Home | History | Annotate | Download | only in src
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/gdb-jit.h"
      6 
      7 #include <memory>
      8 #include <vector>
      9 
     10 #include "src/api-inl.h"
     11 #include "src/base/bits.h"
     12 #include "src/base/platform/platform.h"
     13 #include "src/bootstrapper.h"
     14 #include "src/frames-inl.h"
     15 #include "src/frames.h"
     16 #include "src/global-handles.h"
     17 #include "src/messages.h"
     18 #include "src/objects.h"
     19 #include "src/ostreams.h"
     20 #include "src/snapshot/natives.h"
     21 #include "src/splay-tree-inl.h"
     22 #include "src/zone/zone-chunk-list.h"
     23 
     24 namespace v8 {
     25 namespace internal {
     26 namespace GDBJITInterface {
     27 
     28 #ifdef ENABLE_GDB_JIT_INTERFACE
     29 
     30 #ifdef __APPLE__
     31 #define __MACH_O
     32 class MachO;
     33 class MachOSection;
     34 typedef MachO DebugObject;
     35 typedef MachOSection DebugSection;
     36 #else
     37 #define __ELF
     38 class ELF;
     39 class ELFSection;
     40 typedef ELF DebugObject;
     41 typedef ELFSection DebugSection;
     42 #endif
     43 
     44 class Writer BASE_EMBEDDED {
     45  public:
     46   explicit Writer(DebugObject* debug_object)
     47       : debug_object_(debug_object),
     48         position_(0),
     49         capacity_(1024),
     50         buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
     51   }
     52 
     53   ~Writer() {
     54     free(buffer_);
     55   }
     56 
     57   uintptr_t position() const {
     58     return position_;
     59   }
     60 
     61   template<typename T>
     62   class Slot {
     63    public:
     64     Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }
     65 
     66     T* operator-> () {
     67       return w_->RawSlotAt<T>(offset_);
     68     }
     69 
     70     void set(const T& value) {
     71       *w_->RawSlotAt<T>(offset_) = value;
     72     }
     73 
     74     Slot<T> at(int i) {
     75       return Slot<T>(w_, offset_ + sizeof(T) * i);
     76     }
     77 
     78    private:
     79     Writer* w_;
     80     uintptr_t offset_;
     81   };
     82 
     83   template<typename T>
     84   void Write(const T& val) {
     85     Ensure(position_ + sizeof(T));
     86     *RawSlotAt<T>(position_) = val;
     87     position_ += sizeof(T);
     88   }
     89 
     90   template<typename T>
     91   Slot<T> SlotAt(uintptr_t offset) {
     92     Ensure(offset + sizeof(T));
     93     return Slot<T>(this, offset);
     94   }
     95 
     96   template<typename T>
     97   Slot<T> CreateSlotHere() {
     98     return CreateSlotsHere<T>(1);
     99   }
    100 
    101   template<typename T>
    102   Slot<T> CreateSlotsHere(uint32_t count) {
    103     uintptr_t slot_position = position_;
    104     position_ += sizeof(T) * count;
    105     Ensure(position_);
    106     return SlotAt<T>(slot_position);
    107   }
    108 
    109   void Ensure(uintptr_t pos) {
    110     if (capacity_ < pos) {
    111       while (capacity_ < pos) capacity_ *= 2;
    112       buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
    113     }
    114   }
    115 
    116   DebugObject* debug_object() { return debug_object_; }
    117 
    118   byte* buffer() { return buffer_; }
    119 
    120   void Align(uintptr_t align) {
    121     uintptr_t delta = position_ % align;
    122     if (delta == 0) return;
    123     uintptr_t padding = align - delta;
    124     Ensure(position_ += padding);
    125     DCHECK_EQ(position_ % align, 0);
    126   }
    127 
    128   void WriteULEB128(uintptr_t value) {
    129     do {
    130       uint8_t byte = value & 0x7F;
    131       value >>= 7;
    132       if (value != 0) byte |= 0x80;
    133       Write<uint8_t>(byte);
    134     } while (value != 0);
    135   }
    136 
    137   void WriteSLEB128(intptr_t value) {
    138     bool more = true;
    139     while (more) {
    140       int8_t byte = value & 0x7F;
    141       bool byte_sign = byte & 0x40;
    142       value >>= 7;
    143 
    144       if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
    145         more = false;
    146       } else {
    147         byte |= 0x80;
    148       }
    149 
    150       Write<int8_t>(byte);
    151     }
    152   }
    153 
    154   void WriteString(const char* str) {
    155     do {
    156       Write<char>(*str);
    157     } while (*str++);
    158   }
    159 
    160  private:
    161   template<typename T> friend class Slot;
    162 
    163   template<typename T>
    164   T* RawSlotAt(uintptr_t offset) {
    165     DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_);
    166     return reinterpret_cast<T*>(&buffer_[offset]);
    167   }
    168 
    169   DebugObject* debug_object_;
    170   uintptr_t position_;
    171   uintptr_t capacity_;
    172   byte* buffer_;
    173 };
    174 
    175 class ELFStringTable;
    176 
    177 template<typename THeader>
    178 class DebugSectionBase : public ZoneObject {
    179  public:
    180   virtual ~DebugSectionBase() { }
    181 
    182   virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) {
    183     uintptr_t start = writer->position();
    184     if (WriteBodyInternal(writer)) {
    185       uintptr_t end = writer->position();
    186       header->offset = static_cast<uint32_t>(start);
    187 #if defined(__MACH_O)
    188       header->addr = 0;
    189 #endif
    190       header->size = end - start;
    191     }
    192   }
    193 
    194   virtual bool WriteBodyInternal(Writer* writer) {
    195     return false;
    196   }
    197 
    198   typedef THeader Header;
    199 };
    200 
    201 
    202 struct MachOSectionHeader {
    203   char sectname[16];
    204   char segname[16];
    205 #if V8_TARGET_ARCH_IA32
    206   uint32_t addr;
    207   uint32_t size;
    208 #else
    209   uint64_t addr;
    210   uint64_t size;
    211 #endif
    212   uint32_t offset;
    213   uint32_t align;
    214   uint32_t reloff;
    215   uint32_t nreloc;
    216   uint32_t flags;
    217   uint32_t reserved1;
    218   uint32_t reserved2;
    219 };
    220 
    221 
    222 class MachOSection : public DebugSectionBase<MachOSectionHeader> {
    223  public:
    224   enum Type {
    225     S_REGULAR = 0x0u,
    226     S_ATTR_COALESCED = 0xBu,
    227     S_ATTR_SOME_INSTRUCTIONS = 0x400u,
    228     S_ATTR_DEBUG = 0x02000000u,
    229     S_ATTR_PURE_INSTRUCTIONS = 0x80000000u
    230   };
    231 
    232   MachOSection(const char* name, const char* segment, uint32_t align,
    233                uint32_t flags)
    234       : name_(name), segment_(segment), align_(align), flags_(flags) {
    235     if (align_ != 0) {
    236       DCHECK(base::bits::IsPowerOfTwo(align));
    237       align_ = WhichPowerOf2(align_);
    238     }
    239   }
    240 
    241   virtual ~MachOSection() { }
    242 
    243   virtual void PopulateHeader(Writer::Slot<Header> header) {
    244     header->addr = 0;
    245     header->size = 0;
    246     header->offset = 0;
    247     header->align = align_;
    248     header->reloff = 0;
    249     header->nreloc = 0;
    250     header->flags = flags_;
    251     header->reserved1 = 0;
    252     header->reserved2 = 0;
    253     memset(header->sectname, 0, sizeof(header->sectname));
    254     memset(header->segname, 0, sizeof(header->segname));
    255     DCHECK(strlen(name_) < sizeof(header->sectname));
    256     DCHECK(strlen(segment_) < sizeof(header->segname));
    257     strncpy(header->sectname, name_, sizeof(header->sectname));
    258     strncpy(header->segname, segment_, sizeof(header->segname));
    259   }
    260 
    261  private:
    262   const char* name_;
    263   const char* segment_;
    264   uint32_t align_;
    265   uint32_t flags_;
    266 };
    267 
    268 
    269 struct ELFSectionHeader {
    270   uint32_t name;
    271   uint32_t type;
    272   uintptr_t flags;
    273   uintptr_t address;
    274   uintptr_t offset;
    275   uintptr_t size;
    276   uint32_t link;
    277   uint32_t info;
    278   uintptr_t alignment;
    279   uintptr_t entry_size;
    280 };
    281 
    282 
    283 #if defined(__ELF)
    284 class ELFSection : public DebugSectionBase<ELFSectionHeader> {
    285  public:
    286   enum Type {
    287     TYPE_NULL = 0,
    288     TYPE_PROGBITS = 1,
    289     TYPE_SYMTAB = 2,
    290     TYPE_STRTAB = 3,
    291     TYPE_RELA = 4,
    292     TYPE_HASH = 5,
    293     TYPE_DYNAMIC = 6,
    294     TYPE_NOTE = 7,
    295     TYPE_NOBITS = 8,
    296     TYPE_REL = 9,
    297     TYPE_SHLIB = 10,
    298     TYPE_DYNSYM = 11,
    299     TYPE_LOPROC = 0x70000000,
    300     TYPE_X86_64_UNWIND = 0x70000001,
    301     TYPE_HIPROC = 0x7FFFFFFF,
    302     TYPE_LOUSER = 0x80000000,
    303     TYPE_HIUSER = 0xFFFFFFFF
    304   };
    305 
    306   enum Flags {
    307     FLAG_WRITE = 1,
    308     FLAG_ALLOC = 2,
    309     FLAG_EXEC = 4
    310   };
    311 
    312   enum SpecialIndexes { INDEX_ABSOLUTE = 0xFFF1 };
    313 
    314   ELFSection(const char* name, Type type, uintptr_t align)
    315       : name_(name), type_(type), align_(align) { }
    316 
    317   virtual ~ELFSection() { }
    318 
    319   void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab);
    320 
    321   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    322     uintptr_t start = w->position();
    323     if (WriteBodyInternal(w)) {
    324       uintptr_t end = w->position();
    325       header->offset = start;
    326       header->size = end - start;
    327     }
    328   }
    329 
    330   virtual bool WriteBodyInternal(Writer* w) {
    331     return false;
    332   }
    333 
    334   uint16_t index() const { return index_; }
    335   void set_index(uint16_t index) { index_ = index; }
    336 
    337  protected:
    338   virtual void PopulateHeader(Writer::Slot<Header> header) {
    339     header->flags = 0;
    340     header->address = 0;
    341     header->offset = 0;
    342     header->size = 0;
    343     header->link = 0;
    344     header->info = 0;
    345     header->entry_size = 0;
    346   }
    347 
    348  private:
    349   const char* name_;
    350   Type type_;
    351   uintptr_t align_;
    352   uint16_t index_;
    353 };
    354 #endif  // defined(__ELF)
    355 
    356 
    357 #if defined(__MACH_O)
    358 class MachOTextSection : public MachOSection {
    359  public:
    360   MachOTextSection(uint32_t align, uintptr_t addr, uintptr_t size)
    361       : MachOSection("__text", "__TEXT", align,
    362                      MachOSection::S_REGULAR |
    363                          MachOSection::S_ATTR_SOME_INSTRUCTIONS |
    364                          MachOSection::S_ATTR_PURE_INSTRUCTIONS),
    365         addr_(addr),
    366         size_(size) {}
    367 
    368  protected:
    369   virtual void PopulateHeader(Writer::Slot<Header> header) {
    370     MachOSection::PopulateHeader(header);
    371     header->addr = addr_;
    372     header->size = size_;
    373   }
    374 
    375  private:
    376   uintptr_t addr_;
    377   uintptr_t size_;
    378 };
    379 #endif  // defined(__MACH_O)
    380 
    381 
    382 #if defined(__ELF)
    383 class FullHeaderELFSection : public ELFSection {
    384  public:
    385   FullHeaderELFSection(const char* name,
    386                        Type type,
    387                        uintptr_t align,
    388                        uintptr_t addr,
    389                        uintptr_t offset,
    390                        uintptr_t size,
    391                        uintptr_t flags)
    392       : ELFSection(name, type, align),
    393         addr_(addr),
    394         offset_(offset),
    395         size_(size),
    396         flags_(flags) { }
    397 
    398  protected:
    399   virtual void PopulateHeader(Writer::Slot<Header> header) {
    400     ELFSection::PopulateHeader(header);
    401     header->address = addr_;
    402     header->offset = offset_;
    403     header->size = size_;
    404     header->flags = flags_;
    405   }
    406 
    407  private:
    408   uintptr_t addr_;
    409   uintptr_t offset_;
    410   uintptr_t size_;
    411   uintptr_t flags_;
    412 };
    413 
    414 
    415 class ELFStringTable : public ELFSection {
    416  public:
    417   explicit ELFStringTable(const char* name)
    418       : ELFSection(name, TYPE_STRTAB, 1),
    419         writer_(nullptr),
    420         offset_(0),
    421         size_(0) {}
    422 
    423   uintptr_t Add(const char* str) {
    424     if (*str == '\0') return 0;
    425 
    426     uintptr_t offset = size_;
    427     WriteString(str);
    428     return offset;
    429   }
    430 
    431   void AttachWriter(Writer* w) {
    432     writer_ = w;
    433     offset_ = writer_->position();
    434 
    435     // First entry in the string table should be an empty string.
    436     WriteString("");
    437   }
    438 
    439   void DetachWriter() { writer_ = nullptr; }
    440 
    441   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    442     DCHECK_NULL(writer_);
    443     header->offset = offset_;
    444     header->size = size_;
    445   }
    446 
    447  private:
    448   void WriteString(const char* str) {
    449     uintptr_t written = 0;
    450     do {
    451       writer_->Write(*str);
    452       written++;
    453     } while (*str++);
    454     size_ += written;
    455   }
    456 
    457   Writer* writer_;
    458 
    459   uintptr_t offset_;
    460   uintptr_t size_;
    461 };
    462 
    463 
    464 void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
    465                                 ELFStringTable* strtab) {
    466   header->name = static_cast<uint32_t>(strtab->Add(name_));
    467   header->type = type_;
    468   header->alignment = align_;
    469   PopulateHeader(header);
    470 }
    471 #endif  // defined(__ELF)
    472 
    473 
    474 #if defined(__MACH_O)
    475 class MachO BASE_EMBEDDED {
    476  public:
    477   explicit MachO(Zone* zone) : sections_(zone) {}
    478 
    479   size_t AddSection(MachOSection* section) {
    480     sections_.push_back(section);
    481     return sections_.size() - 1;
    482   }
    483 
    484   void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) {
    485     Writer::Slot<MachOHeader> header = WriteHeader(w);
    486     uintptr_t load_command_start = w->position();
    487     Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w,
    488                                                                 code_start,
    489                                                                 code_size);
    490     WriteSections(w, cmd, header, load_command_start);
    491   }
    492 
    493  private:
    494   struct MachOHeader {
    495     uint32_t magic;
    496     uint32_t cputype;
    497     uint32_t cpusubtype;
    498     uint32_t filetype;
    499     uint32_t ncmds;
    500     uint32_t sizeofcmds;
    501     uint32_t flags;
    502 #if V8_TARGET_ARCH_X64
    503     uint32_t reserved;
    504 #endif
    505   };
    506 
    507   struct MachOSegmentCommand {
    508     uint32_t cmd;
    509     uint32_t cmdsize;
    510     char segname[16];
    511 #if V8_TARGET_ARCH_IA32
    512     uint32_t vmaddr;
    513     uint32_t vmsize;
    514     uint32_t fileoff;
    515     uint32_t filesize;
    516 #else
    517     uint64_t vmaddr;
    518     uint64_t vmsize;
    519     uint64_t fileoff;
    520     uint64_t filesize;
    521 #endif
    522     uint32_t maxprot;
    523     uint32_t initprot;
    524     uint32_t nsects;
    525     uint32_t flags;
    526   };
    527 
    528   enum MachOLoadCommandCmd {
    529     LC_SEGMENT_32 = 0x00000001u,
    530     LC_SEGMENT_64 = 0x00000019u
    531   };
    532 
    533 
    534   Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
    535     DCHECK_EQ(w->position(), 0);
    536     Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
    537 #if V8_TARGET_ARCH_IA32
    538     header->magic = 0xFEEDFACEu;
    539     header->cputype = 7;  // i386
    540     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
    541 #elif V8_TARGET_ARCH_X64
    542     header->magic = 0xFEEDFACFu;
    543     header->cputype = 7 | 0x01000000;  // i386 | 64-bit ABI
    544     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
    545     header->reserved = 0;
    546 #else
    547 #error Unsupported target architecture.
    548 #endif
    549     header->filetype = 0x1;  // MH_OBJECT
    550     header->ncmds = 1;
    551     header->sizeofcmds = 0;
    552     header->flags = 0;
    553     return header;
    554   }
    555 
    556 
    557   Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w,
    558                                                         uintptr_t code_start,
    559                                                         uintptr_t code_size) {
    560     Writer::Slot<MachOSegmentCommand> cmd =
    561         w->CreateSlotHere<MachOSegmentCommand>();
    562 #if V8_TARGET_ARCH_IA32
    563     cmd->cmd = LC_SEGMENT_32;
    564 #else
    565     cmd->cmd = LC_SEGMENT_64;
    566 #endif
    567     cmd->vmaddr = code_start;
    568     cmd->vmsize = code_size;
    569     cmd->fileoff = 0;
    570     cmd->filesize = 0;
    571     cmd->maxprot = 7;
    572     cmd->initprot = 7;
    573     cmd->flags = 0;
    574     cmd->nsects = static_cast<uint32_t>(sections_.size());
    575     memset(cmd->segname, 0, 16);
    576     cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) *
    577         cmd->nsects;
    578     return cmd;
    579   }
    580 
    581 
    582   void WriteSections(Writer* w,
    583                      Writer::Slot<MachOSegmentCommand> cmd,
    584                      Writer::Slot<MachOHeader> header,
    585                      uintptr_t load_command_start) {
    586     Writer::Slot<MachOSection::Header> headers =
    587         w->CreateSlotsHere<MachOSection::Header>(
    588             static_cast<uint32_t>(sections_.size()));
    589     cmd->fileoff = w->position();
    590     header->sizeofcmds =
    591         static_cast<uint32_t>(w->position() - load_command_start);
    592     uint32_t index = 0;
    593     for (MachOSection* section : sections_) {
    594       section->PopulateHeader(headers.at(index));
    595       section->WriteBody(headers.at(index), w);
    596       index++;
    597     }
    598     cmd->filesize = w->position() - (uintptr_t)cmd->fileoff;
    599   }
    600 
    601   ZoneChunkList<MachOSection*> sections_;
    602 };
    603 #endif  // defined(__MACH_O)
    604 
    605 
    606 #if defined(__ELF)
    607 class ELF BASE_EMBEDDED {
    608  public:
    609   explicit ELF(Zone* zone) : sections_(zone) {
    610     sections_.push_back(new (zone) ELFSection("", ELFSection::TYPE_NULL, 0));
    611     sections_.push_back(new (zone) ELFStringTable(".shstrtab"));
    612   }
    613 
    614   void Write(Writer* w) {
    615     WriteHeader(w);
    616     WriteSectionTable(w);
    617     WriteSections(w);
    618   }
    619 
    620   ELFSection* SectionAt(uint32_t index) { return *sections_.Find(index); }
    621 
    622   size_t AddSection(ELFSection* section) {
    623     sections_.push_back(section);
    624     section->set_index(sections_.size() - 1);
    625     return sections_.size() - 1;
    626   }
    627 
    628  private:
    629   struct ELFHeader {
    630     uint8_t ident[16];
    631     uint16_t type;
    632     uint16_t machine;
    633     uint32_t version;
    634     uintptr_t entry;
    635     uintptr_t pht_offset;
    636     uintptr_t sht_offset;
    637     uint32_t flags;
    638     uint16_t header_size;
    639     uint16_t pht_entry_size;
    640     uint16_t pht_entry_num;
    641     uint16_t sht_entry_size;
    642     uint16_t sht_entry_num;
    643     uint16_t sht_strtab_index;
    644   };
    645 
    646 
    647   void WriteHeader(Writer* w) {
    648     DCHECK_EQ(w->position(), 0);
    649     Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
    650 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || \
    651      (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
    652     const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 1, 1, 1, 0,
    653                                0,    0,   0,   0,   0, 0, 0, 0};
    654 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
    655     (V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN)
    656     const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 1, 1, 0,
    657                                0,    0,   0,   0,   0, 0, 0, 0};
    658 #elif V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && V8_OS_LINUX
    659     const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 2, 1, 0,
    660                                0,    0,   0,   0,   0, 0, 0, 0};
    661 #elif V8_TARGET_ARCH_S390X
    662     const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 2, 2, 1, 3,
    663                                0,    0,   0,   0,   0, 0, 0, 0};
    664 #elif V8_TARGET_ARCH_S390
    665     const uint8_t ident[16] = {0x7F, 'E', 'L', 'F', 1, 2, 1, 3,
    666                                0,    0,   0,   0,   0, 0, 0, 0};
    667 #else
    668 #error Unsupported target architecture.
    669 #endif
    670     memcpy(header->ident, ident, 16);
    671     header->type = 1;
    672 #if V8_TARGET_ARCH_IA32
    673     header->machine = 3;
    674 #elif V8_TARGET_ARCH_X64
    675     // Processor identification value for x64 is 62 as defined in
    676     //    System V ABI, AMD64 Supplement
    677     //    http://www.x86-64.org/documentation/abi.pdf
    678     header->machine = 62;
    679 #elif V8_TARGET_ARCH_ARM
    680     // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
    681     // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
    682     header->machine = 40;
    683 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
    684     // Set to EM_PPC64, defined as 21, in Power ABI,
    685     // Join the next 4 lines, omitting the spaces and double-slashes.
    686     // https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/
    687     // ABI64BitOpenPOWERv1.1_16July2015_pub.pdf?
    688     // id=B81AEC1A37F5DAF185257C3E004E8845&linkid=1n0000&c_t=
    689     // c9xw7v5dzsj7gt1ifgf4cjbcnskqptmr
    690     header->machine = 21;
    691 #elif V8_TARGET_ARCH_S390
    692     // Processor identification value is 22 (EM_S390) as defined in the ABI:
    693     // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN1691
    694     // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_zSeries.html#AEN1599
    695     header->machine = 22;
    696 #else
    697 #error Unsupported target architecture.
    698 #endif
    699     header->version = 1;
    700     header->entry = 0;
    701     header->pht_offset = 0;
    702     header->sht_offset = sizeof(ELFHeader);  // Section table follows header.
    703     header->flags = 0;
    704     header->header_size = sizeof(ELFHeader);
    705     header->pht_entry_size = 0;
    706     header->pht_entry_num = 0;
    707     header->sht_entry_size = sizeof(ELFSection::Header);
    708     header->sht_entry_num = sections_.size();
    709     header->sht_strtab_index = 1;
    710   }
    711 
    712   void WriteSectionTable(Writer* w) {
    713     // Section headers table immediately follows file header.
    714     DCHECK(w->position() == sizeof(ELFHeader));
    715 
    716     Writer::Slot<ELFSection::Header> headers =
    717         w->CreateSlotsHere<ELFSection::Header>(
    718             static_cast<uint32_t>(sections_.size()));
    719 
    720     // String table for section table is the first section.
    721     ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1));
    722     strtab->AttachWriter(w);
    723     uint32_t index = 0;
    724     for (ELFSection* section : sections_) {
    725       section->PopulateHeader(headers.at(index), strtab);
    726       index++;
    727     }
    728     strtab->DetachWriter();
    729   }
    730 
    731   int SectionHeaderPosition(uint32_t section_index) {
    732     return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
    733   }
    734 
    735   void WriteSections(Writer* w) {
    736     Writer::Slot<ELFSection::Header> headers =
    737         w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));
    738 
    739     uint32_t index = 0;
    740     for (ELFSection* section : sections_) {
    741       section->WriteBody(headers.at(index), w);
    742       index++;
    743     }
    744   }
    745 
    746   ZoneChunkList<ELFSection*> sections_;
    747 };
    748 
    749 
    750 class ELFSymbol BASE_EMBEDDED {
    751  public:
    752   enum Type {
    753     TYPE_NOTYPE = 0,
    754     TYPE_OBJECT = 1,
    755     TYPE_FUNC = 2,
    756     TYPE_SECTION = 3,
    757     TYPE_FILE = 4,
    758     TYPE_LOPROC = 13,
    759     TYPE_HIPROC = 15
    760   };
    761 
    762   enum Binding {
    763     BIND_LOCAL = 0,
    764     BIND_GLOBAL = 1,
    765     BIND_WEAK = 2,
    766     BIND_LOPROC = 13,
    767     BIND_HIPROC = 15
    768   };
    769 
    770   ELFSymbol(const char* name,
    771             uintptr_t value,
    772             uintptr_t size,
    773             Binding binding,
    774             Type type,
    775             uint16_t section)
    776       : name(name),
    777         value(value),
    778         size(size),
    779         info((binding << 4) | type),
    780         other(0),
    781         section(section) {
    782   }
    783 
    784   Binding binding() const {
    785     return static_cast<Binding>(info >> 4);
    786   }
    787 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM ||     \
    788      (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT) || \
    789      (V8_TARGET_ARCH_S390 && V8_TARGET_ARCH_32_BIT))
    790   struct SerializedLayout {
    791     SerializedLayout(uint32_t name,
    792                      uintptr_t value,
    793                      uintptr_t size,
    794                      Binding binding,
    795                      Type type,
    796                      uint16_t section)
    797         : name(name),
    798           value(value),
    799           size(size),
    800           info((binding << 4) | type),
    801           other(0),
    802           section(section) {
    803     }
    804 
    805     uint32_t name;
    806     uintptr_t value;
    807     uintptr_t size;
    808     uint8_t info;
    809     uint8_t other;
    810     uint16_t section;
    811   };
    812 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
    813     (V8_TARGET_ARCH_PPC64 && V8_OS_LINUX) || V8_TARGET_ARCH_S390X
    814   struct SerializedLayout {
    815     SerializedLayout(uint32_t name,
    816                      uintptr_t value,
    817                      uintptr_t size,
    818                      Binding binding,
    819                      Type type,
    820                      uint16_t section)
    821         : name(name),
    822           info((binding << 4) | type),
    823           other(0),
    824           section(section),
    825           value(value),
    826           size(size) {
    827     }
    828 
    829     uint32_t name;
    830     uint8_t info;
    831     uint8_t other;
    832     uint16_t section;
    833     uintptr_t value;
    834     uintptr_t size;
    835   };
    836 #endif
    837 
    838   void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) const {
    839     // Convert symbol names from strings to indexes in the string table.
    840     s->name = static_cast<uint32_t>(t->Add(name));
    841     s->value = value;
    842     s->size = size;
    843     s->info = info;
    844     s->other = other;
    845     s->section = section;
    846   }
    847 
    848  private:
    849   const char* name;
    850   uintptr_t value;
    851   uintptr_t size;
    852   uint8_t info;
    853   uint8_t other;
    854   uint16_t section;
    855 };
    856 
    857 
    858 class ELFSymbolTable : public ELFSection {
    859  public:
    860   ELFSymbolTable(const char* name, Zone* zone)
    861       : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
    862         locals_(zone),
    863         globals_(zone) {}
    864 
    865   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    866     w->Align(header->alignment);
    867     size_t total_symbols = locals_.size() + globals_.size() + 1;
    868     header->offset = w->position();
    869 
    870     Writer::Slot<ELFSymbol::SerializedLayout> symbols =
    871         w->CreateSlotsHere<ELFSymbol::SerializedLayout>(
    872             static_cast<uint32_t>(total_symbols));
    873 
    874     header->size = w->position() - header->offset;
    875 
    876     // String table for this symbol table should follow it in the section table.
    877     ELFStringTable* strtab =
    878         static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1));
    879     strtab->AttachWriter(w);
    880     symbols.at(0).set(ELFSymbol::SerializedLayout(0,
    881                                                   0,
    882                                                   0,
    883                                                   ELFSymbol::BIND_LOCAL,
    884                                                   ELFSymbol::TYPE_NOTYPE,
    885                                                   0));
    886     WriteSymbolsList(&locals_, symbols.at(1), strtab);
    887     WriteSymbolsList(&globals_,
    888                      symbols.at(static_cast<uint32_t>(locals_.size() + 1)),
    889                      strtab);
    890     strtab->DetachWriter();
    891   }
    892 
    893   void Add(const ELFSymbol& symbol) {
    894     if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
    895       locals_.push_back(symbol);
    896     } else {
    897       globals_.push_back(symbol);
    898     }
    899   }
    900 
    901  protected:
    902   virtual void PopulateHeader(Writer::Slot<Header> header) {
    903     ELFSection::PopulateHeader(header);
    904     // We are assuming that string table will follow symbol table.
    905     header->link = index() + 1;
    906     header->info = static_cast<uint32_t>(locals_.size() + 1);
    907     header->entry_size = sizeof(ELFSymbol::SerializedLayout);
    908   }
    909 
    910  private:
    911   void WriteSymbolsList(const ZoneChunkList<ELFSymbol>* src,
    912                         Writer::Slot<ELFSymbol::SerializedLayout> dst,
    913                         ELFStringTable* strtab) {
    914     int i = 0;
    915     for (const ELFSymbol& symbol : *src) {
    916       symbol.Write(dst.at(i++), strtab);
    917     }
    918   }
    919 
    920   ZoneChunkList<ELFSymbol> locals_;
    921   ZoneChunkList<ELFSymbol> globals_;
    922 };
    923 #endif  // defined(__ELF)
    924 
    925 
    926 class LineInfo : public Malloced {
    927  public:
    928   void SetPosition(intptr_t pc, int pos, bool is_statement) {
    929     AddPCInfo(PCInfo(pc, pos, is_statement));
    930   }
    931 
    932   struct PCInfo {
    933     PCInfo(intptr_t pc, int pos, bool is_statement)
    934         : pc_(pc), pos_(pos), is_statement_(is_statement) {}
    935 
    936     intptr_t pc_;
    937     int pos_;
    938     bool is_statement_;
    939   };
    940 
    941   std::vector<PCInfo>* pc_info() { return &pc_info_; }
    942 
    943  private:
    944   void AddPCInfo(const PCInfo& pc_info) { pc_info_.push_back(pc_info); }
    945 
    946   std::vector<PCInfo> pc_info_;
    947 };
    948 
    949 
    950 class CodeDescription BASE_EMBEDDED {
    951  public:
    952 #if V8_TARGET_ARCH_X64
    953   enum StackState {
    954     POST_RBP_PUSH,
    955     POST_RBP_SET,
    956     POST_RBP_POP,
    957     STACK_STATE_MAX
    958   };
    959 #endif
    960 
    961   CodeDescription(const char* name, Code* code, SharedFunctionInfo* shared,
    962                   LineInfo* lineinfo)
    963       : name_(name), code_(code), shared_info_(shared), lineinfo_(lineinfo) {}
    964 
    965   const char* name() const {
    966     return name_;
    967   }
    968 
    969   LineInfo* lineinfo() const { return lineinfo_; }
    970 
    971   bool is_function() const {
    972     Code::Kind kind = code_->kind();
    973     return kind == Code::OPTIMIZED_FUNCTION;
    974   }
    975 
    976   bool has_scope_info() const { return shared_info_ != nullptr; }
    977 
    978   ScopeInfo* scope_info() const {
    979     DCHECK(has_scope_info());
    980     return shared_info_->scope_info();
    981   }
    982 
    983   uintptr_t CodeStart() const {
    984     return static_cast<uintptr_t>(code_->InstructionStart());
    985   }
    986 
    987   uintptr_t CodeEnd() const {
    988     return static_cast<uintptr_t>(code_->InstructionEnd());
    989   }
    990 
    991   uintptr_t CodeSize() const {
    992     return CodeEnd() - CodeStart();
    993   }
    994 
    995   bool has_script() {
    996     return shared_info_ != nullptr && shared_info_->script()->IsScript();
    997   }
    998 
    999   Script* script() { return Script::cast(shared_info_->script()); }
   1000 
   1001   bool IsLineInfoAvailable() { return lineinfo_ != nullptr; }
   1002 
   1003 #if V8_TARGET_ARCH_X64
   1004   uintptr_t GetStackStateStartAddress(StackState state) const {
   1005     DCHECK(state < STACK_STATE_MAX);
   1006     return stack_state_start_addresses_[state];
   1007   }
   1008 
   1009   void SetStackStateStartAddress(StackState state, uintptr_t addr) {
   1010     DCHECK(state < STACK_STATE_MAX);
   1011     stack_state_start_addresses_[state] = addr;
   1012   }
   1013 #endif
   1014 
   1015   std::unique_ptr<char[]> GetFilename() {
   1016     if (shared_info_ != nullptr) {
   1017       return String::cast(script()->name())->ToCString();
   1018     } else {
   1019       std::unique_ptr<char[]> result(new char[1]);
   1020       result[0] = 0;
   1021       return result;
   1022     }
   1023   }
   1024 
   1025   int GetScriptLineNumber(int pos) {
   1026     if (shared_info_ != nullptr) {
   1027       return script()->GetLineNumber(pos) + 1;
   1028     } else {
   1029       return 0;
   1030     }
   1031   }
   1032 
   1033  private:
   1034   const char* name_;
   1035   Code* code_;
   1036   SharedFunctionInfo* shared_info_;
   1037   LineInfo* lineinfo_;
   1038 #if V8_TARGET_ARCH_X64
   1039   uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
   1040 #endif
   1041 };
   1042 
   1043 #if defined(__ELF)
   1044 static void CreateSymbolsTable(CodeDescription* desc, Zone* zone, ELF* elf,
   1045                                size_t text_section_index) {
   1046   ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone);
   1047   ELFStringTable* strtab = new(zone) ELFStringTable(".strtab");
   1048 
   1049   // Symbol table should be followed by the linked string table.
   1050   elf->AddSection(symtab);
   1051   elf->AddSection(strtab);
   1052 
   1053   symtab->Add(ELFSymbol("V8 Code", 0, 0, ELFSymbol::BIND_LOCAL,
   1054                         ELFSymbol::TYPE_FILE, ELFSection::INDEX_ABSOLUTE));
   1055 
   1056   symtab->Add(ELFSymbol(desc->name(), 0, desc->CodeSize(),
   1057                         ELFSymbol::BIND_GLOBAL, ELFSymbol::TYPE_FUNC,
   1058                         text_section_index));
   1059 }
   1060 #endif  // defined(__ELF)
   1061 
   1062 
   1063 class DebugInfoSection : public DebugSection {
   1064  public:
   1065   explicit DebugInfoSection(CodeDescription* desc)
   1066 #if defined(__ELF)
   1067       : ELFSection(".debug_info", TYPE_PROGBITS, 1),
   1068 #else
   1069       : MachOSection("__debug_info",
   1070                      "__DWARF",
   1071                      1,
   1072                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
   1073 #endif
   1074         desc_(desc) { }
   1075 
   1076   // DWARF2 standard
   1077   enum DWARF2LocationOp {
   1078     DW_OP_reg0 = 0x50,
   1079     DW_OP_reg1 = 0x51,
   1080     DW_OP_reg2 = 0x52,
   1081     DW_OP_reg3 = 0x53,
   1082     DW_OP_reg4 = 0x54,
   1083     DW_OP_reg5 = 0x55,
   1084     DW_OP_reg6 = 0x56,
   1085     DW_OP_reg7 = 0x57,
   1086     DW_OP_reg8 = 0x58,
   1087     DW_OP_reg9 = 0x59,
   1088     DW_OP_reg10 = 0x5A,
   1089     DW_OP_reg11 = 0x5B,
   1090     DW_OP_reg12 = 0x5C,
   1091     DW_OP_reg13 = 0x5D,
   1092     DW_OP_reg14 = 0x5E,
   1093     DW_OP_reg15 = 0x5F,
   1094     DW_OP_reg16 = 0x60,
   1095     DW_OP_reg17 = 0x61,
   1096     DW_OP_reg18 = 0x62,
   1097     DW_OP_reg19 = 0x63,
   1098     DW_OP_reg20 = 0x64,
   1099     DW_OP_reg21 = 0x65,
   1100     DW_OP_reg22 = 0x66,
   1101     DW_OP_reg23 = 0x67,
   1102     DW_OP_reg24 = 0x68,
   1103     DW_OP_reg25 = 0x69,
   1104     DW_OP_reg26 = 0x6A,
   1105     DW_OP_reg27 = 0x6B,
   1106     DW_OP_reg28 = 0x6C,
   1107     DW_OP_reg29 = 0x6D,
   1108     DW_OP_reg30 = 0x6E,
   1109     DW_OP_reg31 = 0x6F,
   1110     DW_OP_fbreg = 0x91  // 1 param: SLEB128 offset
   1111   };
   1112 
   1113   enum DWARF2Encoding {
   1114     DW_ATE_ADDRESS = 0x1,
   1115     DW_ATE_SIGNED = 0x5
   1116   };
   1117 
   1118   bool WriteBodyInternal(Writer* w) {
   1119     uintptr_t cu_start = w->position();
   1120     Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
   1121     uintptr_t start = w->position();
   1122     w->Write<uint16_t>(2);  // DWARF version.
   1123     w->Write<uint32_t>(0);  // Abbreviation table offset.
   1124     w->Write<uint8_t>(sizeof(intptr_t));
   1125 
   1126     w->WriteULEB128(1);  // Abbreviation code.
   1127     w->WriteString(desc_->GetFilename().get());
   1128     w->Write<intptr_t>(desc_->CodeStart());
   1129     w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
   1130     w->Write<uint32_t>(0);
   1131 
   1132     uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start);
   1133     w->WriteULEB128(3);
   1134     w->Write<uint8_t>(kPointerSize);
   1135     w->WriteString("v8value");
   1136 
   1137     if (desc_->has_scope_info()) {
   1138       ScopeInfo* scope = desc_->scope_info();
   1139       w->WriteULEB128(2);
   1140       w->WriteString(desc_->name());
   1141       w->Write<intptr_t>(desc_->CodeStart());
   1142       w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
   1143       Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
   1144       uintptr_t fb_block_start = w->position();
   1145 #if V8_TARGET_ARCH_IA32
   1146       w->Write<uint8_t>(DW_OP_reg5);  // The frame pointer's here on ia32
   1147 #elif V8_TARGET_ARCH_X64
   1148       w->Write<uint8_t>(DW_OP_reg6);  // and here on x64.
   1149 #elif V8_TARGET_ARCH_ARM
   1150       UNIMPLEMENTED();
   1151 #elif V8_TARGET_ARCH_MIPS
   1152       UNIMPLEMENTED();
   1153 #elif V8_TARGET_ARCH_MIPS64
   1154       UNIMPLEMENTED();
   1155 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
   1156       w->Write<uint8_t>(DW_OP_reg31);  // The frame pointer is here on PPC64.
   1157 #elif V8_TARGET_ARCH_S390
   1158       w->Write<uint8_t>(DW_OP_reg11);  // The frame pointer's here on S390.
   1159 #else
   1160 #error Unsupported target architecture.
   1161 #endif
   1162       fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start));
   1163 
   1164       int params = scope->ParameterCount();
   1165       int context_slots = scope->ContextLocalCount();
   1166       // The real slot ID is internal_slots + context_slot_id.
   1167       int internal_slots = Context::MIN_CONTEXT_SLOTS;
   1168       int current_abbreviation = 4;
   1169 
   1170       EmbeddedVector<char, 256> buffer;
   1171       StringBuilder builder(buffer.start(), buffer.length());
   1172 
   1173       for (int param = 0; param < params; ++param) {
   1174         w->WriteULEB128(current_abbreviation++);
   1175         builder.Reset();
   1176         builder.AddFormatted("param%d", param);
   1177         w->WriteString(builder.Finalize());
   1178         w->Write<uint32_t>(ty_offset);
   1179         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1180         uintptr_t block_start = w->position();
   1181         w->Write<uint8_t>(DW_OP_fbreg);
   1182         w->WriteSLEB128(
   1183           JavaScriptFrameConstants::kLastParameterOffset +
   1184               kPointerSize * (params - param - 1));
   1185         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1186       }
   1187 
   1188       // See contexts.h for more information.
   1189       DCHECK_EQ(Context::MIN_CONTEXT_SLOTS, 4);
   1190       DCHECK_EQ(Context::SCOPE_INFO_INDEX, 0);
   1191       DCHECK_EQ(Context::PREVIOUS_INDEX, 1);
   1192       DCHECK_EQ(Context::EXTENSION_INDEX, 2);
   1193       DCHECK_EQ(Context::NATIVE_CONTEXT_INDEX, 3);
   1194       w->WriteULEB128(current_abbreviation++);
   1195       w->WriteString(".scope_info");
   1196       w->WriteULEB128(current_abbreviation++);
   1197       w->WriteString(".previous");
   1198       w->WriteULEB128(current_abbreviation++);
   1199       w->WriteString(".extension");
   1200       w->WriteULEB128(current_abbreviation++);
   1201       w->WriteString(".native_context");
   1202 
   1203       for (int context_slot = 0;
   1204            context_slot < context_slots;
   1205            ++context_slot) {
   1206         w->WriteULEB128(current_abbreviation++);
   1207         builder.Reset();
   1208         builder.AddFormatted("context_slot%d", context_slot + internal_slots);
   1209         w->WriteString(builder.Finalize());
   1210       }
   1211 
   1212       {
   1213         w->WriteULEB128(current_abbreviation++);
   1214         w->WriteString("__function");
   1215         w->Write<uint32_t>(ty_offset);
   1216         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1217         uintptr_t block_start = w->position();
   1218         w->Write<uint8_t>(DW_OP_fbreg);
   1219         w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset);
   1220         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1221       }
   1222 
   1223       {
   1224         w->WriteULEB128(current_abbreviation++);
   1225         w->WriteString("__context");
   1226         w->Write<uint32_t>(ty_offset);
   1227         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1228         uintptr_t block_start = w->position();
   1229         w->Write<uint8_t>(DW_OP_fbreg);
   1230         w->WriteSLEB128(StandardFrameConstants::kContextOffset);
   1231         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1232       }
   1233 
   1234       w->WriteULEB128(0);  // Terminate the sub program.
   1235     }
   1236 
   1237     w->WriteULEB128(0);  // Terminate the compile unit.
   1238     size.set(static_cast<uint32_t>(w->position() - start));
   1239     return true;
   1240   }
   1241 
   1242  private:
   1243   CodeDescription* desc_;
   1244 };
   1245 
   1246 
   1247 class DebugAbbrevSection : public DebugSection {
   1248  public:
   1249   explicit DebugAbbrevSection(CodeDescription* desc)
   1250 #ifdef __ELF
   1251       : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1),
   1252 #else
   1253       : MachOSection("__debug_abbrev",
   1254                      "__DWARF",
   1255                      1,
   1256                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
   1257 #endif
   1258         desc_(desc) { }
   1259 
   1260   // DWARF2 standard, figure 14.
   1261   enum DWARF2Tags {
   1262     DW_TAG_FORMAL_PARAMETER = 0x05,
   1263     DW_TAG_POINTER_TYPE = 0xF,
   1264     DW_TAG_COMPILE_UNIT = 0x11,
   1265     DW_TAG_STRUCTURE_TYPE = 0x13,
   1266     DW_TAG_BASE_TYPE = 0x24,
   1267     DW_TAG_SUBPROGRAM = 0x2E,
   1268     DW_TAG_VARIABLE = 0x34
   1269   };
   1270 
   1271   // DWARF2 standard, figure 16.
   1272   enum DWARF2ChildrenDetermination {
   1273     DW_CHILDREN_NO = 0,
   1274     DW_CHILDREN_YES = 1
   1275   };
   1276 
   1277   // DWARF standard, figure 17.
   1278   enum DWARF2Attribute {
   1279     DW_AT_LOCATION = 0x2,
   1280     DW_AT_NAME = 0x3,
   1281     DW_AT_BYTE_SIZE = 0xB,
   1282     DW_AT_STMT_LIST = 0x10,
   1283     DW_AT_LOW_PC = 0x11,
   1284     DW_AT_HIGH_PC = 0x12,
   1285     DW_AT_ENCODING = 0x3E,
   1286     DW_AT_FRAME_BASE = 0x40,
   1287     DW_AT_TYPE = 0x49
   1288   };
   1289 
   1290   // DWARF2 standard, figure 19.
   1291   enum DWARF2AttributeForm {
   1292     DW_FORM_ADDR = 0x1,
   1293     DW_FORM_BLOCK4 = 0x4,
   1294     DW_FORM_STRING = 0x8,
   1295     DW_FORM_DATA4 = 0x6,
   1296     DW_FORM_BLOCK = 0x9,
   1297     DW_FORM_DATA1 = 0xB,
   1298     DW_FORM_FLAG = 0xC,
   1299     DW_FORM_REF4 = 0x13
   1300   };
   1301 
   1302   void WriteVariableAbbreviation(Writer* w,
   1303                                  int abbreviation_code,
   1304                                  bool has_value,
   1305                                  bool is_parameter) {
   1306     w->WriteULEB128(abbreviation_code);
   1307     w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE);
   1308     w->Write<uint8_t>(DW_CHILDREN_NO);
   1309     w->WriteULEB128(DW_AT_NAME);
   1310     w->WriteULEB128(DW_FORM_STRING);
   1311     if (has_value) {
   1312       w->WriteULEB128(DW_AT_TYPE);
   1313       w->WriteULEB128(DW_FORM_REF4);
   1314       w->WriteULEB128(DW_AT_LOCATION);
   1315       w->WriteULEB128(DW_FORM_BLOCK4);
   1316     }
   1317     w->WriteULEB128(0);
   1318     w->WriteULEB128(0);
   1319   }
   1320 
   1321   bool WriteBodyInternal(Writer* w) {
   1322     int current_abbreviation = 1;
   1323     bool extra_info = desc_->has_scope_info();
   1324     DCHECK(desc_->IsLineInfoAvailable());
   1325     w->WriteULEB128(current_abbreviation++);
   1326     w->WriteULEB128(DW_TAG_COMPILE_UNIT);
   1327     w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO);
   1328     w->WriteULEB128(DW_AT_NAME);
   1329     w->WriteULEB128(DW_FORM_STRING);
   1330     w->WriteULEB128(DW_AT_LOW_PC);
   1331     w->WriteULEB128(DW_FORM_ADDR);
   1332     w->WriteULEB128(DW_AT_HIGH_PC);
   1333     w->WriteULEB128(DW_FORM_ADDR);
   1334     w->WriteULEB128(DW_AT_STMT_LIST);
   1335     w->WriteULEB128(DW_FORM_DATA4);
   1336     w->WriteULEB128(0);
   1337     w->WriteULEB128(0);
   1338 
   1339     if (extra_info) {
   1340       ScopeInfo* scope = desc_->scope_info();
   1341       int params = scope->ParameterCount();
   1342       int context_slots = scope->ContextLocalCount();
   1343       // The real slot ID is internal_slots + context_slot_id.
   1344       int internal_slots = Context::MIN_CONTEXT_SLOTS;
   1345       // Total children is params + context_slots + internal_slots + 2
   1346       // (__function and __context).
   1347 
   1348       // The extra duplication below seems to be necessary to keep
   1349       // gdb from getting upset on OSX.
   1350       w->WriteULEB128(current_abbreviation++);  // Abbreviation code.
   1351       w->WriteULEB128(DW_TAG_SUBPROGRAM);
   1352       w->Write<uint8_t>(DW_CHILDREN_YES);
   1353       w->WriteULEB128(DW_AT_NAME);
   1354       w->WriteULEB128(DW_FORM_STRING);
   1355       w->WriteULEB128(DW_AT_LOW_PC);
   1356       w->WriteULEB128(DW_FORM_ADDR);
   1357       w->WriteULEB128(DW_AT_HIGH_PC);
   1358       w->WriteULEB128(DW_FORM_ADDR);
   1359       w->WriteULEB128(DW_AT_FRAME_BASE);
   1360       w->WriteULEB128(DW_FORM_BLOCK4);
   1361       w->WriteULEB128(0);
   1362       w->WriteULEB128(0);
   1363 
   1364       w->WriteULEB128(current_abbreviation++);
   1365       w->WriteULEB128(DW_TAG_STRUCTURE_TYPE);
   1366       w->Write<uint8_t>(DW_CHILDREN_NO);
   1367       w->WriteULEB128(DW_AT_BYTE_SIZE);
   1368       w->WriteULEB128(DW_FORM_DATA1);
   1369       w->WriteULEB128(DW_AT_NAME);
   1370       w->WriteULEB128(DW_FORM_STRING);
   1371       w->WriteULEB128(0);
   1372       w->WriteULEB128(0);
   1373 
   1374       for (int param = 0; param < params; ++param) {
   1375         WriteVariableAbbreviation(w, current_abbreviation++, true, true);
   1376       }
   1377 
   1378       for (int internal_slot = 0;
   1379            internal_slot < internal_slots;
   1380            ++internal_slot) {
   1381         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
   1382       }
   1383 
   1384       for (int context_slot = 0;
   1385            context_slot < context_slots;
   1386            ++context_slot) {
   1387         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
   1388       }
   1389 
   1390       // The function.
   1391       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
   1392 
   1393       // The context.
   1394       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
   1395 
   1396       w->WriteULEB128(0);  // Terminate the sibling list.
   1397     }
   1398 
   1399     w->WriteULEB128(0);  // Terminate the table.
   1400     return true;
   1401   }
   1402 
   1403  private:
   1404   CodeDescription* desc_;
   1405 };
   1406 
   1407 
   1408 class DebugLineSection : public DebugSection {
   1409  public:
   1410   explicit DebugLineSection(CodeDescription* desc)
   1411 #ifdef __ELF
   1412       : ELFSection(".debug_line", TYPE_PROGBITS, 1),
   1413 #else
   1414       : MachOSection("__debug_line",
   1415                      "__DWARF",
   1416                      1,
   1417                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
   1418 #endif
   1419         desc_(desc) { }
   1420 
   1421   // DWARF2 standard, figure 34.
   1422   enum DWARF2Opcodes {
   1423     DW_LNS_COPY = 1,
   1424     DW_LNS_ADVANCE_PC = 2,
   1425     DW_LNS_ADVANCE_LINE = 3,
   1426     DW_LNS_SET_FILE = 4,
   1427     DW_LNS_SET_COLUMN = 5,
   1428     DW_LNS_NEGATE_STMT = 6
   1429   };
   1430 
   1431   // DWARF2 standard, figure 35.
   1432   enum DWARF2ExtendedOpcode {
   1433     DW_LNE_END_SEQUENCE = 1,
   1434     DW_LNE_SET_ADDRESS = 2,
   1435     DW_LNE_DEFINE_FILE = 3
   1436   };
   1437 
   1438   bool WriteBodyInternal(Writer* w) {
   1439     // Write prologue.
   1440     Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
   1441     uintptr_t start = w->position();
   1442 
   1443     // Used for special opcodes
   1444     const int8_t line_base = 1;
   1445     const uint8_t line_range = 7;
   1446     const int8_t max_line_incr = (line_base + line_range - 1);
   1447     const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;
   1448 
   1449     w->Write<uint16_t>(2);  // Field version.
   1450     Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
   1451     uintptr_t prologue_start = w->position();
   1452     w->Write<uint8_t>(1);  // Field minimum_instruction_length.
   1453     w->Write<uint8_t>(1);  // Field default_is_stmt.
   1454     w->Write<int8_t>(line_base);  // Field line_base.
   1455     w->Write<uint8_t>(line_range);  // Field line_range.
   1456     w->Write<uint8_t>(opcode_base);  // Field opcode_base.
   1457     w->Write<uint8_t>(0);  // DW_LNS_COPY operands count.
   1458     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_PC operands count.
   1459     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_LINE operands count.
   1460     w->Write<uint8_t>(1);  // DW_LNS_SET_FILE operands count.
   1461     w->Write<uint8_t>(1);  // DW_LNS_SET_COLUMN operands count.
   1462     w->Write<uint8_t>(0);  // DW_LNS_NEGATE_STMT operands count.
   1463     w->Write<uint8_t>(0);  // Empty include_directories sequence.
   1464     w->WriteString(desc_->GetFilename().get());  // File name.
   1465     w->WriteULEB128(0);  // Current directory.
   1466     w->WriteULEB128(0);  // Unknown modification time.
   1467     w->WriteULEB128(0);  // Unknown file size.
   1468     w->Write<uint8_t>(0);
   1469     prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));
   1470 
   1471     WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
   1472     w->Write<intptr_t>(desc_->CodeStart());
   1473     w->Write<uint8_t>(DW_LNS_COPY);
   1474 
   1475     intptr_t pc = 0;
   1476     intptr_t line = 1;
   1477     bool is_statement = true;
   1478 
   1479     std::vector<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
   1480     std::sort(pc_info->begin(), pc_info->end(), &ComparePCInfo);
   1481 
   1482     for (size_t i = 0; i < pc_info->size(); i++) {
   1483       LineInfo::PCInfo* info = &pc_info->at(i);
   1484       DCHECK(info->pc_ >= pc);
   1485 
   1486       // Reduce bloating in the debug line table by removing duplicate line
   1487       // entries (per DWARF2 standard).
   1488       intptr_t  new_line = desc_->GetScriptLineNumber(info->pos_);
   1489       if (new_line == line) {
   1490         continue;
   1491       }
   1492 
   1493       // Mark statement boundaries.  For a better debugging experience, mark
   1494       // the last pc address in the function as a statement (e.g. "}"), so that
   1495       // a user can see the result of the last line executed in the function,
   1496       // should control reach the end.
   1497       if ((i + 1) == pc_info->size()) {
   1498         if (!is_statement) {
   1499           w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
   1500         }
   1501       } else if (is_statement != info->is_statement_) {
   1502         w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
   1503         is_statement = !is_statement;
   1504       }
   1505 
   1506       // Generate special opcodes, if possible.  This results in more compact
   1507       // debug line tables.  See the DWARF 2.0 standard to learn more about
   1508       // special opcodes.
   1509       uintptr_t pc_diff = info->pc_ - pc;
   1510       intptr_t line_diff = new_line - line;
   1511 
   1512       // Compute special opcode (see DWARF 2.0 standard)
   1513       intptr_t special_opcode = (line_diff - line_base) +
   1514                                 (line_range * pc_diff) + opcode_base;
   1515 
   1516       // If special_opcode is less than or equal to 255, it can be used as a
   1517       // special opcode.  If line_diff is larger than the max line increment
   1518       // allowed for a special opcode, or if line_diff is less than the minimum
   1519       // line that can be added to the line register (i.e. line_base), then
   1520       // special_opcode can't be used.
   1521       if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
   1522           (line_diff <= max_line_incr) && (line_diff >= line_base)) {
   1523         w->Write<uint8_t>(special_opcode);
   1524       } else {
   1525         w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
   1526         w->WriteSLEB128(pc_diff);
   1527         w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
   1528         w->WriteSLEB128(line_diff);
   1529         w->Write<uint8_t>(DW_LNS_COPY);
   1530       }
   1531 
   1532       // Increment the pc and line operands.
   1533       pc += pc_diff;
   1534       line += line_diff;
   1535     }
   1536     // Advance the pc to the end of the routine, since the end sequence opcode
   1537     // requires this.
   1538     w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
   1539     w->WriteSLEB128(desc_->CodeSize() - pc);
   1540     WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
   1541     total_length.set(static_cast<uint32_t>(w->position() - start));
   1542     return true;
   1543   }
   1544 
   1545  private:
   1546   void WriteExtendedOpcode(Writer* w,
   1547                            DWARF2ExtendedOpcode op,
   1548                            size_t operands_size) {
   1549     w->Write<uint8_t>(0);
   1550     w->WriteULEB128(operands_size + 1);
   1551     w->Write<uint8_t>(op);
   1552   }
   1553 
   1554   static bool ComparePCInfo(const LineInfo::PCInfo& a,
   1555                             const LineInfo::PCInfo& b) {
   1556     if (a.pc_ == b.pc_) {
   1557       if (a.is_statement_ != b.is_statement_) {
   1558         return !b.is_statement_;
   1559       }
   1560       return false;
   1561     }
   1562     return a.pc_ < b.pc_;
   1563   }
   1564 
   1565   CodeDescription* desc_;
   1566 };
   1567 
   1568 
   1569 #if V8_TARGET_ARCH_X64
   1570 
   1571 class UnwindInfoSection : public DebugSection {
   1572  public:
   1573   explicit UnwindInfoSection(CodeDescription* desc);
   1574   virtual bool WriteBodyInternal(Writer* w);
   1575 
   1576   int WriteCIE(Writer* w);
   1577   void WriteFDE(Writer* w, int);
   1578 
   1579   void WriteFDEStateOnEntry(Writer* w);
   1580   void WriteFDEStateAfterRBPPush(Writer* w);
   1581   void WriteFDEStateAfterRBPSet(Writer* w);
   1582   void WriteFDEStateAfterRBPPop(Writer* w);
   1583 
   1584   void WriteLength(Writer* w,
   1585                    Writer::Slot<uint32_t>* length_slot,
   1586                    int initial_position);
   1587 
   1588  private:
   1589   CodeDescription* desc_;
   1590 
   1591   // DWARF3 Specification, Table 7.23
   1592   enum CFIInstructions {
   1593     DW_CFA_ADVANCE_LOC = 0x40,
   1594     DW_CFA_OFFSET = 0x80,
   1595     DW_CFA_RESTORE = 0xC0,
   1596     DW_CFA_NOP = 0x00,
   1597     DW_CFA_SET_LOC = 0x01,
   1598     DW_CFA_ADVANCE_LOC1 = 0x02,
   1599     DW_CFA_ADVANCE_LOC2 = 0x03,
   1600     DW_CFA_ADVANCE_LOC4 = 0x04,
   1601     DW_CFA_OFFSET_EXTENDED = 0x05,
   1602     DW_CFA_RESTORE_EXTENDED = 0x06,
   1603     DW_CFA_UNDEFINED = 0x07,
   1604     DW_CFA_SAME_VALUE = 0x08,
   1605     DW_CFA_REGISTER = 0x09,
   1606     DW_CFA_REMEMBER_STATE = 0x0A,
   1607     DW_CFA_RESTORE_STATE = 0x0B,
   1608     DW_CFA_DEF_CFA = 0x0C,
   1609     DW_CFA_DEF_CFA_REGISTER = 0x0D,
   1610     DW_CFA_DEF_CFA_OFFSET = 0x0E,
   1611 
   1612     DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
   1613     DW_CFA_EXPRESSION = 0x10,
   1614     DW_CFA_OFFSET_EXTENDED_SF = 0x11,
   1615     DW_CFA_DEF_CFA_SF = 0x12,
   1616     DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
   1617     DW_CFA_VAL_OFFSET = 0x14,
   1618     DW_CFA_VAL_OFFSET_SF = 0x15,
   1619     DW_CFA_VAL_EXPRESSION = 0x16
   1620   };
   1621 
   1622   // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
   1623   enum RegisterMapping {
   1624     // Only the relevant ones have been added to reduce clutter.
   1625     AMD64_RBP = 6,
   1626     AMD64_RSP = 7,
   1627     AMD64_RA = 16
   1628   };
   1629 
   1630   enum CFIConstants {
   1631     CIE_ID = 0,
   1632     CIE_VERSION = 1,
   1633     CODE_ALIGN_FACTOR = 1,
   1634     DATA_ALIGN_FACTOR = 1,
   1635     RETURN_ADDRESS_REGISTER = AMD64_RA
   1636   };
   1637 };
   1638 
   1639 
   1640 void UnwindInfoSection::WriteLength(Writer* w,
   1641                                     Writer::Slot<uint32_t>* length_slot,
   1642                                     int initial_position) {
   1643   uint32_t align = (w->position() - initial_position) % kPointerSize;
   1644 
   1645   if (align != 0) {
   1646     for (uint32_t i = 0; i < (kPointerSize - align); i++) {
   1647       w->Write<uint8_t>(DW_CFA_NOP);
   1648     }
   1649   }
   1650 
   1651   DCHECK_EQ((w->position() - initial_position) % kPointerSize, 0);
   1652   length_slot->set(static_cast<uint32_t>(w->position() - initial_position));
   1653 }
   1654 
   1655 
   1656 UnwindInfoSection::UnwindInfoSection(CodeDescription* desc)
   1657 #ifdef __ELF
   1658     : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1),
   1659 #else
   1660     : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t),
   1661                    MachOSection::S_REGULAR),
   1662 #endif
   1663       desc_(desc) { }
   1664 
   1665 int UnwindInfoSection::WriteCIE(Writer* w) {
   1666   Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
   1667   uint32_t cie_position = static_cast<uint32_t>(w->position());
   1668 
   1669   // Write out the CIE header. Currently no 'common instructions' are
   1670   // emitted onto the CIE; every FDE has its own set of instructions.
   1671 
   1672   w->Write<uint32_t>(CIE_ID);
   1673   w->Write<uint8_t>(CIE_VERSION);
   1674   w->Write<uint8_t>(0);  // Null augmentation string.
   1675   w->WriteSLEB128(CODE_ALIGN_FACTOR);
   1676   w->WriteSLEB128(DATA_ALIGN_FACTOR);
   1677   w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);
   1678 
   1679   WriteLength(w, &cie_length_slot, cie_position);
   1680 
   1681   return cie_position;
   1682 }
   1683 
   1684 
   1685 void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) {
   1686   // The only FDE for this function. The CFA is the current RBP.
   1687   Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
   1688   int fde_position = static_cast<uint32_t>(w->position());
   1689   w->Write<int32_t>(fde_position - cie_position + 4);
   1690 
   1691   w->Write<uintptr_t>(desc_->CodeStart());
   1692   w->Write<uintptr_t>(desc_->CodeSize());
   1693 
   1694   WriteFDEStateOnEntry(w);
   1695   WriteFDEStateAfterRBPPush(w);
   1696   WriteFDEStateAfterRBPSet(w);
   1697   WriteFDEStateAfterRBPPop(w);
   1698 
   1699   WriteLength(w, &fde_length_slot, fde_position);
   1700 }
   1701 
   1702 
   1703 void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) {
   1704   // The first state, just after the control has been transferred to the the
   1705   // function.
   1706 
   1707   // RBP for this function will be the value of RSP after pushing the RBP
   1708   // for the previous function. The previous RBP has not been pushed yet.
   1709   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
   1710   w->WriteULEB128(AMD64_RSP);
   1711   w->WriteSLEB128(-kPointerSize);
   1712 
   1713   // The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
   1714   // and hence omitted from the next states.
   1715   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
   1716   w->WriteULEB128(AMD64_RA);
   1717   w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);
   1718 
   1719   // The RBP of the previous function is still in RBP.
   1720   w->Write<uint8_t>(DW_CFA_SAME_VALUE);
   1721   w->WriteULEB128(AMD64_RBP);
   1722 
   1723   // Last location described by this entry.
   1724   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1725   w->Write<uint64_t>(
   1726       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
   1727 }
   1728 
   1729 
   1730 void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) {
   1731   // The second state, just after RBP has been pushed.
   1732 
   1733   // RBP / CFA for this function is now the current RSP, so just set the
   1734   // offset from the previous rule (from -8) to 0.
   1735   w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
   1736   w->WriteULEB128(0);
   1737 
   1738   // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
   1739   // in this and the next state, and hence omitted in the next state.
   1740   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
   1741   w->WriteULEB128(AMD64_RBP);
   1742   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
   1743 
   1744   // Last location described by this entry.
   1745   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1746   w->Write<uint64_t>(
   1747       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
   1748 }
   1749 
   1750 
   1751 void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) {
   1752   // The third state, after the RBP has been set.
   1753 
   1754   // The CFA can now directly be set to RBP.
   1755   w->Write<uint8_t>(DW_CFA_DEF_CFA);
   1756   w->WriteULEB128(AMD64_RBP);
   1757   w->WriteULEB128(0);
   1758 
   1759   // Last location described by this entry.
   1760   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1761   w->Write<uint64_t>(
   1762       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
   1763 }
   1764 
   1765 
   1766 void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) {
   1767   // The fourth (final) state. The RBP has been popped (just before issuing a
   1768   // return).
   1769 
   1770   // The CFA can is now calculated in the same way as in the first state.
   1771   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
   1772   w->WriteULEB128(AMD64_RSP);
   1773   w->WriteSLEB128(-kPointerSize);
   1774 
   1775   // The RBP
   1776   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
   1777   w->WriteULEB128(AMD64_RBP);
   1778   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
   1779 
   1780   // Last location described by this entry.
   1781   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1782   w->Write<uint64_t>(desc_->CodeEnd());
   1783 }
   1784 
   1785 
   1786 bool UnwindInfoSection::WriteBodyInternal(Writer* w) {
   1787   uint32_t cie_position = WriteCIE(w);
   1788   WriteFDE(w, cie_position);
   1789   return true;
   1790 }
   1791 
   1792 
   1793 #endif  // V8_TARGET_ARCH_X64
   1794 
   1795 static void CreateDWARFSections(CodeDescription* desc,
   1796                                 Zone* zone,
   1797                                 DebugObject* obj) {
   1798   if (desc->IsLineInfoAvailable()) {
   1799     obj->AddSection(new(zone) DebugInfoSection(desc));
   1800     obj->AddSection(new(zone) DebugAbbrevSection(desc));
   1801     obj->AddSection(new(zone) DebugLineSection(desc));
   1802   }
   1803 #if V8_TARGET_ARCH_X64
   1804   obj->AddSection(new(zone) UnwindInfoSection(desc));
   1805 #endif
   1806 }
   1807 
   1808 
   1809 // -------------------------------------------------------------------
   1810 // Binary GDB JIT Interface as described in
   1811 //   http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
   1812 extern "C" {
   1813   typedef enum {
   1814     JIT_NOACTION = 0,
   1815     JIT_REGISTER_FN,
   1816     JIT_UNREGISTER_FN
   1817   } JITAction;
   1818 
   1819   struct JITCodeEntry {
   1820     JITCodeEntry* next_;
   1821     JITCodeEntry* prev_;
   1822     Address symfile_addr_;
   1823     uint64_t symfile_size_;
   1824   };
   1825 
   1826   struct JITDescriptor {
   1827     uint32_t version_;
   1828     uint32_t action_flag_;
   1829     JITCodeEntry* relevant_entry_;
   1830     JITCodeEntry* first_entry_;
   1831   };
   1832 
   1833   // GDB will place breakpoint into this function.
   1834   // To prevent GCC from inlining or removing it we place noinline attribute
   1835   // and inline assembler statement inside.
   1836   void __attribute__((noinline)) __jit_debug_register_code() {
   1837     __asm__("");
   1838   }
   1839 
   1840   // GDB will inspect contents of this descriptor.
   1841   // Static initialization is necessary to prevent GDB from seeing
   1842   // uninitialized descriptor.
   1843   JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
   1844 
   1845 #ifdef OBJECT_PRINT
   1846   void __gdb_print_v8_object(Object* object) {
   1847     StdoutStream os;
   1848     object->Print(os);
   1849     os << std::flush;
   1850   }
   1851 #endif
   1852 }
   1853 
   1854 
   1855 static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
   1856                                      uintptr_t symfile_size) {
   1857   JITCodeEntry* entry = static_cast<JITCodeEntry*>(
   1858       malloc(sizeof(JITCodeEntry) + symfile_size));
   1859 
   1860   entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
   1861   entry->symfile_size_ = symfile_size;
   1862   MemCopy(reinterpret_cast<void*>(entry->symfile_addr_),
   1863           reinterpret_cast<void*>(symfile_addr), symfile_size);
   1864 
   1865   entry->prev_ = entry->next_ = nullptr;
   1866 
   1867   return entry;
   1868 }
   1869 
   1870 
   1871 static void DestroyCodeEntry(JITCodeEntry* entry) {
   1872   free(entry);
   1873 }
   1874 
   1875 
   1876 static void RegisterCodeEntry(JITCodeEntry* entry) {
   1877   entry->next_ = __jit_debug_descriptor.first_entry_;
   1878   if (entry->next_ != nullptr) entry->next_->prev_ = entry;
   1879   __jit_debug_descriptor.first_entry_ =
   1880       __jit_debug_descriptor.relevant_entry_ = entry;
   1881 
   1882   __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
   1883   __jit_debug_register_code();
   1884 }
   1885 
   1886 
   1887 static void UnregisterCodeEntry(JITCodeEntry* entry) {
   1888   if (entry->prev_ != nullptr) {
   1889     entry->prev_->next_ = entry->next_;
   1890   } else {
   1891     __jit_debug_descriptor.first_entry_ = entry->next_;
   1892   }
   1893 
   1894   if (entry->next_ != nullptr) {
   1895     entry->next_->prev_ = entry->prev_;
   1896   }
   1897 
   1898   __jit_debug_descriptor.relevant_entry_ = entry;
   1899   __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
   1900   __jit_debug_register_code();
   1901 }
   1902 
   1903 
   1904 static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) {
   1905 #ifdef __MACH_O
   1906   Zone zone(isolate->allocator(), ZONE_NAME);
   1907   MachO mach_o(&zone);
   1908   Writer w(&mach_o);
   1909 
   1910   mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment,
   1911                                                 desc->CodeStart(),
   1912                                                 desc->CodeSize()));
   1913 
   1914   CreateDWARFSections(desc, &zone, &mach_o);
   1915 
   1916   mach_o.Write(&w, desc->CodeStart(), desc->CodeSize());
   1917 #else
   1918   Zone zone(isolate->allocator(), ZONE_NAME);
   1919   ELF elf(&zone);
   1920   Writer w(&elf);
   1921 
   1922   size_t text_section_index = elf.AddSection(new (&zone) FullHeaderELFSection(
   1923       ".text", ELFSection::TYPE_NOBITS, kCodeAlignment, desc->CodeStart(), 0,
   1924       desc->CodeSize(), ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
   1925 
   1926   CreateSymbolsTable(desc, &zone, &elf, text_section_index);
   1927 
   1928   CreateDWARFSections(desc, &zone, &elf);
   1929 
   1930   elf.Write(&w);
   1931 #endif
   1932 
   1933   return CreateCodeEntry(reinterpret_cast<Address>(w.buffer()), w.position());
   1934 }
   1935 
   1936 
   1937 struct AddressRange {
   1938   Address start;
   1939   Address end;
   1940 };
   1941 
   1942 struct SplayTreeConfig {
   1943   typedef AddressRange Key;
   1944   typedef JITCodeEntry* Value;
   1945   static const AddressRange kNoKey;
   1946   static Value NoValue() { return nullptr; }
   1947   static int Compare(const AddressRange& a, const AddressRange& b) {
   1948     // ptrdiff_t probably doesn't fit in an int.
   1949     if (a.start < b.start) return -1;
   1950     if (a.start == b.start) return 0;
   1951     return 1;
   1952   }
   1953 };
   1954 
   1955 const AddressRange SplayTreeConfig::kNoKey = {0, 0};
   1956 typedef SplayTree<SplayTreeConfig> CodeMap;
   1957 
   1958 static CodeMap* GetCodeMap() {
   1959   static CodeMap* code_map = nullptr;
   1960   if (code_map == nullptr) code_map = new CodeMap();
   1961   return code_map;
   1962 }
   1963 
   1964 
   1965 static uint32_t HashCodeAddress(Address addr) {
   1966   static const uintptr_t kGoldenRatio = 2654435761u;
   1967   return static_cast<uint32_t>((addr >> kCodeAlignmentBits) * kGoldenRatio);
   1968 }
   1969 
   1970 static base::HashMap* GetLineMap() {
   1971   static base::HashMap* line_map = nullptr;
   1972   if (line_map == nullptr) {
   1973     line_map = new base::HashMap();
   1974   }
   1975   return line_map;
   1976 }
   1977 
   1978 
   1979 static void PutLineInfo(Address addr, LineInfo* info) {
   1980   base::HashMap* line_map = GetLineMap();
   1981   base::HashMap::Entry* e = line_map->LookupOrInsert(
   1982       reinterpret_cast<void*>(addr), HashCodeAddress(addr));
   1983   if (e->value != nullptr) delete static_cast<LineInfo*>(e->value);
   1984   e->value = info;
   1985 }
   1986 
   1987 
   1988 static LineInfo* GetLineInfo(Address addr) {
   1989   void* value = GetLineMap()->Remove(reinterpret_cast<void*>(addr),
   1990                                      HashCodeAddress(addr));
   1991   return static_cast<LineInfo*>(value);
   1992 }
   1993 
   1994 
   1995 static void AddUnwindInfo(CodeDescription* desc) {
   1996 #if V8_TARGET_ARCH_X64
   1997   if (desc->is_function()) {
   1998     // To avoid propagating unwinding information through
   1999     // compilation pipeline we use an approximation.
   2000     // For most use cases this should not affect usability.
   2001     static const int kFramePointerPushOffset = 1;
   2002     static const int kFramePointerSetOffset = 4;
   2003     static const int kFramePointerPopOffset = -3;
   2004 
   2005     uintptr_t frame_pointer_push_address =
   2006         desc->CodeStart() + kFramePointerPushOffset;
   2007 
   2008     uintptr_t frame_pointer_set_address =
   2009         desc->CodeStart() + kFramePointerSetOffset;
   2010 
   2011     uintptr_t frame_pointer_pop_address =
   2012         desc->CodeEnd() + kFramePointerPopOffset;
   2013 
   2014     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
   2015                                     frame_pointer_push_address);
   2016     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
   2017                                     frame_pointer_set_address);
   2018     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
   2019                                     frame_pointer_pop_address);
   2020   } else {
   2021     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
   2022                                     desc->CodeStart());
   2023     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
   2024                                     desc->CodeStart());
   2025     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
   2026                                     desc->CodeEnd());
   2027   }
   2028 #endif  // V8_TARGET_ARCH_X64
   2029 }
   2030 
   2031 
   2032 static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER;
   2033 
   2034 
   2035 // Remove entries from the splay tree that intersect the given address range,
   2036 // and deregister them from GDB.
   2037 static void RemoveJITCodeEntries(CodeMap* map, const AddressRange& range) {
   2038   DCHECK(range.start < range.end);
   2039   CodeMap::Locator cur;
   2040   if (map->FindGreatestLessThan(range, &cur) || map->FindLeast(&cur)) {
   2041     // Skip entries that are entirely less than the range of interest.
   2042     while (cur.key().end <= range.start) {
   2043       // CodeMap::FindLeastGreaterThan succeeds for entries whose key is greater
   2044       // than _or equal to_ the given key, so we have to advance our key to get
   2045       // the next one.
   2046       AddressRange new_key;
   2047       new_key.start = cur.key().end;
   2048       new_key.end = 0;
   2049       if (!map->FindLeastGreaterThan(new_key, &cur)) return;
   2050     }
   2051     // Evict intersecting ranges.
   2052     while (cur.key().start < range.end) {
   2053       AddressRange old_range = cur.key();
   2054       JITCodeEntry* old_entry = cur.value();
   2055 
   2056       UnregisterCodeEntry(old_entry);
   2057       DestroyCodeEntry(old_entry);
   2058 
   2059       CHECK(map->Remove(old_range));
   2060       if (!map->FindLeastGreaterThan(old_range, &cur)) return;
   2061     }
   2062   }
   2063 }
   2064 
   2065 
   2066 // Insert the entry into the splay tree and register it with GDB.
   2067 static void AddJITCodeEntry(CodeMap* map, const AddressRange& range,
   2068                             JITCodeEntry* entry, bool dump_if_enabled,
   2069                             const char* name_hint) {
   2070 #if defined(DEBUG) && !V8_OS_WIN
   2071   static int file_num = 0;
   2072   if (FLAG_gdbjit_dump && dump_if_enabled) {
   2073     static const int kMaxFileNameSize = 64;
   2074     char file_name[64];
   2075 
   2076     SNPrintF(Vector<char>(file_name, kMaxFileNameSize), "/tmp/elfdump%s%d.o",
   2077              (name_hint != nullptr) ? name_hint : "", file_num++);
   2078     WriteBytes(file_name, reinterpret_cast<byte*>(entry->symfile_addr_),
   2079                static_cast<int>(entry->symfile_size_));
   2080   }
   2081 #endif
   2082 
   2083   CodeMap::Locator cur;
   2084   CHECK(map->Insert(range, &cur));
   2085   cur.set_value(entry);
   2086 
   2087   RegisterCodeEntry(entry);
   2088 }
   2089 
   2090 
   2091 static void AddCode(const char* name, Code* code, SharedFunctionInfo* shared,
   2092                     LineInfo* lineinfo) {
   2093   DisallowHeapAllocation no_gc;
   2094 
   2095   CodeMap* code_map = GetCodeMap();
   2096   AddressRange range;
   2097   range.start = code->address();
   2098   range.end = code->address() + code->CodeSize();
   2099   RemoveJITCodeEntries(code_map, range);
   2100 
   2101   CodeDescription code_desc(name, code, shared, lineinfo);
   2102 
   2103   if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
   2104     delete lineinfo;
   2105     return;
   2106   }
   2107 
   2108   AddUnwindInfo(&code_desc);
   2109   Isolate* isolate = code->GetIsolate();
   2110   JITCodeEntry* entry = CreateELFObject(&code_desc, isolate);
   2111 
   2112   delete lineinfo;
   2113 
   2114   const char* name_hint = nullptr;
   2115   bool should_dump = false;
   2116   if (FLAG_gdbjit_dump) {
   2117     if (strlen(FLAG_gdbjit_dump_filter) == 0) {
   2118       name_hint = name;
   2119       should_dump = true;
   2120     } else if (name != nullptr) {
   2121       name_hint = strstr(name, FLAG_gdbjit_dump_filter);
   2122       should_dump = (name_hint != nullptr);
   2123     }
   2124   }
   2125   AddJITCodeEntry(code_map, range, entry, should_dump, name_hint);
   2126 }
   2127 
   2128 
   2129 void EventHandler(const v8::JitCodeEvent* event) {
   2130   if (!FLAG_gdbjit) return;
   2131   if (event->code_type != v8::JitCodeEvent::JIT_CODE) return;
   2132   base::LockGuard<base::Mutex> lock_guard(mutex.Pointer());
   2133   switch (event->type) {
   2134     case v8::JitCodeEvent::CODE_ADDED: {
   2135       Address addr = reinterpret_cast<Address>(event->code_start);
   2136       Code* code = Code::GetCodeFromTargetAddress(addr);
   2137       LineInfo* lineinfo = GetLineInfo(addr);
   2138       EmbeddedVector<char, 256> buffer;
   2139       StringBuilder builder(buffer.start(), buffer.length());
   2140       builder.AddSubstring(event->name.str, static_cast<int>(event->name.len));
   2141       // It's called UnboundScript in the API but it's a SharedFunctionInfo.
   2142       SharedFunctionInfo* shared = event->script.IsEmpty()
   2143                                        ? nullptr
   2144                                        : *Utils::OpenHandle(*event->script);
   2145       AddCode(builder.Finalize(), code, shared, lineinfo);
   2146       break;
   2147     }
   2148     case v8::JitCodeEvent::CODE_MOVED:
   2149       // Enabling the GDB JIT interface should disable code compaction.
   2150       UNREACHABLE();
   2151       break;
   2152     case v8::JitCodeEvent::CODE_REMOVED:
   2153       // Do nothing.  Instead, adding code causes eviction of any entry whose
   2154       // address range intersects the address range of the added code.
   2155       break;
   2156     case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: {
   2157       LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
   2158       line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset),
   2159                              static_cast<int>(event->line_info.pos),
   2160                              event->line_info.position_type ==
   2161                                  v8::JitCodeEvent::STATEMENT_POSITION);
   2162       break;
   2163     }
   2164     case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: {
   2165       v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event);
   2166       mutable_event->user_data = new LineInfo();
   2167       break;
   2168     }
   2169     case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: {
   2170       LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
   2171       PutLineInfo(reinterpret_cast<Address>(event->code_start), line_info);
   2172       break;
   2173     }
   2174   }
   2175 }
   2176 #endif
   2177 }  // namespace GDBJITInterface
   2178 }  // namespace internal
   2179 }  // namespace v8
   2180