Home | History | Annotate | Download | only in RuntimeDyld
      1 //===-- RuntimeDyldMachO.cpp - Run-time dynamic linker for MC-JIT ------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Implementation of the MC-JIT runtime dynamic linker.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "dyld"
     15 #include "llvm/ADT/OwningPtr.h"
     16 #include "llvm/ADT/StringRef.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "RuntimeDyldImpl.h"
     19 using namespace llvm;
     20 using namespace llvm::object;
     21 
     22 namespace llvm {
     23 
     24 bool RuntimeDyldMachO::
     25 resolveRelocation(uint8_t *Address, uint8_t *Value, bool isPCRel,
     26                   unsigned Type, unsigned Size) {
     27   // This just dispatches to the proper target specific routine.
     28   switch (CPUType) {
     29   default: assert(0 && "Unsupported CPU type!");
     30   case mach::CTM_x86_64:
     31     return resolveX86_64Relocation((uintptr_t)Address, (uintptr_t)Value,
     32                                    isPCRel, Type, Size);
     33   case mach::CTM_ARM:
     34     return resolveARMRelocation((uintptr_t)Address, (uintptr_t)Value,
     35                                 isPCRel, Type, Size);
     36   }
     37   llvm_unreachable("");
     38 }
     39 
     40 bool RuntimeDyldMachO::
     41 resolveX86_64Relocation(uintptr_t Address, uintptr_t Value,
     42                         bool isPCRel, unsigned Type,
     43                         unsigned Size) {
     44   // If the relocation is PC-relative, the value to be encoded is the
     45   // pointer difference.
     46   if (isPCRel)
     47     // FIXME: It seems this value needs to be adjusted by 4 for an effective PC
     48     // address. Is that expected? Only for branches, perhaps?
     49     Value -= Address + 4;
     50 
     51   switch(Type) {
     52   default:
     53     llvm_unreachable("Invalid relocation type!");
     54   case macho::RIT_X86_64_Unsigned:
     55   case macho::RIT_X86_64_Branch: {
     56     // Mask in the target value a byte at a time (we don't have an alignment
     57     // guarantee for the target address, so this is safest).
     58     uint8_t *p = (uint8_t*)Address;
     59     for (unsigned i = 0; i < Size; ++i) {
     60       *p++ = (uint8_t)Value;
     61       Value >>= 8;
     62     }
     63     return false;
     64   }
     65   case macho::RIT_X86_64_Signed:
     66   case macho::RIT_X86_64_GOTLoad:
     67   case macho::RIT_X86_64_GOT:
     68   case macho::RIT_X86_64_Subtractor:
     69   case macho::RIT_X86_64_Signed1:
     70   case macho::RIT_X86_64_Signed2:
     71   case macho::RIT_X86_64_Signed4:
     72   case macho::RIT_X86_64_TLV:
     73     return Error("Relocation type not implemented yet!");
     74   }
     75   return false;
     76 }
     77 
     78 bool RuntimeDyldMachO::resolveARMRelocation(uintptr_t Address, uintptr_t Value,
     79                                          bool isPCRel, unsigned Type,
     80                                          unsigned Size) {
     81   // If the relocation is PC-relative, the value to be encoded is the
     82   // pointer difference.
     83   if (isPCRel) {
     84     Value -= Address;
     85     // ARM PCRel relocations have an effective-PC offset of two instructions
     86     // (four bytes in Thumb mode, 8 bytes in ARM mode).
     87     // FIXME: For now, assume ARM mode.
     88     Value -= 8;
     89   }
     90 
     91   switch(Type) {
     92   default:
     93     llvm_unreachable("Invalid relocation type!");
     94   case macho::RIT_Vanilla: {
     95     llvm_unreachable("Invalid relocation type!");
     96     // Mask in the target value a byte at a time (we don't have an alignment
     97     // guarantee for the target address, so this is safest).
     98     uint8_t *p = (uint8_t*)Address;
     99     for (unsigned i = 0; i < Size; ++i) {
    100       *p++ = (uint8_t)Value;
    101       Value >>= 8;
    102     }
    103     break;
    104   }
    105   case macho::RIT_ARM_Branch24Bit: {
    106     // Mask the value into the target address. We know instructions are
    107     // 32-bit aligned, so we can do it all at once.
    108     uint32_t *p = (uint32_t*)Address;
    109     // The low two bits of the value are not encoded.
    110     Value >>= 2;
    111     // Mask the value to 24 bits.
    112     Value &= 0xffffff;
    113     // FIXME: If the destination is a Thumb function (and the instruction
    114     // is a non-predicated BL instruction), we need to change it to a BLX
    115     // instruction instead.
    116 
    117     // Insert the value into the instruction.
    118     *p = (*p & ~0xffffff) | Value;
    119     break;
    120   }
    121   case macho::RIT_ARM_ThumbBranch22Bit:
    122   case macho::RIT_ARM_ThumbBranch32Bit:
    123   case macho::RIT_ARM_Half:
    124   case macho::RIT_ARM_HalfDifference:
    125   case macho::RIT_Pair:
    126   case macho::RIT_Difference:
    127   case macho::RIT_ARM_LocalDifference:
    128   case macho::RIT_ARM_PreboundLazyPointer:
    129     return Error("Relocation type not implemented yet!");
    130   }
    131   return false;
    132 }
    133 
    134 bool RuntimeDyldMachO::
    135 loadSegment32(const MachOObject *Obj,
    136               const MachOObject::LoadCommandInfo *SegmentLCI,
    137               const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
    138   InMemoryStruct<macho::SegmentLoadCommand> SegmentLC;
    139   Obj->ReadSegmentLoadCommand(*SegmentLCI, SegmentLC);
    140   if (!SegmentLC)
    141     return Error("unable to load segment load command");
    142 
    143   for (unsigned SectNum = 0; SectNum != SegmentLC->NumSections; ++SectNum) {
    144     InMemoryStruct<macho::Section> Sect;
    145     Obj->ReadSection(*SegmentLCI, SectNum, Sect);
    146     if (!Sect)
    147       return Error("unable to load section: '" + Twine(SectNum) + "'");
    148 
    149     // FIXME: For the time being, we're only loading text segments.
    150     if (Sect->Flags != 0x80000400)
    151       continue;
    152 
    153     // Address and names of symbols in the section.
    154     typedef std::pair<uint64_t, StringRef> SymbolEntry;
    155     SmallVector<SymbolEntry, 64> Symbols;
    156     // Index of all the names, in this section or not. Used when we're
    157     // dealing with relocation entries.
    158     SmallVector<StringRef, 64> SymbolNames;
    159     for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
    160       InMemoryStruct<macho::SymbolTableEntry> STE;
    161       Obj->ReadSymbolTableEntry(SymtabLC->SymbolTableOffset, i, STE);
    162       if (!STE)
    163         return Error("unable to read symbol: '" + Twine(i) + "'");
    164       if (STE->SectionIndex > SegmentLC->NumSections)
    165         return Error("invalid section index for symbol: '" + Twine(i) + "'");
    166       // Get the symbol name.
    167       StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
    168       SymbolNames.push_back(Name);
    169 
    170       // Just skip symbols not defined in this section.
    171       if ((unsigned)STE->SectionIndex - 1 != SectNum)
    172         continue;
    173 
    174       // FIXME: Check the symbol type and flags.
    175       if (STE->Type != 0xF)  // external, defined in this section.
    176         continue;
    177       // Flags == 0x8 marks a thumb function for ARM, which is fine as it
    178       // doesn't require any special handling here.
    179       if (STE->Flags != 0x0 && STE->Flags != 0x8)
    180         continue;
    181 
    182       // Remember the symbol.
    183       Symbols.push_back(SymbolEntry(STE->Value, Name));
    184 
    185       DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
    186             (Sect->Address + STE->Value) << "\n");
    187     }
    188     // Sort the symbols by address, just in case they didn't come in that way.
    189     array_pod_sort(Symbols.begin(), Symbols.end());
    190 
    191     // If there weren't any functions (odd, but just in case...)
    192     if (!Symbols.size())
    193       continue;
    194 
    195     // Extract the function data.
    196     uint8_t *Base = (uint8_t*)Obj->getData(SegmentLC->FileOffset,
    197                                            SegmentLC->FileSize).data();
    198     for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
    199       uint64_t StartOffset = Sect->Address + Symbols[i].first;
    200       uint64_t EndOffset = Symbols[i + 1].first - 1;
    201       DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
    202                    << " from [" << StartOffset << ", " << EndOffset << "]\n");
    203       extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
    204     }
    205     // The last symbol we do after since the end address is calculated
    206     // differently because there is no next symbol to reference.
    207     uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
    208     uint64_t EndOffset = Sect->Size - 1;
    209     DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
    210                  << " from [" << StartOffset << ", " << EndOffset << "]\n");
    211     extractFunction(Symbols[Symbols.size()-1].second,
    212                     Base + StartOffset, Base + EndOffset);
    213 
    214     // Now extract the relocation information for each function and process it.
    215     for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
    216       InMemoryStruct<macho::RelocationEntry> RE;
    217       Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
    218       if (RE->Word0 & macho::RF_Scattered)
    219         return Error("NOT YET IMPLEMENTED: scattered relocations.");
    220       // Word0 of the relocation is the offset into the section where the
    221       // relocation should be applied. We need to translate that into an
    222       // offset into a function since that's our atom.
    223       uint32_t Offset = RE->Word0;
    224       // Look for the function containing the address. This is used for JIT
    225       // code, so the number of functions in section is almost always going
    226       // to be very small (usually just one), so until we have use cases
    227       // where that's not true, just use a trivial linear search.
    228       unsigned SymbolNum;
    229       unsigned NumSymbols = Symbols.size();
    230       assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
    231              "No symbol containing relocation!");
    232       for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
    233         if (Symbols[SymbolNum + 1].first > Offset)
    234           break;
    235       // Adjust the offset to be relative to the symbol.
    236       Offset -= Symbols[SymbolNum].first;
    237       // Get the name of the symbol containing the relocation.
    238       StringRef TargetName = SymbolNames[SymbolNum];
    239 
    240       bool isExtern = (RE->Word1 >> 27) & 1;
    241       // Figure out the source symbol of the relocation. If isExtern is true,
    242       // this relocation references the symbol table, otherwise it references
    243       // a section in the same object, numbered from 1 through NumSections
    244       // (SectionBases is [0, NumSections-1]).
    245       // FIXME: Some targets (ARM) use internal relocations even for
    246       // externally visible symbols, if the definition is in the same
    247       // file as the reference. We need to convert those back to by-name
    248       // references. We can resolve the address based on the section
    249       // offset and see if we have a symbol at that address. If we do,
    250       // use that; otherwise, puke.
    251       if (!isExtern)
    252         return Error("Internal relocations not supported.");
    253       uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
    254       StringRef SourceName = SymbolNames[SourceNum];
    255 
    256       // FIXME: Get the relocation addend from the target address.
    257 
    258       // Now store the relocation information. Associate it with the source
    259       // symbol.
    260       Relocations[SourceName].push_back(RelocationEntry(TargetName,
    261                                                         Offset,
    262                                                         RE->Word1,
    263                                                         0 /*Addend*/));
    264       DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
    265                    << " from '" << SourceName << "(Word1: "
    266                    << format("0x%x", RE->Word1) << ")\n");
    267     }
    268   }
    269   return false;
    270 }
    271 
    272 
    273 bool RuntimeDyldMachO::
    274 loadSegment64(const MachOObject *Obj,
    275               const MachOObject::LoadCommandInfo *SegmentLCI,
    276               const InMemoryStruct<macho::SymtabLoadCommand> &SymtabLC) {
    277   InMemoryStruct<macho::Segment64LoadCommand> Segment64LC;
    278   Obj->ReadSegment64LoadCommand(*SegmentLCI, Segment64LC);
    279   if (!Segment64LC)
    280     return Error("unable to load segment load command");
    281 
    282   for (unsigned SectNum = 0; SectNum != Segment64LC->NumSections; ++SectNum) {
    283     InMemoryStruct<macho::Section64> Sect;
    284     Obj->ReadSection64(*SegmentLCI, SectNum, Sect);
    285     if (!Sect)
    286       return Error("unable to load section: '" + Twine(SectNum) + "'");
    287 
    288     // FIXME: For the time being, we're only loading text segments.
    289     if (Sect->Flags != 0x80000400)
    290       continue;
    291 
    292     // Address and names of symbols in the section.
    293     typedef std::pair<uint64_t, StringRef> SymbolEntry;
    294     SmallVector<SymbolEntry, 64> Symbols;
    295     // Index of all the names, in this section or not. Used when we're
    296     // dealing with relocation entries.
    297     SmallVector<StringRef, 64> SymbolNames;
    298     for (unsigned i = 0; i != SymtabLC->NumSymbolTableEntries; ++i) {
    299       InMemoryStruct<macho::Symbol64TableEntry> STE;
    300       Obj->ReadSymbol64TableEntry(SymtabLC->SymbolTableOffset, i, STE);
    301       if (!STE)
    302         return Error("unable to read symbol: '" + Twine(i) + "'");
    303       if (STE->SectionIndex > Segment64LC->NumSections)
    304         return Error("invalid section index for symbol: '" + Twine(i) + "'");
    305       // Get the symbol name.
    306       StringRef Name = Obj->getStringAtIndex(STE->StringIndex);
    307       SymbolNames.push_back(Name);
    308 
    309       // Just skip symbols not defined in this section.
    310       if ((unsigned)STE->SectionIndex - 1 != SectNum)
    311         continue;
    312 
    313       // FIXME: Check the symbol type and flags.
    314       if (STE->Type != 0xF)  // external, defined in this section.
    315         continue;
    316       if (STE->Flags != 0x0)
    317         continue;
    318 
    319       // Remember the symbol.
    320       Symbols.push_back(SymbolEntry(STE->Value, Name));
    321 
    322       DEBUG(dbgs() << "Function sym: '" << Name << "' @ " <<
    323             (Sect->Address + STE->Value) << "\n");
    324     }
    325     // Sort the symbols by address, just in case they didn't come in that way.
    326     array_pod_sort(Symbols.begin(), Symbols.end());
    327 
    328     // If there weren't any functions (odd, but just in case...)
    329     if (!Symbols.size())
    330       continue;
    331 
    332     // Extract the function data.
    333     uint8_t *Base = (uint8_t*)Obj->getData(Segment64LC->FileOffset,
    334                                            Segment64LC->FileSize).data();
    335     for (unsigned i = 0, e = Symbols.size() - 1; i != e; ++i) {
    336       uint64_t StartOffset = Sect->Address + Symbols[i].first;
    337       uint64_t EndOffset = Symbols[i + 1].first - 1;
    338       DEBUG(dbgs() << "Extracting function: " << Symbols[i].second
    339                    << " from [" << StartOffset << ", " << EndOffset << "]\n");
    340       extractFunction(Symbols[i].second, Base + StartOffset, Base + EndOffset);
    341     }
    342     // The last symbol we do after since the end address is calculated
    343     // differently because there is no next symbol to reference.
    344     uint64_t StartOffset = Symbols[Symbols.size() - 1].first;
    345     uint64_t EndOffset = Sect->Size - 1;
    346     DEBUG(dbgs() << "Extracting function: " << Symbols[Symbols.size()-1].second
    347                  << " from [" << StartOffset << ", " << EndOffset << "]\n");
    348     extractFunction(Symbols[Symbols.size()-1].second,
    349                     Base + StartOffset, Base + EndOffset);
    350 
    351     // Now extract the relocation information for each function and process it.
    352     for (unsigned j = 0; j != Sect->NumRelocationTableEntries; ++j) {
    353       InMemoryStruct<macho::RelocationEntry> RE;
    354       Obj->ReadRelocationEntry(Sect->RelocationTableOffset, j, RE);
    355       if (RE->Word0 & macho::RF_Scattered)
    356         return Error("NOT YET IMPLEMENTED: scattered relocations.");
    357       // Word0 of the relocation is the offset into the section where the
    358       // relocation should be applied. We need to translate that into an
    359       // offset into a function since that's our atom.
    360       uint32_t Offset = RE->Word0;
    361       // Look for the function containing the address. This is used for JIT
    362       // code, so the number of functions in section is almost always going
    363       // to be very small (usually just one), so until we have use cases
    364       // where that's not true, just use a trivial linear search.
    365       unsigned SymbolNum;
    366       unsigned NumSymbols = Symbols.size();
    367       assert(NumSymbols > 0 && Symbols[0].first <= Offset &&
    368              "No symbol containing relocation!");
    369       for (SymbolNum = 0; SymbolNum < NumSymbols - 1; ++SymbolNum)
    370         if (Symbols[SymbolNum + 1].first > Offset)
    371           break;
    372       // Adjust the offset to be relative to the symbol.
    373       Offset -= Symbols[SymbolNum].first;
    374       // Get the name of the symbol containing the relocation.
    375       StringRef TargetName = SymbolNames[SymbolNum];
    376 
    377       bool isExtern = (RE->Word1 >> 27) & 1;
    378       // Figure out the source symbol of the relocation. If isExtern is true,
    379       // this relocation references the symbol table, otherwise it references
    380       // a section in the same object, numbered from 1 through NumSections
    381       // (SectionBases is [0, NumSections-1]).
    382       if (!isExtern)
    383         return Error("Internal relocations not supported.");
    384       uint32_t SourceNum = RE->Word1 & 0xffffff; // 24-bit value
    385       StringRef SourceName = SymbolNames[SourceNum];
    386 
    387       // FIXME: Get the relocation addend from the target address.
    388 
    389       // Now store the relocation information. Associate it with the source
    390       // symbol.
    391       Relocations[SourceName].push_back(RelocationEntry(TargetName,
    392                                                         Offset,
    393                                                         RE->Word1,
    394                                                         0 /*Addend*/));
    395       DEBUG(dbgs() << "Relocation at '" << TargetName << "' + " << Offset
    396                    << " from '" << SourceName << "(Word1: "
    397                    << format("0x%x", RE->Word1) << ")\n");
    398     }
    399   }
    400   return false;
    401 }
    402 
    403 bool RuntimeDyldMachO::loadObject(MemoryBuffer *InputBuffer) {
    404   // If the linker is in an error state, don't do anything.
    405   if (hasError())
    406     return true;
    407   // Load the Mach-O wrapper object.
    408   std::string ErrorStr;
    409   OwningPtr<MachOObject> Obj(
    410     MachOObject::LoadFromBuffer(InputBuffer, &ErrorStr));
    411   if (!Obj)
    412     return Error("unable to load object: '" + ErrorStr + "'");
    413 
    414   // Get the CPU type information from the header.
    415   const macho::Header &Header = Obj->getHeader();
    416 
    417   // FIXME: Error checking that the loaded object is compatible with
    418   //        the system we're running on.
    419   CPUType = Header.CPUType;
    420   CPUSubtype = Header.CPUSubtype;
    421 
    422   // Validate that the load commands match what we expect.
    423   const MachOObject::LoadCommandInfo *SegmentLCI = 0, *SymtabLCI = 0,
    424     *DysymtabLCI = 0;
    425   for (unsigned i = 0; i != Header.NumLoadCommands; ++i) {
    426     const MachOObject::LoadCommandInfo &LCI = Obj->getLoadCommandInfo(i);
    427     switch (LCI.Command.Type) {
    428     case macho::LCT_Segment:
    429     case macho::LCT_Segment64:
    430       if (SegmentLCI)
    431         return Error("unexpected input object (multiple segments)");
    432       SegmentLCI = &LCI;
    433       break;
    434     case macho::LCT_Symtab:
    435       if (SymtabLCI)
    436         return Error("unexpected input object (multiple symbol tables)");
    437       SymtabLCI = &LCI;
    438       break;
    439     case macho::LCT_Dysymtab:
    440       if (DysymtabLCI)
    441         return Error("unexpected input object (multiple symbol tables)");
    442       DysymtabLCI = &LCI;
    443       break;
    444     default:
    445       return Error("unexpected input object (unexpected load command");
    446     }
    447   }
    448 
    449   if (!SymtabLCI)
    450     return Error("no symbol table found in object");
    451   if (!SegmentLCI)
    452     return Error("no symbol table found in object");
    453 
    454   // Read and register the symbol table data.
    455   InMemoryStruct<macho::SymtabLoadCommand> SymtabLC;
    456   Obj->ReadSymtabLoadCommand(*SymtabLCI, SymtabLC);
    457   if (!SymtabLC)
    458     return Error("unable to load symbol table load command");
    459   Obj->RegisterStringTable(*SymtabLC);
    460 
    461   // Read the dynamic link-edit information, if present (not present in static
    462   // objects).
    463   if (DysymtabLCI) {
    464     InMemoryStruct<macho::DysymtabLoadCommand> DysymtabLC;
    465     Obj->ReadDysymtabLoadCommand(*DysymtabLCI, DysymtabLC);
    466     if (!DysymtabLC)
    467       return Error("unable to load dynamic link-exit load command");
    468 
    469     // FIXME: We don't support anything interesting yet.
    470 //    if (DysymtabLC->LocalSymbolsIndex != 0)
    471 //      return Error("NOT YET IMPLEMENTED: local symbol entries");
    472 //    if (DysymtabLC->ExternalSymbolsIndex != 0)
    473 //      return Error("NOT YET IMPLEMENTED: non-external symbol entries");
    474 //    if (DysymtabLC->UndefinedSymbolsIndex != SymtabLC->NumSymbolTableEntries)
    475 //      return Error("NOT YET IMPLEMENTED: undefined symbol entries");
    476   }
    477 
    478   // Load the segment load command.
    479   if (SegmentLCI->Command.Type == macho::LCT_Segment) {
    480     if (loadSegment32(Obj.get(), SegmentLCI, SymtabLC))
    481       return true;
    482   } else {
    483     if (loadSegment64(Obj.get(), SegmentLCI, SymtabLC))
    484       return true;
    485   }
    486 
    487   return false;
    488 }
    489 
    490 // Assign an address to a symbol name and resolve all the relocations
    491 // associated with it.
    492 void RuntimeDyldMachO::reassignSymbolAddress(StringRef Name, uint8_t *Addr) {
    493   // Assign the address in our symbol table.
    494   SymbolTable[Name] = Addr;
    495 
    496   RelocationList &Relocs = Relocations[Name];
    497   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
    498     RelocationEntry &RE = Relocs[i];
    499     uint8_t *Target = SymbolTable[RE.Target] + RE.Offset;
    500     bool isPCRel = (RE.Data >> 24) & 1;
    501     unsigned Type = (RE.Data >> 28) & 0xf;
    502     unsigned Size = 1 << ((RE.Data >> 25) & 3);
    503 
    504     DEBUG(dbgs() << "Resolving relocation at '" << RE.Target
    505           << "' + " << RE.Offset << " (" << format("%p", Target) << ")"
    506           << " from '" << Name << " (" << format("%p", Addr) << ")"
    507           << "(" << (isPCRel ? "pcrel" : "absolute")
    508           << ", type: " << Type << ", Size: " << Size << ").\n");
    509 
    510     resolveRelocation(Target, Addr, isPCRel, Type, Size);
    511     RE.isResolved = true;
    512   }
    513 }
    514 
    515 bool RuntimeDyldMachO::isKnownFormat(const MemoryBuffer *InputBuffer) {
    516   StringRef Magic = InputBuffer->getBuffer().slice(0, 4);
    517   if (Magic == "\xFE\xED\xFA\xCE") return true;
    518   if (Magic == "\xCE\xFA\xED\xFE") return true;
    519   if (Magic == "\xFE\xED\xFA\xCF") return true;
    520   if (Magic == "\xCF\xFA\xED\xFE") return true;
    521   return false;
    522 }
    523 
    524 } // end namespace llvm
    525