Home | History | Annotate | Download | only in libtiff
      1 /* $Id: tif_getimage.c,v 1.106 2017-05-20 11:29:02 erouault Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1991-1997 Sam Leffler
      5  * Copyright (c) 1991-1997 Silicon Graphics, Inc.
      6  *
      7  * Permission to use, copy, modify, distribute, and sell this software and
      8  * its documentation for any purpose is hereby granted without fee, provided
      9  * that (i) the above copyright notices and this permission notice appear in
     10  * all copies of the software and related documentation, and (ii) the names of
     11  * Sam Leffler and Silicon Graphics may not be used in any advertising or
     12  * publicity relating to the software without the specific, prior written
     13  * permission of Sam Leffler and Silicon Graphics.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
     16  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
     17  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
     18  *
     19  * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
     20  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
     21  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
     22  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
     23  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
     24  * OF THIS SOFTWARE.
     25  */
     26 
     27 /*
     28  * TIFF Library
     29  *
     30  * Read and return a packed RGBA image.
     31  */
     32 #include "tiffiop.h"
     33 #include <stdio.h>
     34 #include <limits.h>
     35 
     36 static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
     37 static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
     38 static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
     39 static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
     40 static int PickContigCase(TIFFRGBAImage*);
     41 static int PickSeparateCase(TIFFRGBAImage*);
     42 
     43 static int BuildMapUaToAa(TIFFRGBAImage* img);
     44 static int BuildMapBitdepth16To8(TIFFRGBAImage* img);
     45 
     46 static const char photoTag[] = "PhotometricInterpretation";
     47 
     48 /*
     49  * Helper constants used in Orientation tag handling
     50  */
     51 #define FLIP_VERTICALLY 0x01
     52 #define FLIP_HORIZONTALLY 0x02
     53 
     54 /*
     55  * Color conversion constants. We will define display types here.
     56  */
     57 
     58 static const TIFFDisplay display_sRGB = {
     59 	{			/* XYZ -> luminance matrix */
     60 		{  3.2410F, -1.5374F, -0.4986F },
     61 		{  -0.9692F, 1.8760F, 0.0416F },
     62 		{  0.0556F, -0.2040F, 1.0570F }
     63 	},
     64 	100.0F, 100.0F, 100.0F,	/* Light o/p for reference white */
     65 	255, 255, 255,		/* Pixel values for ref. white */
     66 	1.0F, 1.0F, 1.0F,	/* Residual light o/p for black pixel */
     67 	2.4F, 2.4F, 2.4F,	/* Gamma values for the three guns */
     68 };
     69 
     70 /*
     71  * Check the image to see if TIFFReadRGBAImage can deal with it.
     72  * 1/0 is returned according to whether or not the image can
     73  * be handled.  If 0 is returned, emsg contains the reason
     74  * why it is being rejected.
     75  */
     76 int
     77 TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
     78 {
     79 	TIFFDirectory* td = &tif->tif_dir;
     80 	uint16 photometric;
     81 	int colorchannels;
     82 
     83 	if (!tif->tif_decodestatus) {
     84 		sprintf(emsg, "Sorry, requested compression method is not configured");
     85 		return (0);
     86 	}
     87 	switch (td->td_bitspersample) {
     88 		case 1:
     89 		case 2:
     90 		case 4:
     91 		case 8:
     92 		case 16:
     93 			break;
     94 		default:
     95 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
     96 			    td->td_bitspersample);
     97 			return (0);
     98 	}
     99         if (td->td_sampleformat == SAMPLEFORMAT_IEEEFP) {
    100                 sprintf(emsg, "Sorry, can not handle images with IEEE floating-point samples");
    101                 return (0);
    102         }
    103 	colorchannels = td->td_samplesperpixel - td->td_extrasamples;
    104 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
    105 		switch (colorchannels) {
    106 			case 1:
    107 				photometric = PHOTOMETRIC_MINISBLACK;
    108 				break;
    109 			case 3:
    110 				photometric = PHOTOMETRIC_RGB;
    111 				break;
    112 			default:
    113 				sprintf(emsg, "Missing needed %s tag", photoTag);
    114 				return (0);
    115 		}
    116 	}
    117 	switch (photometric) {
    118 		case PHOTOMETRIC_MINISWHITE:
    119 		case PHOTOMETRIC_MINISBLACK:
    120 		case PHOTOMETRIC_PALETTE:
    121 			if (td->td_planarconfig == PLANARCONFIG_CONTIG
    122 			    && td->td_samplesperpixel != 1
    123 			    && td->td_bitspersample < 8 ) {
    124 				sprintf(emsg,
    125 				    "Sorry, can not handle contiguous data with %s=%d, "
    126 				    "and %s=%d and Bits/Sample=%d",
    127 				    photoTag, photometric,
    128 				    "Samples/pixel", td->td_samplesperpixel,
    129 				    td->td_bitspersample);
    130 				return (0);
    131 			}
    132 			/*
    133 			 * We should likely validate that any extra samples are either
    134 			 * to be ignored, or are alpha, and if alpha we should try to use
    135 			 * them.  But for now we won't bother with this.
    136 			*/
    137 			break;
    138 		case PHOTOMETRIC_YCBCR:
    139 			/*
    140 			 * TODO: if at all meaningful and useful, make more complete
    141 			 * support check here, or better still, refactor to let supporting
    142 			 * code decide whether there is support and what meaningfull
    143 			 * error to return
    144 			 */
    145 			break;
    146 		case PHOTOMETRIC_RGB:
    147 			if (colorchannels < 3) {
    148 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
    149 				    "Color channels", colorchannels);
    150 				return (0);
    151 			}
    152 			break;
    153 		case PHOTOMETRIC_SEPARATED:
    154 			{
    155 				uint16 inkset;
    156 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
    157 				if (inkset != INKSET_CMYK) {
    158 					sprintf(emsg,
    159 					    "Sorry, can not handle separated image with %s=%d",
    160 					    "InkSet", inkset);
    161 					return 0;
    162 				}
    163 				if (td->td_samplesperpixel < 4) {
    164 					sprintf(emsg,
    165 					    "Sorry, can not handle separated image with %s=%d",
    166 					    "Samples/pixel", td->td_samplesperpixel);
    167 					return 0;
    168 				}
    169 				break;
    170 			}
    171 		case PHOTOMETRIC_LOGL:
    172 			if (td->td_compression != COMPRESSION_SGILOG) {
    173 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
    174 				    "Compression", COMPRESSION_SGILOG);
    175 				return (0);
    176 			}
    177 			break;
    178 		case PHOTOMETRIC_LOGLUV:
    179 			if (td->td_compression != COMPRESSION_SGILOG &&
    180 			    td->td_compression != COMPRESSION_SGILOG24) {
    181 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
    182 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
    183 				return (0);
    184 			}
    185 			if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
    186 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
    187 				    "Planarconfiguration", td->td_planarconfig);
    188 				return (0);
    189 			}
    190 			if ( td->td_samplesperpixel != 3 || colorchannels != 3 ) {
    191                                 sprintf(emsg,
    192                                         "Sorry, can not handle image with %s=%d, %s=%d",
    193                                         "Samples/pixel", td->td_samplesperpixel,
    194                                         "colorchannels", colorchannels);
    195                                 return 0;
    196                         }
    197 			break;
    198 		case PHOTOMETRIC_CIELAB:
    199                         if ( td->td_samplesperpixel != 3 || colorchannels != 3 || td->td_bitspersample != 8 ) {
    200                                 sprintf(emsg,
    201                                         "Sorry, can not handle image with %s=%d, %s=%d and %s=%d",
    202                                         "Samples/pixel", td->td_samplesperpixel,
    203                                         "colorchannels", colorchannels,
    204                                         "Bits/sample", td->td_bitspersample);
    205                                 return 0;
    206                         }
    207 			break;
    208                 default:
    209 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
    210 			    photoTag, photometric);
    211 			return (0);
    212 	}
    213 	return (1);
    214 }
    215 
    216 void
    217 TIFFRGBAImageEnd(TIFFRGBAImage* img)
    218 {
    219 	if (img->Map) {
    220 		_TIFFfree(img->Map);
    221 		img->Map = NULL;
    222 	}
    223 	if (img->BWmap) {
    224 		_TIFFfree(img->BWmap);
    225 		img->BWmap = NULL;
    226 	}
    227 	if (img->PALmap) {
    228 		_TIFFfree(img->PALmap);
    229 		img->PALmap = NULL;
    230 	}
    231 	if (img->ycbcr) {
    232 		_TIFFfree(img->ycbcr);
    233 		img->ycbcr = NULL;
    234 	}
    235 	if (img->cielab) {
    236 		_TIFFfree(img->cielab);
    237 		img->cielab = NULL;
    238 	}
    239 	if (img->UaToAa) {
    240 		_TIFFfree(img->UaToAa);
    241 		img->UaToAa = NULL;
    242 	}
    243 	if (img->Bitdepth16To8) {
    244 		_TIFFfree(img->Bitdepth16To8);
    245 		img->Bitdepth16To8 = NULL;
    246 	}
    247 
    248 	if( img->redcmap ) {
    249 		_TIFFfree( img->redcmap );
    250 		_TIFFfree( img->greencmap );
    251 		_TIFFfree( img->bluecmap );
    252                 img->redcmap = img->greencmap = img->bluecmap = NULL;
    253 	}
    254 }
    255 
    256 static int
    257 isCCITTCompression(TIFF* tif)
    258 {
    259     uint16 compress;
    260     TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
    261     return (compress == COMPRESSION_CCITTFAX3 ||
    262 	    compress == COMPRESSION_CCITTFAX4 ||
    263 	    compress == COMPRESSION_CCITTRLE ||
    264 	    compress == COMPRESSION_CCITTRLEW);
    265 }
    266 
    267 int
    268 TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
    269 {
    270 	uint16* sampleinfo;
    271 	uint16 extrasamples;
    272 	uint16 planarconfig;
    273 	uint16 compress;
    274 	int colorchannels;
    275 	uint16 *red_orig, *green_orig, *blue_orig;
    276 	int n_color;
    277 
    278 	if( !TIFFRGBAImageOK(tif, emsg) )
    279 		return 0;
    280 
    281 	/* Initialize to normal values */
    282 	img->row_offset = 0;
    283 	img->col_offset = 0;
    284 	img->redcmap = NULL;
    285 	img->greencmap = NULL;
    286 	img->bluecmap = NULL;
    287 	img->Map = NULL;
    288 	img->BWmap = NULL;
    289 	img->PALmap = NULL;
    290 	img->ycbcr = NULL;
    291 	img->cielab = NULL;
    292 	img->UaToAa = NULL;
    293 	img->Bitdepth16To8 = NULL;
    294 	img->req_orientation = ORIENTATION_BOTLEFT;     /* It is the default */
    295 
    296 	img->tif = tif;
    297 	img->stoponerr = stop;
    298 	TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
    299 	switch (img->bitspersample) {
    300 		case 1:
    301 		case 2:
    302 		case 4:
    303 		case 8:
    304 		case 16:
    305 			break;
    306 		default:
    307 			sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
    308 			    img->bitspersample);
    309 			goto fail_return;
    310 	}
    311 	img->alpha = 0;
    312 	TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
    313 	TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
    314 	    &extrasamples, &sampleinfo);
    315 	if (extrasamples >= 1)
    316 	{
    317 		switch (sampleinfo[0]) {
    318 			case EXTRASAMPLE_UNSPECIFIED:          /* Workaround for some images without */
    319 				if (img->samplesperpixel > 3)  /* correct info about alpha channel */
    320 					img->alpha = EXTRASAMPLE_ASSOCALPHA;
    321 				break;
    322 			case EXTRASAMPLE_ASSOCALPHA:           /* data is pre-multiplied */
    323 			case EXTRASAMPLE_UNASSALPHA:           /* data is not pre-multiplied */
    324 				img->alpha = sampleinfo[0];
    325 				break;
    326 		}
    327 	}
    328 
    329 #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA
    330 	if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
    331 		img->photometric = PHOTOMETRIC_MINISWHITE;
    332 
    333 	if( extrasamples == 0
    334 	    && img->samplesperpixel == 4
    335 	    && img->photometric == PHOTOMETRIC_RGB )
    336 	{
    337 		img->alpha = EXTRASAMPLE_ASSOCALPHA;
    338 		extrasamples = 1;
    339 	}
    340 #endif
    341 
    342 	colorchannels = img->samplesperpixel - extrasamples;
    343 	TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
    344 	TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
    345 	if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
    346 		switch (colorchannels) {
    347 			case 1:
    348 				if (isCCITTCompression(tif))
    349 					img->photometric = PHOTOMETRIC_MINISWHITE;
    350 				else
    351 					img->photometric = PHOTOMETRIC_MINISBLACK;
    352 				break;
    353 			case 3:
    354 				img->photometric = PHOTOMETRIC_RGB;
    355 				break;
    356 			default:
    357 				sprintf(emsg, "Missing needed %s tag", photoTag);
    358                                 goto fail_return;
    359 		}
    360 	}
    361 	switch (img->photometric) {
    362 		case PHOTOMETRIC_PALETTE:
    363 			if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
    364 			    &red_orig, &green_orig, &blue_orig)) {
    365 				sprintf(emsg, "Missing required \"Colormap\" tag");
    366                                 goto fail_return;
    367 			}
    368 
    369 			/* copy the colormaps so we can modify them */
    370 			n_color = (1U << img->bitspersample);
    371 			img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
    372 			img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
    373 			img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
    374 			if( !img->redcmap || !img->greencmap || !img->bluecmap ) {
    375 				sprintf(emsg, "Out of memory for colormap copy");
    376                                 goto fail_return;
    377 			}
    378 
    379 			_TIFFmemcpy( img->redcmap, red_orig, n_color * 2 );
    380 			_TIFFmemcpy( img->greencmap, green_orig, n_color * 2 );
    381 			_TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 );
    382 
    383 			/* fall through... */
    384 		case PHOTOMETRIC_MINISWHITE:
    385 		case PHOTOMETRIC_MINISBLACK:
    386 			if (planarconfig == PLANARCONFIG_CONTIG
    387 			    && img->samplesperpixel != 1
    388 			    && img->bitspersample < 8 ) {
    389 				sprintf(emsg,
    390 				    "Sorry, can not handle contiguous data with %s=%d, "
    391 				    "and %s=%d and Bits/Sample=%d",
    392 				    photoTag, img->photometric,
    393 				    "Samples/pixel", img->samplesperpixel,
    394 				    img->bitspersample);
    395                                 goto fail_return;
    396 			}
    397 			break;
    398 		case PHOTOMETRIC_YCBCR:
    399 			/* It would probably be nice to have a reality check here. */
    400 			if (planarconfig == PLANARCONFIG_CONTIG)
    401 				/* can rely on libjpeg to convert to RGB */
    402 				/* XXX should restore current state on exit */
    403 				switch (compress) {
    404 					case COMPRESSION_JPEG:
    405 						/*
    406 						 * TODO: when complete tests verify complete desubsampling
    407 						 * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in
    408 						 * favor of tif_getimage.c native handling
    409 						 */
    410 						TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
    411 						img->photometric = PHOTOMETRIC_RGB;
    412 						break;
    413 					default:
    414 						/* do nothing */;
    415 						break;
    416 				}
    417 			/*
    418 			 * TODO: if at all meaningful and useful, make more complete
    419 			 * support check here, or better still, refactor to let supporting
    420 			 * code decide whether there is support and what meaningfull
    421 			 * error to return
    422 			 */
    423 			break;
    424 		case PHOTOMETRIC_RGB:
    425 			if (colorchannels < 3) {
    426 				sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
    427 				    "Color channels", colorchannels);
    428                                 goto fail_return;
    429 			}
    430 			break;
    431 		case PHOTOMETRIC_SEPARATED:
    432 			{
    433 				uint16 inkset;
    434 				TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
    435 				if (inkset != INKSET_CMYK) {
    436 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
    437 					    "InkSet", inkset);
    438                                         goto fail_return;
    439 				}
    440 				if (img->samplesperpixel < 4) {
    441 					sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
    442 					    "Samples/pixel", img->samplesperpixel);
    443                                         goto fail_return;
    444 				}
    445 			}
    446 			break;
    447 		case PHOTOMETRIC_LOGL:
    448 			if (compress != COMPRESSION_SGILOG) {
    449 				sprintf(emsg, "Sorry, LogL data must have %s=%d",
    450 				    "Compression", COMPRESSION_SGILOG);
    451                                 goto fail_return;
    452 			}
    453 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
    454 			img->photometric = PHOTOMETRIC_MINISBLACK;	/* little white lie */
    455 			img->bitspersample = 8;
    456 			break;
    457 		case PHOTOMETRIC_LOGLUV:
    458 			if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
    459 				sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
    460 				    "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
    461                                 goto fail_return;
    462 			}
    463 			if (planarconfig != PLANARCONFIG_CONTIG) {
    464 				sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
    465 				    "Planarconfiguration", planarconfig);
    466 				return (0);
    467 			}
    468 			TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
    469 			img->photometric = PHOTOMETRIC_RGB;		/* little white lie */
    470 			img->bitspersample = 8;
    471 			break;
    472 		case PHOTOMETRIC_CIELAB:
    473 			break;
    474 		default:
    475 			sprintf(emsg, "Sorry, can not handle image with %s=%d",
    476 			    photoTag, img->photometric);
    477                         goto fail_return;
    478 	}
    479 	TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
    480 	TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
    481 	TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
    482 	img->isContig =
    483 	    !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1);
    484 	if (img->isContig) {
    485 		if (!PickContigCase(img)) {
    486 			sprintf(emsg, "Sorry, can not handle image");
    487 			goto fail_return;
    488 		}
    489 	} else {
    490 		if (!PickSeparateCase(img)) {
    491 			sprintf(emsg, "Sorry, can not handle image");
    492 			goto fail_return;
    493 		}
    494 	}
    495 	return 1;
    496 
    497   fail_return:
    498         TIFFRGBAImageEnd( img );
    499         return 0;
    500 }
    501 
    502 int
    503 TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
    504 {
    505     if (img->get == NULL) {
    506 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup");
    507 		return (0);
    508 	}
    509 	if (img->put.any == NULL) {
    510 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
    511 		"No \"put\" routine setupl; probably can not handle image format");
    512 		return (0);
    513     }
    514     return (*img->get)(img, raster, w, h);
    515 }
    516 
    517 /*
    518  * Read the specified image into an ABGR-format rastertaking in account
    519  * specified orientation.
    520  */
    521 int
    522 TIFFReadRGBAImageOriented(TIFF* tif,
    523 			  uint32 rwidth, uint32 rheight, uint32* raster,
    524 			  int orientation, int stop)
    525 {
    526     char emsg[1024] = "";
    527     TIFFRGBAImage img;
    528     int ok;
    529 
    530 	if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
    531 		img.req_orientation = (uint16)orientation;
    532 		/* XXX verify rwidth and rheight against width and height */
    533 		ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
    534 			rwidth, img.height);
    535 		TIFFRGBAImageEnd(&img);
    536 	} else {
    537 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
    538 		ok = 0;
    539     }
    540     return (ok);
    541 }
    542 
    543 /*
    544  * Read the specified image into an ABGR-format raster. Use bottom left
    545  * origin for raster by default.
    546  */
    547 int
    548 TIFFReadRGBAImage(TIFF* tif,
    549 		  uint32 rwidth, uint32 rheight, uint32* raster, int stop)
    550 {
    551 	return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster,
    552 					 ORIENTATION_BOTLEFT, stop);
    553 }
    554 
    555 static int
    556 setorientation(TIFFRGBAImage* img)
    557 {
    558 	switch (img->orientation) {
    559 		case ORIENTATION_TOPLEFT:
    560 		case ORIENTATION_LEFTTOP:
    561 			if (img->req_orientation == ORIENTATION_TOPRIGHT ||
    562 			    img->req_orientation == ORIENTATION_RIGHTTOP)
    563 				return FLIP_HORIZONTALLY;
    564 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
    565 			    img->req_orientation == ORIENTATION_RIGHTBOT)
    566 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
    567 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
    568 			    img->req_orientation == ORIENTATION_LEFTBOT)
    569 				return FLIP_VERTICALLY;
    570 			else
    571 				return 0;
    572 		case ORIENTATION_TOPRIGHT:
    573 		case ORIENTATION_RIGHTTOP:
    574 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
    575 			    img->req_orientation == ORIENTATION_LEFTTOP)
    576 				return FLIP_HORIZONTALLY;
    577 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
    578 			    img->req_orientation == ORIENTATION_RIGHTBOT)
    579 				return FLIP_VERTICALLY;
    580 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
    581 			    img->req_orientation == ORIENTATION_LEFTBOT)
    582 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
    583 			else
    584 				return 0;
    585 		case ORIENTATION_BOTRIGHT:
    586 		case ORIENTATION_RIGHTBOT:
    587 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
    588 			    img->req_orientation == ORIENTATION_LEFTTOP)
    589 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
    590 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
    591 			    img->req_orientation == ORIENTATION_RIGHTTOP)
    592 				return FLIP_VERTICALLY;
    593 			else if (img->req_orientation == ORIENTATION_BOTLEFT ||
    594 			    img->req_orientation == ORIENTATION_LEFTBOT)
    595 				return FLIP_HORIZONTALLY;
    596 			else
    597 				return 0;
    598 		case ORIENTATION_BOTLEFT:
    599 		case ORIENTATION_LEFTBOT:
    600 			if (img->req_orientation == ORIENTATION_TOPLEFT ||
    601 			    img->req_orientation == ORIENTATION_LEFTTOP)
    602 				return FLIP_VERTICALLY;
    603 			else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
    604 			    img->req_orientation == ORIENTATION_RIGHTTOP)
    605 				return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
    606 			else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
    607 			    img->req_orientation == ORIENTATION_RIGHTBOT)
    608 				return FLIP_HORIZONTALLY;
    609 			else
    610 				return 0;
    611 		default:	/* NOTREACHED */
    612 			return 0;
    613 	}
    614 }
    615 
    616 /*
    617  * Get an tile-organized image that has
    618  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
    619  * or
    620  *	SamplesPerPixel == 1
    621  */
    622 static int
    623 gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
    624 {
    625     TIFF* tif = img->tif;
    626     tileContigRoutine put = img->put.contig;
    627     uint32 col, row, y, rowstoread;
    628     tmsize_t pos;
    629     uint32 tw, th;
    630     unsigned char* buf = NULL;
    631     int32 fromskew, toskew;
    632     int64 safeskew;
    633     uint32 nrow;
    634     int ret = 1, flip;
    635     uint32 this_tw, tocol;
    636     int32 this_toskew, leftmost_toskew;
    637     int32 leftmost_fromskew;
    638     uint32 leftmost_tw;
    639     tmsize_t bufsize;
    640 
    641     bufsize = TIFFTileSize(tif);
    642     if (bufsize == 0) {
    643         TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
    644         return (0);
    645     }
    646 
    647     TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
    648     TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
    649 
    650     flip = setorientation(img);
    651     if (flip & FLIP_VERTICALLY) {
    652 	    y = h - 1;
    653 	    safeskew = 0;
    654 	    safeskew -= tw;
    655 	    safeskew -= w;
    656     }
    657     else {
    658 	    y = 0;
    659 	    safeskew = 0;
    660 	    safeskew -= tw;
    661 	    safeskew +=w;
    662     }
    663 
    664     if(safeskew > INT_MAX || safeskew < INT_MIN){
    665        _TIFFfree(buf);
    666        TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew");
    667        return (0);
    668     }
    669     toskew = safeskew;
    670 
    671     /*
    672      *	Leftmost tile is clipped on left side if col_offset > 0.
    673      */
    674     leftmost_fromskew = img->col_offset % tw;
    675     leftmost_tw = tw - leftmost_fromskew;
    676     safeskew = toskew;
    677     safeskew += leftmost_fromskew;
    678     if(safeskew > INT_MAX || safeskew < INT_MIN){
    679        _TIFFfree(buf);
    680        TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew");
    681        return (0);
    682     }
    683     leftmost_toskew = safeskew;
    684     for (row = 0; ret != 0 && row < h; row += nrow)
    685     {
    686         rowstoread = th - (row + img->row_offset) % th;
    687     	nrow = (row + rowstoread > h ? h - row : rowstoread);
    688 	fromskew = leftmost_fromskew;
    689 	this_tw = leftmost_tw;
    690 	this_toskew = leftmost_toskew;
    691 	tocol = 0;
    692 	col = img->col_offset;
    693 	while (tocol < w)
    694         {
    695 	    if (_TIFFReadTileAndAllocBuffer(tif, (void**) &buf, bufsize, col,
    696 			     row+img->row_offset, 0, 0)==(tmsize_t)(-1) &&
    697                 (buf == NULL || img->stoponerr))
    698             {
    699                 ret = 0;
    700                 break;
    701             }
    702             pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
    703 		   ((tmsize_t) fromskew * img->samplesperpixel);
    704 	    if (tocol + this_tw > w)
    705 	    {
    706 		/*
    707 		 * Rightmost tile is clipped on right side.
    708 		 */
    709 		safeskew = tw;
    710 		safeskew -= w;
    711 		safeskew += tocol;
    712 		if(safeskew > INT_MAX || safeskew < INT_MIN){
    713 		        _TIFFfree(buf);
    714 		        TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew");
    715 		        return (0);
    716 		}
    717 		fromskew = safeskew;
    718 		this_tw = tw - fromskew;
    719 		safeskew = toskew;
    720 		safeskew += fromskew;
    721 		if(safeskew > INT_MAX || safeskew < INT_MIN){
    722 		        _TIFFfree(buf);
    723 		        TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "Invalid skew");
    724 		        return (0);
    725 		}
    726 		this_toskew = safeskew;
    727 	    }
    728 	    (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, buf + pos);
    729 	    tocol += this_tw;
    730 	    col += this_tw;
    731 	    /*
    732 	     * After the leftmost tile, tiles are no longer clipped on left side.
    733 	     */
    734 	    fromskew = 0;
    735 	    this_tw = tw;
    736 	    this_toskew = toskew;
    737 	}
    738 
    739         y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
    740     }
    741     _TIFFfree(buf);
    742 
    743     if (flip & FLIP_HORIZONTALLY) {
    744 	    uint32 line;
    745 
    746 	    for (line = 0; line < h; line++) {
    747 		    uint32 *left = raster + (line * w);
    748 		    uint32 *right = left + w - 1;
    749 
    750 		    while ( left < right ) {
    751 			    uint32 temp = *left;
    752 			    *left = *right;
    753 			    *right = temp;
    754 			    left++;
    755 				right--;
    756 		    }
    757 	    }
    758     }
    759 
    760     return (ret);
    761 }
    762 
    763 /*
    764  * Get an tile-organized image that has
    765  *	 SamplesPerPixel > 1
    766  *	 PlanarConfiguration separated
    767  * We assume that all such images are RGB.
    768  */
    769 static int
    770 gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
    771 {
    772 	TIFF* tif = img->tif;
    773 	tileSeparateRoutine put = img->put.separate;
    774 	uint32 col, row, y, rowstoread;
    775 	tmsize_t pos;
    776 	uint32 tw, th;
    777 	unsigned char* buf = NULL;
    778 	unsigned char* p0 = NULL;
    779 	unsigned char* p1 = NULL;
    780 	unsigned char* p2 = NULL;
    781 	unsigned char* pa = NULL;
    782 	tmsize_t tilesize;
    783 	tmsize_t bufsize;
    784 	int32 fromskew, toskew;
    785 	int alpha = img->alpha;
    786 	uint32 nrow;
    787 	int ret = 1, flip;
    788         uint16 colorchannels;
    789 	uint32 this_tw, tocol;
    790 	int32 this_toskew, leftmost_toskew;
    791 	int32 leftmost_fromskew;
    792 	uint32 leftmost_tw;
    793 
    794 	tilesize = TIFFTileSize(tif);
    795 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize);
    796 	if (bufsize == 0) {
    797 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate");
    798 		return (0);
    799 	}
    800 
    801 	TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
    802 	TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
    803 
    804 	flip = setorientation(img);
    805 	if (flip & FLIP_VERTICALLY) {
    806 		y = h - 1;
    807 		toskew = -(int32)(tw + w);
    808 	}
    809 	else {
    810 		y = 0;
    811 		toskew = -(int32)(tw - w);
    812 	}
    813 
    814         switch( img->photometric )
    815         {
    816           case PHOTOMETRIC_MINISWHITE:
    817           case PHOTOMETRIC_MINISBLACK:
    818           case PHOTOMETRIC_PALETTE:
    819             colorchannels = 1;
    820             break;
    821 
    822           default:
    823             colorchannels = 3;
    824             break;
    825         }
    826 
    827 	/*
    828 	 *	Leftmost tile is clipped on left side if col_offset > 0.
    829 	 */
    830 	leftmost_fromskew = img->col_offset % tw;
    831 	leftmost_tw = tw - leftmost_fromskew;
    832 	leftmost_toskew = toskew + leftmost_fromskew;
    833 	for (row = 0; ret != 0 && row < h; row += nrow)
    834 	{
    835 		rowstoread = th - (row + img->row_offset) % th;
    836 		nrow = (row + rowstoread > h ? h - row : rowstoread);
    837 		fromskew = leftmost_fromskew;
    838 		this_tw = leftmost_tw;
    839 		this_toskew = leftmost_toskew;
    840 		tocol = 0;
    841 		col = img->col_offset;
    842 		while (tocol < w)
    843 		{
    844                         if( buf == NULL )
    845                         {
    846                             if (_TIFFReadTileAndAllocBuffer(
    847                                     tif, (void**) &buf, bufsize, col,
    848                                     row+img->row_offset,0,0)==(tmsize_t)(-1)
    849                                 && (buf == NULL || img->stoponerr))
    850                             {
    851                                     ret = 0;
    852                                     break;
    853                             }
    854                             p0 = buf;
    855                             if( colorchannels == 1 )
    856                             {
    857                                 p2 = p1 = p0;
    858                                 pa = (alpha?(p0+3*tilesize):NULL);
    859                             }
    860                             else
    861                             {
    862                                 p1 = p0 + tilesize;
    863                                 p2 = p1 + tilesize;
    864                                 pa = (alpha?(p2+tilesize):NULL);
    865                             }
    866                         }
    867 			else if (TIFFReadTile(tif, p0, col,
    868 			    row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr)
    869 			{
    870 				ret = 0;
    871 				break;
    872 			}
    873 			if (colorchannels > 1
    874                             && TIFFReadTile(tif, p1, col,
    875                                             row+img->row_offset,0,1) == (tmsize_t)(-1)
    876                             && img->stoponerr)
    877 			{
    878 				ret = 0;
    879 				break;
    880 			}
    881 			if (colorchannels > 1
    882                             && TIFFReadTile(tif, p2, col,
    883                                             row+img->row_offset,0,2) == (tmsize_t)(-1)
    884                             && img->stoponerr)
    885 			{
    886 				ret = 0;
    887 				break;
    888 			}
    889 			if (alpha
    890                             && TIFFReadTile(tif,pa,col,
    891                                             row+img->row_offset,0,colorchannels) == (tmsize_t)(-1)
    892                             && img->stoponerr)
    893                         {
    894                             ret = 0;
    895                             break;
    896 			}
    897 
    898 			pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \
    899 			   ((tmsize_t) fromskew * img->samplesperpixel);
    900 			if (tocol + this_tw > w)
    901 			{
    902 				/*
    903 				 * Rightmost tile is clipped on right side.
    904 				 */
    905 				fromskew = tw - (w - tocol);
    906 				this_tw = tw - fromskew;
    907 				this_toskew = toskew + fromskew;
    908 			}
    909 			(*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, \
    910 				p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
    911 			tocol += this_tw;
    912 			col += this_tw;
    913 			/*
    914 			* After the leftmost tile, tiles are no longer clipped on left side.
    915 			*/
    916 			fromskew = 0;
    917 			this_tw = tw;
    918 			this_toskew = toskew;
    919 		}
    920 
    921 		y += ((flip & FLIP_VERTICALLY) ?-(int32) nrow : (int32) nrow);
    922 	}
    923 
    924 	if (flip & FLIP_HORIZONTALLY) {
    925 		uint32 line;
    926 
    927 		for (line = 0; line < h; line++) {
    928 			uint32 *left = raster + (line * w);
    929 			uint32 *right = left + w - 1;
    930 
    931 			while ( left < right ) {
    932 				uint32 temp = *left;
    933 				*left = *right;
    934 				*right = temp;
    935 				left++;
    936 				right--;
    937 			}
    938 		}
    939 	}
    940 
    941 	_TIFFfree(buf);
    942 	return (ret);
    943 }
    944 
    945 /*
    946  * Get a strip-organized image that has
    947  *	PlanarConfiguration contiguous if SamplesPerPixel > 1
    948  * or
    949  *	SamplesPerPixel == 1
    950  */
    951 static int
    952 gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
    953 {
    954 	TIFF* tif = img->tif;
    955 	tileContigRoutine put = img->put.contig;
    956 	uint32 row, y, nrow, nrowsub, rowstoread;
    957 	tmsize_t pos;
    958 	unsigned char* buf = NULL;
    959 	uint32 rowsperstrip;
    960 	uint16 subsamplinghor,subsamplingver;
    961 	uint32 imagewidth = img->width;
    962 	tmsize_t scanline;
    963 	int32 fromskew, toskew;
    964 	int ret = 1, flip;
    965 	tmsize_t maxstripsize;
    966 
    967 	TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver);
    968 	if( subsamplingver == 0 ) {
    969 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Invalid vertical YCbCr subsampling");
    970 		return (0);
    971 	}
    972 
    973 	maxstripsize = TIFFStripSize(tif);
    974 
    975 	flip = setorientation(img);
    976 	if (flip & FLIP_VERTICALLY) {
    977 		y = h - 1;
    978 		toskew = -(int32)(w + w);
    979 	} else {
    980 		y = 0;
    981 		toskew = -(int32)(w - w);
    982 	}
    983 
    984 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
    985 
    986 	scanline = TIFFScanlineSize(tif);
    987 	fromskew = (w < imagewidth ? imagewidth - w : 0);
    988 	for (row = 0; row < h; row += nrow)
    989 	{
    990 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
    991 		nrow = (row + rowstoread > h ? h - row : rowstoread);
    992 		nrowsub = nrow;
    993 		if ((nrowsub%subsamplingver)!=0)
    994 			nrowsub+=subsamplingver-nrowsub%subsamplingver;
    995 		if (_TIFFReadEncodedStripAndAllocBuffer(tif,
    996 		    TIFFComputeStrip(tif,row+img->row_offset, 0),
    997 		    (void**)(&buf),
    998 		    maxstripsize,
    999 		    ((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)==(tmsize_t)(-1)
   1000 		    && (buf == NULL || img->stoponerr))
   1001 		{
   1002 			ret = 0;
   1003 			break;
   1004 		}
   1005 
   1006 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
   1007 			((tmsize_t) img->col_offset * img->samplesperpixel);
   1008 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos);
   1009 		y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
   1010 	}
   1011 
   1012 	if (flip & FLIP_HORIZONTALLY) {
   1013 		uint32 line;
   1014 
   1015 		for (line = 0; line < h; line++) {
   1016 			uint32 *left = raster + (line * w);
   1017 			uint32 *right = left + w - 1;
   1018 
   1019 			while ( left < right ) {
   1020 				uint32 temp = *left;
   1021 				*left = *right;
   1022 				*right = temp;
   1023 				left++;
   1024 				right--;
   1025 			}
   1026 		}
   1027 	}
   1028 
   1029 	_TIFFfree(buf);
   1030 	return (ret);
   1031 }
   1032 
   1033 /*
   1034  * Get a strip-organized image with
   1035  *	 SamplesPerPixel > 1
   1036  *	 PlanarConfiguration separated
   1037  * We assume that all such images are RGB.
   1038  */
   1039 static int
   1040 gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
   1041 {
   1042 	TIFF* tif = img->tif;
   1043 	tileSeparateRoutine put = img->put.separate;
   1044 	unsigned char *buf = NULL;
   1045 	unsigned char *p0 = NULL, *p1 = NULL, *p2 = NULL, *pa = NULL;
   1046 	uint32 row, y, nrow, rowstoread;
   1047 	tmsize_t pos;
   1048 	tmsize_t scanline;
   1049 	uint32 rowsperstrip, offset_row;
   1050 	uint32 imagewidth = img->width;
   1051 	tmsize_t stripsize;
   1052 	tmsize_t bufsize;
   1053 	int32 fromskew, toskew;
   1054 	int alpha = img->alpha;
   1055 	int ret = 1, flip;
   1056         uint16 colorchannels;
   1057 
   1058 	stripsize = TIFFStripSize(tif);
   1059 	bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize);
   1060 	if (bufsize == 0) {
   1061 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate");
   1062 		return (0);
   1063 	}
   1064 
   1065 	flip = setorientation(img);
   1066 	if (flip & FLIP_VERTICALLY) {
   1067 		y = h - 1;
   1068 		toskew = -(int32)(w + w);
   1069 	}
   1070 	else {
   1071 		y = 0;
   1072 		toskew = -(int32)(w - w);
   1073 	}
   1074 
   1075         switch( img->photometric )
   1076         {
   1077           case PHOTOMETRIC_MINISWHITE:
   1078           case PHOTOMETRIC_MINISBLACK:
   1079           case PHOTOMETRIC_PALETTE:
   1080             colorchannels = 1;
   1081             break;
   1082 
   1083           default:
   1084             colorchannels = 3;
   1085             break;
   1086         }
   1087 
   1088 	TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
   1089 	scanline = TIFFScanlineSize(tif);
   1090 	fromskew = (w < imagewidth ? imagewidth - w : 0);
   1091 	for (row = 0; row < h; row += nrow)
   1092 	{
   1093 		rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
   1094 		nrow = (row + rowstoread > h ? h - row : rowstoread);
   1095 		offset_row = row + img->row_offset;
   1096                 if( buf == NULL )
   1097                 {
   1098                     if (_TIFFReadEncodedStripAndAllocBuffer(
   1099                             tif, TIFFComputeStrip(tif, offset_row, 0),
   1100                             (void**) &buf, bufsize,
   1101                             ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
   1102                         && (buf == NULL || img->stoponerr))
   1103                     {
   1104                             ret = 0;
   1105                             break;
   1106                     }
   1107                     p0 = buf;
   1108                     if( colorchannels == 1 )
   1109                     {
   1110                         p2 = p1 = p0;
   1111                         pa = (alpha?(p0+3*stripsize):NULL);
   1112                     }
   1113                     else
   1114                     {
   1115                         p1 = p0 + stripsize;
   1116                         p2 = p1 + stripsize;
   1117                         pa = (alpha?(p2+stripsize):NULL);
   1118                     }
   1119                 }
   1120 		else if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
   1121 		    p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
   1122 		    && img->stoponerr)
   1123 		{
   1124 			ret = 0;
   1125 			break;
   1126 		}
   1127 		if (colorchannels > 1
   1128                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1),
   1129                                             p1, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
   1130 		    && img->stoponerr)
   1131 		{
   1132 			ret = 0;
   1133 			break;
   1134 		}
   1135 		if (colorchannels > 1
   1136                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2),
   1137                                             p2, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
   1138 		    && img->stoponerr)
   1139 		{
   1140 			ret = 0;
   1141 			break;
   1142 		}
   1143 		if (alpha)
   1144 		{
   1145 			if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels),
   1146 			    pa, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
   1147 			    && img->stoponerr)
   1148 			{
   1149 				ret = 0;
   1150 				break;
   1151 			}
   1152 		}
   1153 
   1154 		pos = ((row + img->row_offset) % rowsperstrip) * scanline + \
   1155 			((tmsize_t) img->col_offset * img->samplesperpixel);
   1156 		(*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos,
   1157 		    p2 + pos, (alpha?(pa+pos):NULL));
   1158 		y += ((flip & FLIP_VERTICALLY) ? -(int32) nrow : (int32) nrow);
   1159 	}
   1160 
   1161 	if (flip & FLIP_HORIZONTALLY) {
   1162 		uint32 line;
   1163 
   1164 		for (line = 0; line < h; line++) {
   1165 			uint32 *left = raster + (line * w);
   1166 			uint32 *right = left + w - 1;
   1167 
   1168 			while ( left < right ) {
   1169 				uint32 temp = *left;
   1170 				*left = *right;
   1171 				*right = temp;
   1172 				left++;
   1173 				right--;
   1174 			}
   1175 		}
   1176 	}
   1177 
   1178 	_TIFFfree(buf);
   1179 	return (ret);
   1180 }
   1181 
   1182 /*
   1183  * The following routines move decoded data returned
   1184  * from the TIFF library into rasters filled with packed
   1185  * ABGR pixels (i.e. suitable for passing to lrecwrite.)
   1186  *
   1187  * The routines have been created according to the most
   1188  * important cases and optimized.  PickContigCase and
   1189  * PickSeparateCase analyze the parameters and select
   1190  * the appropriate "get" and "put" routine to use.
   1191  */
   1192 #define	REPEAT8(op)	REPEAT4(op); REPEAT4(op)
   1193 #define	REPEAT4(op)	REPEAT2(op); REPEAT2(op)
   1194 #define	REPEAT2(op)	op; op
   1195 #define	CASE8(x,op)			\
   1196     switch (x) {			\
   1197     case 7: op; /*-fallthrough*/ \
   1198     case 6: op; /*-fallthrough*/ \
   1199     case 5: op; /*-fallthrough*/ \
   1200     case 4: op; /*-fallthrough*/ \
   1201     case 3: op; /*-fallthrough*/ \
   1202     case 2: op; /*-fallthrough*/ \
   1203     case 1: op;				\
   1204     }
   1205 #define	CASE4(x,op)	switch (x) { case 3: op; /*-fallthrough*/ case 2: op; /*-fallthrough*/ case 1: op; }
   1206 #define	NOP
   1207 
   1208 #define	UNROLL8(w, op1, op2) {		\
   1209     uint32 _x;				\
   1210     for (_x = w; _x >= 8; _x -= 8) {	\
   1211 	op1;				\
   1212 	REPEAT8(op2);			\
   1213     }					\
   1214     if (_x > 0) {			\
   1215 	op1;				\
   1216 	CASE8(_x,op2);			\
   1217     }					\
   1218 }
   1219 #define	UNROLL4(w, op1, op2) {		\
   1220     uint32 _x;				\
   1221     for (_x = w; _x >= 4; _x -= 4) {	\
   1222 	op1;				\
   1223 	REPEAT4(op2);			\
   1224     }					\
   1225     if (_x > 0) {			\
   1226 	op1;				\
   1227 	CASE4(_x,op2);			\
   1228     }					\
   1229 }
   1230 #define	UNROLL2(w, op1, op2) {		\
   1231     uint32 _x;				\
   1232     for (_x = w; _x >= 2; _x -= 2) {	\
   1233 	op1;				\
   1234 	REPEAT2(op2);			\
   1235     }					\
   1236     if (_x) {				\
   1237 	op1;				\
   1238 	op2;				\
   1239     }					\
   1240 }
   1241 
   1242 #define	SKEW(r,g,b,skew)	{ r += skew; g += skew; b += skew; }
   1243 #define	SKEW4(r,g,b,a,skew)	{ r += skew; g += skew; b += skew; a+= skew; }
   1244 
   1245 #define A1 (((uint32)0xffL)<<24)
   1246 #define	PACK(r,g,b)	\
   1247 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
   1248 #define	PACK4(r,g,b,a)	\
   1249 	((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
   1250 #define W2B(v) (((v)>>8)&0xff)
   1251 /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */
   1252 #define	PACKW(r,g,b)	\
   1253 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
   1254 #define	PACKW4(r,g,b,a)	\
   1255 	((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))
   1256 
   1257 #define	DECLAREContigPutFunc(name) \
   1258 static void name(\
   1259     TIFFRGBAImage* img, \
   1260     uint32* cp, \
   1261     uint32 x, uint32 y, \
   1262     uint32 w, uint32 h, \
   1263     int32 fromskew, int32 toskew, \
   1264     unsigned char* pp \
   1265 )
   1266 
   1267 /*
   1268  * 8-bit palette => colormap/RGB
   1269  */
   1270 DECLAREContigPutFunc(put8bitcmaptile)
   1271 {
   1272     uint32** PALmap = img->PALmap;
   1273     int samplesperpixel = img->samplesperpixel;
   1274 
   1275     (void) y;
   1276     while (h-- > 0) {
   1277 	for (x = w; x-- > 0;)
   1278         {
   1279 	    *cp++ = PALmap[*pp][0];
   1280             pp += samplesperpixel;
   1281         }
   1282 	cp += toskew;
   1283 	pp += fromskew;
   1284     }
   1285 }
   1286 
   1287 /*
   1288  * 4-bit palette => colormap/RGB
   1289  */
   1290 DECLAREContigPutFunc(put4bitcmaptile)
   1291 {
   1292     uint32** PALmap = img->PALmap;
   1293 
   1294     (void) x; (void) y;
   1295     fromskew /= 2;
   1296     while (h-- > 0) {
   1297 	uint32* bw;
   1298 	UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
   1299 	cp += toskew;
   1300 	pp += fromskew;
   1301     }
   1302 }
   1303 
   1304 /*
   1305  * 2-bit palette => colormap/RGB
   1306  */
   1307 DECLAREContigPutFunc(put2bitcmaptile)
   1308 {
   1309     uint32** PALmap = img->PALmap;
   1310 
   1311     (void) x; (void) y;
   1312     fromskew /= 4;
   1313     while (h-- > 0) {
   1314 	uint32* bw;
   1315 	UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
   1316 	cp += toskew;
   1317 	pp += fromskew;
   1318     }
   1319 }
   1320 
   1321 /*
   1322  * 1-bit palette => colormap/RGB
   1323  */
   1324 DECLAREContigPutFunc(put1bitcmaptile)
   1325 {
   1326     uint32** PALmap = img->PALmap;
   1327 
   1328     (void) x; (void) y;
   1329     fromskew /= 8;
   1330     while (h-- > 0) {
   1331 	uint32* bw;
   1332 	UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
   1333 	cp += toskew;
   1334 	pp += fromskew;
   1335     }
   1336 }
   1337 
   1338 /*
   1339  * 8-bit greyscale => colormap/RGB
   1340  */
   1341 DECLAREContigPutFunc(putgreytile)
   1342 {
   1343     int samplesperpixel = img->samplesperpixel;
   1344     uint32** BWmap = img->BWmap;
   1345 
   1346     (void) y;
   1347     while (h-- > 0) {
   1348 	for (x = w; x-- > 0;)
   1349         {
   1350 	    *cp++ = BWmap[*pp][0];
   1351             pp += samplesperpixel;
   1352         }
   1353 	cp += toskew;
   1354 	pp += fromskew;
   1355     }
   1356 }
   1357 
   1358 /*
   1359  * 8-bit greyscale with associated alpha => colormap/RGBA
   1360  */
   1361 DECLAREContigPutFunc(putagreytile)
   1362 {
   1363     int samplesperpixel = img->samplesperpixel;
   1364     uint32** BWmap = img->BWmap;
   1365 
   1366     (void) y;
   1367     while (h-- > 0) {
   1368 	for (x = w; x-- > 0;)
   1369         {
   1370             *cp++ = BWmap[*pp][0] & ((uint32)*(pp+1) << 24 | ~A1);
   1371             pp += samplesperpixel;
   1372         }
   1373 	cp += toskew;
   1374 	pp += fromskew;
   1375     }
   1376 }
   1377 
   1378 /*
   1379  * 16-bit greyscale => colormap/RGB
   1380  */
   1381 DECLAREContigPutFunc(put16bitbwtile)
   1382 {
   1383     int samplesperpixel = img->samplesperpixel;
   1384     uint32** BWmap = img->BWmap;
   1385 
   1386     (void) y;
   1387     while (h-- > 0) {
   1388         uint16 *wp = (uint16 *) pp;
   1389 
   1390 	for (x = w; x-- > 0;)
   1391         {
   1392             /* use high order byte of 16bit value */
   1393 
   1394 	    *cp++ = BWmap[*wp >> 8][0];
   1395             pp += 2 * samplesperpixel;
   1396             wp += samplesperpixel;
   1397         }
   1398 	cp += toskew;
   1399 	pp += fromskew;
   1400     }
   1401 }
   1402 
   1403 /*
   1404  * 1-bit bilevel => colormap/RGB
   1405  */
   1406 DECLAREContigPutFunc(put1bitbwtile)
   1407 {
   1408     uint32** BWmap = img->BWmap;
   1409 
   1410     (void) x; (void) y;
   1411     fromskew /= 8;
   1412     while (h-- > 0) {
   1413 	uint32* bw;
   1414 	UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
   1415 	cp += toskew;
   1416 	pp += fromskew;
   1417     }
   1418 }
   1419 
   1420 /*
   1421  * 2-bit greyscale => colormap/RGB
   1422  */
   1423 DECLAREContigPutFunc(put2bitbwtile)
   1424 {
   1425     uint32** BWmap = img->BWmap;
   1426 
   1427     (void) x; (void) y;
   1428     fromskew /= 4;
   1429     while (h-- > 0) {
   1430 	uint32* bw;
   1431 	UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
   1432 	cp += toskew;
   1433 	pp += fromskew;
   1434     }
   1435 }
   1436 
   1437 /*
   1438  * 4-bit greyscale => colormap/RGB
   1439  */
   1440 DECLAREContigPutFunc(put4bitbwtile)
   1441 {
   1442     uint32** BWmap = img->BWmap;
   1443 
   1444     (void) x; (void) y;
   1445     fromskew /= 2;
   1446     while (h-- > 0) {
   1447 	uint32* bw;
   1448 	UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
   1449 	cp += toskew;
   1450 	pp += fromskew;
   1451     }
   1452 }
   1453 
   1454 /*
   1455  * 8-bit packed samples, no Map => RGB
   1456  */
   1457 DECLAREContigPutFunc(putRGBcontig8bittile)
   1458 {
   1459     int samplesperpixel = img->samplesperpixel;
   1460 
   1461     (void) x; (void) y;
   1462     fromskew *= samplesperpixel;
   1463     while (h-- > 0) {
   1464 	UNROLL8(w, NOP,
   1465 	    *cp++ = PACK(pp[0], pp[1], pp[2]);
   1466 	    pp += samplesperpixel);
   1467 	cp += toskew;
   1468 	pp += fromskew;
   1469     }
   1470 }
   1471 
   1472 /*
   1473  * 8-bit packed samples => RGBA w/ associated alpha
   1474  * (known to have Map == NULL)
   1475  */
   1476 DECLAREContigPutFunc(putRGBAAcontig8bittile)
   1477 {
   1478     int samplesperpixel = img->samplesperpixel;
   1479 
   1480     (void) x; (void) y;
   1481     fromskew *= samplesperpixel;
   1482     while (h-- > 0) {
   1483 	UNROLL8(w, NOP,
   1484 	    *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
   1485 	    pp += samplesperpixel);
   1486 	cp += toskew;
   1487 	pp += fromskew;
   1488     }
   1489 }
   1490 
   1491 /*
   1492  * 8-bit packed samples => RGBA w/ unassociated alpha
   1493  * (known to have Map == NULL)
   1494  */
   1495 DECLAREContigPutFunc(putRGBUAcontig8bittile)
   1496 {
   1497 	int samplesperpixel = img->samplesperpixel;
   1498 	(void) y;
   1499 	fromskew *= samplesperpixel;
   1500 	while (h-- > 0) {
   1501 		uint32 r, g, b, a;
   1502 		uint8* m;
   1503 		for (x = w; x-- > 0;) {
   1504 			a = pp[3];
   1505 			m = img->UaToAa+((size_t) a<<8);
   1506 			r = m[pp[0]];
   1507 			g = m[pp[1]];
   1508 			b = m[pp[2]];
   1509 			*cp++ = PACK4(r,g,b,a);
   1510 			pp += samplesperpixel;
   1511 		}
   1512 		cp += toskew;
   1513 		pp += fromskew;
   1514 	}
   1515 }
   1516 
   1517 /*
   1518  * 16-bit packed samples => RGB
   1519  */
   1520 DECLAREContigPutFunc(putRGBcontig16bittile)
   1521 {
   1522 	int samplesperpixel = img->samplesperpixel;
   1523 	uint16 *wp = (uint16 *)pp;
   1524 	(void) y;
   1525 	fromskew *= samplesperpixel;
   1526 	while (h-- > 0) {
   1527 		for (x = w; x-- > 0;) {
   1528 			*cp++ = PACK(img->Bitdepth16To8[wp[0]],
   1529 			    img->Bitdepth16To8[wp[1]],
   1530 			    img->Bitdepth16To8[wp[2]]);
   1531 			wp += samplesperpixel;
   1532 		}
   1533 		cp += toskew;
   1534 		wp += fromskew;
   1535 	}
   1536 }
   1537 
   1538 /*
   1539  * 16-bit packed samples => RGBA w/ associated alpha
   1540  * (known to have Map == NULL)
   1541  */
   1542 DECLAREContigPutFunc(putRGBAAcontig16bittile)
   1543 {
   1544 	int samplesperpixel = img->samplesperpixel;
   1545 	uint16 *wp = (uint16 *)pp;
   1546 	(void) y;
   1547 	fromskew *= samplesperpixel;
   1548 	while (h-- > 0) {
   1549 		for (x = w; x-- > 0;) {
   1550 			*cp++ = PACK4(img->Bitdepth16To8[wp[0]],
   1551 			    img->Bitdepth16To8[wp[1]],
   1552 			    img->Bitdepth16To8[wp[2]],
   1553 			    img->Bitdepth16To8[wp[3]]);
   1554 			wp += samplesperpixel;
   1555 		}
   1556 		cp += toskew;
   1557 		wp += fromskew;
   1558 	}
   1559 }
   1560 
   1561 /*
   1562  * 16-bit packed samples => RGBA w/ unassociated alpha
   1563  * (known to have Map == NULL)
   1564  */
   1565 DECLAREContigPutFunc(putRGBUAcontig16bittile)
   1566 {
   1567 	int samplesperpixel = img->samplesperpixel;
   1568 	uint16 *wp = (uint16 *)pp;
   1569 	(void) y;
   1570 	fromskew *= samplesperpixel;
   1571 	while (h-- > 0) {
   1572 		uint32 r,g,b,a;
   1573 		uint8* m;
   1574 		for (x = w; x-- > 0;) {
   1575 			a = img->Bitdepth16To8[wp[3]];
   1576 			m = img->UaToAa+((size_t) a<<8);
   1577 			r = m[img->Bitdepth16To8[wp[0]]];
   1578 			g = m[img->Bitdepth16To8[wp[1]]];
   1579 			b = m[img->Bitdepth16To8[wp[2]]];
   1580 			*cp++ = PACK4(r,g,b,a);
   1581 			wp += samplesperpixel;
   1582 		}
   1583 		cp += toskew;
   1584 		wp += fromskew;
   1585 	}
   1586 }
   1587 
   1588 /*
   1589  * 8-bit packed CMYK samples w/o Map => RGB
   1590  *
   1591  * NB: The conversion of CMYK->RGB is *very* crude.
   1592  */
   1593 DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
   1594 {
   1595     int samplesperpixel = img->samplesperpixel;
   1596     uint16 r, g, b, k;
   1597 
   1598     (void) x; (void) y;
   1599     fromskew *= samplesperpixel;
   1600     while (h-- > 0) {
   1601 	UNROLL8(w, NOP,
   1602 	    k = 255 - pp[3];
   1603 	    r = (k*(255-pp[0]))/255;
   1604 	    g = (k*(255-pp[1]))/255;
   1605 	    b = (k*(255-pp[2]))/255;
   1606 	    *cp++ = PACK(r, g, b);
   1607 	    pp += samplesperpixel);
   1608 	cp += toskew;
   1609 	pp += fromskew;
   1610     }
   1611 }
   1612 
   1613 /*
   1614  * 8-bit packed CMYK samples w/Map => RGB
   1615  *
   1616  * NB: The conversion of CMYK->RGB is *very* crude.
   1617  */
   1618 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
   1619 {
   1620     int samplesperpixel = img->samplesperpixel;
   1621     TIFFRGBValue* Map = img->Map;
   1622     uint16 r, g, b, k;
   1623 
   1624     (void) y;
   1625     fromskew *= samplesperpixel;
   1626     while (h-- > 0) {
   1627 	for (x = w; x-- > 0;) {
   1628 	    k = 255 - pp[3];
   1629 	    r = (k*(255-pp[0]))/255;
   1630 	    g = (k*(255-pp[1]))/255;
   1631 	    b = (k*(255-pp[2]))/255;
   1632 	    *cp++ = PACK(Map[r], Map[g], Map[b]);
   1633 	    pp += samplesperpixel;
   1634 	}
   1635 	pp += fromskew;
   1636 	cp += toskew;
   1637     }
   1638 }
   1639 
   1640 #define	DECLARESepPutFunc(name) \
   1641 static void name(\
   1642     TIFFRGBAImage* img,\
   1643     uint32* cp,\
   1644     uint32 x, uint32 y, \
   1645     uint32 w, uint32 h,\
   1646     int32 fromskew, int32 toskew,\
   1647     unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\
   1648 )
   1649 
   1650 /*
   1651  * 8-bit unpacked samples => RGB
   1652  */
   1653 DECLARESepPutFunc(putRGBseparate8bittile)
   1654 {
   1655     (void) img; (void) x; (void) y; (void) a;
   1656     while (h-- > 0) {
   1657 	UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
   1658 	SKEW(r, g, b, fromskew);
   1659 	cp += toskew;
   1660     }
   1661 }
   1662 
   1663 /*
   1664  * 8-bit unpacked samples => RGBA w/ associated alpha
   1665  */
   1666 DECLARESepPutFunc(putRGBAAseparate8bittile)
   1667 {
   1668 	(void) img; (void) x; (void) y;
   1669 	while (h-- > 0) {
   1670 		UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
   1671 		SKEW4(r, g, b, a, fromskew);
   1672 		cp += toskew;
   1673 	}
   1674 }
   1675 
   1676 /*
   1677  * 8-bit unpacked CMYK samples => RGBA
   1678  */
   1679 DECLARESepPutFunc(putCMYKseparate8bittile)
   1680 {
   1681 	(void) img; (void) y;
   1682 	while (h-- > 0) {
   1683 		uint32 rv, gv, bv, kv;
   1684 		for (x = w; x-- > 0;) {
   1685 			kv = 255 - *a++;
   1686 			rv = (kv*(255-*r++))/255;
   1687 			gv = (kv*(255-*g++))/255;
   1688 			bv = (kv*(255-*b++))/255;
   1689 			*cp++ = PACK4(rv,gv,bv,255);
   1690 		}
   1691 		SKEW4(r, g, b, a, fromskew);
   1692 		cp += toskew;
   1693 	}
   1694 }
   1695 
   1696 /*
   1697  * 8-bit unpacked samples => RGBA w/ unassociated alpha
   1698  */
   1699 DECLARESepPutFunc(putRGBUAseparate8bittile)
   1700 {
   1701 	(void) img; (void) y;
   1702 	while (h-- > 0) {
   1703 		uint32 rv, gv, bv, av;
   1704 		uint8* m;
   1705 		for (x = w; x-- > 0;) {
   1706 			av = *a++;
   1707 			m = img->UaToAa+((size_t) av<<8);
   1708 			rv = m[*r++];
   1709 			gv = m[*g++];
   1710 			bv = m[*b++];
   1711 			*cp++ = PACK4(rv,gv,bv,av);
   1712 		}
   1713 		SKEW4(r, g, b, a, fromskew);
   1714 		cp += toskew;
   1715 	}
   1716 }
   1717 
   1718 /*
   1719  * 16-bit unpacked samples => RGB
   1720  */
   1721 DECLARESepPutFunc(putRGBseparate16bittile)
   1722 {
   1723 	uint16 *wr = (uint16*) r;
   1724 	uint16 *wg = (uint16*) g;
   1725 	uint16 *wb = (uint16*) b;
   1726 	(void) img; (void) y; (void) a;
   1727 	while (h-- > 0) {
   1728 		for (x = 0; x < w; x++)
   1729 			*cp++ = PACK(img->Bitdepth16To8[*wr++],
   1730 			    img->Bitdepth16To8[*wg++],
   1731 			    img->Bitdepth16To8[*wb++]);
   1732 		SKEW(wr, wg, wb, fromskew);
   1733 		cp += toskew;
   1734 	}
   1735 }
   1736 
   1737 /*
   1738  * 16-bit unpacked samples => RGBA w/ associated alpha
   1739  */
   1740 DECLARESepPutFunc(putRGBAAseparate16bittile)
   1741 {
   1742 	uint16 *wr = (uint16*) r;
   1743 	uint16 *wg = (uint16*) g;
   1744 	uint16 *wb = (uint16*) b;
   1745 	uint16 *wa = (uint16*) a;
   1746 	(void) img; (void) y;
   1747 	while (h-- > 0) {
   1748 		for (x = 0; x < w; x++)
   1749 			*cp++ = PACK4(img->Bitdepth16To8[*wr++],
   1750 			    img->Bitdepth16To8[*wg++],
   1751 			    img->Bitdepth16To8[*wb++],
   1752 			    img->Bitdepth16To8[*wa++]);
   1753 		SKEW4(wr, wg, wb, wa, fromskew);
   1754 		cp += toskew;
   1755 	}
   1756 }
   1757 
   1758 /*
   1759  * 16-bit unpacked samples => RGBA w/ unassociated alpha
   1760  */
   1761 DECLARESepPutFunc(putRGBUAseparate16bittile)
   1762 {
   1763 	uint16 *wr = (uint16*) r;
   1764 	uint16 *wg = (uint16*) g;
   1765 	uint16 *wb = (uint16*) b;
   1766 	uint16 *wa = (uint16*) a;
   1767 	(void) img; (void) y;
   1768 	while (h-- > 0) {
   1769 		uint32 r2,g2,b2,a2;
   1770 		uint8* m;
   1771 		for (x = w; x-- > 0;) {
   1772 			a2 = img->Bitdepth16To8[*wa++];
   1773 			m = img->UaToAa+((size_t) a2<<8);
   1774 			r2 = m[img->Bitdepth16To8[*wr++]];
   1775 			g2 = m[img->Bitdepth16To8[*wg++]];
   1776 			b2 = m[img->Bitdepth16To8[*wb++]];
   1777 			*cp++ = PACK4(r2,g2,b2,a2);
   1778 		}
   1779 		SKEW4(wr, wg, wb, wa, fromskew);
   1780 		cp += toskew;
   1781 	}
   1782 }
   1783 
   1784 /*
   1785  * 8-bit packed CIE L*a*b 1976 samples => RGB
   1786  */
   1787 DECLAREContigPutFunc(putcontig8bitCIELab)
   1788 {
   1789 	float X, Y, Z;
   1790 	uint32 r, g, b;
   1791 	(void) y;
   1792 	fromskew *= 3;
   1793 	while (h-- > 0) {
   1794 		for (x = w; x-- > 0;) {
   1795 			TIFFCIELabToXYZ(img->cielab,
   1796 					(unsigned char)pp[0],
   1797 					(signed char)pp[1],
   1798 					(signed char)pp[2],
   1799 					&X, &Y, &Z);
   1800 			TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
   1801 			*cp++ = PACK(r, g, b);
   1802 			pp += 3;
   1803 		}
   1804 		cp += toskew;
   1805 		pp += fromskew;
   1806 	}
   1807 }
   1808 
   1809 /*
   1810  * YCbCr -> RGB conversion and packing routines.
   1811  */
   1812 
   1813 #define	YCbCrtoRGB(dst, Y) {						\
   1814 	uint32 r, g, b;							\
   1815 	TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b);		\
   1816 	dst = PACK(r, g, b);						\
   1817 }
   1818 
   1819 /*
   1820  * 8-bit packed YCbCr samples => RGB
   1821  * This function is generic for different sampling sizes,
   1822  * and can handle blocks sizes that aren't multiples of the
   1823  * sampling size.  However, it is substantially less optimized
   1824  * than the specific sampling cases.  It is used as a fallback
   1825  * for difficult blocks.
   1826  */
   1827 #ifdef notdef
   1828 static void putcontig8bitYCbCrGenericTile(
   1829     TIFFRGBAImage* img,
   1830     uint32* cp,
   1831     uint32 x, uint32 y,
   1832     uint32 w, uint32 h,
   1833     int32 fromskew, int32 toskew,
   1834     unsigned char* pp,
   1835     int h_group,
   1836     int v_group )
   1837 
   1838 {
   1839     uint32* cp1 = cp+w+toskew;
   1840     uint32* cp2 = cp1+w+toskew;
   1841     uint32* cp3 = cp2+w+toskew;
   1842     int32 incr = 3*w+4*toskew;
   1843     int32   Cb, Cr;
   1844     int     group_size = v_group * h_group + 2;
   1845 
   1846     (void) y;
   1847     fromskew = (fromskew * group_size) / h_group;
   1848 
   1849     for( yy = 0; yy < h; yy++ )
   1850     {
   1851         unsigned char *pp_line;
   1852         int     y_line_group = yy / v_group;
   1853         int     y_remainder = yy - y_line_group * v_group;
   1854 
   1855         pp_line = pp + v_line_group *
   1856 
   1857 
   1858         for( xx = 0; xx < w; xx++ )
   1859         {
   1860             Cb = pp
   1861         }
   1862     }
   1863     for (; h >= 4; h -= 4) {
   1864 	x = w>>2;
   1865 	do {
   1866 	    Cb = pp[16];
   1867 	    Cr = pp[17];
   1868 
   1869 	    YCbCrtoRGB(cp [0], pp[ 0]);
   1870 	    YCbCrtoRGB(cp [1], pp[ 1]);
   1871 	    YCbCrtoRGB(cp [2], pp[ 2]);
   1872 	    YCbCrtoRGB(cp [3], pp[ 3]);
   1873 	    YCbCrtoRGB(cp1[0], pp[ 4]);
   1874 	    YCbCrtoRGB(cp1[1], pp[ 5]);
   1875 	    YCbCrtoRGB(cp1[2], pp[ 6]);
   1876 	    YCbCrtoRGB(cp1[3], pp[ 7]);
   1877 	    YCbCrtoRGB(cp2[0], pp[ 8]);
   1878 	    YCbCrtoRGB(cp2[1], pp[ 9]);
   1879 	    YCbCrtoRGB(cp2[2], pp[10]);
   1880 	    YCbCrtoRGB(cp2[3], pp[11]);
   1881 	    YCbCrtoRGB(cp3[0], pp[12]);
   1882 	    YCbCrtoRGB(cp3[1], pp[13]);
   1883 	    YCbCrtoRGB(cp3[2], pp[14]);
   1884 	    YCbCrtoRGB(cp3[3], pp[15]);
   1885 
   1886 	    cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
   1887 	    pp += 18;
   1888 	} while (--x);
   1889 	cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
   1890 	pp += fromskew;
   1891     }
   1892 }
   1893 #endif
   1894 
   1895 /*
   1896  * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
   1897  */
   1898 DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
   1899 {
   1900     uint32* cp1 = cp+w+toskew;
   1901     uint32* cp2 = cp1+w+toskew;
   1902     uint32* cp3 = cp2+w+toskew;
   1903     int32 incr = 3*w+4*toskew;
   1904 
   1905     (void) y;
   1906     /* adjust fromskew */
   1907     fromskew = (fromskew * 18) / 4;
   1908     if ((h & 3) == 0 && (w & 3) == 0) {
   1909         for (; h >= 4; h -= 4) {
   1910             x = w>>2;
   1911             do {
   1912                 int32 Cb = pp[16];
   1913                 int32 Cr = pp[17];
   1914 
   1915                 YCbCrtoRGB(cp [0], pp[ 0]);
   1916                 YCbCrtoRGB(cp [1], pp[ 1]);
   1917                 YCbCrtoRGB(cp [2], pp[ 2]);
   1918                 YCbCrtoRGB(cp [3], pp[ 3]);
   1919                 YCbCrtoRGB(cp1[0], pp[ 4]);
   1920                 YCbCrtoRGB(cp1[1], pp[ 5]);
   1921                 YCbCrtoRGB(cp1[2], pp[ 6]);
   1922                 YCbCrtoRGB(cp1[3], pp[ 7]);
   1923                 YCbCrtoRGB(cp2[0], pp[ 8]);
   1924                 YCbCrtoRGB(cp2[1], pp[ 9]);
   1925                 YCbCrtoRGB(cp2[2], pp[10]);
   1926                 YCbCrtoRGB(cp2[3], pp[11]);
   1927                 YCbCrtoRGB(cp3[0], pp[12]);
   1928                 YCbCrtoRGB(cp3[1], pp[13]);
   1929                 YCbCrtoRGB(cp3[2], pp[14]);
   1930                 YCbCrtoRGB(cp3[3], pp[15]);
   1931 
   1932                 cp += 4;
   1933                 cp1 += 4;
   1934                 cp2 += 4;
   1935                 cp3 += 4;
   1936                 pp += 18;
   1937             } while (--x);
   1938             cp += incr;
   1939             cp1 += incr;
   1940             cp2 += incr;
   1941             cp3 += incr;
   1942             pp += fromskew;
   1943         }
   1944     } else {
   1945         while (h > 0) {
   1946             for (x = w; x > 0;) {
   1947                 int32 Cb = pp[16];
   1948                 int32 Cr = pp[17];
   1949                 switch (x) {
   1950                 default:
   1951                     switch (h) {
   1952                     default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
   1953                     case 3:  YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
   1954                     case 2:  YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
   1955                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
   1956                     }                                    /* FALLTHROUGH */
   1957                 case 3:
   1958                     switch (h) {
   1959                     default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
   1960                     case 3:  YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
   1961                     case 2:  YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
   1962                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
   1963                     }                                    /* FALLTHROUGH */
   1964                 case 2:
   1965                     switch (h) {
   1966                     default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
   1967                     case 3:  YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */
   1968                     case 2:  YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
   1969                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
   1970                     }                                    /* FALLTHROUGH */
   1971                 case 1:
   1972                     switch (h) {
   1973                     default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
   1974                     case 3:  YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */
   1975                     case 2:  YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
   1976                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
   1977                     }                                    /* FALLTHROUGH */
   1978                 }
   1979                 if (x < 4) {
   1980                     cp += x; cp1 += x; cp2 += x; cp3 += x;
   1981                     x = 0;
   1982                 }
   1983                 else {
   1984                     cp += 4; cp1 += 4; cp2 += 4; cp3 += 4;
   1985                     x -= 4;
   1986                 }
   1987                 pp += 18;
   1988             }
   1989             if (h <= 4)
   1990                 break;
   1991             h -= 4;
   1992             cp += incr;
   1993             cp1 += incr;
   1994             cp2 += incr;
   1995             cp3 += incr;
   1996             pp += fromskew;
   1997         }
   1998     }
   1999 }
   2000 
   2001 /*
   2002  * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
   2003  */
   2004 DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
   2005 {
   2006     uint32* cp1 = cp+w+toskew;
   2007     int32 incr = 2*toskew+w;
   2008 
   2009     (void) y;
   2010     fromskew = (fromskew * 10) / 4;
   2011     if ((w & 3) == 0 && (h & 1) == 0) {
   2012         for (; h >= 2; h -= 2) {
   2013             x = w>>2;
   2014             do {
   2015                 int32 Cb = pp[8];
   2016                 int32 Cr = pp[9];
   2017 
   2018                 YCbCrtoRGB(cp [0], pp[0]);
   2019                 YCbCrtoRGB(cp [1], pp[1]);
   2020                 YCbCrtoRGB(cp [2], pp[2]);
   2021                 YCbCrtoRGB(cp [3], pp[3]);
   2022                 YCbCrtoRGB(cp1[0], pp[4]);
   2023                 YCbCrtoRGB(cp1[1], pp[5]);
   2024                 YCbCrtoRGB(cp1[2], pp[6]);
   2025                 YCbCrtoRGB(cp1[3], pp[7]);
   2026 
   2027                 cp += 4;
   2028                 cp1 += 4;
   2029                 pp += 10;
   2030             } while (--x);
   2031             cp += incr;
   2032             cp1 += incr;
   2033             pp += fromskew;
   2034         }
   2035     } else {
   2036         while (h > 0) {
   2037             for (x = w; x > 0;) {
   2038                 int32 Cb = pp[8];
   2039                 int32 Cr = pp[9];
   2040                 switch (x) {
   2041                 default:
   2042                     switch (h) {
   2043                     default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
   2044                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
   2045                     }                                    /* FALLTHROUGH */
   2046                 case 3:
   2047                     switch (h) {
   2048                     default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
   2049                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
   2050                     }                                    /* FALLTHROUGH */
   2051                 case 2:
   2052                     switch (h) {
   2053                     default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
   2054                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
   2055                     }                                    /* FALLTHROUGH */
   2056                 case 1:
   2057                     switch (h) {
   2058                     default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
   2059                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
   2060                     }                                    /* FALLTHROUGH */
   2061                 }
   2062                 if (x < 4) {
   2063                     cp += x; cp1 += x;
   2064                     x = 0;
   2065                 }
   2066                 else {
   2067                     cp += 4; cp1 += 4;
   2068                     x -= 4;
   2069                 }
   2070                 pp += 10;
   2071             }
   2072             if (h <= 2)
   2073                 break;
   2074             h -= 2;
   2075             cp += incr;
   2076             cp1 += incr;
   2077             pp += fromskew;
   2078         }
   2079     }
   2080 }
   2081 
   2082 /*
   2083  * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
   2084  */
   2085 DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
   2086 {
   2087     (void) y;
   2088     /* XXX adjust fromskew */
   2089     do {
   2090 	x = w>>2;
   2091 	while(x>0) {
   2092 	    int32 Cb = pp[4];
   2093 	    int32 Cr = pp[5];
   2094 
   2095 	    YCbCrtoRGB(cp [0], pp[0]);
   2096 	    YCbCrtoRGB(cp [1], pp[1]);
   2097 	    YCbCrtoRGB(cp [2], pp[2]);
   2098 	    YCbCrtoRGB(cp [3], pp[3]);
   2099 
   2100 	    cp += 4;
   2101 	    pp += 6;
   2102 		x--;
   2103 	}
   2104 
   2105         if( (w&3) != 0 )
   2106         {
   2107 	    int32 Cb = pp[4];
   2108 	    int32 Cr = pp[5];
   2109 
   2110             switch( (w&3) ) {
   2111               case 3: YCbCrtoRGB(cp [2], pp[2]); /*-fallthrough*/
   2112               case 2: YCbCrtoRGB(cp [1], pp[1]); /*-fallthrough*/
   2113               case 1: YCbCrtoRGB(cp [0], pp[0]); /*-fallthrough*/
   2114               case 0: break;
   2115             }
   2116 
   2117             cp += (w&3);
   2118             pp += 6;
   2119         }
   2120 
   2121 	cp += toskew;
   2122 	pp += fromskew;
   2123     } while (--h);
   2124 
   2125 }
   2126 
   2127 /*
   2128  * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
   2129  */
   2130 DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
   2131 {
   2132 	uint32* cp2;
   2133 	int32 incr = 2*toskew+w;
   2134 	(void) y;
   2135 	fromskew = (fromskew / 2) * 6;
   2136 	cp2 = cp+w+toskew;
   2137 	while (h>=2) {
   2138 		x = w;
   2139 		while (x>=2) {
   2140 			uint32 Cb = pp[4];
   2141 			uint32 Cr = pp[5];
   2142 			YCbCrtoRGB(cp[0], pp[0]);
   2143 			YCbCrtoRGB(cp[1], pp[1]);
   2144 			YCbCrtoRGB(cp2[0], pp[2]);
   2145 			YCbCrtoRGB(cp2[1], pp[3]);
   2146 			cp += 2;
   2147 			cp2 += 2;
   2148 			pp += 6;
   2149 			x -= 2;
   2150 		}
   2151 		if (x==1) {
   2152 			uint32 Cb = pp[4];
   2153 			uint32 Cr = pp[5];
   2154 			YCbCrtoRGB(cp[0], pp[0]);
   2155 			YCbCrtoRGB(cp2[0], pp[2]);
   2156 			cp ++ ;
   2157 			cp2 ++ ;
   2158 			pp += 6;
   2159 		}
   2160 		cp += incr;
   2161 		cp2 += incr;
   2162 		pp += fromskew;
   2163 		h-=2;
   2164 	}
   2165 	if (h==1) {
   2166 		x = w;
   2167 		while (x>=2) {
   2168 			uint32 Cb = pp[4];
   2169 			uint32 Cr = pp[5];
   2170 			YCbCrtoRGB(cp[0], pp[0]);
   2171 			YCbCrtoRGB(cp[1], pp[1]);
   2172 			cp += 2;
   2173 			cp2 += 2;
   2174 			pp += 6;
   2175 			x -= 2;
   2176 		}
   2177 		if (x==1) {
   2178 			uint32 Cb = pp[4];
   2179 			uint32 Cr = pp[5];
   2180 			YCbCrtoRGB(cp[0], pp[0]);
   2181 		}
   2182 	}
   2183 }
   2184 
   2185 /*
   2186  * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
   2187  */
   2188 DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
   2189 {
   2190 	(void) y;
   2191 	fromskew = (fromskew * 4) / 2;
   2192 	do {
   2193 		x = w>>1;
   2194 		while(x>0) {
   2195 			int32 Cb = pp[2];
   2196 			int32 Cr = pp[3];
   2197 
   2198 			YCbCrtoRGB(cp[0], pp[0]);
   2199 			YCbCrtoRGB(cp[1], pp[1]);
   2200 
   2201 			cp += 2;
   2202 			pp += 4;
   2203 			x --;
   2204 		}
   2205 
   2206 		if( (w&1) != 0 )
   2207 		{
   2208 			int32 Cb = pp[2];
   2209 			int32 Cr = pp[3];
   2210 
   2211 			YCbCrtoRGB(cp[0], pp[0]);
   2212 
   2213 			cp += 1;
   2214 			pp += 4;
   2215 		}
   2216 
   2217 		cp += toskew;
   2218 		pp += fromskew;
   2219 	} while (--h);
   2220 }
   2221 
   2222 /*
   2223  * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB
   2224  */
   2225 DECLAREContigPutFunc(putcontig8bitYCbCr12tile)
   2226 {
   2227 	uint32* cp2;
   2228 	int32 incr = 2*toskew+w;
   2229 	(void) y;
   2230 	fromskew = (fromskew / 2) * 4;
   2231 	cp2 = cp+w+toskew;
   2232 	while (h>=2) {
   2233 		x = w;
   2234 		do {
   2235 			uint32 Cb = pp[2];
   2236 			uint32 Cr = pp[3];
   2237 			YCbCrtoRGB(cp[0], pp[0]);
   2238 			YCbCrtoRGB(cp2[0], pp[1]);
   2239 			cp ++;
   2240 			cp2 ++;
   2241 			pp += 4;
   2242 		} while (--x);
   2243 		cp += incr;
   2244 		cp2 += incr;
   2245 		pp += fromskew;
   2246 		h-=2;
   2247 	}
   2248 	if (h==1) {
   2249 		x = w;
   2250 		do {
   2251 			uint32 Cb = pp[2];
   2252 			uint32 Cr = pp[3];
   2253 			YCbCrtoRGB(cp[0], pp[0]);
   2254 			cp ++;
   2255 			pp += 4;
   2256 		} while (--x);
   2257 	}
   2258 }
   2259 
   2260 /*
   2261  * 8-bit packed YCbCr samples w/ no subsampling => RGB
   2262  */
   2263 DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
   2264 {
   2265 	(void) y;
   2266 	fromskew *= 3;
   2267 	do {
   2268 		x = w; /* was x = w>>1; patched 2000/09/25 warmerda (at) home.com */
   2269 		do {
   2270 			int32 Cb = pp[1];
   2271 			int32 Cr = pp[2];
   2272 
   2273 			YCbCrtoRGB(*cp++, pp[0]);
   2274 
   2275 			pp += 3;
   2276 		} while (--x);
   2277 		cp += toskew;
   2278 		pp += fromskew;
   2279 	} while (--h);
   2280 }
   2281 
   2282 /*
   2283  * 8-bit packed YCbCr samples w/ no subsampling => RGB
   2284  */
   2285 DECLARESepPutFunc(putseparate8bitYCbCr11tile)
   2286 {
   2287 	(void) y;
   2288 	(void) a;
   2289 	/* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */
   2290 	while (h-- > 0) {
   2291 		x = w;
   2292 		do {
   2293 			uint32 dr, dg, db;
   2294 			TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db);
   2295 			*cp++ = PACK(dr,dg,db);
   2296 		} while (--x);
   2297 		SKEW(r, g, b, fromskew);
   2298 		cp += toskew;
   2299 	}
   2300 }
   2301 #undef YCbCrtoRGB
   2302 
   2303 static int isInRefBlackWhiteRange(float f)
   2304 {
   2305     return f >= (float)(-0x7FFFFFFF + 128) && f <= (float)0x7FFFFFFF;
   2306 }
   2307 
   2308 static int
   2309 initYCbCrConversion(TIFFRGBAImage* img)
   2310 {
   2311 	static const char module[] = "initYCbCrConversion";
   2312 
   2313 	float *luma, *refBlackWhite;
   2314 
   2315 	if (img->ycbcr == NULL) {
   2316 		img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
   2317 		    TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long))
   2318 		    + 4*256*sizeof (TIFFRGBValue)
   2319 		    + 2*256*sizeof (int)
   2320 		    + 3*256*sizeof (int32)
   2321 		    );
   2322 		if (img->ycbcr == NULL) {
   2323 			TIFFErrorExt(img->tif->tif_clientdata, module,
   2324 			    "No space for YCbCr->RGB conversion state");
   2325 			return (0);
   2326 		}
   2327 	}
   2328 
   2329 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
   2330 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
   2331 	    &refBlackWhite);
   2332 
   2333         /* Do some validation to avoid later issues. Detect NaN for now */
   2334         /* and also if lumaGreen is zero since we divide by it later */
   2335         if( luma[0] != luma[0] ||
   2336             luma[1] != luma[1] ||
   2337             luma[1] == 0.0 ||
   2338             luma[2] != luma[2] )
   2339         {
   2340             TIFFErrorExt(img->tif->tif_clientdata, module,
   2341                 "Invalid values for YCbCrCoefficients tag");
   2342             return (0);
   2343         }
   2344 
   2345         if( !isInRefBlackWhiteRange(refBlackWhite[0]) ||
   2346             !isInRefBlackWhiteRange(refBlackWhite[1]) ||
   2347             !isInRefBlackWhiteRange(refBlackWhite[2]) ||
   2348             !isInRefBlackWhiteRange(refBlackWhite[3]) ||
   2349             !isInRefBlackWhiteRange(refBlackWhite[4]) ||
   2350             !isInRefBlackWhiteRange(refBlackWhite[5]) )
   2351         {
   2352             TIFFErrorExt(img->tif->tif_clientdata, module,
   2353                 "Invalid values for ReferenceBlackWhite tag");
   2354             return (0);
   2355         }
   2356 
   2357 	if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
   2358 		return(0);
   2359 	return (1);
   2360 }
   2361 
   2362 static tileContigRoutine
   2363 initCIELabConversion(TIFFRGBAImage* img)
   2364 {
   2365 	static const char module[] = "initCIELabConversion";
   2366 
   2367 	float   *whitePoint;
   2368 	float   refWhite[3];
   2369 
   2370 	if (!img->cielab) {
   2371 		img->cielab = (TIFFCIELabToRGB *)
   2372 			_TIFFmalloc(sizeof(TIFFCIELabToRGB));
   2373 		if (!img->cielab) {
   2374 			TIFFErrorExt(img->tif->tif_clientdata, module,
   2375 			    "No space for CIE L*a*b*->RGB conversion state.");
   2376 			return NULL;
   2377 		}
   2378 	}
   2379 
   2380 	TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
   2381 	refWhite[1] = 100.0F;
   2382 	refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
   2383 	refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1])
   2384 		      / whitePoint[1] * refWhite[1];
   2385 	if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) {
   2386 		TIFFErrorExt(img->tif->tif_clientdata, module,
   2387 		    "Failed to initialize CIE L*a*b*->RGB conversion state.");
   2388 		_TIFFfree(img->cielab);
   2389 		return NULL;
   2390 	}
   2391 
   2392 	return putcontig8bitCIELab;
   2393 }
   2394 
   2395 /*
   2396  * Greyscale images with less than 8 bits/sample are handled
   2397  * with a table to avoid lots of shifts and masks.  The table
   2398  * is setup so that put*bwtile (below) can retrieve 8/bitspersample
   2399  * pixel values simply by indexing into the table with one
   2400  * number.
   2401  */
   2402 static int
   2403 makebwmap(TIFFRGBAImage* img)
   2404 {
   2405     TIFFRGBValue* Map = img->Map;
   2406     int bitspersample = img->bitspersample;
   2407     int nsamples = 8 / bitspersample;
   2408     int i;
   2409     uint32* p;
   2410 
   2411     if( nsamples == 0 )
   2412         nsamples = 1;
   2413 
   2414     img->BWmap = (uint32**) _TIFFmalloc(
   2415 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
   2416     if (img->BWmap == NULL) {
   2417 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table");
   2418 		return (0);
   2419     }
   2420     p = (uint32*)(img->BWmap + 256);
   2421     for (i = 0; i < 256; i++) {
   2422 	TIFFRGBValue c;
   2423 	img->BWmap[i] = p;
   2424 	switch (bitspersample) {
   2425 #define	GREY(x)	c = Map[x]; *p++ = PACK(c,c,c);
   2426 	case 1:
   2427 	    GREY(i>>7);
   2428 	    GREY((i>>6)&1);
   2429 	    GREY((i>>5)&1);
   2430 	    GREY((i>>4)&1);
   2431 	    GREY((i>>3)&1);
   2432 	    GREY((i>>2)&1);
   2433 	    GREY((i>>1)&1);
   2434 	    GREY(i&1);
   2435 	    break;
   2436 	case 2:
   2437 	    GREY(i>>6);
   2438 	    GREY((i>>4)&3);
   2439 	    GREY((i>>2)&3);
   2440 	    GREY(i&3);
   2441 	    break;
   2442 	case 4:
   2443 	    GREY(i>>4);
   2444 	    GREY(i&0xf);
   2445 	    break;
   2446 	case 8:
   2447         case 16:
   2448 	    GREY(i);
   2449 	    break;
   2450 	}
   2451 #undef	GREY
   2452     }
   2453     return (1);
   2454 }
   2455 
   2456 /*
   2457  * Construct a mapping table to convert from the range
   2458  * of the data samples to [0,255] --for display.  This
   2459  * process also handles inverting B&W images when needed.
   2460  */
   2461 static int
   2462 setupMap(TIFFRGBAImage* img)
   2463 {
   2464     int32 x, range;
   2465 
   2466     range = (int32)((1L<<img->bitspersample)-1);
   2467 
   2468     /* treat 16 bit the same as eight bit */
   2469     if( img->bitspersample == 16 )
   2470         range = (int32) 255;
   2471 
   2472     img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
   2473     if (img->Map == NULL) {
   2474 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
   2475 			"No space for photometric conversion table");
   2476 		return (0);
   2477     }
   2478     if (img->photometric == PHOTOMETRIC_MINISWHITE) {
   2479 	for (x = 0; x <= range; x++)
   2480 	    img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range);
   2481     } else {
   2482 	for (x = 0; x <= range; x++)
   2483 	    img->Map[x] = (TIFFRGBValue) ((x * 255) / range);
   2484     }
   2485     if (img->bitspersample <= 16 &&
   2486 	(img->photometric == PHOTOMETRIC_MINISBLACK ||
   2487 	 img->photometric == PHOTOMETRIC_MINISWHITE)) {
   2488 	/*
   2489 	 * Use photometric mapping table to construct
   2490 	 * unpacking tables for samples <= 8 bits.
   2491 	 */
   2492 	if (!makebwmap(img))
   2493 	    return (0);
   2494 	/* no longer need Map, free it */
   2495 	_TIFFfree(img->Map);
   2496 	img->Map = NULL;
   2497     }
   2498     return (1);
   2499 }
   2500 
   2501 static int
   2502 checkcmap(TIFFRGBAImage* img)
   2503 {
   2504     uint16* r = img->redcmap;
   2505     uint16* g = img->greencmap;
   2506     uint16* b = img->bluecmap;
   2507     long n = 1L<<img->bitspersample;
   2508 
   2509     while (n-- > 0)
   2510 	if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
   2511 	    return (16);
   2512     return (8);
   2513 }
   2514 
   2515 static void
   2516 cvtcmap(TIFFRGBAImage* img)
   2517 {
   2518     uint16* r = img->redcmap;
   2519     uint16* g = img->greencmap;
   2520     uint16* b = img->bluecmap;
   2521     long i;
   2522 
   2523     for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
   2524 #define	CVT(x)		((uint16)((x)>>8))
   2525 	r[i] = CVT(r[i]);
   2526 	g[i] = CVT(g[i]);
   2527 	b[i] = CVT(b[i]);
   2528 #undef	CVT
   2529     }
   2530 }
   2531 
   2532 /*
   2533  * Palette images with <= 8 bits/sample are handled
   2534  * with a table to avoid lots of shifts and masks.  The table
   2535  * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
   2536  * pixel values simply by indexing into the table with one
   2537  * number.
   2538  */
   2539 static int
   2540 makecmap(TIFFRGBAImage* img)
   2541 {
   2542     int bitspersample = img->bitspersample;
   2543     int nsamples = 8 / bitspersample;
   2544     uint16* r = img->redcmap;
   2545     uint16* g = img->greencmap;
   2546     uint16* b = img->bluecmap;
   2547     uint32 *p;
   2548     int i;
   2549 
   2550     img->PALmap = (uint32**) _TIFFmalloc(
   2551 	256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
   2552     if (img->PALmap == NULL) {
   2553 		TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table");
   2554 		return (0);
   2555 	}
   2556     p = (uint32*)(img->PALmap + 256);
   2557     for (i = 0; i < 256; i++) {
   2558 	TIFFRGBValue c;
   2559 	img->PALmap[i] = p;
   2560 #define	CMAP(x)	c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
   2561 	switch (bitspersample) {
   2562 	case 1:
   2563 	    CMAP(i>>7);
   2564 	    CMAP((i>>6)&1);
   2565 	    CMAP((i>>5)&1);
   2566 	    CMAP((i>>4)&1);
   2567 	    CMAP((i>>3)&1);
   2568 	    CMAP((i>>2)&1);
   2569 	    CMAP((i>>1)&1);
   2570 	    CMAP(i&1);
   2571 	    break;
   2572 	case 2:
   2573 	    CMAP(i>>6);
   2574 	    CMAP((i>>4)&3);
   2575 	    CMAP((i>>2)&3);
   2576 	    CMAP(i&3);
   2577 	    break;
   2578 	case 4:
   2579 	    CMAP(i>>4);
   2580 	    CMAP(i&0xf);
   2581 	    break;
   2582 	case 8:
   2583 	    CMAP(i);
   2584 	    break;
   2585 	}
   2586 #undef CMAP
   2587     }
   2588     return (1);
   2589 }
   2590 
   2591 /*
   2592  * Construct any mapping table used
   2593  * by the associated put routine.
   2594  */
   2595 static int
   2596 buildMap(TIFFRGBAImage* img)
   2597 {
   2598     switch (img->photometric) {
   2599     case PHOTOMETRIC_RGB:
   2600     case PHOTOMETRIC_YCBCR:
   2601     case PHOTOMETRIC_SEPARATED:
   2602 	if (img->bitspersample == 8)
   2603 	    break;
   2604 	/* fall through... */
   2605     case PHOTOMETRIC_MINISBLACK:
   2606     case PHOTOMETRIC_MINISWHITE:
   2607 	if (!setupMap(img))
   2608 	    return (0);
   2609 	break;
   2610     case PHOTOMETRIC_PALETTE:
   2611 	/*
   2612 	 * Convert 16-bit colormap to 8-bit (unless it looks
   2613 	 * like an old-style 8-bit colormap).
   2614 	 */
   2615 	if (checkcmap(img) == 16)
   2616 	    cvtcmap(img);
   2617 	else
   2618 	    TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap");
   2619 	/*
   2620 	 * Use mapping table and colormap to construct
   2621 	 * unpacking tables for samples < 8 bits.
   2622 	 */
   2623 	if (img->bitspersample <= 8 && !makecmap(img))
   2624 	    return (0);
   2625 	break;
   2626     }
   2627     return (1);
   2628 }
   2629 
   2630 /*
   2631  * Select the appropriate conversion routine for packed data.
   2632  */
   2633 static int
   2634 PickContigCase(TIFFRGBAImage* img)
   2635 {
   2636 	img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig;
   2637 	img->put.contig = NULL;
   2638 	switch (img->photometric) {
   2639 		case PHOTOMETRIC_RGB:
   2640 			switch (img->bitspersample) {
   2641 				case 8:
   2642 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
   2643 						img->samplesperpixel >= 4)
   2644 						img->put.contig = putRGBAAcontig8bittile;
   2645 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
   2646 							 img->samplesperpixel >= 4)
   2647 					{
   2648 						if (BuildMapUaToAa(img))
   2649 							img->put.contig = putRGBUAcontig8bittile;
   2650 					}
   2651 					else if( img->samplesperpixel >= 3 )
   2652 						img->put.contig = putRGBcontig8bittile;
   2653 					break;
   2654 				case 16:
   2655 					if (img->alpha == EXTRASAMPLE_ASSOCALPHA &&
   2656 						img->samplesperpixel >=4 )
   2657 					{
   2658 						if (BuildMapBitdepth16To8(img))
   2659 							img->put.contig = putRGBAAcontig16bittile;
   2660 					}
   2661 					else if (img->alpha == EXTRASAMPLE_UNASSALPHA &&
   2662 							 img->samplesperpixel >=4 )
   2663 					{
   2664 						if (BuildMapBitdepth16To8(img) &&
   2665 						    BuildMapUaToAa(img))
   2666 							img->put.contig = putRGBUAcontig16bittile;
   2667 					}
   2668 					else if( img->samplesperpixel >=3 )
   2669 					{
   2670 						if (BuildMapBitdepth16To8(img))
   2671 							img->put.contig = putRGBcontig16bittile;
   2672 					}
   2673 					break;
   2674 			}
   2675 			break;
   2676 		case PHOTOMETRIC_SEPARATED:
   2677 			if (img->samplesperpixel >=4 && buildMap(img)) {
   2678 				if (img->bitspersample == 8) {
   2679 					if (!img->Map)
   2680 						img->put.contig = putRGBcontig8bitCMYKtile;
   2681 					else
   2682 						img->put.contig = putRGBcontig8bitCMYKMaptile;
   2683 				}
   2684 			}
   2685 			break;
   2686 		case PHOTOMETRIC_PALETTE:
   2687 			if (buildMap(img)) {
   2688 				switch (img->bitspersample) {
   2689 					case 8:
   2690 						img->put.contig = put8bitcmaptile;
   2691 						break;
   2692 					case 4:
   2693 						img->put.contig = put4bitcmaptile;
   2694 						break;
   2695 					case 2:
   2696 						img->put.contig = put2bitcmaptile;
   2697 						break;
   2698 					case 1:
   2699 						img->put.contig = put1bitcmaptile;
   2700 						break;
   2701 				}
   2702 			}
   2703 			break;
   2704 		case PHOTOMETRIC_MINISWHITE:
   2705 		case PHOTOMETRIC_MINISBLACK:
   2706 			if (buildMap(img)) {
   2707 				switch (img->bitspersample) {
   2708 					case 16:
   2709 						img->put.contig = put16bitbwtile;
   2710 						break;
   2711 					case 8:
   2712 						if (img->alpha && img->samplesperpixel == 2)
   2713 							img->put.contig = putagreytile;
   2714 						else
   2715 							img->put.contig = putgreytile;
   2716 						break;
   2717 					case 4:
   2718 						img->put.contig = put4bitbwtile;
   2719 						break;
   2720 					case 2:
   2721 						img->put.contig = put2bitbwtile;
   2722 						break;
   2723 					case 1:
   2724 						img->put.contig = put1bitbwtile;
   2725 						break;
   2726 				}
   2727 			}
   2728 			break;
   2729 		case PHOTOMETRIC_YCBCR:
   2730 			if ((img->bitspersample==8) && (img->samplesperpixel==3))
   2731 			{
   2732 				if (initYCbCrConversion(img)!=0)
   2733 				{
   2734 					/*
   2735 					 * The 6.0 spec says that subsampling must be
   2736 					 * one of 1, 2, or 4, and that vertical subsampling
   2737 					 * must always be <= horizontal subsampling; so
   2738 					 * there are only a few possibilities and we just
   2739 					 * enumerate the cases.
   2740 					 * Joris: added support for the [1,2] case, nonetheless, to accommodate
   2741 					 * some OJPEG files
   2742 					 */
   2743 					uint16 SubsamplingHor;
   2744 					uint16 SubsamplingVer;
   2745 					TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer);
   2746 					switch ((SubsamplingHor<<4)|SubsamplingVer) {
   2747 						case 0x44:
   2748 							img->put.contig = putcontig8bitYCbCr44tile;
   2749 							break;
   2750 						case 0x42:
   2751 							img->put.contig = putcontig8bitYCbCr42tile;
   2752 							break;
   2753 						case 0x41:
   2754 							img->put.contig = putcontig8bitYCbCr41tile;
   2755 							break;
   2756 						case 0x22:
   2757 							img->put.contig = putcontig8bitYCbCr22tile;
   2758 							break;
   2759 						case 0x21:
   2760 							img->put.contig = putcontig8bitYCbCr21tile;
   2761 							break;
   2762 						case 0x12:
   2763 							img->put.contig = putcontig8bitYCbCr12tile;
   2764 							break;
   2765 						case 0x11:
   2766 							img->put.contig = putcontig8bitYCbCr11tile;
   2767 							break;
   2768 					}
   2769 				}
   2770 			}
   2771 			break;
   2772 		case PHOTOMETRIC_CIELAB:
   2773 			if (img->samplesperpixel == 3 && buildMap(img)) {
   2774 				if (img->bitspersample == 8)
   2775 					img->put.contig = initCIELabConversion(img);
   2776 				break;
   2777 			}
   2778 	}
   2779 	return ((img->get!=NULL) && (img->put.contig!=NULL));
   2780 }
   2781 
   2782 /*
   2783  * Select the appropriate conversion routine for unpacked data.
   2784  *
   2785  * NB: we assume that unpacked single channel data is directed
   2786  *	 to the "packed routines.
   2787  */
   2788 static int
   2789 PickSeparateCase(TIFFRGBAImage* img)
   2790 {
   2791 	img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate;
   2792 	img->put.separate = NULL;
   2793 	switch (img->photometric) {
   2794 	case PHOTOMETRIC_MINISWHITE:
   2795 	case PHOTOMETRIC_MINISBLACK:
   2796 		/* greyscale images processed pretty much as RGB by gtTileSeparate */
   2797 	case PHOTOMETRIC_RGB:
   2798 		switch (img->bitspersample) {
   2799 		case 8:
   2800 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
   2801 				img->put.separate = putRGBAAseparate8bittile;
   2802 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
   2803 			{
   2804 				if (BuildMapUaToAa(img))
   2805 					img->put.separate = putRGBUAseparate8bittile;
   2806 			}
   2807 			else
   2808 				img->put.separate = putRGBseparate8bittile;
   2809 			break;
   2810 		case 16:
   2811 			if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
   2812 			{
   2813 				if (BuildMapBitdepth16To8(img))
   2814 					img->put.separate = putRGBAAseparate16bittile;
   2815 			}
   2816 			else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
   2817 			{
   2818 				if (BuildMapBitdepth16To8(img) &&
   2819 				    BuildMapUaToAa(img))
   2820 					img->put.separate = putRGBUAseparate16bittile;
   2821 			}
   2822 			else
   2823 			{
   2824 				if (BuildMapBitdepth16To8(img))
   2825 					img->put.separate = putRGBseparate16bittile;
   2826 			}
   2827 			break;
   2828 		}
   2829 		break;
   2830 	case PHOTOMETRIC_SEPARATED:
   2831 		if (img->bitspersample == 8 && img->samplesperpixel == 4)
   2832 		{
   2833 			img->alpha = 1; // Not alpha, but seems like the only way to get 4th band
   2834 			img->put.separate = putCMYKseparate8bittile;
   2835 		}
   2836 		break;
   2837 	case PHOTOMETRIC_YCBCR:
   2838 		if ((img->bitspersample==8) && (img->samplesperpixel==3))
   2839 		{
   2840 			if (initYCbCrConversion(img)!=0)
   2841 			{
   2842 				uint16 hs, vs;
   2843 				TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
   2844 				switch ((hs<<4)|vs) {
   2845 				case 0x11:
   2846 					img->put.separate = putseparate8bitYCbCr11tile;
   2847 					break;
   2848 					/* TODO: add other cases here */
   2849 				}
   2850 			}
   2851 		}
   2852 		break;
   2853 	}
   2854 	return ((img->get!=NULL) && (img->put.separate!=NULL));
   2855 }
   2856 
   2857 static int
   2858 BuildMapUaToAa(TIFFRGBAImage* img)
   2859 {
   2860 	static const char module[]="BuildMapUaToAa";
   2861 	uint8* m;
   2862 	uint16 na,nv;
   2863 	assert(img->UaToAa==NULL);
   2864 	img->UaToAa=_TIFFmalloc(65536);
   2865 	if (img->UaToAa==NULL)
   2866 	{
   2867 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
   2868 		return(0);
   2869 	}
   2870 	m=img->UaToAa;
   2871 	for (na=0; na<256; na++)
   2872 	{
   2873 		for (nv=0; nv<256; nv++)
   2874 			*m++=(uint8)((nv*na+127)/255);
   2875 	}
   2876 	return(1);
   2877 }
   2878 
   2879 static int
   2880 BuildMapBitdepth16To8(TIFFRGBAImage* img)
   2881 {
   2882 	static const char module[]="BuildMapBitdepth16To8";
   2883 	uint8* m;
   2884 	uint32 n;
   2885 	assert(img->Bitdepth16To8==NULL);
   2886 	img->Bitdepth16To8=_TIFFmalloc(65536);
   2887 	if (img->Bitdepth16To8==NULL)
   2888 	{
   2889 		TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
   2890 		return(0);
   2891 	}
   2892 	m=img->Bitdepth16To8;
   2893 	for (n=0; n<65536; n++)
   2894 		*m++=(uint8)((n+128)/257);
   2895 	return(1);
   2896 }
   2897 
   2898 
   2899 /*
   2900  * Read a whole strip off data from the file, and convert to RGBA form.
   2901  * If this is the last strip, then it will only contain the portion of
   2902  * the strip that is actually within the image space.  The result is
   2903  * organized in bottom to top form.
   2904  */
   2905 
   2906 
   2907 int
   2908 TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster )
   2909 
   2910 {
   2911     return TIFFReadRGBAStripExt(tif, row, raster, 0 );
   2912 }
   2913 
   2914 int
   2915 TIFFReadRGBAStripExt(TIFF* tif, uint32 row, uint32 * raster, int stop_on_error)
   2916 
   2917 {
   2918     char 	emsg[1024] = "";
   2919     TIFFRGBAImage img;
   2920     int 	ok;
   2921     uint32	rowsperstrip, rows_to_read;
   2922 
   2923     if( TIFFIsTiled( tif ) )
   2924     {
   2925 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
   2926                   "Can't use TIFFReadRGBAStrip() with tiled file.");
   2927 	return (0);
   2928     }
   2929 
   2930     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
   2931     if( (row % rowsperstrip) != 0 )
   2932     {
   2933 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
   2934 				"Row passed to TIFFReadRGBAStrip() must be first in a strip.");
   2935 		return (0);
   2936     }
   2937 
   2938     if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
   2939 
   2940         img.row_offset = row;
   2941         img.col_offset = 0;
   2942 
   2943         if( row + rowsperstrip > img.height )
   2944             rows_to_read = img.height - row;
   2945         else
   2946             rows_to_read = rowsperstrip;
   2947 
   2948 	ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read );
   2949 
   2950 	TIFFRGBAImageEnd(&img);
   2951     } else {
   2952 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
   2953 		ok = 0;
   2954     }
   2955 
   2956     return (ok);
   2957 }
   2958 
   2959 /*
   2960  * Read a whole tile off data from the file, and convert to RGBA form.
   2961  * The returned RGBA data is organized from bottom to top of tile,
   2962  * and may include zeroed areas if the tile extends off the image.
   2963  */
   2964 
   2965 int
   2966 TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster)
   2967 
   2968 {
   2969     return TIFFReadRGBATileExt(tif, col, row, raster, 0 );
   2970 }
   2971 
   2972 
   2973 int
   2974 TIFFReadRGBATileExt(TIFF* tif, uint32 col, uint32 row, uint32 * raster, int stop_on_error )
   2975 {
   2976     char 	emsg[1024] = "";
   2977     TIFFRGBAImage img;
   2978     int 	ok;
   2979     uint32	tile_xsize, tile_ysize;
   2980     uint32	read_xsize, read_ysize;
   2981     uint32	i_row;
   2982 
   2983     /*
   2984      * Verify that our request is legal - on a tile file, and on a
   2985      * tile boundary.
   2986      */
   2987 
   2988     if( !TIFFIsTiled( tif ) )
   2989     {
   2990 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
   2991 				  "Can't use TIFFReadRGBATile() with stripped file.");
   2992 		return (0);
   2993     }
   2994 
   2995     TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
   2996     TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
   2997     if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 )
   2998     {
   2999 		TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
   3000                   "Row/col passed to TIFFReadRGBATile() must be top"
   3001                   "left corner of a tile.");
   3002 	return (0);
   3003     }
   3004 
   3005     /*
   3006      * Setup the RGBA reader.
   3007      */
   3008 
   3009     if (!TIFFRGBAImageOK(tif, emsg)
   3010 	|| !TIFFRGBAImageBegin(&img, tif, stop_on_error, emsg)) {
   3011 	    TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
   3012 	    return( 0 );
   3013     }
   3014 
   3015     /*
   3016      * The TIFFRGBAImageGet() function doesn't allow us to get off the
   3017      * edge of the image, even to fill an otherwise valid tile.  So we
   3018      * figure out how much we can read, and fix up the tile buffer to
   3019      * a full tile configuration afterwards.
   3020      */
   3021 
   3022     if( row + tile_ysize > img.height )
   3023         read_ysize = img.height - row;
   3024     else
   3025         read_ysize = tile_ysize;
   3026 
   3027     if( col + tile_xsize > img.width )
   3028         read_xsize = img.width - col;
   3029     else
   3030         read_xsize = tile_xsize;
   3031 
   3032     /*
   3033      * Read the chunk of imagery.
   3034      */
   3035 
   3036     img.row_offset = row;
   3037     img.col_offset = col;
   3038 
   3039     ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize );
   3040 
   3041     TIFFRGBAImageEnd(&img);
   3042 
   3043     /*
   3044      * If our read was incomplete we will need to fix up the tile by
   3045      * shifting the data around as if a full tile of data is being returned.
   3046      *
   3047      * This is all the more complicated because the image is organized in
   3048      * bottom to top format.
   3049      */
   3050 
   3051     if( read_xsize == tile_xsize && read_ysize == tile_ysize )
   3052         return( ok );
   3053 
   3054     for( i_row = 0; i_row < read_ysize; i_row++ ) {
   3055         memmove( raster + (tile_ysize - i_row - 1) * tile_xsize,
   3056                  raster + (read_ysize - i_row - 1) * read_xsize,
   3057                  read_xsize * sizeof(uint32) );
   3058         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize,
   3059                      0, sizeof(uint32) * (tile_xsize - read_xsize) );
   3060     }
   3061 
   3062     for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) {
   3063         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize,
   3064                      0, sizeof(uint32) * tile_xsize );
   3065     }
   3066 
   3067     return (ok);
   3068 }
   3069 
   3070 /* vim: set ts=8 sts=8 sw=8 noet: */
   3071 /*
   3072  * Local Variables:
   3073  * mode: c
   3074  * c-basic-offset: 8
   3075  * fill-column: 78
   3076  * End:
   3077  */
   3078