1 // Copyright 2010 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/gdb-jit.h" 6 7 #include <memory> 8 #include <vector> 9 10 #include "src/api-inl.h" 11 #include "src/base/bits.h" 12 #include "src/base/platform/platform.h" 13 #include "src/bootstrapper.h" 14 #include "src/frames-inl.h" 15 #include "src/frames.h" 16 #include "src/global-handles.h" 17 #include "src/messages.h" 18 #include "src/objects.h" 19 #include "src/ostreams.h" 20 #include "src/snapshot/natives.h" 21 #include "src/splay-tree-inl.h" 22 #include "src/zone/zone-chunk-list.h" 23 24 namespace v8 { 25 namespace internal { 26 namespace GDBJITInterface { 27 28 #ifdef ENABLE_GDB_JIT_INTERFACE 29 30 #ifdef __APPLE__ 31 #define __MACH_O 32 class MachO; 33 class MachOSection; 34 typedef MachO DebugObject; 35 typedef MachOSection DebugSection; 36 #else 37 #define __ELF 38 class ELF; 39 class ELFSection; 40 typedef ELF DebugObject; 41 typedef ELFSection DebugSection; 42 #endif 43 44 class Writer BASE_EMBEDDED { 45 public: 46 explicit Writer(DebugObject* debug_object) 47 : debug_object_(debug_object), 48 position_(0), 49 capacity_(1024), 50 buffer_(reinterpret_cast<byte*>(malloc(capacity_))) { 51 } 52 53 ~Writer() { 54 free(buffer_); 55 } 56 57 uintptr_t position() const { 58 return position_; 59 } 60 61 template<typename T> 62 class Slot { 63 public: 64 Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { } 65 66 T* operator-> () { 67 return w_->RawSlotAt<T>(offset_); 68 } 69 70 void set(const T& value) { 71 *w_->RawSlotAt<T>(offset_) = value; 72 } 73 74 Slot<T> at(int i) { 75 return Slot<T>(w_, offset_ + sizeof(T) * i); 76 } 77 78 private: 79 Writer* w_; 80 uintptr_t offset_; 81 }; 82 83 template<typename T> 84 void Write(const T& val) { 85 Ensure(position_ + sizeof(T)); 86 *RawSlotAt<T>(position_) = val; 87 position_ += sizeof(T); 88 } 89 90 template<typename T> 91 Slot<T> SlotAt(uintptr_t offset) { 92 Ensure(offset + sizeof(T)); 93 return Slot<T>(this, offset); 94 } 95 96 template<typename T> 97 Slot<T> CreateSlotHere() { 98 return CreateSlotsHere<T>(1); 99 } 100 101 template<typename T> 102 Slot<T> CreateSlotsHere(uint32_t count) { 103 uintptr_t slot_position = position_; 104 position_ += sizeof(T) * count; 105 Ensure(position_); 106 return SlotAt<T>(slot_position); 107 } 108 109 void Ensure(uintptr_t pos) { 110 if (capacity_ < pos) { 111 while (capacity_ < pos) capacity_ *= 2; 112 buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_)); 113 } 114 } 115 116 DebugObject* debug_object() { return debug_object_; } 117 118 byte* buffer() { return buffer_; } 119 120 void Align(uintptr_t align) { 121 uintptr_t delta = position_ % align; 122 if (delta == 0) return; 123 uintptr_t padding = align - delta; 124 Ensure(position_ += padding); 125 DCHECK_EQ(position_ % align, 0); 126 } 127 128 void WriteULEB128(uintptr_t value) { 129 do { 130 uint8_t byte = value & 0x7F; 131 value >>= 7; 132 if (value != 0) byte |= 0x80; 133 Write<uint8_t>(byte); 134 } while (value != 0); 135 } 136 137 void WriteSLEB128(intptr_t value) { 138 bool more = true; 139 while (more) { 140 int8_t byte = value & 0x7F; 141 bool byte_sign = byte & 0x40; 142 value >>= 7; 143 144 if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) { 145 more = false; 146 } else { 147 byte |= 0x80; 148 } 149 150 Write<int8_t>(byte); 151 } 152 } 153 154 void WriteString(const char* str) { 155 do { 156 Write<char>(*str); 157 } while (*str++); 158 } 159 160 private: 161 template<typename T> friend class Slot; 162 163 template<typename T> 164 T* RawSlotAt(uintptr_t offset) { 165 DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_); 166 return reinterpret_cast<T*>(&buffer_[offset]); 167 } 168 169 DebugObject* debug_object_; 170 uintptr_t position_; 171 uintptr_t capacity_; 172 byte* buffer_; 173 }; 174 175 class ELFStringTable; 176 177 template<typename THeader> 178 class DebugSectionBase : public ZoneObject { 179 public: 180 virtual ~DebugSectionBase() { } 181 182 virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) { 183 uintptr_t start = writer->position(); 184 if (WriteBodyInternal(writer)) { 185 uintptr_t end = writer->position(); 186 header->offset = static_cast<uint32_t>(start); 187 #if defined(__MACH_O) 188 header->addr = 0; 189 #endif 190 header->size = end - start; 191 } 192 } 193 194 virtual bool WriteBodyInternal(Writer* writer) { 195 return false; 196 } 197 198 typedef THeader Header; 199 }; 200 201 202 struct MachOSectionHeader { 203 char sectname[16]; 204 char segname[16]; 205 #if V8_TARGET_ARCH_IA32 206 uint32_t addr; 207 uint32_t size; 208 #else 209 uint64_t addr; 210 uint64_t size; 211 #endif 212 uint32_t offset; 213 uint32_t align; 214 uint32_t reloff; 215 uint32_t nreloc; 216 uint32_t flags; 217 uint32_t reserved1; 218 uint32_t reserved2; 219 }; 220 221 222 class MachOSection : public DebugSectionBase<MachOSectionHeader> { 223 public: 224 enum Type { 225 S_REGULAR = 0x0u, 226 S_ATTR_COALESCED = 0xBu, 227 S_ATTR_SOME_INSTRUCTIONS = 0x400u, 228 S_ATTR_DEBUG = 0x02000000u, 229 S_ATTR_PURE_INSTRUCTIONS = 0x80000000u 230 }; 231 232 MachOSection(const char* name, const char* segment, uint32_t align, 233 uint32_t flags) 234 : name_(name), segment_(segment), align_(align), flags_(flags) { 235 if (align_ != 0) { 236 DCHECK(base::bits::IsPowerOfTwo(align)); 237 align_ = WhichPowerOf2(align_); 238 } 239 } 240 241 virtual ~MachOSection() { } 242 243 virtual void PopulateHeader(Writer::Slot<Header> header) { 244 header->addr = 0; 245 header->size = 0; 246 header->offset = 0; 247 header->align = align_; 248 header->reloff = 0; 249 header->nreloc = 0; 250 header->flags = flags_; 251 header->reserved1 = 0; 252 header->reserved2 = 0; 253 memset(header->sectname, 0, sizeof(header->sectname)); 254 memset(header->segname, 0, sizeof(header->segname)); 255 DCHECK(strlen(name_) < sizeof(header->sectname)); 256 DCHECK(strlen(segment_) < sizeof(header->segname)); 257 strncpy(header->sectname, name_, sizeof(header->sectname)); 258 strncpy(header->segname, segment_, sizeof(header->segname)); 259 } 260 261 private: 262 const char* name_; 263 const char* segment_; 264 uint32_t align_; 265 uint32_t flags_; 266 }; 267 268 269 struct ELFSectionHeader { 270 uint32_t name; 271 uint32_t type; 272 uintptr_t flags; 273 uintptr_t address; 274 uintptr_t offset; 275 uintptr_t size; 276 uint32_t link; 277 uint32_t info; 278 uintptr_t alignment; 279 uintptr_t entry_size; 280 }; 281 282 283 #if defined(__ELF) 284 class ELFSection : public DebugSectionBase<ELFSectionHeader> { 285 public: 286 enum Type { 287 TYPE_NULL = 0, 288 TYPE_PROGBITS = 1, 289 TYPE_SYMTAB = 2, 290 TYPE_STRTAB = 3, 291 TYPE_RELA = 4, 292 TYPE_HASH = 5, 293 TYPE_DYNAMIC = 6, 294 TYPE_NOTE = 7, 295 TYPE_NOBITS = 8, 296 TYPE_REL = 9, 297 TYPE_SHLIB = 10, 298 TYPE_DYNSYM = 11, 299 TYPE_LOPROC = 0x70000000, 300 TYPE_X86_64_UNWIND = 0x70000001, 301 TYPE_HIPROC = 0x7FFFFFFF, 302 TYPE_LOUSER = 0x80000000, 303 TYPE_HIUSER = 0xFFFFFFFF 304 }; 305 306 enum Flags { 307 FLAG_WRITE = 1, 308 FLAG_ALLOC = 2, 309 FLAG_EXEC = 4 310 }; 311 312 enum SpecialIndexes { INDEX_ABSOLUTE = 0xFFF1 }; 313 314 ELFSection(const char* name, Type type, uintptr_t align) 315 : name_(name), type_(type), align_(align) { } 316 317 virtual ~ELFSection() { } 318 319 void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab); 320 321 virtual void WriteBody(Writer::Slot<Header> header, Writer* w) { 322 uintptr_t start = w->position(); 323 if (WriteBodyInternal(w)) { 324 uintptr_t end = w->position(); 325 header->offset = start; 326 header->size = end - start; 327 } 328 } 329 330 virtual bool WriteBodyInternal(Writer* w) { 331 return false; 332 } 333 334 uint16_t index() const { return index_; } 335 void set_index(uint16_t index) { index_ = index; } 336 337 protected: 338 virtual void PopulateHeader(Writer::Slot<Header> header) { 339 header->flags = 0; 340 header->address = 0; 341 header->offset = 0; 342 header->size = 0; 343 header->link = 0; 344 header->info = 0; 345 header->entry_size = 0; 346 } 347 348 private: 349 const char* name_; 350 Type type_; 351 uintptr_t align_; 352 uint16_t index_; 353 }; 354 #endif // defined(__ELF) 355 356 357 #if defined(__MACH_O) 358 class MachOTextSection : public MachOSection { 359 public: 360 MachOTextSection(uint32_t align, uintptr_t addr, uintptr_t size) 361 : MachOSection("__text", "__TEXT", align, 362 MachOSection::S_REGULAR | 363 MachOSection::S_ATTR_SOME_INSTRUCTIONS | 364 MachOSection::S_ATTR_PURE_INSTRUCTIONS), 365 addr_(addr), 366 size_(size) {} 367 368 protected: 369 virtual void PopulateHeader(Writer::Slot<Header> header) { 370 MachOSection::PopulateHeader(header); 371 header->addr = addr_; 372 header->size = size_; 373 } 374 375 private: 376 uintptr_t addr_; 377 uintptr_t size_; 378 }; 379 #endif // defined(__MACH_O) 380 381 382 #if defined(__ELF) 383 class FullHeaderELFSection : public ELFSection { 384 public: 385 FullHeaderELFSection(const char* name, 386 Type type, 387 uintptr_t align, 388 uintptr_t addr, 389 uintptr_t offset, 390 uintptr_t size, 391 uintptr_t flags) 392 : ELFSection(name, type, align), 393 addr_(addr), 394 offset_(offset), 395 size_(size), 396 flags_(flags) { } 397 398 protected: 399 virtual void PopulateHeader(Writer::Slot<Header> header) { 400 ELFSection::PopulateHeader(header); 401 header->address = addr_; 402 header->offset = offset_; 403 header->size = size_; 404 header->flags = flags_; 405 } 406 407 private: 408 uintptr_t addr_; 409 uintptr_t offset_; 410 uintptr_t size_; 411 uintptr_t flags_; 412 }; 413 414 415 class ELFStringTable : public ELFSection { 416 public: 417 explicit ELFStringTable(const char* name) 418 : ELFSection(name, TYPE_STRTAB, 1), 419 writer_(nullptr), 420 offset_(0), 421 size_(0) {} 422 423 uintptr_t Add(const char* str) { 424 if (*str == '\0') return 0; 425 426 uintptr_t offset = size_; 427 WriteString(str); 428 return offset; 429 } 430 431 void AttachWriter(Writer* w) { 432 writer_ = w; 433 offset_ = writer_->position(); 434 435 // First entry in the string table should be an empty string. 436 WriteString(""); 437 } 438 439 void DetachWriter() { writer_ = nullptr; } 440 441 virtual void WriteBody(Writer::Slot<Header> header, Writer* w) { 442 DCHECK_NULL(writer_); 443 header->offset = offset_; 444 header->size = size_; 445 } 446 447 private: 448 void WriteString(const char* str) { 449 uintptr_t written = 0; 450 do { 451 writer_->Write(*str); 452 written++; 453 } while (*str++); 454 size_ += written; 455 } 456 457 Writer* writer_; 458 459 uintptr_t offset_; 460 uintptr_t size_; 461 }; 462 463 464 void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header, 465 ELFStringTable* strtab) { 466 header->name = static_cast<uint32_t>(strtab->Add(name_)); 467 header->type = type_; 468 header->alignment = align_; 469 PopulateHeader(header); 470 } 471 #endif // defined(__ELF) 472 473 474 #if defined(__MACH_O) 475 class MachO BASE_EMBEDDED { 476 public: 477 explicit MachO(Zone* zone) : sections_(zone) {} 478 479 size_t AddSection(MachOSection* section) { 480 sections_.push_back(section); 481 return sections_.size() - 1; 482 } 483 484 void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) { 485 Writer::Slot<MachOHeader> header = WriteHeader(w); 486 uintptr_t load_command_start = w->position(); 487 Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w, 488 code_start, 489 code_size); 490 WriteSections(w, cmd, header, load_command_start); 491 } 492 493 private: 494 struct MachOHeader { 495 uint32_t magic; 496 uint32_t cputype; 497 uint32_t cpusubtype; 498 uint32_t filetype; 499 uint32_t ncmds; 500 uint32_t sizeofcmds; 501 uint32_t flags; 502 #if V8_TARGET_ARCH_X64 503 uint32_t reserved; 504 #endif 505 }; 506 507 struct MachOSegmentCommand { 508 uint32_t cmd; 509 uint32_t cmdsize; 510 char segname[16]; 511 #if V8_TARGET_ARCH_IA32 512 uint32_t vmaddr; 513 uint32_t vmsize; 514 uint32_t fileoff; 515 uint32_t filesize; 516 #else 517 uint64_t vmaddr; 518 uint64_t vmsize; 519 uint64_t fileoff; 520 uint64_t filesize; 521 #endif 522 uint32_t maxprot; 523 uint32_t initprot; 524 uint32_t nsects; 525 uint32_t flags; 526 }; 527 528 enum MachOLoadCommandCmd { 529 LC_SEGMENT_32 = 0x00000001u, 530 LC_SEGMENT_64 = 0x00000019u 531 }; 532 533 534 Writer::Slot<MachOHeader> WriteHeader(Writer* w) { 535 DCHECK_EQ(w->position(), 0); 536 Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>(); 537 #if V8_TARGET_ARCH_IA32 538 header->magic = 0xFEEDFACEu; 539 header->cputype = 7; // i386 540 header->cpusubtype = 3; // CPU_SUBTYPE_I386_ALL 541 #elif V8_TARGET_ARCH_X64 542 header->magic = 0xFEEDFACFu; 543 header->cputype = 7 | 0x01000000; // i386 | 64-bit ABI 544 header->cpusubtype = 3; // CPU_SUBTYPE_I386_ALL 545 header->reserved = 0; 546 #else 547 #error Unsupported target architecture. 548 #endif 549 header->filetype = 0x1; // MH_OBJECT 550 header->ncmds = 1; 551 header->sizeofcmds = 0; 552 header->flags = 0; 553 return header; 554 } 555 556 557 Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w, 558 uintptr_t code_start, 559 uintptr_t code_size) { 560 Writer::Slot<MachOSegmentCommand> cmd = 561 w->CreateSlotHere<MachOSegmentCommand>(); 562 #if V8_TARGET_ARCH_IA32 563 cmd->cmd = LC_SEGMENT_32; 564 #else 565 cmd->cmd = LC_SEGMENT_64; 566 #endif 567 cmd->vmaddr = code_start; 568 cmd->vmsize = code_size; 569 cmd->fileoff = 0; 570 cmd->filesize = 0; 571 cmd->maxprot = 7; 572 cmd->initprot = 7; 573 cmd->flags = 0; 574 cmd->nsects = static_cast<uint32_t>(sections_.size()); 575 memset(cmd->segname, 0, 16); 576 cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) * 577 cmd->nsects; 578 return cmd; 579 } 580 581 582 void WriteSections(Writer* w, 583 Writer::Slot<MachOSegmentCommand> cmd, 584 Writer::Slot<MachOHeader> header, 585 uintptr_t load_command_start) { 586 Writer::Slot<MachOSection::Header> headers = 587 w->CreateSlotsHere<MachOSection::Header>( 588 static_cast<uint32_t>(sections_.size())); 589 cmd->fileoff = w->position(); 590 header->sizeofcmds = 591 static_cast<uint32_t>(w->position() - load_command_start); 592 uint32_t index = 0; 593 for (MachOSection* section : sections_) { 594 section->PopulateHeader(headers.at(index)); 595 section->WriteBody(headers.at(index), w); 596 index++; 597 } 598 cmd->filesize = w->position() - (uintptr_t)cmd->fileoff; 599 } 600 601 ZoneChunkList<MachOSection*> sections_; 602 }; 603 #endif // defined(__MACH_O) 604 605 606 #if defined(__ELF) 607 class ELF BASE_EMBEDDED { 608 public: 609 explicit ELF(Zone* zone) : sections_(zone) { 610 sections_.push_back(new (zone) ELFSection("", ELFSection::TYPE_NULL, 0)); 611 sections_.push_back(new (zone) ELFStringTable(".shstrtab")); 612 } 613 614 void Write(Writer* w) { 615 WriteHeader(w); 616 WriteSectionTable(w); 617 WriteSections(w); 618 } 619 620 ELFSection* SectionAt(uint32_t index) { return *sections_.Find(index); } 621 622 size_t AddSection(ELFSection* section) { 623 sections_.push_back(section); 624 section->set_index(sections_.size() - 1); 625 return sections_.size() - 1; 626 } 627 628 private: 629 struct ELFHeader { 630 uint8_t ident[16]; 631 uint16_t type; 632 uint16_t machine; 633 uint32_t version; 634 uintptr_t entry; 635 uintptr_t pht_offset; 636 uintptr_t sht_offset; 637 uint32_t flags; 638 uint16_t header_size; 639 uint16_t pht_entry_size; 640 uint16_t pht_entry_num; 641 uint16_t sht_entry_size; 642 uint16_t sht_entry_num; 643 uint16_t sht_strtab_index; 644 }; 645 646 647 void WriteHeader(Writer* w) { 648 DCHECK_EQ(w->position(), 0); 649 Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>(); 650 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || \ 651 (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT)) 652 const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 1, 1, 1, 0, 653 0, 0, 0, 0, 0, 0, 0, 0}; 654 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \ 655 (V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN) 656 const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 1, 1, 0, 657 0, 0, 0, 0, 0, 0, 0, 0}; 658 #elif V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && V8_OS_LINUX 659 const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 2, 1, 0, 660 0, 0, 0, 0, 0, 0, 0, 0}; 661 #elif V8_TARGET_ARCH_S390X 662 const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 2, 1, 3, 663 0, 0, 0, 0, 0, 0, 0, 0}; 664 #elif V8_TARGET_ARCH_S390 665 const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 1, 2, 1, 3, 666 0, 0, 0, 0, 0, 0, 0, 0}; 667 #else 668 #error Unsupported target architecture. 669 #endif 670 memcpy(header->ident, ident, 16); 671 header->type = 1; 672 #if V8_TARGET_ARCH_IA32 673 header->machine = 3; 674 #elif V8_TARGET_ARCH_X64 675 // Processor identification value for x64 is 62 as defined in 676 // System V ABI, AMD64 Supplement 677 // http://www.x86-64.org/documentation/abi.pdf 678 header->machine = 62; 679 #elif V8_TARGET_ARCH_ARM 680 // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at 681 // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf 682 header->machine = 40; 683 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX 684 // Set to EM_PPC64, defined as 21, in Power ABI, 685 // Join the next 4 lines, omitting the spaces and double-slashes. 686 // https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/ 687 // ABI64BitOpenPOWERv1.1_16July2015_pub.pdf? 688 // id=B81AEC1A37F5DAF185257C3E004E8845&linkid=1n0000&c_t= 689 // c9xw7v5dzsj7gt1ifgf4cjbcnskqptmr 690 header->machine = 21; 691 #elif V8_TARGET_ARCH_S390 692 // Processor identification value is 22 (EM_S390) as defined in the ABI: 693 // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN1691 694 // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_zSeries.html#AEN1599 695 header->machine = 22; 696 #else 697 #error Unsupported target architecture. 698 #endif 699 header->version = 1; 700 header->entry = 0; 701 header->pht_offset = 0; 702 header->sht_offset = sizeof(ELFHeader); // Section table follows header. 703 header->flags = 0; 704 header->header_size = sizeof(ELFHeader); 705 header->pht_entry_size = 0; 706 header->pht_entry_num = 0; 707 header->sht_entry_size = sizeof(ELFSection::Header); 708 header->sht_entry_num = sections_.size(); 709 header->sht_strtab_index = 1; 710 } 711 712 void WriteSectionTable(Writer* w) { 713 // Section headers table immediately follows file header. 714 DCHECK(w->position() == sizeof(ELFHeader)); 715 716 Writer::Slot<ELFSection::Header> headers = 717 w->CreateSlotsHere<ELFSection::Header>( 718 static_cast<uint32_t>(sections_.size())); 719 720 // String table for section table is the first section. 721 ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1)); 722 strtab->AttachWriter(w); 723 uint32_t index = 0; 724 for (ELFSection* section : sections_) { 725 section->PopulateHeader(headers.at(index), strtab); 726 index++; 727 } 728 strtab->DetachWriter(); 729 } 730 731 int SectionHeaderPosition(uint32_t section_index) { 732 return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index; 733 } 734 735 void WriteSections(Writer* w) { 736 Writer::Slot<ELFSection::Header> headers = 737 w->SlotAt<ELFSection::Header>(sizeof(ELFHeader)); 738 739 uint32_t index = 0; 740 for (ELFSection* section : sections_) { 741 section->WriteBody(headers.at(index), w); 742 index++; 743 } 744 } 745 746 ZoneChunkList<ELFSection*> sections_; 747 }; 748 749 750 class ELFSymbol BASE_EMBEDDED { 751 public: 752 enum Type { 753 TYPE_NOTYPE = 0, 754 TYPE_OBJECT = 1, 755 TYPE_FUNC = 2, 756 TYPE_SECTION = 3, 757 TYPE_FILE = 4, 758 TYPE_LOPROC = 13, 759 TYPE_HIPROC = 15 760 }; 761 762 enum Binding { 763 BIND_LOCAL = 0, 764 BIND_GLOBAL = 1, 765 BIND_WEAK = 2, 766 BIND_LOPROC = 13, 767 BIND_HIPROC = 15 768 }; 769 770 ELFSymbol(const char* name, 771 uintptr_t value, 772 uintptr_t size, 773 Binding binding, 774 Type type, 775 uint16_t section) 776 : name(name), 777 value(value), 778 size(size), 779 info((binding << 4) | type), 780 other(0), 781 section(section) { 782 } 783 784 Binding binding() const { 785 return static_cast<Binding>(info >> 4); 786 } 787 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || \ 788 (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT) || \ 789 (V8_TARGET_ARCH_S390 && V8_TARGET_ARCH_32_BIT)) 790 struct SerializedLayout { 791 SerializedLayout(uint32_t name, 792 uintptr_t value, 793 uintptr_t size, 794 Binding binding, 795 Type type, 796 uint16_t section) 797 : name(name), 798 value(value), 799 size(size), 800 info((binding << 4) | type), 801 other(0), 802 section(section) { 803 } 804 805 uint32_t name; 806 uintptr_t value; 807 uintptr_t size; 808 uint8_t info; 809 uint8_t other; 810 uint16_t section; 811 }; 812 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \ 813 (V8_TARGET_ARCH_PPC64 && V8_OS_LINUX) || V8_TARGET_ARCH_S390X 814 struct SerializedLayout { 815 SerializedLayout(uint32_t name, 816 uintptr_t value, 817 uintptr_t size, 818 Binding binding, 819 Type type, 820 uint16_t section) 821 : name(name), 822 info((binding << 4) | type), 823 other(0), 824 section(section), 825 value(value), 826 size(size) { 827 } 828 829 uint32_t name; 830 uint8_t info; 831 uint8_t other; 832 uint16_t section; 833 uintptr_t value; 834 uintptr_t size; 835 }; 836 #endif 837 838 void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) const { 839 // Convert symbol names from strings to indexes in the string table. 840 s->name = static_cast<uint32_t>(t->Add(name)); 841 s->value = value; 842 s->size = size; 843 s->info = info; 844 s->other = other; 845 s->section = section; 846 } 847 848 private: 849 const char* name; 850 uintptr_t value; 851 uintptr_t size; 852 uint8_t info; 853 uint8_t other; 854 uint16_t section; 855 }; 856 857 858 class ELFSymbolTable : public ELFSection { 859 public: 860 ELFSymbolTable(const char* name, Zone* zone) 861 : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)), 862 locals_(zone), 863 globals_(zone) {} 864 865 virtual void WriteBody(Writer::Slot<Header> header, Writer* w) { 866 w->Align(header->alignment); 867 size_t total_symbols = locals_.size() + globals_.size() + 1; 868 header->offset = w->position(); 869 870 Writer::Slot<ELFSymbol::SerializedLayout> symbols = 871 w->CreateSlotsHere<ELFSymbol::SerializedLayout>( 872 static_cast<uint32_t>(total_symbols)); 873 874 header->size = w->position() - header->offset; 875 876 // String table for this symbol table should follow it in the section table. 877 ELFStringTable* strtab = 878 static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1)); 879 strtab->AttachWriter(w); 880 symbols.at(0).set(ELFSymbol::SerializedLayout(0, 881 0, 882 0, 883 ELFSymbol::BIND_LOCAL, 884 ELFSymbol::TYPE_NOTYPE, 885 0)); 886 WriteSymbolsList(&locals_, symbols.at(1), strtab); 887 WriteSymbolsList(&globals_, 888 symbols.at(static_cast<uint32_t>(locals_.size() + 1)), 889 strtab); 890 strtab->DetachWriter(); 891 } 892 893 void Add(const ELFSymbol& symbol) { 894 if (symbol.binding() == ELFSymbol::BIND_LOCAL) { 895 locals_.push_back(symbol); 896 } else { 897 globals_.push_back(symbol); 898 } 899 } 900 901 protected: 902 virtual void PopulateHeader(Writer::Slot<Header> header) { 903 ELFSection::PopulateHeader(header); 904 // We are assuming that string table will follow symbol table. 905 header->link = index() + 1; 906 header->info = static_cast<uint32_t>(locals_.size() + 1); 907 header->entry_size = sizeof(ELFSymbol::SerializedLayout); 908 } 909 910 private: 911 void WriteSymbolsList(const ZoneChunkList<ELFSymbol>* src, 912 Writer::Slot<ELFSymbol::SerializedLayout> dst, 913 ELFStringTable* strtab) { 914 int i = 0; 915 for (const ELFSymbol& symbol : *src) { 916 symbol.Write(dst.at(i++), strtab); 917 } 918 } 919 920 ZoneChunkList<ELFSymbol> locals_; 921 ZoneChunkList<ELFSymbol> globals_; 922 }; 923 #endif // defined(__ELF) 924 925 926 class LineInfo : public Malloced { 927 public: 928 void SetPosition(intptr_t pc, int pos, bool is_statement) { 929 AddPCInfo(PCInfo(pc, pos, is_statement)); 930 } 931 932 struct PCInfo { 933 PCInfo(intptr_t pc, int pos, bool is_statement) 934 : pc_(pc), pos_(pos), is_statement_(is_statement) {} 935 936 intptr_t pc_; 937 int pos_; 938 bool is_statement_; 939 }; 940 941 std::vector<PCInfo>* pc_info() { return &pc_info_; } 942 943 private: 944 void AddPCInfo(const PCInfo& pc_info) { pc_info_.push_back(pc_info); } 945 946 std::vector<PCInfo> pc_info_; 947 }; 948 949 950 class CodeDescription BASE_EMBEDDED { 951 public: 952 #if V8_TARGET_ARCH_X64 953 enum StackState { 954 POST_RBP_PUSH, 955 POST_RBP_SET, 956 POST_RBP_POP, 957 STACK_STATE_MAX 958 }; 959 #endif 960 961 CodeDescription(const char* name, Code* code, SharedFunctionInfo* shared, 962 LineInfo* lineinfo) 963 : name_(name), code_(code), shared_info_(shared), lineinfo_(lineinfo) {} 964 965 const char* name() const { 966 return name_; 967 } 968 969 LineInfo* lineinfo() const { return lineinfo_; } 970 971 bool is_function() const { 972 Code::Kind kind = code_->kind(); 973 return kind == Code::OPTIMIZED_FUNCTION; 974 } 975 976 bool has_scope_info() const { return shared_info_ != nullptr; } 977 978 ScopeInfo* scope_info() const { 979 DCHECK(has_scope_info()); 980 return shared_info_->scope_info(); 981 } 982 983 uintptr_t CodeStart() const { 984 return static_cast<uintptr_t>(code_->InstructionStart()); 985 } 986 987 uintptr_t CodeEnd() const { 988 return static_cast<uintptr_t>(code_->InstructionEnd()); 989 } 990 991 uintptr_t CodeSize() const { 992 return CodeEnd() - CodeStart(); 993 } 994 995 bool has_script() { 996 return shared_info_ != nullptr && shared_info_->script()->IsScript(); 997 } 998 999 Script* script() { return Script::cast(shared_info_->script()); } 1000 1001 bool IsLineInfoAvailable() { return lineinfo_ != nullptr; } 1002 1003 #if V8_TARGET_ARCH_X64 1004 uintptr_t GetStackStateStartAddress(StackState state) const { 1005 DCHECK(state < STACK_STATE_MAX); 1006 return stack_state_start_addresses_[state]; 1007 } 1008 1009 void SetStackStateStartAddress(StackState state, uintptr_t addr) { 1010 DCHECK(state < STACK_STATE_MAX); 1011 stack_state_start_addresses_[state] = addr; 1012 } 1013 #endif 1014 1015 std::unique_ptr<char[]> GetFilename() { 1016 if (shared_info_ != nullptr) { 1017 return String::cast(script()->name())->ToCString(); 1018 } else { 1019 std::unique_ptr<char[]> result(new char[1]); 1020 result[0] = 0; 1021 return result; 1022 } 1023 } 1024 1025 int GetScriptLineNumber(int pos) { 1026 if (shared_info_ != nullptr) { 1027 return script()->GetLineNumber(pos) + 1; 1028 } else { 1029 return 0; 1030 } 1031 } 1032 1033 private: 1034 const char* name_; 1035 Code* code_; 1036 SharedFunctionInfo* shared_info_; 1037 LineInfo* lineinfo_; 1038 #if V8_TARGET_ARCH_X64 1039 uintptr_t stack_state_start_addresses_[STACK_STATE_MAX]; 1040 #endif 1041 }; 1042 1043 #if defined(__ELF) 1044 static void CreateSymbolsTable(CodeDescription* desc, Zone* zone, ELF* elf, 1045 size_t text_section_index) { 1046 ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone); 1047 ELFStringTable* strtab = new(zone) ELFStringTable(".strtab"); 1048 1049 // Symbol table should be followed by the linked string table. 1050 elf->AddSection(symtab); 1051 elf->AddSection(strtab); 1052 1053 symtab->Add(ELFSymbol("V8 Code", 0, 0, ELFSymbol::BIND_LOCAL, 1054 ELFSymbol::TYPE_FILE, ELFSection::INDEX_ABSOLUTE)); 1055 1056 symtab->Add(ELFSymbol(desc->name(), 0, desc->CodeSize(), 1057 ELFSymbol::BIND_GLOBAL, ELFSymbol::TYPE_FUNC, 1058 text_section_index)); 1059 } 1060 #endif // defined(__ELF) 1061 1062 1063 class DebugInfoSection : public DebugSection { 1064 public: 1065 explicit DebugInfoSection(CodeDescription* desc) 1066 #if defined(__ELF) 1067 : ELFSection(".debug_info", TYPE_PROGBITS, 1), 1068 #else 1069 : MachOSection("__debug_info", 1070 "__DWARF", 1071 1, 1072 MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG), 1073 #endif 1074 desc_(desc) { } 1075 1076 // DWARF2 standard 1077 enum DWARF2LocationOp { 1078 DW_OP_reg0 = 0x50, 1079 DW_OP_reg1 = 0x51, 1080 DW_OP_reg2 = 0x52, 1081 DW_OP_reg3 = 0x53, 1082 DW_OP_reg4 = 0x54, 1083 DW_OP_reg5 = 0x55, 1084 DW_OP_reg6 = 0x56, 1085 DW_OP_reg7 = 0x57, 1086 DW_OP_reg8 = 0x58, 1087 DW_OP_reg9 = 0x59, 1088 DW_OP_reg10 = 0x5A, 1089 DW_OP_reg11 = 0x5B, 1090 DW_OP_reg12 = 0x5C, 1091 DW_OP_reg13 = 0x5D, 1092 DW_OP_reg14 = 0x5E, 1093 DW_OP_reg15 = 0x5F, 1094 DW_OP_reg16 = 0x60, 1095 DW_OP_reg17 = 0x61, 1096 DW_OP_reg18 = 0x62, 1097 DW_OP_reg19 = 0x63, 1098 DW_OP_reg20 = 0x64, 1099 DW_OP_reg21 = 0x65, 1100 DW_OP_reg22 = 0x66, 1101 DW_OP_reg23 = 0x67, 1102 DW_OP_reg24 = 0x68, 1103 DW_OP_reg25 = 0x69, 1104 DW_OP_reg26 = 0x6A, 1105 DW_OP_reg27 = 0x6B, 1106 DW_OP_reg28 = 0x6C, 1107 DW_OP_reg29 = 0x6D, 1108 DW_OP_reg30 = 0x6E, 1109 DW_OP_reg31 = 0x6F, 1110 DW_OP_fbreg = 0x91 // 1 param: SLEB128 offset 1111 }; 1112 1113 enum DWARF2Encoding { 1114 DW_ATE_ADDRESS = 0x1, 1115 DW_ATE_SIGNED = 0x5 1116 }; 1117 1118 bool WriteBodyInternal(Writer* w) { 1119 uintptr_t cu_start = w->position(); 1120 Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>(); 1121 uintptr_t start = w->position(); 1122 w->Write<uint16_t>(2); // DWARF version. 1123 w->Write<uint32_t>(0); // Abbreviation table offset. 1124 w->Write<uint8_t>(sizeof(intptr_t)); 1125 1126 w->WriteULEB128(1); // Abbreviation code. 1127 w->WriteString(desc_->GetFilename().get()); 1128 w->Write<intptr_t>(desc_->CodeStart()); 1129 w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize()); 1130 w->Write<uint32_t>(0); 1131 1132 uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start); 1133 w->WriteULEB128(3); 1134 w->Write<uint8_t>(kPointerSize); 1135 w->WriteString("v8value"); 1136 1137 if (desc_->has_scope_info()) { 1138 ScopeInfo* scope = desc_->scope_info(); 1139 w->WriteULEB128(2); 1140 w->WriteString(desc_->name()); 1141 w->Write<intptr_t>(desc_->CodeStart()); 1142 w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize()); 1143 Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>(); 1144 uintptr_t fb_block_start = w->position(); 1145 #if V8_TARGET_ARCH_IA32 1146 w->Write<uint8_t>(DW_OP_reg5); // The frame pointer's here on ia32 1147 #elif V8_TARGET_ARCH_X64 1148 w->Write<uint8_t>(DW_OP_reg6); // and here on x64. 1149 #elif V8_TARGET_ARCH_ARM 1150 UNIMPLEMENTED(); 1151 #elif V8_TARGET_ARCH_MIPS 1152 UNIMPLEMENTED(); 1153 #elif V8_TARGET_ARCH_MIPS64 1154 UNIMPLEMENTED(); 1155 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX 1156 w->Write<uint8_t>(DW_OP_reg31); // The frame pointer is here on PPC64. 1157 #elif V8_TARGET_ARCH_S390 1158 w->Write<uint8_t>(DW_OP_reg11); // The frame pointer's here on S390. 1159 #else 1160 #error Unsupported target architecture. 1161 #endif 1162 fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start)); 1163 1164 int params = scope->ParameterCount(); 1165 int context_slots = scope->ContextLocalCount(); 1166 // The real slot ID is internal_slots + context_slot_id. 1167 int internal_slots = Context::MIN_CONTEXT_SLOTS; 1168 int current_abbreviation = 4; 1169 1170 EmbeddedVector<char, 256> buffer; 1171 StringBuilder builder(buffer.start(), buffer.length()); 1172 1173 for (int param = 0; param < params; ++param) { 1174 w->WriteULEB128(current_abbreviation++); 1175 builder.Reset(); 1176 builder.AddFormatted("param%d", param); 1177 w->WriteString(builder.Finalize()); 1178 w->Write<uint32_t>(ty_offset); 1179 Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); 1180 uintptr_t block_start = w->position(); 1181 w->Write<uint8_t>(DW_OP_fbreg); 1182 w->WriteSLEB128( 1183 JavaScriptFrameConstants::kLastParameterOffset + 1184 kPointerSize * (params - param - 1)); 1185 block_size.set(static_cast<uint32_t>(w->position() - block_start)); 1186 } 1187 1188 // See contexts.h for more information. 1189 DCHECK_EQ(Context::MIN_CONTEXT_SLOTS, 4); 1190 DCHECK_EQ(Context::SCOPE_INFO_INDEX, 0); 1191 DCHECK_EQ(Context::PREVIOUS_INDEX, 1); 1192 DCHECK_EQ(Context::EXTENSION_INDEX, 2); 1193 DCHECK_EQ(Context::NATIVE_CONTEXT_INDEX, 3); 1194 w->WriteULEB128(current_abbreviation++); 1195 w->WriteString(".scope_info"); 1196 w->WriteULEB128(current_abbreviation++); 1197 w->WriteString(".previous"); 1198 w->WriteULEB128(current_abbreviation++); 1199 w->WriteString(".extension"); 1200 w->WriteULEB128(current_abbreviation++); 1201 w->WriteString(".native_context"); 1202 1203 for (int context_slot = 0; 1204 context_slot < context_slots; 1205 ++context_slot) { 1206 w->WriteULEB128(current_abbreviation++); 1207 builder.Reset(); 1208 builder.AddFormatted("context_slot%d", context_slot + internal_slots); 1209 w->WriteString(builder.Finalize()); 1210 } 1211 1212 { 1213 w->WriteULEB128(current_abbreviation++); 1214 w->WriteString("__function"); 1215 w->Write<uint32_t>(ty_offset); 1216 Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); 1217 uintptr_t block_start = w->position(); 1218 w->Write<uint8_t>(DW_OP_fbreg); 1219 w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset); 1220 block_size.set(static_cast<uint32_t>(w->position() - block_start)); 1221 } 1222 1223 { 1224 w->WriteULEB128(current_abbreviation++); 1225 w->WriteString("__context"); 1226 w->Write<uint32_t>(ty_offset); 1227 Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>(); 1228 uintptr_t block_start = w->position(); 1229 w->Write<uint8_t>(DW_OP_fbreg); 1230 w->WriteSLEB128(StandardFrameConstants::kContextOffset); 1231 block_size.set(static_cast<uint32_t>(w->position() - block_start)); 1232 } 1233 1234 w->WriteULEB128(0); // Terminate the sub program. 1235 } 1236 1237 w->WriteULEB128(0); // Terminate the compile unit. 1238 size.set(static_cast<uint32_t>(w->position() - start)); 1239 return true; 1240 } 1241 1242 private: 1243 CodeDescription* desc_; 1244 }; 1245 1246 1247 class DebugAbbrevSection : public DebugSection { 1248 public: 1249 explicit DebugAbbrevSection(CodeDescription* desc) 1250 #ifdef __ELF 1251 : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1), 1252 #else 1253 : MachOSection("__debug_abbrev", 1254 "__DWARF", 1255 1, 1256 MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG), 1257 #endif 1258 desc_(desc) { } 1259 1260 // DWARF2 standard, figure 14. 1261 enum DWARF2Tags { 1262 DW_TAG_FORMAL_PARAMETER = 0x05, 1263 DW_TAG_POINTER_TYPE = 0xF, 1264 DW_TAG_COMPILE_UNIT = 0x11, 1265 DW_TAG_STRUCTURE_TYPE = 0x13, 1266 DW_TAG_BASE_TYPE = 0x24, 1267 DW_TAG_SUBPROGRAM = 0x2E, 1268 DW_TAG_VARIABLE = 0x34 1269 }; 1270 1271 // DWARF2 standard, figure 16. 1272 enum DWARF2ChildrenDetermination { 1273 DW_CHILDREN_NO = 0, 1274 DW_CHILDREN_YES = 1 1275 }; 1276 1277 // DWARF standard, figure 17. 1278 enum DWARF2Attribute { 1279 DW_AT_LOCATION = 0x2, 1280 DW_AT_NAME = 0x3, 1281 DW_AT_BYTE_SIZE = 0xB, 1282 DW_AT_STMT_LIST = 0x10, 1283 DW_AT_LOW_PC = 0x11, 1284 DW_AT_HIGH_PC = 0x12, 1285 DW_AT_ENCODING = 0x3E, 1286 DW_AT_FRAME_BASE = 0x40, 1287 DW_AT_TYPE = 0x49 1288 }; 1289 1290 // DWARF2 standard, figure 19. 1291 enum DWARF2AttributeForm { 1292 DW_FORM_ADDR = 0x1, 1293 DW_FORM_BLOCK4 = 0x4, 1294 DW_FORM_STRING = 0x8, 1295 DW_FORM_DATA4 = 0x6, 1296 DW_FORM_BLOCK = 0x9, 1297 DW_FORM_DATA1 = 0xB, 1298 DW_FORM_FLAG = 0xC, 1299 DW_FORM_REF4 = 0x13 1300 }; 1301 1302 void WriteVariableAbbreviation(Writer* w, 1303 int abbreviation_code, 1304 bool has_value, 1305 bool is_parameter) { 1306 w->WriteULEB128(abbreviation_code); 1307 w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE); 1308 w->Write<uint8_t>(DW_CHILDREN_NO); 1309 w->WriteULEB128(DW_AT_NAME); 1310 w->WriteULEB128(DW_FORM_STRING); 1311 if (has_value) { 1312 w->WriteULEB128(DW_AT_TYPE); 1313 w->WriteULEB128(DW_FORM_REF4); 1314 w->WriteULEB128(DW_AT_LOCATION); 1315 w->WriteULEB128(DW_FORM_BLOCK4); 1316 } 1317 w->WriteULEB128(0); 1318 w->WriteULEB128(0); 1319 } 1320 1321 bool WriteBodyInternal(Writer* w) { 1322 int current_abbreviation = 1; 1323 bool extra_info = desc_->has_scope_info(); 1324 DCHECK(desc_->IsLineInfoAvailable()); 1325 w->WriteULEB128(current_abbreviation++); 1326 w->WriteULEB128(DW_TAG_COMPILE_UNIT); 1327 w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO); 1328 w->WriteULEB128(DW_AT_NAME); 1329 w->WriteULEB128(DW_FORM_STRING); 1330 w->WriteULEB128(DW_AT_LOW_PC); 1331 w->WriteULEB128(DW_FORM_ADDR); 1332 w->WriteULEB128(DW_AT_HIGH_PC); 1333 w->WriteULEB128(DW_FORM_ADDR); 1334 w->WriteULEB128(DW_AT_STMT_LIST); 1335 w->WriteULEB128(DW_FORM_DATA4); 1336 w->WriteULEB128(0); 1337 w->WriteULEB128(0); 1338 1339 if (extra_info) { 1340 ScopeInfo* scope = desc_->scope_info(); 1341 int params = scope->ParameterCount(); 1342 int context_slots = scope->ContextLocalCount(); 1343 // The real slot ID is internal_slots + context_slot_id. 1344 int internal_slots = Context::MIN_CONTEXT_SLOTS; 1345 // Total children is params + context_slots + internal_slots + 2 1346 // (__function and __context). 1347 1348 // The extra duplication below seems to be necessary to keep 1349 // gdb from getting upset on OSX. 1350 w->WriteULEB128(current_abbreviation++); // Abbreviation code. 1351 w->WriteULEB128(DW_TAG_SUBPROGRAM); 1352 w->Write<uint8_t>(DW_CHILDREN_YES); 1353 w->WriteULEB128(DW_AT_NAME); 1354 w->WriteULEB128(DW_FORM_STRING); 1355 w->WriteULEB128(DW_AT_LOW_PC); 1356 w->WriteULEB128(DW_FORM_ADDR); 1357 w->WriteULEB128(DW_AT_HIGH_PC); 1358 w->WriteULEB128(DW_FORM_ADDR); 1359 w->WriteULEB128(DW_AT_FRAME_BASE); 1360 w->WriteULEB128(DW_FORM_BLOCK4); 1361 w->WriteULEB128(0); 1362 w->WriteULEB128(0); 1363 1364 w->WriteULEB128(current_abbreviation++); 1365 w->WriteULEB128(DW_TAG_STRUCTURE_TYPE); 1366 w->Write<uint8_t>(DW_CHILDREN_NO); 1367 w->WriteULEB128(DW_AT_BYTE_SIZE); 1368 w->WriteULEB128(DW_FORM_DATA1); 1369 w->WriteULEB128(DW_AT_NAME); 1370 w->WriteULEB128(DW_FORM_STRING); 1371 w->WriteULEB128(0); 1372 w->WriteULEB128(0); 1373 1374 for (int param = 0; param < params; ++param) { 1375 WriteVariableAbbreviation(w, current_abbreviation++, true, true); 1376 } 1377 1378 for (int internal_slot = 0; 1379 internal_slot < internal_slots; 1380 ++internal_slot) { 1381 WriteVariableAbbreviation(w, current_abbreviation++, false, false); 1382 } 1383 1384 for (int context_slot = 0; 1385 context_slot < context_slots; 1386 ++context_slot) { 1387 WriteVariableAbbreviation(w, current_abbreviation++, false, false); 1388 } 1389 1390 // The function. 1391 WriteVariableAbbreviation(w, current_abbreviation++, true, false); 1392 1393 // The context. 1394 WriteVariableAbbreviation(w, current_abbreviation++, true, false); 1395 1396 w->WriteULEB128(0); // Terminate the sibling list. 1397 } 1398 1399 w->WriteULEB128(0); // Terminate the table. 1400 return true; 1401 } 1402 1403 private: 1404 CodeDescription* desc_; 1405 }; 1406 1407 1408 class DebugLineSection : public DebugSection { 1409 public: 1410 explicit DebugLineSection(CodeDescription* desc) 1411 #ifdef __ELF 1412 : ELFSection(".debug_line", TYPE_PROGBITS, 1), 1413 #else 1414 : MachOSection("__debug_line", 1415 "__DWARF", 1416 1, 1417 MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG), 1418 #endif 1419 desc_(desc) { } 1420 1421 // DWARF2 standard, figure 34. 1422 enum DWARF2Opcodes { 1423 DW_LNS_COPY = 1, 1424 DW_LNS_ADVANCE_PC = 2, 1425 DW_LNS_ADVANCE_LINE = 3, 1426 DW_LNS_SET_FILE = 4, 1427 DW_LNS_SET_COLUMN = 5, 1428 DW_LNS_NEGATE_STMT = 6 1429 }; 1430 1431 // DWARF2 standard, figure 35. 1432 enum DWARF2ExtendedOpcode { 1433 DW_LNE_END_SEQUENCE = 1, 1434 DW_LNE_SET_ADDRESS = 2, 1435 DW_LNE_DEFINE_FILE = 3 1436 }; 1437 1438 bool WriteBodyInternal(Writer* w) { 1439 // Write prologue. 1440 Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>(); 1441 uintptr_t start = w->position(); 1442 1443 // Used for special opcodes 1444 const int8_t line_base = 1; 1445 const uint8_t line_range = 7; 1446 const int8_t max_line_incr = (line_base + line_range - 1); 1447 const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1; 1448 1449 w->Write<uint16_t>(2); // Field version. 1450 Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>(); 1451 uintptr_t prologue_start = w->position(); 1452 w->Write<uint8_t>(1); // Field minimum_instruction_length. 1453 w->Write<uint8_t>(1); // Field default_is_stmt. 1454 w->Write<int8_t>(line_base); // Field line_base. 1455 w->Write<uint8_t>(line_range); // Field line_range. 1456 w->Write<uint8_t>(opcode_base); // Field opcode_base. 1457 w->Write<uint8_t>(0); // DW_LNS_COPY operands count. 1458 w->Write<uint8_t>(1); // DW_LNS_ADVANCE_PC operands count. 1459 w->Write<uint8_t>(1); // DW_LNS_ADVANCE_LINE operands count. 1460 w->Write<uint8_t>(1); // DW_LNS_SET_FILE operands count. 1461 w->Write<uint8_t>(1); // DW_LNS_SET_COLUMN operands count. 1462 w->Write<uint8_t>(0); // DW_LNS_NEGATE_STMT operands count. 1463 w->Write<uint8_t>(0); // Empty include_directories sequence. 1464 w->WriteString(desc_->GetFilename().get()); // File name. 1465 w->WriteULEB128(0); // Current directory. 1466 w->WriteULEB128(0); // Unknown modification time. 1467 w->WriteULEB128(0); // Unknown file size. 1468 w->Write<uint8_t>(0); 1469 prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start)); 1470 1471 WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t)); 1472 w->Write<intptr_t>(desc_->CodeStart()); 1473 w->Write<uint8_t>(DW_LNS_COPY); 1474 1475 intptr_t pc = 0; 1476 intptr_t line = 1; 1477 bool is_statement = true; 1478 1479 std::vector<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info(); 1480 std::sort(pc_info->begin(), pc_info->end(), &ComparePCInfo); 1481 1482 for (size_t i = 0; i < pc_info->size(); i++) { 1483 LineInfo::PCInfo* info = &pc_info->at(i); 1484 DCHECK(info->pc_ >= pc); 1485 1486 // Reduce bloating in the debug line table by removing duplicate line 1487 // entries (per DWARF2 standard). 1488 intptr_t new_line = desc_->GetScriptLineNumber(info->pos_); 1489 if (new_line == line) { 1490 continue; 1491 } 1492 1493 // Mark statement boundaries. For a better debugging experience, mark 1494 // the last pc address in the function as a statement (e.g. "}"), so that 1495 // a user can see the result of the last line executed in the function, 1496 // should control reach the end. 1497 if ((i + 1) == pc_info->size()) { 1498 if (!is_statement) { 1499 w->Write<uint8_t>(DW_LNS_NEGATE_STMT); 1500 } 1501 } else if (is_statement != info->is_statement_) { 1502 w->Write<uint8_t>(DW_LNS_NEGATE_STMT); 1503 is_statement = !is_statement; 1504 } 1505 1506 // Generate special opcodes, if possible. This results in more compact 1507 // debug line tables. See the DWARF 2.0 standard to learn more about 1508 // special opcodes. 1509 uintptr_t pc_diff = info->pc_ - pc; 1510 intptr_t line_diff = new_line - line; 1511 1512 // Compute special opcode (see DWARF 2.0 standard) 1513 intptr_t special_opcode = (line_diff - line_base) + 1514 (line_range * pc_diff) + opcode_base; 1515 1516 // If special_opcode is less than or equal to 255, it can be used as a 1517 // special opcode. If line_diff is larger than the max line increment 1518 // allowed for a special opcode, or if line_diff is less than the minimum 1519 // line that can be added to the line register (i.e. line_base), then 1520 // special_opcode can't be used. 1521 if ((special_opcode >= opcode_base) && (special_opcode <= 255) && 1522 (line_diff <= max_line_incr) && (line_diff >= line_base)) { 1523 w->Write<uint8_t>(special_opcode); 1524 } else { 1525 w->Write<uint8_t>(DW_LNS_ADVANCE_PC); 1526 w->WriteSLEB128(pc_diff); 1527 w->Write<uint8_t>(DW_LNS_ADVANCE_LINE); 1528 w->WriteSLEB128(line_diff); 1529 w->Write<uint8_t>(DW_LNS_COPY); 1530 } 1531 1532 // Increment the pc and line operands. 1533 pc += pc_diff; 1534 line += line_diff; 1535 } 1536 // Advance the pc to the end of the routine, since the end sequence opcode 1537 // requires this. 1538 w->Write<uint8_t>(DW_LNS_ADVANCE_PC); 1539 w->WriteSLEB128(desc_->CodeSize() - pc); 1540 WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0); 1541 total_length.set(static_cast<uint32_t>(w->position() - start)); 1542 return true; 1543 } 1544 1545 private: 1546 void WriteExtendedOpcode(Writer* w, 1547 DWARF2ExtendedOpcode op, 1548 size_t operands_size) { 1549 w->Write<uint8_t>(0); 1550 w->WriteULEB128(operands_size + 1); 1551 w->Write<uint8_t>(op); 1552 } 1553 1554 static bool ComparePCInfo(const LineInfo::PCInfo& a, 1555 const LineInfo::PCInfo& b) { 1556 if (a.pc_ == b.pc_) { 1557 if (a.is_statement_ != b.is_statement_) { 1558 return !b.is_statement_; 1559 } 1560 return false; 1561 } 1562 return a.pc_ < b.pc_; 1563 } 1564 1565 CodeDescription* desc_; 1566 }; 1567 1568 1569 #if V8_TARGET_ARCH_X64 1570 1571 class UnwindInfoSection : public DebugSection { 1572 public: 1573 explicit UnwindInfoSection(CodeDescription* desc); 1574 virtual bool WriteBodyInternal(Writer* w); 1575 1576 int WriteCIE(Writer* w); 1577 void WriteFDE(Writer* w, int); 1578 1579 void WriteFDEStateOnEntry(Writer* w); 1580 void WriteFDEStateAfterRBPPush(Writer* w); 1581 void WriteFDEStateAfterRBPSet(Writer* w); 1582 void WriteFDEStateAfterRBPPop(Writer* w); 1583 1584 void WriteLength(Writer* w, 1585 Writer::Slot<uint32_t>* length_slot, 1586 int initial_position); 1587 1588 private: 1589 CodeDescription* desc_; 1590 1591 // DWARF3 Specification, Table 7.23 1592 enum CFIInstructions { 1593 DW_CFA_ADVANCE_LOC = 0x40, 1594 DW_CFA_OFFSET = 0x80, 1595 DW_CFA_RESTORE = 0xC0, 1596 DW_CFA_NOP = 0x00, 1597 DW_CFA_SET_LOC = 0x01, 1598 DW_CFA_ADVANCE_LOC1 = 0x02, 1599 DW_CFA_ADVANCE_LOC2 = 0x03, 1600 DW_CFA_ADVANCE_LOC4 = 0x04, 1601 DW_CFA_OFFSET_EXTENDED = 0x05, 1602 DW_CFA_RESTORE_EXTENDED = 0x06, 1603 DW_CFA_UNDEFINED = 0x07, 1604 DW_CFA_SAME_VALUE = 0x08, 1605 DW_CFA_REGISTER = 0x09, 1606 DW_CFA_REMEMBER_STATE = 0x0A, 1607 DW_CFA_RESTORE_STATE = 0x0B, 1608 DW_CFA_DEF_CFA = 0x0C, 1609 DW_CFA_DEF_CFA_REGISTER = 0x0D, 1610 DW_CFA_DEF_CFA_OFFSET = 0x0E, 1611 1612 DW_CFA_DEF_CFA_EXPRESSION = 0x0F, 1613 DW_CFA_EXPRESSION = 0x10, 1614 DW_CFA_OFFSET_EXTENDED_SF = 0x11, 1615 DW_CFA_DEF_CFA_SF = 0x12, 1616 DW_CFA_DEF_CFA_OFFSET_SF = 0x13, 1617 DW_CFA_VAL_OFFSET = 0x14, 1618 DW_CFA_VAL_OFFSET_SF = 0x15, 1619 DW_CFA_VAL_EXPRESSION = 0x16 1620 }; 1621 1622 // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36 1623 enum RegisterMapping { 1624 // Only the relevant ones have been added to reduce clutter. 1625 AMD64_RBP = 6, 1626 AMD64_RSP = 7, 1627 AMD64_RA = 16 1628 }; 1629 1630 enum CFIConstants { 1631 CIE_ID = 0, 1632 CIE_VERSION = 1, 1633 CODE_ALIGN_FACTOR = 1, 1634 DATA_ALIGN_FACTOR = 1, 1635 RETURN_ADDRESS_REGISTER = AMD64_RA 1636 }; 1637 }; 1638 1639 1640 void UnwindInfoSection::WriteLength(Writer* w, 1641 Writer::Slot<uint32_t>* length_slot, 1642 int initial_position) { 1643 uint32_t align = (w->position() - initial_position) % kPointerSize; 1644 1645 if (align != 0) { 1646 for (uint32_t i = 0; i < (kPointerSize - align); i++) { 1647 w->Write<uint8_t>(DW_CFA_NOP); 1648 } 1649 } 1650 1651 DCHECK_EQ((w->position() - initial_position) % kPointerSize, 0); 1652 length_slot->set(static_cast<uint32_t>(w->position() - initial_position)); 1653 } 1654 1655 1656 UnwindInfoSection::UnwindInfoSection(CodeDescription* desc) 1657 #ifdef __ELF 1658 : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1), 1659 #else 1660 : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t), 1661 MachOSection::S_REGULAR), 1662 #endif 1663 desc_(desc) { } 1664 1665 int UnwindInfoSection::WriteCIE(Writer* w) { 1666 Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>(); 1667 uint32_t cie_position = static_cast<uint32_t>(w->position()); 1668 1669 // Write out the CIE header. Currently no 'common instructions' are 1670 // emitted onto the CIE; every FDE has its own set of instructions. 1671 1672 w->Write<uint32_t>(CIE_ID); 1673 w->Write<uint8_t>(CIE_VERSION); 1674 w->Write<uint8_t>(0); // Null augmentation string. 1675 w->WriteSLEB128(CODE_ALIGN_FACTOR); 1676 w->WriteSLEB128(DATA_ALIGN_FACTOR); 1677 w->Write<uint8_t>(RETURN_ADDRESS_REGISTER); 1678 1679 WriteLength(w, &cie_length_slot, cie_position); 1680 1681 return cie_position; 1682 } 1683 1684 1685 void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) { 1686 // The only FDE for this function. The CFA is the current RBP. 1687 Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>(); 1688 int fde_position = static_cast<uint32_t>(w->position()); 1689 w->Write<int32_t>(fde_position - cie_position + 4); 1690 1691 w->Write<uintptr_t>(desc_->CodeStart()); 1692 w->Write<uintptr_t>(desc_->CodeSize()); 1693 1694 WriteFDEStateOnEntry(w); 1695 WriteFDEStateAfterRBPPush(w); 1696 WriteFDEStateAfterRBPSet(w); 1697 WriteFDEStateAfterRBPPop(w); 1698 1699 WriteLength(w, &fde_length_slot, fde_position); 1700 } 1701 1702 1703 void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) { 1704 // The first state, just after the control has been transferred to the the 1705 // function. 1706 1707 // RBP for this function will be the value of RSP after pushing the RBP 1708 // for the previous function. The previous RBP has not been pushed yet. 1709 w->Write<uint8_t>(DW_CFA_DEF_CFA_SF); 1710 w->WriteULEB128(AMD64_RSP); 1711 w->WriteSLEB128(-kPointerSize); 1712 1713 // The RA is stored at location CFA + kCallerPCOffset. This is an invariant, 1714 // and hence omitted from the next states. 1715 w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); 1716 w->WriteULEB128(AMD64_RA); 1717 w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset); 1718 1719 // The RBP of the previous function is still in RBP. 1720 w->Write<uint8_t>(DW_CFA_SAME_VALUE); 1721 w->WriteULEB128(AMD64_RBP); 1722 1723 // Last location described by this entry. 1724 w->Write<uint8_t>(DW_CFA_SET_LOC); 1725 w->Write<uint64_t>( 1726 desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH)); 1727 } 1728 1729 1730 void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) { 1731 // The second state, just after RBP has been pushed. 1732 1733 // RBP / CFA for this function is now the current RSP, so just set the 1734 // offset from the previous rule (from -8) to 0. 1735 w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET); 1736 w->WriteULEB128(0); 1737 1738 // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant 1739 // in this and the next state, and hence omitted in the next state. 1740 w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); 1741 w->WriteULEB128(AMD64_RBP); 1742 w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset); 1743 1744 // Last location described by this entry. 1745 w->Write<uint8_t>(DW_CFA_SET_LOC); 1746 w->Write<uint64_t>( 1747 desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET)); 1748 } 1749 1750 1751 void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) { 1752 // The third state, after the RBP has been set. 1753 1754 // The CFA can now directly be set to RBP. 1755 w->Write<uint8_t>(DW_CFA_DEF_CFA); 1756 w->WriteULEB128(AMD64_RBP); 1757 w->WriteULEB128(0); 1758 1759 // Last location described by this entry. 1760 w->Write<uint8_t>(DW_CFA_SET_LOC); 1761 w->Write<uint64_t>( 1762 desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP)); 1763 } 1764 1765 1766 void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) { 1767 // The fourth (final) state. The RBP has been popped (just before issuing a 1768 // return). 1769 1770 // The CFA can is now calculated in the same way as in the first state. 1771 w->Write<uint8_t>(DW_CFA_DEF_CFA_SF); 1772 w->WriteULEB128(AMD64_RSP); 1773 w->WriteSLEB128(-kPointerSize); 1774 1775 // The RBP 1776 w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED); 1777 w->WriteULEB128(AMD64_RBP); 1778 w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset); 1779 1780 // Last location described by this entry. 1781 w->Write<uint8_t>(DW_CFA_SET_LOC); 1782 w->Write<uint64_t>(desc_->CodeEnd()); 1783 } 1784 1785 1786 bool UnwindInfoSection::WriteBodyInternal(Writer* w) { 1787 uint32_t cie_position = WriteCIE(w); 1788 WriteFDE(w, cie_position); 1789 return true; 1790 } 1791 1792 1793 #endif // V8_TARGET_ARCH_X64 1794 1795 static void CreateDWARFSections(CodeDescription* desc, 1796 Zone* zone, 1797 DebugObject* obj) { 1798 if (desc->IsLineInfoAvailable()) { 1799 obj->AddSection(new(zone) DebugInfoSection(desc)); 1800 obj->AddSection(new(zone) DebugAbbrevSection(desc)); 1801 obj->AddSection(new(zone) DebugLineSection(desc)); 1802 } 1803 #if V8_TARGET_ARCH_X64 1804 obj->AddSection(new(zone) UnwindInfoSection(desc)); 1805 #endif 1806 } 1807 1808 1809 // ------------------------------------------------------------------- 1810 // Binary GDB JIT Interface as described in 1811 // http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html 1812 extern "C" { 1813 typedef enum { 1814 JIT_NOACTION = 0, 1815 JIT_REGISTER_FN, 1816 JIT_UNREGISTER_FN 1817 } JITAction; 1818 1819 struct JITCodeEntry { 1820 JITCodeEntry* next_; 1821 JITCodeEntry* prev_; 1822 Address symfile_addr_; 1823 uint64_t symfile_size_; 1824 }; 1825 1826 struct JITDescriptor { 1827 uint32_t version_; 1828 uint32_t action_flag_; 1829 JITCodeEntry* relevant_entry_; 1830 JITCodeEntry* first_entry_; 1831 }; 1832 1833 // GDB will place breakpoint into this function. 1834 // To prevent GCC from inlining or removing it we place noinline attribute 1835 // and inline assembler statement inside. 1836 void __attribute__((noinline)) __jit_debug_register_code() { 1837 __asm__(""); 1838 } 1839 1840 // GDB will inspect contents of this descriptor. 1841 // Static initialization is necessary to prevent GDB from seeing 1842 // uninitialized descriptor. 1843 JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 }; 1844 1845 #ifdef OBJECT_PRINT 1846 void __gdb_print_v8_object(Object* object) { 1847 StdoutStream os; 1848 object->Print(os); 1849 os << std::flush; 1850 } 1851 #endif 1852 } 1853 1854 1855 static JITCodeEntry* CreateCodeEntry(Address symfile_addr, 1856 uintptr_t symfile_size) { 1857 JITCodeEntry* entry = static_cast<JITCodeEntry*>( 1858 malloc(sizeof(JITCodeEntry) + symfile_size)); 1859 1860 entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1); 1861 entry->symfile_size_ = symfile_size; 1862 MemCopy(reinterpret_cast<void*>(entry->symfile_addr_), 1863 reinterpret_cast<void*>(symfile_addr), symfile_size); 1864 1865 entry->prev_ = entry->next_ = nullptr; 1866 1867 return entry; 1868 } 1869 1870 1871 static void DestroyCodeEntry(JITCodeEntry* entry) { 1872 free(entry); 1873 } 1874 1875 1876 static void RegisterCodeEntry(JITCodeEntry* entry) { 1877 entry->next_ = __jit_debug_descriptor.first_entry_; 1878 if (entry->next_ != nullptr) entry->next_->prev_ = entry; 1879 __jit_debug_descriptor.first_entry_ = 1880 __jit_debug_descriptor.relevant_entry_ = entry; 1881 1882 __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN; 1883 __jit_debug_register_code(); 1884 } 1885 1886 1887 static void UnregisterCodeEntry(JITCodeEntry* entry) { 1888 if (entry->prev_ != nullptr) { 1889 entry->prev_->next_ = entry->next_; 1890 } else { 1891 __jit_debug_descriptor.first_entry_ = entry->next_; 1892 } 1893 1894 if (entry->next_ != nullptr) { 1895 entry->next_->prev_ = entry->prev_; 1896 } 1897 1898 __jit_debug_descriptor.relevant_entry_ = entry; 1899 __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN; 1900 __jit_debug_register_code(); 1901 } 1902 1903 1904 static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) { 1905 #ifdef __MACH_O 1906 Zone zone(isolate->allocator(), ZONE_NAME); 1907 MachO mach_o(&zone); 1908 Writer w(&mach_o); 1909 1910 mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment, 1911 desc->CodeStart(), 1912 desc->CodeSize())); 1913 1914 CreateDWARFSections(desc, &zone, &mach_o); 1915 1916 mach_o.Write(&w, desc->CodeStart(), desc->CodeSize()); 1917 #else 1918 Zone zone(isolate->allocator(), ZONE_NAME); 1919 ELF elf(&zone); 1920 Writer w(&elf); 1921 1922 size_t text_section_index = elf.AddSection(new (&zone) FullHeaderELFSection( 1923 ".text", ELFSection::TYPE_NOBITS, kCodeAlignment, desc->CodeStart(), 0, 1924 desc->CodeSize(), ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC)); 1925 1926 CreateSymbolsTable(desc, &zone, &elf, text_section_index); 1927 1928 CreateDWARFSections(desc, &zone, &elf); 1929 1930 elf.Write(&w); 1931 #endif 1932 1933 return CreateCodeEntry(reinterpret_cast<Address>(w.buffer()), w.position()); 1934 } 1935 1936 1937 struct AddressRange { 1938 Address start; 1939 Address end; 1940 }; 1941 1942 struct SplayTreeConfig { 1943 typedef AddressRange Key; 1944 typedef JITCodeEntry* Value; 1945 static const AddressRange kNoKey; 1946 static Value NoValue() { return nullptr; } 1947 static int Compare(const AddressRange& a, const AddressRange& b) { 1948 // ptrdiff_t probably doesn't fit in an int. 1949 if (a.start < b.start) return -1; 1950 if (a.start == b.start) return 0; 1951 return 1; 1952 } 1953 }; 1954 1955 const AddressRange SplayTreeConfig::kNoKey = {0, 0}; 1956 typedef SplayTree<SplayTreeConfig> CodeMap; 1957 1958 static CodeMap* GetCodeMap() { 1959 static CodeMap* code_map = nullptr; 1960 if (code_map == nullptr) code_map = new CodeMap(); 1961 return code_map; 1962 } 1963 1964 1965 static uint32_t HashCodeAddress(Address addr) { 1966 static const uintptr_t kGoldenRatio = 2654435761u; 1967 return static_cast<uint32_t>((addr >> kCodeAlignmentBits) * kGoldenRatio); 1968 } 1969 1970 static base::HashMap* GetLineMap() { 1971 static base::HashMap* line_map = nullptr; 1972 if (line_map == nullptr) { 1973 line_map = new base::HashMap(); 1974 } 1975 return line_map; 1976 } 1977 1978 1979 static void PutLineInfo(Address addr, LineInfo* info) { 1980 base::HashMap* line_map = GetLineMap(); 1981 base::HashMap::Entry* e = line_map->LookupOrInsert( 1982 reinterpret_cast<void*>(addr), HashCodeAddress(addr)); 1983 if (e->value != nullptr) delete static_cast<LineInfo*>(e->value); 1984 e->value = info; 1985 } 1986 1987 1988 static LineInfo* GetLineInfo(Address addr) { 1989 void* value = GetLineMap()->Remove(reinterpret_cast<void*>(addr), 1990 HashCodeAddress(addr)); 1991 return static_cast<LineInfo*>(value); 1992 } 1993 1994 1995 static void AddUnwindInfo(CodeDescription* desc) { 1996 #if V8_TARGET_ARCH_X64 1997 if (desc->is_function()) { 1998 // To avoid propagating unwinding information through 1999 // compilation pipeline we use an approximation. 2000 // For most use cases this should not affect usability. 2001 static const int kFramePointerPushOffset = 1; 2002 static const int kFramePointerSetOffset = 4; 2003 static const int kFramePointerPopOffset = -3; 2004 2005 uintptr_t frame_pointer_push_address = 2006 desc->CodeStart() + kFramePointerPushOffset; 2007 2008 uintptr_t frame_pointer_set_address = 2009 desc->CodeStart() + kFramePointerSetOffset; 2010 2011 uintptr_t frame_pointer_pop_address = 2012 desc->CodeEnd() + kFramePointerPopOffset; 2013 2014 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH, 2015 frame_pointer_push_address); 2016 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET, 2017 frame_pointer_set_address); 2018 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP, 2019 frame_pointer_pop_address); 2020 } else { 2021 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH, 2022 desc->CodeStart()); 2023 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET, 2024 desc->CodeStart()); 2025 desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP, 2026 desc->CodeEnd()); 2027 } 2028 #endif // V8_TARGET_ARCH_X64 2029 } 2030 2031 2032 static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER; 2033 2034 2035 // Remove entries from the splay tree that intersect the given address range, 2036 // and deregister them from GDB. 2037 static void RemoveJITCodeEntries(CodeMap* map, const AddressRange& range) { 2038 DCHECK(range.start < range.end); 2039 CodeMap::Locator cur; 2040 if (map->FindGreatestLessThan(range, &cur) || map->FindLeast(&cur)) { 2041 // Skip entries that are entirely less than the range of interest. 2042 while (cur.key().end <= range.start) { 2043 // CodeMap::FindLeastGreaterThan succeeds for entries whose key is greater 2044 // than _or equal to_ the given key, so we have to advance our key to get 2045 // the next one. 2046 AddressRange new_key; 2047 new_key.start = cur.key().end; 2048 new_key.end = 0; 2049 if (!map->FindLeastGreaterThan(new_key, &cur)) return; 2050 } 2051 // Evict intersecting ranges. 2052 while (cur.key().start < range.end) { 2053 AddressRange old_range = cur.key(); 2054 JITCodeEntry* old_entry = cur.value(); 2055 2056 UnregisterCodeEntry(old_entry); 2057 DestroyCodeEntry(old_entry); 2058 2059 CHECK(map->Remove(old_range)); 2060 if (!map->FindLeastGreaterThan(old_range, &cur)) return; 2061 } 2062 } 2063 } 2064 2065 2066 // Insert the entry into the splay tree and register it with GDB. 2067 static void AddJITCodeEntry(CodeMap* map, const AddressRange& range, 2068 JITCodeEntry* entry, bool dump_if_enabled, 2069 const char* name_hint) { 2070 #if defined(DEBUG) && !V8_OS_WIN 2071 static int file_num = 0; 2072 if (FLAG_gdbjit_dump && dump_if_enabled) { 2073 static const int kMaxFileNameSize = 64; 2074 char file_name[64]; 2075 2076 SNPrintF(Vector<char>(file_name, kMaxFileNameSize), "/tmp/elfdump%s%d.o", 2077 (name_hint != nullptr) ? name_hint : "", file_num++); 2078 WriteBytes(file_name, reinterpret_cast<byte*>(entry->symfile_addr_), 2079 static_cast<int>(entry->symfile_size_)); 2080 } 2081 #endif 2082 2083 CodeMap::Locator cur; 2084 CHECK(map->Insert(range, &cur)); 2085 cur.set_value(entry); 2086 2087 RegisterCodeEntry(entry); 2088 } 2089 2090 2091 static void AddCode(const char* name, Code* code, SharedFunctionInfo* shared, 2092 LineInfo* lineinfo) { 2093 DisallowHeapAllocation no_gc; 2094 2095 CodeMap* code_map = GetCodeMap(); 2096 AddressRange range; 2097 range.start = code->address(); 2098 range.end = code->address() + code->CodeSize(); 2099 RemoveJITCodeEntries(code_map, range); 2100 2101 CodeDescription code_desc(name, code, shared, lineinfo); 2102 2103 if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) { 2104 delete lineinfo; 2105 return; 2106 } 2107 2108 AddUnwindInfo(&code_desc); 2109 Isolate* isolate = code->GetIsolate(); 2110 JITCodeEntry* entry = CreateELFObject(&code_desc, isolate); 2111 2112 delete lineinfo; 2113 2114 const char* name_hint = nullptr; 2115 bool should_dump = false; 2116 if (FLAG_gdbjit_dump) { 2117 if (strlen(FLAG_gdbjit_dump_filter) == 0) { 2118 name_hint = name; 2119 should_dump = true; 2120 } else if (name != nullptr) { 2121 name_hint = strstr(name, FLAG_gdbjit_dump_filter); 2122 should_dump = (name_hint != nullptr); 2123 } 2124 } 2125 AddJITCodeEntry(code_map, range, entry, should_dump, name_hint); 2126 } 2127 2128 2129 void EventHandler(const v8::JitCodeEvent* event) { 2130 if (!FLAG_gdbjit) return; 2131 if (event->code_type != v8::JitCodeEvent::JIT_CODE) return; 2132 base::LockGuard<base::Mutex> lock_guard(mutex.Pointer()); 2133 switch (event->type) { 2134 case v8::JitCodeEvent::CODE_ADDED: { 2135 Address addr = reinterpret_cast<Address>(event->code_start); 2136 Code* code = Code::GetCodeFromTargetAddress(addr); 2137 LineInfo* lineinfo = GetLineInfo(addr); 2138 EmbeddedVector<char, 256> buffer; 2139 StringBuilder builder(buffer.start(), buffer.length()); 2140 builder.AddSubstring(event->name.str, static_cast<int>(event->name.len)); 2141 // It's called UnboundScript in the API but it's a SharedFunctionInfo. 2142 SharedFunctionInfo* shared = event->script.IsEmpty() 2143 ? nullptr 2144 : *Utils::OpenHandle(*event->script); 2145 AddCode(builder.Finalize(), code, shared, lineinfo); 2146 break; 2147 } 2148 case v8::JitCodeEvent::CODE_MOVED: 2149 // Enabling the GDB JIT interface should disable code compaction. 2150 UNREACHABLE(); 2151 break; 2152 case v8::JitCodeEvent::CODE_REMOVED: 2153 // Do nothing. Instead, adding code causes eviction of any entry whose 2154 // address range intersects the address range of the added code. 2155 break; 2156 case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: { 2157 LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data); 2158 line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset), 2159 static_cast<int>(event->line_info.pos), 2160 event->line_info.position_type == 2161 v8::JitCodeEvent::STATEMENT_POSITION); 2162 break; 2163 } 2164 case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: { 2165 v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event); 2166 mutable_event->user_data = new LineInfo(); 2167 break; 2168 } 2169 case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: { 2170 LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data); 2171 PutLineInfo(reinterpret_cast<Address>(event->code_start), line_info); 2172 break; 2173 } 2174 } 2175 } 2176 #endif 2177 } // namespace GDBJITInterface 2178 } // namespace internal 2179 } // namespace v8 2180