field value " + Twine(Ehdr.e_shstrndx) +
    917               " in elf header " + " is not a string table");
    918 }
    919 
    920 // A generic size function which computes sizes of any random access range.
    921 template <class R> size_t size(R &&Range) {
    922   return static_cast<size_t>(std::end(Range) - std::begin(Range));
    923 }
    924 
    925 Writer::~Writer() {}
    926 
    927 Reader::~Reader() {}
    928 
    929 ElfType ELFReader::getElfType() const {
    930   if (isa<ELFObjectFile<ELF32LE>>(Bin))
    931     return ELFT_ELF32LE;
    932   if (isa<ELFObjectFile<ELF64LE>>(Bin))
    933     return ELFT_ELF64LE;
    934   if (isa<ELFObjectFile<ELF32BE>>(Bin))
    935     return ELFT_ELF32BE;
    936   if (isa<ELFObjectFile<ELF64BE>>(Bin))
    937     return ELFT_ELF64BE;
    938   llvm_unreachable("Invalid ELFType");
    939 }
    940 
    941 std::unique_ptr<Object> ELFReader::create() const {
    942   auto Obj = llvm::make_unique<Object>();
    943   if (auto *o = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
    944     ELFBuilder<ELF32LE> Builder(*o, *Obj);
    945     Builder.build();
    946     return Obj;
    947   } else if (auto *o = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
    948     ELFBuilder<ELF64LE> Builder(*o, *Obj);
    949     Builder.build();
    950     return Obj;
    951   } else if (auto *o = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
    952     ELFBuilder<ELF32BE> Builder(*o, *Obj);
    953     Builder.build();
    954     return Obj;
    955   } else if (auto *o = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
    956     ELFBuilder<ELF64BE> Builder(*o, *Obj);
    957     Builder.build();
    958     return Obj;
    959   }
    960   error("Invalid file type");
    961 }
    962 
    963 template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
    964   uint8_t *B = Buf.getBufferStart();
    965   Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(B);
    966   std::copy(Obj.Ident, Obj.Ident + 16, Ehdr.e_ident);
    967   Ehdr.e_type = Obj.Type;
    968   Ehdr.e_machine = Obj.Machine;
    969   Ehdr.e_version = Obj.Version;
    970   Ehdr.e_entry = Obj.Entry;
    971   Ehdr.e_phoff = Obj.ProgramHdrSegment.Offset;
    972   Ehdr.e_flags = Obj.Flags;
    973   Ehdr.e_ehsize = sizeof(Elf_Ehdr);
    974   Ehdr.e_phentsize = sizeof(Elf_Phdr);
    975   Ehdr.e_phnum = size(Obj.segments());
    976   Ehdr.e_shentsize = sizeof(Elf_Shdr);
    977   if (WriteSectionHeaders) {
    978     Ehdr.e_shoff = Obj.SHOffset;
    979     // """
    980     // If the number of sections is greater than or equal to
    981     // SHN_LORESERVE (0xff00), this member has the value zero and the actual
    982     // number of section header table entries is contained in the sh_size field
    983     // of the section header at index 0.
    984     // """
    985     auto Shnum = size(Obj.sections()) + 1;
    986     if (Shnum >= SHN_LORESERVE)
    987       Ehdr.e_shnum = 0;
    988     else
    989       Ehdr.e_shnum = Shnum;
    990     // """
    991     // If the section name string table section index is greater than or equal
    992     // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
    993     // and the actual index of the section name string table section is
    994     // contained in the sh_link field of the section header at index 0.
    995     // """
    996     if (Obj.SectionNames->Index >= SHN_LORESERVE)
    997       Ehdr.e_shstrndx = SHN_XINDEX;
    998     else
    999       Ehdr.e_shstrndx = Obj.SectionNames->Index;
   1000   } else {
   1001     Ehdr.e_shoff = 0;
   1002     Ehdr.e_shnum = 0;
   1003     Ehdr.e_shstrndx = 0;
   1004   }
   1005 }
   1006 
   1007 template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
   1008   for (auto &Seg : Obj.segments())
   1009     writePhdr(Seg);
   1010 }
   1011 
   1012 template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
   1013   uint8_t *B = Buf.getBufferStart() + Obj.SHOffset;
   1014   // This reference serves to write the dummy section header at the begining
   1015   // of the file. It is not used for anything else
   1016   Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
   1017   Shdr.sh_name = 0;
   1018   Shdr.sh_type = SHT_NULL;
   1019   Shdr.sh_flags = 0;
   1020   Shdr.sh_addr = 0;
   1021   Shdr.sh_offset = 0;
   1022   // See writeEhdr for why we do this.
   1023   uint64_t Shnum = size(Obj.sections()) + 1;
   1024   if (Shnum >= SHN_LORESERVE)
   1025     Shdr.sh_size = Shnum;
   1026   else
   1027     Shdr.sh_size = 0;
   1028   // See writeEhdr for why we do this.
   1029   if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
   1030     Shdr.sh_link = Obj.SectionNames->Index;
   1031   else
   1032     Shdr.sh_link = 0;
   1033   Shdr.sh_info = 0;
   1034   Shdr.sh_addralign = 0;
   1035   Shdr.sh_entsize = 0;
   1036 
   1037   for (auto &Sec : Obj.sections())
   1038     writeShdr(Sec);
   1039 }
   1040 
   1041 template <class ELFT> void ELFWriter<ELFT>::writeSectionData() {
   1042   for (auto &Sec : Obj.sections())
   1043     Sec.accept(*SecWriter);
   1044 }
   1045 
   1046 void Object::removeSections(std::function<bool(const SectionBase &)> ToRemove) {
   1047 
   1048   auto Iter = std::stable_partition(
   1049       std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
   1050         if (ToRemove(*Sec))
   1051           return false;
   1052         if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
   1053           if (auto ToRelSec = RelSec->getSection())
   1054             return !ToRemove(*ToRelSec);
   1055         }
   1056         return true;
   1057       });
   1058   if (SymbolTable != nullptr && ToRemove(*SymbolTable))
   1059     SymbolTable = nullptr;
   1060   if (SectionNames != nullptr && ToRemove(*SectionNames))
   1061     SectionNames = nullptr;
   1062   if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
   1063     SectionIndexTable = nullptr;
   1064   // Now make sure there are no remaining references to the sections that will
   1065   // be removed. Sometimes it is impossible to remove a reference so we emit
   1066   // an error here instead.
   1067   for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
   1068     for (auto &Segment : Segments)
   1069       Segment->removeSection(RemoveSec.get());
   1070     for (auto &KeepSec : make_range(std::begin(Sections), Iter))
   1071       KeepSec->removeSectionReferences(RemoveSec.get());
   1072   }
   1073   // Now finally get rid of them all togethor.
   1074   Sections.erase(Iter, std::end(Sections));
   1075 }
   1076 
   1077 void Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
   1078   if (!SymbolTable)
   1079     return;
   1080 
   1081   for (const SecPtr &Sec : Sections)
   1082     Sec->removeSymbols(ToRemove);
   1083 }
   1084 
   1085 void Object::sortSections() {
   1086   // Put all sections in offset order. Maintain the ordering as closely as
   1087   // possible while meeting that demand however.
   1088   auto CompareSections = [](const SecPtr &A, const SecPtr &B) {
   1089     return A->OriginalOffset < B->OriginalOffset;
   1090   };
   1091   std::stable_sort(std::begin(this->Sections), std::end(this->Sections),
   1092                    CompareSections);
   1093 }
   1094 
   1095 static uint64_t alignToAddr(uint64_t Offset, uint64_t Addr, uint64_t Align) {
   1096   // Calculate Diff such that (Offset + Diff) & -Align == Addr & -Align.
   1097   if (Align == 0)
   1098     Align = 1;
   1099   auto Diff =
   1100       static_cast<int64_t>(Addr % Align) - static_cast<int64_t>(Offset % Align);
   1101   // We only want to add to Offset, however, so if Diff < 0 we can add Align and
   1102   // (Offset + Diff) & -Align == Addr & -Align will still hold.
   1103   if (Diff < 0)
   1104     Diff += Align;
   1105   return Offset + Diff;
   1106 }
   1107 
   1108 // Orders segments such that if x = y->ParentSegment then y comes before x.
   1109 static void OrderSegments(std::vector<Segment *> &Segments) {
   1110   std::stable_sort(std::begin(Segments), std::end(Segments),
   1111                    compareSegmentsByOffset);
   1112 }
   1113 
   1114 // This function finds a consistent layout for a list of segments starting from
   1115 // an Offset. It assumes that Segments have been sorted by OrderSegments and
   1116 // returns an Offset one past the end of the last segment.
   1117 static uint64_t LayoutSegments(std::vector<Segment *> &Segments,
   1118                                uint64_t Offset) {
   1119   assert(std::is_sorted(std::begin(Segments), std::end(Segments),
   1120                         compareSegmentsByOffset));
   1121   // The only way a segment should move is if a section was between two
   1122   // segments and that section was removed. If that section isn't in a segment
   1123   // then it's acceptable, but not ideal, to simply move it to after the
   1124   // segments. So we can simply layout segments one after the other accounting
   1125   // for alignment.
   1126   for (auto &Segment : Segments) {
   1127     // We assume that segments have been ordered by OriginalOffset and Index
   1128     // such that a parent segment will always come before a child segment in
   1129     // OrderedSegments. This means that the Offset of the ParentSegment should
   1130     // already be set and we can set our offset relative to it.
   1131     if (Segment->ParentSegment != nullptr) {
   1132       auto Parent = Segment->ParentSegment;
   1133       Segment->Offset =
   1134           Parent->Offset + Segment->OriginalOffset - Parent->OriginalOffset;
   1135     } else {
   1136       Offset = alignToAddr(Offset, Segment->VAddr, Segment->Align);
   1137       Segment->Offset = Offset;
   1138     }
   1139     Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
   1140   }
   1141   return Offset;
   1142 }
   1143 
   1144 // This function finds a consistent layout for a list of sections. It assumes
   1145 // that the ->ParentSegment of each section has already been laid out. The
   1146 // supplied starting Offset is used for the starting offset of any section that
   1147 // does not have a ParentSegment. It returns either the offset given if all
   1148 // sections had a ParentSegment or an offset one past the last section if there
   1149 // was a section that didn't have a ParentSegment.
   1150 template <class Range>
   1151 static uint64_t LayoutSections(Range Sections, uint64_t Offset) {
   1152   // Now the offset of every segment has been set we can assign the offsets
   1153   // of each section. For sections that are covered by a segment we should use
   1154   // the segment's original offset and the section's original offset to compute
   1155   // the offset from the start of the segment. Using the offset from the start
   1156   // of the segment we can assign a new offset to the section. For sections not
   1157   // covered by segments we can just bump Offset to the next valid location.
   1158   uint32_t Index = 1;
   1159   for (auto &Section : Sections) {
   1160     Section.Index = Index++;
   1161     if (Section.ParentSegment != nullptr) {
   1162       auto Segment = *Section.ParentSegment;
   1163       Section.Offset =
   1164           Segment.Offset + (Section.OriginalOffset - Segment.OriginalOffset);
   1165     } else {
   1166       Offset = alignTo(Offset, Section.Align == 0 ? 1 : Section.Align);
   1167       Section.Offset = Offset;
   1168       if (Section.Type != SHT_NOBITS)
   1169         Offset += Section.Size;
   1170     }
   1171   }
   1172   return Offset;
   1173 }
   1174 
   1175 template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
   1176   // We need a temporary list of segments that has a special order to it
   1177   // so that we know that anytime ->ParentSegment is set that segment has
   1178   // already had its offset properly set.
   1179   std::vector<Segment *> OrderedSegments;
   1180   for (auto &Segment : Obj.segments())
   1181     OrderedSegments.push_back(&Segment);
   1182   OrderedSegments.push_back(&Obj.ElfHdrSegment);
   1183   OrderedSegments.push_back(&Obj.ProgramHdrSegment);
   1184   OrderSegments(OrderedSegments);
   1185   // Offset is used as the start offset of the first segment to be laid out.
   1186   // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
   1187   // we start at offset 0.
   1188   uint64_t Offset = 0;
   1189   Offset = LayoutSegments(OrderedSegments, Offset);
   1190   Offset = LayoutSections(Obj.sections(), Offset);
   1191   // If we need to write the section header table out then we need to align the
   1192   // Offset so that SHOffset is valid.
   1193   if (WriteSectionHeaders)
   1194     Offset = alignTo(Offset, sizeof(typename ELFT::Addr));
   1195   Obj.SHOffset = Offset;
   1196 }
   1197 
   1198 template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
   1199   // We already have the section header offset so we can calculate the total
   1200   // size by just adding up the size of each section header.
   1201   auto NullSectionSize = WriteSectionHeaders ? sizeof(Elf_Shdr) : 0;
   1202   return Obj.SHOffset + size(Obj.sections()) * sizeof(Elf_Shdr) +
   1203          NullSectionSize;
   1204 }
   1205 
   1206 template <class ELFT> void ELFWriter<ELFT>::write() {
   1207   writeEhdr();
   1208   writePhdrs();
   1209   writeSectionData();
   1210   if (WriteSectionHeaders)
   1211     writeShdrs();
   1212   if (auto E = Buf.commit())
   1213     reportError(Buf.getName(), errorToErrorCode(std::move(E)));
   1214 }
   1215 
   1216 template <class ELFT> void ELFWriter<ELFT>::finalize() {
   1217   // It could happen that SectionNames has been removed and yet the user wants
   1218   // a section header table output. We need to throw an error if a user tries
   1219   // to do that.
   1220   if (Obj.SectionNames == nullptr && WriteSectionHeaders)
   1221     error("Cannot write section header table because section header string "
   1222           "table was removed.");
   1223 
   1224   Obj.sortSections();
   1225 
   1226   // We need to assign indexes before we perform layout because we need to know
   1227   // if we need large indexes or not. We can assign indexes first and check as
   1228   // we go to see if we will actully need large indexes.
   1229   bool NeedsLargeIndexes = false;
   1230   if (size(Obj.sections()) >= SHN_LORESERVE) {
   1231     auto Sections = Obj.sections();
   1232     NeedsLargeIndexes =
   1233         std::any_of(Sections.begin() + SHN_LORESERVE, Sections.end(),
   1234                     [](const SectionBase &Sec) { return Sec.HasSymbol; });
   1235     // TODO: handle case where only one section needs the large index table but
   1236     // only needs it because the large index table hasn't been removed yet.
   1237   }
   1238 
   1239   if (NeedsLargeIndexes) {
   1240     // This means we definitely need to have a section index table but if we
   1241     // already have one then we should use it instead of making a new one.
   1242     if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
   1243       // Addition of a section to the end does not invalidate the indexes of
   1244       // other sections and assigns the correct index to the new section.
   1245       auto &Shndx = Obj.addSection<SectionIndexSection>();
   1246       Obj.SymbolTable->setShndxTable(&Shndx);
   1247       Shndx.setSymTab(Obj.SymbolTable);
   1248     }
   1249   } else {
   1250     // Since we don't need SectionIndexTable we should remove it and all
   1251     // references to it.
   1252     if (Obj.SectionIndexTable != nullptr) {
   1253       Obj.removeSections([this](const SectionBase &Sec) {
   1254         return &Sec == Obj.SectionIndexTable;
   1255       });
   1256     }
   1257   }
   1258 
   1259   // Make sure we add the names of all the sections. Importantly this must be
   1260   // done after we decide to add or remove SectionIndexes.
   1261   if (Obj.SectionNames != nullptr)
   1262     for (const auto &Section : Obj.sections()) {
   1263       Obj.SectionNames->addString(Section.Name);
   1264     }
   1265 
   1266   // Before we can prepare for layout the indexes need to be finalized.
   1267   uint64_t Index = 0;
   1268   for (auto &Sec : Obj.sections())
   1269     Sec.Index = Index++;
   1270 
   1271   // The symbol table does not update all other sections on update. For
   1272   // instance, symbol names are not added as new symbols are added. This means
   1273   // that some sections, like .strtab, don't yet have their final size.
   1274   if (Obj.SymbolTable != nullptr)
   1275     Obj.SymbolTable->prepareForLayout();
   1276 
   1277   assignOffsets();
   1278 
   1279   // Finalize SectionNames first so that we can assign name indexes.
   1280   if (Obj.SectionNames != nullptr)
   1281     Obj.SectionNames->finalize();
   1282   // Finally now that all offsets and indexes have been set we can finalize any
   1283   // remaining issues.
   1284   uint64_t Offset = Obj.SHOffset + sizeof(Elf_Shdr);
   1285   for (auto &Section : Obj.sections()) {
   1286     Section.HeaderOffset = Offset;
   1287     Offset += sizeof(Elf_Shdr);
   1288     if (WriteSectionHeaders)
   1289       Section.NameIndex = Obj.SectionNames->findIndex(Section.Name);
   1290     Section.finalize();
   1291   }
   1292 
   1293   Buf.allocate(totalSize());
   1294   SecWriter = llvm::make_unique<ELFSectionWriter<ELFT>>(Buf);
   1295 }
   1296 
   1297 void BinaryWriter::write() {
   1298   for (auto &Section : Obj.sections()) {
   1299     if ((Section.Flags & SHF_ALLOC) == 0)
   1300       continue;
   1301     Section.accept(*SecWriter);
   1302   }
   1303   if (auto E = Buf.commit())
   1304     reportError(Buf.getName(), errorToErrorCode(std::move(E)));
   1305 }
   1306 
   1307 void BinaryWriter::finalize() {
   1308   // TODO: Create a filter range to construct OrderedSegments from so that this
   1309   // code can be deduped with assignOffsets above. This should also solve the
   1310   // todo below for LayoutSections.
   1311   // We need a temporary list of segments that has a special order to it
   1312   // so that we know that anytime ->ParentSegment is set that segment has
   1313   // already had it's offset properly set. We only want to consider the segments
   1314   // that will affect layout of allocated sections so we only add those.
   1315   std::vector<Segment *> OrderedSegments;
   1316   for (auto &Section : Obj.sections()) {
   1317     if ((Section.Flags & SHF_ALLOC) != 0 && Section.ParentSegment != nullptr) {
   1318       OrderedSegments.push_back(Section.ParentSegment);
   1319     }
   1320   }
   1321 
   1322   // For binary output, we're going to use physical addresses instead of
   1323   // virtual addresses, since a binary output is used for cases like ROM
   1324   // loading and physical addresses are intended for ROM loading.
   1325   // However, if no segment has a physical address, we'll fallback to using
   1326   // virtual addresses for all.
   1327   if (std::all_of(std::begin(OrderedSegments), std::end(OrderedSegments),
   1328                   [](const Segment *Segment) { return Segment->PAddr == 0; }))
   1329     for (const auto &Segment : OrderedSegments)
   1330       Segment->PAddr = Segment->VAddr;
   1331 
   1332   std::stable_sort(std::begin(OrderedSegments), std::end(OrderedSegments),
   1333                    compareSegmentsByPAddr);
   1334 
   1335   // Because we add a ParentSegment for each section we might have duplicate
   1336   // segments in OrderedSegments. If there were duplicates then LayoutSegments
   1337   // would do very strange things.
   1338   auto End =
   1339       std::unique(std::begin(OrderedSegments), std::end(OrderedSegments));
   1340   OrderedSegments.erase(End, std::end(OrderedSegments));
   1341 
   1342   uint64_t Offset = 0;
   1343 
   1344   // Modify the first segment so that there is no gap at the start. This allows
   1345   // our layout algorithm to proceed as expected while not out writing out the
   1346   // gap at the start.
   1347   if (!OrderedSegments.empty()) {
   1348     auto Seg = OrderedSegments[0];
   1349     auto Sec = Seg->firstSection();
   1350     auto Diff = Sec->OriginalOffset - Seg->OriginalOffset;
   1351     Seg->OriginalOffset += Diff;
   1352     // The size needs to be shrunk as well.
   1353     Seg->FileSize -= Diff;
   1354     // The PAddr needs to be increased to remove the gap before the first
   1355     // section.
   1356     Seg->PAddr += Diff;
   1357     uint64_t LowestPAddr = Seg->PAddr;
   1358     for (auto &Segment : OrderedSegments) {
   1359       Segment->Offset = Segment->PAddr - LowestPAddr;
   1360       Offset = std::max(Offset, Segment->Offset + Segment->FileSize);
   1361     }
   1362   }
   1363 
   1364   // TODO: generalize LayoutSections to take a range. Pass a special range
   1365   // constructed from an iterator that skips values for which a predicate does
   1366   // not hold. Then pass such a range to LayoutSections instead of constructing
   1367   // AllocatedSections here.
   1368   std::vector<SectionBase *> AllocatedSections;
   1369   for (auto &Section : Obj.sections()) {
   1370     if ((Section.Flags & SHF_ALLOC) == 0)
   1371       continue;
   1372     AllocatedSections.push_back(&Section);
   1373   }
   1374   LayoutSections(make_pointee_range(AllocatedSections), Offset);
   1375 
   1376   // Now that every section has been laid out we just need to compute the total
   1377   // file size. This might not be the same as the offset returned by
   1378   // LayoutSections, because we want to truncate the last segment to the end of
   1379   // its last section, to match GNU objcopy's behaviour.
   1380   TotalSize = 0;
   1381   for (const auto &Section : AllocatedSections) {
   1382     if (Section->Type != SHT_NOBITS)
   1383       TotalSize = std::max(TotalSize, Section->Offset + Section->Size);
   1384   }
   1385 
   1386   Buf.allocate(TotalSize);
   1387   SecWriter = llvm::make_unique<BinarySectionWriter>(Buf);
   1388 }
   1389 
   1390 namespace llvm {
   1391 namespace objcopy {
   1392 
   1393 template class ELFBuilder<ELF64LE>;
   1394 template class ELFBuilder<ELF64BE>;
   1395 template class ELFBuilder<ELF32LE>;
   1396 template class ELFBuilder<ELF32BE>;
   1397 
   1398 template class ELFWriter<ELF64LE>;
   1399 template class ELFWriter<ELF64BE>;
   1400 template class ELFWriter<ELF32LE>;
   1401 template class ELFWriter<ELF32BE>;
   1402 } // end namespace objcopy
   1403 } // end namespace llvm
   1404