Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines an instruction selector for the Hexagon target.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "Hexagon.h"
     15 #include "HexagonISelDAGToDAG.h"
     16 #include "HexagonISelLowering.h"
     17 #include "HexagonMachineFunctionInfo.h"
     18 #include "HexagonTargetMachine.h"
     19 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/SelectionDAGISel.h"
     22 #include "llvm/IR/Intrinsics.h"
     23 #include "llvm/Support/CommandLine.h"
     24 #include "llvm/Support/Debug.h"
     25 using namespace llvm;
     26 
     27 #define DEBUG_TYPE "hexagon-isel"
     28 
     29 static
     30 cl::opt<bool>
     31 EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true),
     32   cl::desc("Rebalance address calculation trees to improve "
     33           "instruction selection"));
     34 
     35 // Rebalance only if this allows e.g. combining a GA with an offset or
     36 // factoring out a shift.
     37 static
     38 cl::opt<bool>
     39 RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false),
     40   cl::desc("Rebalance address tree only if this allows optimizations"));
     41 
     42 static
     43 cl::opt<bool>
     44 RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden,
     45   cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced"));
     46 
     47 static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden,
     48   cl::init(true), cl::desc("Enable checking of SDNode's single-use status"));
     49 
     50 //===----------------------------------------------------------------------===//
     51 // Instruction Selector Implementation
     52 //===----------------------------------------------------------------------===//
     53 
     54 #define GET_DAGISEL_BODY HexagonDAGToDAGISel
     55 #include "HexagonGenDAGISel.inc"
     56 
     57 /// createHexagonISelDag - This pass converts a legalized DAG into a
     58 /// Hexagon-specific DAG, ready for instruction scheduling.
     59 ///
     60 namespace llvm {
     61 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
     62                                    CodeGenOpt::Level OptLevel) {
     63   return new HexagonDAGToDAGISel(TM, OptLevel);
     64 }
     65 }
     66 
     67 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) {
     68   SDValue Chain = LD->getChain();
     69   SDValue Base = LD->getBasePtr();
     70   SDValue Offset = LD->getOffset();
     71   int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
     72   EVT LoadedVT = LD->getMemoryVT();
     73   unsigned Opcode = 0;
     74 
     75   // Check for zero extended loads. Treat any-extend loads as zero extended
     76   // loads.
     77   ISD::LoadExtType ExtType = LD->getExtensionType();
     78   bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
     79   bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc);
     80 
     81   assert(LoadedVT.isSimple());
     82   switch (LoadedVT.getSimpleVT().SimpleTy) {
     83   case MVT::i8:
     84     if (IsZeroExt)
     85       Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io;
     86     else
     87       Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io;
     88     break;
     89   case MVT::i16:
     90     if (IsZeroExt)
     91       Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io;
     92     else
     93       Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io;
     94     break;
     95   case MVT::i32:
     96   case MVT::f32:
     97   case MVT::v2i16:
     98   case MVT::v4i8:
     99     Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io;
    100     break;
    101   case MVT::i64:
    102   case MVT::f64:
    103   case MVT::v2i32:
    104   case MVT::v4i16:
    105   case MVT::v8i8:
    106     Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io;
    107     break;
    108   case MVT::v64i8:
    109   case MVT::v32i16:
    110   case MVT::v16i32:
    111   case MVT::v8i64:
    112   case MVT::v128i8:
    113   case MVT::v64i16:
    114   case MVT::v32i32:
    115   case MVT::v16i64:
    116     if (isAlignedMemNode(LD)) {
    117       if (LD->isNonTemporal())
    118         Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai;
    119       else
    120         Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai;
    121     } else {
    122       Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai;
    123     }
    124     break;
    125   default:
    126     llvm_unreachable("Unexpected memory type in indexed load");
    127   }
    128 
    129   SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
    130   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    131   MemOp[0] = LD->getMemOperand();
    132 
    133   auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl)
    134         -> MachineSDNode* {
    135     if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) {
    136       SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
    137       return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64,
    138                                     Zero, SDValue(N, 0));
    139     }
    140     if (ExtType == ISD::SEXTLOAD)
    141       return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
    142                                     SDValue(N, 0));
    143     return N;
    144   };
    145 
    146   //                  Loaded value   Next address   Chain
    147   SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) };
    148   SDValue To[3];
    149 
    150   EVT ValueVT = LD->getValueType(0);
    151   if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) {
    152     // A load extending to i64 will actually produce i32, which will then
    153     // need to be extended to i64.
    154     assert(LoadedVT.getSizeInBits() <= 32);
    155     ValueVT = MVT::i32;
    156   }
    157 
    158   if (IsValidInc) {
    159     MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT,
    160                                               MVT::i32, MVT::Other, Base,
    161                                               IncV, Chain);
    162     L->setMemRefs(MemOp, MemOp+1);
    163     To[1] = SDValue(L, 1); // Next address.
    164     To[2] = SDValue(L, 2); // Chain.
    165     // Handle special case for extension to i64.
    166     if (LD->getValueType(0) == MVT::i64)
    167       L = getExt64(L, dl);
    168     To[0] = SDValue(L, 0); // Loaded (extended) value.
    169   } else {
    170     SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
    171     MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other,
    172                                               Base, Zero, Chain);
    173     L->setMemRefs(MemOp, MemOp+1);
    174     To[2] = SDValue(L, 1); // Chain.
    175     MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
    176                                               Base, IncV);
    177     To[1] = SDValue(A, 0); // Next address.
    178     // Handle special case for extension to i64.
    179     if (LD->getValueType(0) == MVT::i64)
    180       L = getExt64(L, dl);
    181     To[0] = SDValue(L, 0); // Loaded (extended) value.
    182   }
    183   ReplaceUses(From, To, 3);
    184   CurDAG->RemoveDeadNode(LD);
    185 }
    186 
    187 MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) {
    188   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
    189     return nullptr;
    190 
    191   SDLoc dl(IntN);
    192   unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
    193 
    194   static std::map<unsigned,unsigned> LoadPciMap = {
    195     { Intrinsic::hexagon_circ_ldb,  Hexagon::L2_loadrb_pci  },
    196     { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
    197     { Intrinsic::hexagon_circ_ldh,  Hexagon::L2_loadrh_pci  },
    198     { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
    199     { Intrinsic::hexagon_circ_ldw,  Hexagon::L2_loadri_pci  },
    200     { Intrinsic::hexagon_circ_ldd,  Hexagon::L2_loadrd_pci  },
    201   };
    202   auto FLC = LoadPciMap.find(IntNo);
    203   if (FLC != LoadPciMap.end()) {
    204     EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
    205     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
    206     // Operands: { Base, Increment, Modifier, Chain }
    207     auto Inc = cast<ConstantSDNode>(IntN->getOperand(5));
    208     SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
    209     MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys,
    210           { IntN->getOperand(2), I, IntN->getOperand(4),
    211             IntN->getOperand(0) });
    212     return Res;
    213   }
    214 
    215   return nullptr;
    216 }
    217 
    218 SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN,
    219       SDNode *IntN) {
    220   // The "LoadN" is just a machine load instruction. The intrinsic also
    221   // involves storing it. Generate an appropriate store to the location
    222   // given in the intrinsic's operand(3).
    223   uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags;
    224   unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) &
    225                       HexagonII::MemAccesSizeMask;
    226   unsigned Size = 1U << (SizeBits-1);
    227 
    228   SDLoc dl(IntN);
    229   MachinePointerInfo PI;
    230   SDValue TS;
    231   SDValue Loc = IntN->getOperand(3);
    232 
    233   if (Size >= 4)
    234     TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI,
    235                           Size);
    236   else
    237     TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc,
    238                                PI, MVT::getIntegerVT(Size * 8), Size);
    239 
    240   SDNode *StoreN;
    241   {
    242     HandleSDNode Handle(TS);
    243     SelectStore(TS.getNode());
    244     StoreN = Handle.getValue().getNode();
    245   }
    246 
    247   // Load's results are { Loaded value, Updated pointer, Chain }
    248   ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1));
    249   ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0));
    250   return StoreN;
    251 }
    252 
    253 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) {
    254   // The intrinsics for load circ/brev perform two operations:
    255   // 1. Load a value V from the specified location, using the addressing
    256   //    mode corresponding to the intrinsic.
    257   // 2. Store V into a specified location. This location is typically a
    258   //    local, temporary object.
    259   // In many cases, the program using these intrinsics will immediately
    260   // load V again from the local object. In those cases, when certain
    261   // conditions are met, the last load can be removed.
    262   // This function identifies and optimizes this pattern. If the pattern
    263   // cannot be optimized, it returns nullptr, which will cause the load
    264   // to be selected separately from the intrinsic (which will be handled
    265   // in SelectIntrinsicWChain).
    266 
    267   SDValue Ch = N->getOperand(0);
    268   SDValue Loc = N->getOperand(1);
    269 
    270   // Assume that the load and the intrinsic are connected directly with a
    271   // chain:
    272   //   t1: i32,ch = int.load ..., ..., ..., Loc, ...    // <-- C
    273   //   t2: i32,ch = load t1:1, Loc, ...
    274   SDNode *C = Ch.getNode();
    275 
    276   if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN)
    277     return false;
    278 
    279   // The second load can only be eliminated if its extension type matches
    280   // that of the load instruction corresponding to the intrinsic. The user
    281   // can provide an address of an unsigned variable to store the result of
    282   // a sign-extending intrinsic into (or the other way around).
    283   ISD::LoadExtType IntExt;
    284   switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) {
    285     case Intrinsic::hexagon_circ_ldub:
    286     case Intrinsic::hexagon_circ_lduh:
    287       IntExt = ISD::ZEXTLOAD;
    288       break;
    289     case Intrinsic::hexagon_circ_ldw:
    290     case Intrinsic::hexagon_circ_ldd:
    291       IntExt = ISD::NON_EXTLOAD;
    292       break;
    293     default:
    294       IntExt = ISD::SEXTLOAD;
    295       break;
    296   }
    297   if (N->getExtensionType() != IntExt)
    298     return false;
    299 
    300   // Make sure the target location for the loaded value in the load intrinsic
    301   // is the location from which LD (or N) is loading.
    302   if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode())
    303     return false;
    304 
    305   if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) {
    306     SDNode *S = StoreInstrForLoadIntrinsic(L, C);
    307     SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) };
    308     SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) };
    309     ReplaceUses(F, T, array_lengthof(T));
    310     // This transformation will leave the intrinsic dead. If it remains in
    311     // the DAG, the selection code will see it again, but without the load,
    312     // and it will generate a store that is normally required for it.
    313     CurDAG->RemoveDeadNode(C);
    314     return true;
    315   }
    316   return false;
    317 }
    318 
    319 // Convert the bit-reverse load intrinsic to appropriate target instruction.
    320 bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) {
    321   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
    322     return false;
    323 
    324   const SDLoc &dl(IntN);
    325   unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
    326 
    327   static const std::map<unsigned, unsigned> LoadBrevMap = {
    328     { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr },
    329     { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr },
    330     { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr },
    331     { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr },
    332     { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr },
    333     { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr }
    334   };
    335   auto FLI = LoadBrevMap.find(IntNo);
    336   if (FLI != LoadBrevMap.end()) {
    337     EVT ValTy =
    338         (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32;
    339     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
    340     // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr,
    341     // modifier}.
    342     // Operands of target instruction: { Base, Modifier, Chain }.
    343     MachineSDNode *Res = CurDAG->getMachineNode(
    344         FLI->second, dl, RTys,
    345         {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)});
    346 
    347     MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    348     MemOp[0] = cast<MemIntrinsicSDNode>(IntN)->getMemOperand();
    349     Res->setMemRefs(MemOp, MemOp + 1);
    350 
    351     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
    352     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
    353     ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
    354     CurDAG->RemoveDeadNode(IntN);
    355     return true;
    356   }
    357   return false;
    358 }
    359 
    360 /// Generate a machine instruction node for the new circlar buffer intrinsics.
    361 /// The new versions use a CSx register instead of the K field.
    362 bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) {
    363   if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
    364     return false;
    365 
    366   SDLoc DL(IntN);
    367   unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
    368   SmallVector<SDValue, 7> Ops;
    369 
    370   static std::map<unsigned,unsigned> LoadNPcMap = {
    371     { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci },
    372     { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci },
    373     { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci },
    374     { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci },
    375     { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci },
    376     { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci },
    377     { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr },
    378     { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr },
    379     { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr },
    380     { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr },
    381     { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr },
    382     { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr }
    383   };
    384   auto FLI = LoadNPcMap.find (IntNo);
    385   if (FLI != LoadNPcMap.end()) {
    386     EVT ValTy = MVT::i32;
    387     if (IntNo == Intrinsic::hexagon_L2_loadrd_pci ||
    388         IntNo == Intrinsic::hexagon_L2_loadrd_pcr)
    389       ValTy = MVT::i64;
    390     EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
    391     // Handle load.*_pci case which has 6 operands.
    392     if (IntN->getNumOperands() == 6) {
    393       auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
    394       SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
    395       // Operands: { Base, Increment, Modifier, Start, Chain }.
    396       Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
    397               IntN->getOperand(0) };
    398     } else
    399       // Handle load.*_pcr case which has 5 operands.
    400       // Operands: { Base, Modifier, Start, Chain }.
    401       Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
    402               IntN->getOperand(0) };
    403     MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops);
    404     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
    405     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
    406     ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
    407     CurDAG->RemoveDeadNode(IntN);
    408     return true;
    409   }
    410 
    411   static std::map<unsigned,unsigned> StoreNPcMap = {
    412     { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci },
    413     { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci },
    414     { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci },
    415     { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci },
    416     { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci },
    417     { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr },
    418     { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr },
    419     { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr },
    420     { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr },
    421     { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr }
    422   };
    423   auto FSI = StoreNPcMap.find (IntNo);
    424   if (FSI != StoreNPcMap.end()) {
    425     EVT RTys[] = { MVT::i32, MVT::Other };
    426     // Handle store.*_pci case which has 7 operands.
    427     if (IntN->getNumOperands() == 7) {
    428       auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
    429       SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
    430       // Operands: { Base, Increment, Modifier, Value, Start, Chain }.
    431       Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
    432               IntN->getOperand(6), IntN->getOperand(0) };
    433     } else
    434       // Handle store.*_pcr case which has 6 operands.
    435       // Operands: { Base, Modifier, Value, Start, Chain }.
    436       Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
    437               IntN->getOperand(5), IntN->getOperand(0) };
    438     MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops);
    439     ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
    440     ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
    441     CurDAG->RemoveDeadNode(IntN);
    442     return true;
    443   }
    444 
    445   return false;
    446 }
    447 
    448 void HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
    449   SDLoc dl(N);
    450   LoadSDNode *LD = cast<LoadSDNode>(N);
    451 
    452   // Handle indexed loads.
    453   ISD::MemIndexedMode AM = LD->getAddressingMode();
    454   if (AM != ISD::UNINDEXED) {
    455     SelectIndexedLoad(LD, dl);
    456     return;
    457   }
    458 
    459   // Handle patterns using circ/brev load intrinsics.
    460   if (tryLoadOfLoadIntrinsic(LD))
    461     return;
    462 
    463   SelectCode(LD);
    464 }
    465 
    466 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) {
    467   SDValue Chain = ST->getChain();
    468   SDValue Base = ST->getBasePtr();
    469   SDValue Offset = ST->getOffset();
    470   SDValue Value = ST->getValue();
    471   // Get the constant value.
    472   int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
    473   EVT StoredVT = ST->getMemoryVT();
    474   EVT ValueVT = Value.getValueType();
    475 
    476   bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc);
    477   unsigned Opcode = 0;
    478 
    479   assert(StoredVT.isSimple());
    480   switch (StoredVT.getSimpleVT().SimpleTy) {
    481   case MVT::i8:
    482     Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io;
    483     break;
    484   case MVT::i16:
    485     Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io;
    486     break;
    487   case MVT::i32:
    488   case MVT::f32:
    489   case MVT::v2i16:
    490   case MVT::v4i8:
    491     Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io;
    492     break;
    493   case MVT::i64:
    494   case MVT::f64:
    495   case MVT::v2i32:
    496   case MVT::v4i16:
    497   case MVT::v8i8:
    498     Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io;
    499     break;
    500   case MVT::v64i8:
    501   case MVT::v32i16:
    502   case MVT::v16i32:
    503   case MVT::v8i64:
    504   case MVT::v128i8:
    505   case MVT::v64i16:
    506   case MVT::v32i32:
    507   case MVT::v16i64:
    508     if (isAlignedMemNode(ST)) {
    509       if (ST->isNonTemporal())
    510         Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai;
    511       else
    512         Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai;
    513     } else {
    514       Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai;
    515     }
    516     break;
    517   default:
    518     llvm_unreachable("Unexpected memory type in indexed store");
    519   }
    520 
    521   if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
    522     assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
    523     Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo,
    524                                            dl, MVT::i32, Value);
    525   }
    526 
    527   SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
    528   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    529   MemOp[0] = ST->getMemOperand();
    530 
    531   //                  Next address   Chain
    532   SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) };
    533   SDValue To[2];
    534 
    535   if (IsValidInc) {
    536     // Build post increment store.
    537     SDValue Ops[] = { Base, IncV, Value, Chain };
    538     MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
    539                                               Ops);
    540     S->setMemRefs(MemOp, MemOp + 1);
    541     To[0] = SDValue(S, 0);
    542     To[1] = SDValue(S, 1);
    543   } else {
    544     SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
    545     SDValue Ops[] = { Base, Zero, Value, Chain };
    546     MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
    547     S->setMemRefs(MemOp, MemOp + 1);
    548     To[1] = SDValue(S, 0);
    549     MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
    550                                               Base, IncV);
    551     To[0] = SDValue(A, 0);
    552   }
    553 
    554   ReplaceUses(From, To, 2);
    555   CurDAG->RemoveDeadNode(ST);
    556 }
    557 
    558 void HexagonDAGToDAGISel::SelectStore(SDNode *N) {
    559   SDLoc dl(N);
    560   StoreSDNode *ST = cast<StoreSDNode>(N);
    561 
    562   // Handle indexed stores.
    563   ISD::MemIndexedMode AM = ST->getAddressingMode();
    564   if (AM != ISD::UNINDEXED) {
    565     SelectIndexedStore(ST, dl);
    566     return;
    567   }
    568 
    569   SelectCode(ST);
    570 }
    571 
    572 void HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
    573   SDLoc dl(N);
    574   SDValue Shl_0 = N->getOperand(0);
    575   SDValue Shl_1 = N->getOperand(1);
    576 
    577   auto Default = [this,N] () -> void { SelectCode(N); };
    578 
    579   if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant)
    580     return Default();
    581 
    582   // RHS is const.
    583   int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue();
    584 
    585   if (Shl_0.getOpcode() == ISD::MUL) {
    586     SDValue Mul_0 = Shl_0.getOperand(0); // Val
    587     SDValue Mul_1 = Shl_0.getOperand(1); // Const
    588     // RHS of mul is const.
    589     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) {
    590       int32_t ValConst = C->getSExtValue() << ShlConst;
    591       if (isInt<9>(ValConst)) {
    592         SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32);
    593         SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
    594                                                 MVT::i32, Mul_0, Val);
    595         ReplaceNode(N, Result);
    596         return;
    597       }
    598     }
    599     return Default();
    600   }
    601 
    602   if (Shl_0.getOpcode() == ISD::SUB) {
    603     SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
    604     SDValue Sub_1 = Shl_0.getOperand(1); // Val
    605     if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) {
    606       if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL)
    607         return Default();
    608       SDValue Shl2_0 = Sub_1.getOperand(0); // Val
    609       SDValue Shl2_1 = Sub_1.getOperand(1); // Const
    610       if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) {
    611         int32_t ValConst = 1 << (ShlConst + C2->getSExtValue());
    612         if (isInt<9>(-ValConst)) {
    613           SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32);
    614           SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
    615                                                   MVT::i32, Shl2_0, Val);
    616           ReplaceNode(N, Result);
    617           return;
    618         }
    619       }
    620     }
    621   }
    622 
    623   return Default();
    624 }
    625 
    626 //
    627 // Handling intrinsics for circular load and bitreverse load.
    628 //
    629 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
    630   if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) {
    631     StoreInstrForLoadIntrinsic(L, N);
    632     CurDAG->RemoveDeadNode(N);
    633     return;
    634   }
    635 
    636   // Handle bit-reverse load intrinsics.
    637   if (SelectBrevLdIntrinsic(N))
    638     return;
    639 
    640   if (SelectNewCircIntrinsic(N))
    641     return;
    642 
    643   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
    644   if (IntNo == Intrinsic::hexagon_V6_vgathermw ||
    645       IntNo == Intrinsic::hexagon_V6_vgathermw_128B ||
    646       IntNo == Intrinsic::hexagon_V6_vgathermh ||
    647       IntNo == Intrinsic::hexagon_V6_vgathermh_128B ||
    648       IntNo == Intrinsic::hexagon_V6_vgathermhw ||
    649       IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) {
    650     SelectV65Gather(N);
    651     return;
    652   }
    653   if (IntNo == Intrinsic::hexagon_V6_vgathermwq ||
    654       IntNo == Intrinsic::hexagon_V6_vgathermwq_128B ||
    655       IntNo == Intrinsic::hexagon_V6_vgathermhq ||
    656       IntNo == Intrinsic::hexagon_V6_vgathermhq_128B ||
    657       IntNo == Intrinsic::hexagon_V6_vgathermhwq ||
    658       IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) {
    659     SelectV65GatherPred(N);
    660     return;
    661   }
    662 
    663   SelectCode(N);
    664 }
    665 
    666 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
    667   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
    668   unsigned Bits;
    669   switch (IID) {
    670   case Intrinsic::hexagon_S2_vsplatrb:
    671     Bits = 8;
    672     break;
    673   case Intrinsic::hexagon_S2_vsplatrh:
    674     Bits = 16;
    675     break;
    676   case Intrinsic::hexagon_V6_vaddcarry:
    677   case Intrinsic::hexagon_V6_vaddcarry_128B:
    678   case Intrinsic::hexagon_V6_vsubcarry:
    679   case Intrinsic::hexagon_V6_vsubcarry_128B:
    680     SelectHVXDualOutput(N);
    681     return;
    682   default:
    683     SelectCode(N);
    684     return;
    685   }
    686 
    687   SDValue V = N->getOperand(1);
    688   SDValue U;
    689   if (keepsLowBits(V, Bits, U)) {
    690     SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
    691                                 N->getOperand(0), U);
    692     ReplaceNode(N, R.getNode());
    693     SelectCode(R.getNode());
    694     return;
    695   }
    696   SelectCode(N);
    697 }
    698 
    699 //
    700 // Map floating point constant values.
    701 //
    702 void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
    703   SDLoc dl(N);
    704   ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
    705   APInt A = CN->getValueAPF().bitcastToAPInt();
    706   if (N->getValueType(0) == MVT::f32) {
    707     SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32);
    708     ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V));
    709     return;
    710   }
    711   if (N->getValueType(0) == MVT::f64) {
    712     SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64);
    713     ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V));
    714     return;
    715   }
    716 
    717   SelectCode(N);
    718 }
    719 
    720 //
    721 // Map boolean values.
    722 //
    723 void HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
    724   if (N->getValueType(0) == MVT::i1) {
    725     assert(!(cast<ConstantSDNode>(N)->getZExtValue() >> 1));
    726     unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0)
    727                       ? Hexagon::PS_true
    728                       : Hexagon::PS_false;
    729     ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1));
    730     return;
    731   }
    732 
    733   SelectCode(N);
    734 }
    735 
    736 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
    737   MachineFrameInfo &MFI = MF->getFrameInfo();
    738   const HexagonFrameLowering *HFI = HST->getFrameLowering();
    739   int FX = cast<FrameIndexSDNode>(N)->getIndex();
    740   unsigned StkA = HFI->getStackAlignment();
    741   unsigned MaxA = MFI.getMaxAlignment();
    742   SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
    743   SDLoc DL(N);
    744   SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
    745   SDNode *R = nullptr;
    746 
    747   // Use PS_fi when:
    748   // - the object is fixed, or
    749   // - there are no objects with higher-than-default alignment, or
    750   // - there are no dynamically allocated objects.
    751   // Otherwise, use PS_fia.
    752   if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) {
    753     R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero);
    754   } else {
    755     auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
    756     unsigned AR = HMFI.getStackAlignBaseVReg();
    757     SDValue CH = CurDAG->getEntryNode();
    758     SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
    759     R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops);
    760   }
    761 
    762   ReplaceNode(N, R);
    763 }
    764 
    765 void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) {
    766   unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c
    767                                                          : Hexagon::A4_subp_c;
    768   SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(),
    769                                      { N->getOperand(0), N->getOperand(1),
    770                                        N->getOperand(2) });
    771   ReplaceNode(N, C);
    772 }
    773 
    774 void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) {
    775   MVT ResTy = N->getValueType(0).getSimpleVT();
    776   if (HST->isHVXVectorType(ResTy, true))
    777     return SelectHvxVAlign(N);
    778 
    779   const SDLoc &dl(N);
    780   unsigned VecLen = ResTy.getSizeInBits();
    781   if (VecLen == 32) {
    782     SDValue Ops[] = {
    783       CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
    784       N->getOperand(0),
    785       CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
    786       N->getOperand(1),
    787       CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
    788     };
    789     SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
    790                                        MVT::i64, Ops);
    791 
    792     // Shift right by "(Addr & 0x3) * 8" bytes.
    793     SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32);
    794     SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32);
    795     SDNode *C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32,
    796                                        M0, N->getOperand(2), M1);
    797     SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64,
    798                                        SDValue(R, 0), SDValue(C, 0));
    799     SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy,
    800                                                SDValue(S, 0));
    801     ReplaceNode(N, E.getNode());
    802   } else {
    803     assert(VecLen == 64);
    804     SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1,
    805                                         N->getOperand(2));
    806     SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy,
    807                                         N->getOperand(0), N->getOperand(1),
    808                                         SDValue(Pu,0));
    809     ReplaceNode(N, VA);
    810   }
    811 }
    812 
    813 void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) {
    814   const SDLoc &dl(N);
    815   SDValue A = N->getOperand(1);
    816   int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue();
    817   assert(isPowerOf2_32(-Mask));
    818 
    819   SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32);
    820   SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
    821                                       N->getOperand(0), M);
    822   ReplaceNode(N, AA);
    823 }
    824 
    825 // Handle these nodes here to avoid having to write patterns for all
    826 // combinations of input/output types. In all cases, the resulting
    827 // instruction is the same.
    828 void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) {
    829   SDValue Op = N->getOperand(0);
    830   MVT OpTy = Op.getValueType().getSimpleVT();
    831   SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(),
    832                                   CurDAG->getVTList(OpTy), {Op});
    833   ReplaceNode(T, Op.getNode());
    834 }
    835 
    836 void HexagonDAGToDAGISel::SelectP2D(SDNode *N) {
    837   MVT ResTy = N->getValueType(0).getSimpleVT();
    838   SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy,
    839                                      N->getOperand(0));
    840   ReplaceNode(N, T);
    841 }
    842 
    843 void HexagonDAGToDAGISel::SelectD2P(SDNode *N) {
    844   const SDLoc &dl(N);
    845   MVT ResTy = N->getValueType(0).getSimpleVT();
    846   SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
    847   SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy,
    848                                      N->getOperand(0), Zero);
    849   ReplaceNode(N, T);
    850 }
    851 
    852 void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) {
    853   const SDLoc &dl(N);
    854   MVT ResTy = N->getValueType(0).getSimpleVT();
    855 
    856   SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
    857   SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
    858   SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy,
    859                                      N->getOperand(0), SDValue(R,0));
    860   ReplaceNode(N, T);
    861 }
    862 
    863 void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) {
    864   const SDLoc &dl(N);
    865   MVT ResTy = N->getValueType(0).getSimpleVT();
    866 
    867   SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
    868   SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
    869   SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy,
    870                                      N->getOperand(0), SDValue(R,0));
    871   ReplaceNode(N, T);
    872 }
    873 
    874 void HexagonDAGToDAGISel::Select(SDNode *N) {
    875   if (N->isMachineOpcode())
    876     return N->setNodeId(-1);  // Already selected.
    877 
    878   switch (N->getOpcode()) {
    879   case ISD::Constant:             return SelectConstant(N);
    880   case ISD::ConstantFP:           return SelectConstantFP(N);
    881   case ISD::FrameIndex:           return SelectFrameIndex(N);
    882   case ISD::SHL:                  return SelectSHL(N);
    883   case ISD::LOAD:                 return SelectLoad(N);
    884   case ISD::STORE:                return SelectStore(N);
    885   case ISD::INTRINSIC_W_CHAIN:    return SelectIntrinsicWChain(N);
    886   case ISD::INTRINSIC_WO_CHAIN:   return SelectIntrinsicWOChain(N);
    887 
    888   case HexagonISD::ADDC:
    889   case HexagonISD::SUBC:          return SelectAddSubCarry(N);
    890   case HexagonISD::VALIGN:        return SelectVAlign(N);
    891   case HexagonISD::VALIGNADDR:    return SelectVAlignAddr(N);
    892   case HexagonISD::TYPECAST:      return SelectTypecast(N);
    893   case HexagonISD::P2D:           return SelectP2D(N);
    894   case HexagonISD::D2P:           return SelectD2P(N);
    895   case HexagonISD::Q2V:           return SelectQ2V(N);
    896   case HexagonISD::V2Q:           return SelectV2Q(N);
    897   }
    898 
    899   if (HST->useHVXOps()) {
    900     switch (N->getOpcode()) {
    901     case ISD::VECTOR_SHUFFLE:     return SelectHvxShuffle(N);
    902     case HexagonISD::VROR:        return SelectHvxRor(N);
    903     }
    904   }
    905 
    906   SelectCode(N);
    907 }
    908 
    909 bool HexagonDAGToDAGISel::
    910 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
    911                              std::vector<SDValue> &OutOps) {
    912   SDValue Inp = Op, Res;
    913 
    914   switch (ConstraintID) {
    915   default:
    916     return true;
    917   case InlineAsm::Constraint_i:
    918   case InlineAsm::Constraint_o: // Offsetable.
    919   case InlineAsm::Constraint_v: // Not offsetable.
    920   case InlineAsm::Constraint_m: // Memory.
    921     if (SelectAddrFI(Inp, Res))
    922       OutOps.push_back(Res);
    923     else
    924       OutOps.push_back(Inp);
    925     break;
    926   }
    927 
    928   OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
    929   return false;
    930 }
    931 
    932 
    933 static bool isMemOPCandidate(SDNode *I, SDNode *U) {
    934   // I is an operand of U. Check if U is an arithmetic (binary) operation
    935   // usable in a memop, where the other operand is a loaded value, and the
    936   // result of U is stored in the same location.
    937 
    938   if (!U->hasOneUse())
    939     return false;
    940   unsigned Opc = U->getOpcode();
    941   switch (Opc) {
    942     case ISD::ADD:
    943     case ISD::SUB:
    944     case ISD::AND:
    945     case ISD::OR:
    946       break;
    947     default:
    948       return false;
    949   }
    950 
    951   SDValue S0 = U->getOperand(0);
    952   SDValue S1 = U->getOperand(1);
    953   SDValue SY = (S0.getNode() == I) ? S1 : S0;
    954 
    955   SDNode *UUse = *U->use_begin();
    956   if (UUse->getNumValues() != 1)
    957     return false;
    958 
    959   // Check if one of the inputs to U is a load instruction and the output
    960   // is used by a store instruction. If so and they also have the same
    961   // base pointer, then don't preoprocess this node sequence as it
    962   // can be matched to a memop.
    963   SDNode *SYNode = SY.getNode();
    964   if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) {
    965     SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr();
    966     SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr();
    967     if (LDBasePtr == STBasePtr)
    968       return true;
    969   }
    970   return false;
    971 }
    972 
    973 
    974 // Transform: (or (select c x 0) z)  ->  (select c (or x z) z)
    975 //            (or (select c 0 y) z)  ->  (select c z (or y z))
    976 void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) {
    977   SelectionDAG &DAG = *CurDAG;
    978 
    979   for (auto I : Nodes) {
    980     if (I->getOpcode() != ISD::OR)
    981       continue;
    982 
    983     auto IsZero = [] (const SDValue &V) -> bool {
    984       if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
    985         return SC->isNullValue();
    986       return false;
    987     };
    988     auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
    989       if (Op.getOpcode() != ISD::SELECT)
    990         return false;
    991       return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2));
    992     };
    993 
    994     SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
    995     EVT VT = I->getValueType(0);
    996     bool SelN0 = IsSelect0(N0);
    997     SDValue SOp = SelN0 ? N0 : N1;
    998     SDValue VOp = SelN0 ? N1 : N0;
    999 
   1000     if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
   1001       SDValue SC = SOp.getOperand(0);
   1002       SDValue SX = SOp.getOperand(1);
   1003       SDValue SY = SOp.getOperand(2);
   1004       SDLoc DLS = SOp;
   1005       if (IsZero(SY)) {
   1006         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
   1007         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
   1008         DAG.ReplaceAllUsesWith(I, NewSel.getNode());
   1009       } else if (IsZero(SX)) {
   1010         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
   1011         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
   1012         DAG.ReplaceAllUsesWith(I, NewSel.getNode());
   1013       }
   1014     }
   1015   }
   1016 }
   1017 
   1018 // Transform: (store ch val (add x (add (shl y c) e)))
   1019 //        to: (store ch val (add x (shl (add y d) c))),
   1020 // where e = (shl d c) for some integer d.
   1021 // The purpose of this is to enable generation of loads/stores with
   1022 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
   1023 // value c must be 0, 1 or 2.
   1024 void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) {
   1025   SelectionDAG &DAG = *CurDAG;
   1026 
   1027   for (auto I : Nodes) {
   1028     if (I->getOpcode() != ISD::STORE)
   1029       continue;
   1030 
   1031     // I matched: (store ch val Off)
   1032     SDValue Off = I->getOperand(2);
   1033     // Off needs to match: (add x (add (shl y c) (shl d c))))
   1034     if (Off.getOpcode() != ISD::ADD)
   1035       continue;
   1036     // Off matched: (add x T0)
   1037     SDValue T0 = Off.getOperand(1);
   1038     // T0 needs to match: (add T1 T2):
   1039     if (T0.getOpcode() != ISD::ADD)
   1040       continue;
   1041     // T0 matched: (add T1 T2)
   1042     SDValue T1 = T0.getOperand(0);
   1043     SDValue T2 = T0.getOperand(1);
   1044     // T1 needs to match: (shl y c)
   1045     if (T1.getOpcode() != ISD::SHL)
   1046       continue;
   1047     SDValue C = T1.getOperand(1);
   1048     ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode());
   1049     if (CN == nullptr)
   1050       continue;
   1051     unsigned CV = CN->getZExtValue();
   1052     if (CV > 2)
   1053       continue;
   1054     // T2 needs to match e, where e = (shl d c) for some d.
   1055     ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode());
   1056     if (EN == nullptr)
   1057       continue;
   1058     unsigned EV = EN->getZExtValue();
   1059     if (EV % (1 << CV) != 0)
   1060       continue;
   1061     unsigned DV = EV / (1 << CV);
   1062 
   1063     // Replace T0 with: (shl (add y d) c)
   1064     SDLoc DL = SDLoc(I);
   1065     EVT VT = T0.getValueType();
   1066     SDValue D = DAG.getConstant(DV, DL, VT);
   1067     // NewAdd = (add y d)
   1068     SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D);
   1069     // NewShl = (shl NewAdd c)
   1070     SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C);
   1071     ReplaceNode(T0.getNode(), NewShl.getNode());
   1072   }
   1073 }
   1074 
   1075 // Transform: (load ch (add x (and (srl y c) Mask)))
   1076 //        to: (load ch (add x (shl (srl y d) d-c)))
   1077 // where
   1078 // Mask = 00..0 111..1 0.0
   1079 //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2.
   1080 //          |     +-------- 1s
   1081 //          +-------------- at most c 0s
   1082 // Motivating example:
   1083 // DAG combiner optimizes (add x (shl (srl y 5) 2))
   1084 //                     to (add x (and (srl y 3) 1FFFFFFC))
   1085 // which results in a constant-extended and(##...,lsr). This transformation
   1086 // undoes this simplification for cases where the shl can be folded into
   1087 // an addressing mode.
   1088 void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) {
   1089   SelectionDAG &DAG = *CurDAG;
   1090 
   1091   for (SDNode *N : Nodes) {
   1092     unsigned Opc = N->getOpcode();
   1093     if (Opc != ISD::LOAD && Opc != ISD::STORE)
   1094       continue;
   1095     SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2);
   1096     // Addr must match: (add x T0)
   1097     if (Addr.getOpcode() != ISD::ADD)
   1098       continue;
   1099     SDValue T0 = Addr.getOperand(1);
   1100     // T0 must match: (and T1 Mask)
   1101     if (T0.getOpcode() != ISD::AND)
   1102       continue;
   1103 
   1104     // We have an AND.
   1105     //
   1106     // Check the first operand. It must be: (srl y c).
   1107     SDValue S = T0.getOperand(0);
   1108     if (S.getOpcode() != ISD::SRL)
   1109       continue;
   1110     ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode());
   1111     if (SN == nullptr)
   1112       continue;
   1113     if (SN->getAPIntValue().getBitWidth() != 32)
   1114       continue;
   1115     uint32_t CV = SN->getZExtValue();
   1116 
   1117     // Check the second operand: the supposed mask.
   1118     ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode());
   1119     if (MN == nullptr)
   1120       continue;
   1121     if (MN->getAPIntValue().getBitWidth() != 32)
   1122       continue;
   1123     uint32_t Mask = MN->getZExtValue();
   1124     // Examine the mask.
   1125     uint32_t TZ = countTrailingZeros(Mask);
   1126     uint32_t M1 = countTrailingOnes(Mask >> TZ);
   1127     uint32_t LZ = countLeadingZeros(Mask);
   1128     // Trailing zeros + middle ones + leading zeros must equal the width.
   1129     if (TZ + M1 + LZ != 32)
   1130       continue;
   1131     // The number of trailing zeros will be encoded in the addressing mode.
   1132     if (TZ > 2)
   1133       continue;
   1134     // The number of leading zeros must be at most c.
   1135     if (LZ > CV)
   1136       continue;
   1137 
   1138     // All looks good.
   1139     SDValue Y = S.getOperand(0);
   1140     EVT VT = Addr.getValueType();
   1141     SDLoc dl(S);
   1142     // TZ = D-C, so D = TZ+C.
   1143     SDValue D = DAG.getConstant(TZ+CV, dl, VT);
   1144     SDValue DC = DAG.getConstant(TZ, dl, VT);
   1145     SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D);
   1146     SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC);
   1147     ReplaceNode(T0.getNode(), NewShl.getNode());
   1148   }
   1149 }
   1150 
   1151 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
   1152 //                                                  (op ... 1 ...))
   1153 void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) {
   1154   SelectionDAG &DAG = *CurDAG;
   1155 
   1156   for (SDNode *N : Nodes) {
   1157     unsigned Opc = N->getOpcode();
   1158     if (Opc != ISD::ZERO_EXTEND)
   1159       continue;
   1160     SDValue OpI1 = N->getOperand(0);
   1161     EVT OpVT = OpI1.getValueType();
   1162     if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1)
   1163       continue;
   1164     for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) {
   1165       SDNode *U = *I;
   1166       if (U->getNumValues() != 1)
   1167         continue;
   1168       EVT UVT = U->getValueType(0);
   1169       if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1)
   1170         continue;
   1171       if (isMemOPCandidate(N, U))
   1172         continue;
   1173 
   1174       // Potentially simplifiable operation.
   1175       unsigned I1N = I.getOperandNo();
   1176       SmallVector<SDValue,2> Ops(U->getNumOperands());
   1177       for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i)
   1178         Ops[i] = U->getOperand(i);
   1179       EVT BVT = Ops[I1N].getValueType();
   1180 
   1181       SDLoc dl(U);
   1182       SDValue C0 = DAG.getConstant(0, dl, BVT);
   1183       SDValue C1 = DAG.getConstant(1, dl, BVT);
   1184       SDValue If0, If1;
   1185 
   1186       if (isa<MachineSDNode>(U)) {
   1187         unsigned UseOpc = U->getMachineOpcode();
   1188         Ops[I1N] = C0;
   1189         If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
   1190         Ops[I1N] = C1;
   1191         If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
   1192       } else {
   1193         unsigned UseOpc = U->getOpcode();
   1194         Ops[I1N] = C0;
   1195         If0 = DAG.getNode(UseOpc, dl, UVT, Ops);
   1196         Ops[I1N] = C1;
   1197         If1 = DAG.getNode(UseOpc, dl, UVT, Ops);
   1198       }
   1199       SDValue Sel = DAG.getNode(ISD::SELECT, dl, UVT, OpI1, If1, If0);
   1200       DAG.ReplaceAllUsesWith(U, Sel.getNode());
   1201     }
   1202   }
   1203 }
   1204 
   1205 void HexagonDAGToDAGISel::PreprocessISelDAG() {
   1206   // Repack all nodes before calling each preprocessing function,
   1207   // because each of them can modify the set of nodes.
   1208   auto getNodes = [this] () -> std::vector<SDNode*> {
   1209     std::vector<SDNode*> T;
   1210     T.reserve(CurDAG->allnodes_size());
   1211     for (SDNode &N : CurDAG->allnodes())
   1212       T.push_back(&N);
   1213     return T;
   1214   };
   1215 
   1216   // Transform: (or (select c x 0) z)  ->  (select c (or x z) z)
   1217   //            (or (select c 0 y) z)  ->  (select c z (or y z))
   1218   ppSimplifyOrSelect0(getNodes());
   1219 
   1220   // Transform: (store ch val (add x (add (shl y c) e)))
   1221   //        to: (store ch val (add x (shl (add y d) c))),
   1222   // where e = (shl d c) for some integer d.
   1223   // The purpose of this is to enable generation of loads/stores with
   1224   // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
   1225   // value c must be 0, 1 or 2.
   1226   ppAddrReorderAddShl(getNodes());
   1227 
   1228   // Transform: (load ch (add x (and (srl y c) Mask)))
   1229   //        to: (load ch (add x (shl (srl y d) d-c)))
   1230   // where
   1231   // Mask = 00..0 111..1 0.0
   1232   //          |     |     +-- d-c 0s, and d-c is 0, 1 or 2.
   1233   //          |     +-------- 1s
   1234   //          +-------------- at most c 0s
   1235   // Motivating example:
   1236   // DAG combiner optimizes (add x (shl (srl y 5) 2))
   1237   //                     to (add x (and (srl y 3) 1FFFFFFC))
   1238   // which results in a constant-extended and(##...,lsr). This transformation
   1239   // undoes this simplification for cases where the shl can be folded into
   1240   // an addressing mode.
   1241   ppAddrRewriteAndSrl(getNodes());
   1242 
   1243   // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
   1244   //                                                  (op ... 1 ...))
   1245   ppHoistZextI1(getNodes());
   1246 
   1247   DEBUG_WITH_TYPE("isel", {
   1248     dbgs() << "Preprocessed (Hexagon) selection DAG:";
   1249     CurDAG->dump();
   1250   });
   1251 
   1252   if (EnableAddressRebalancing) {
   1253     rebalanceAddressTrees();
   1254 
   1255     DEBUG_WITH_TYPE("isel", {
   1256       dbgs() << "Address tree balanced selection DAG:";
   1257       CurDAG->dump();
   1258     });
   1259   }
   1260 }
   1261 
   1262 void HexagonDAGToDAGISel::EmitFunctionEntryCode() {
   1263   auto &HST = static_cast<const HexagonSubtarget&>(MF->getSubtarget());
   1264   auto &HFI = *HST.getFrameLowering();
   1265   if (!HFI.needsAligna(*MF))
   1266     return;
   1267 
   1268   MachineFrameInfo &MFI = MF->getFrameInfo();
   1269   MachineBasicBlock *EntryBB = &MF->front();
   1270   unsigned AR = FuncInfo->CreateReg(MVT::i32);
   1271   unsigned MaxA = MFI.getMaxAlignment();
   1272   BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AR)
   1273       .addImm(MaxA);
   1274   MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR);
   1275 }
   1276 
   1277 // Match a frame index that can be used in an addressing mode.
   1278 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) {
   1279   if (N.getOpcode() != ISD::FrameIndex)
   1280     return false;
   1281   auto &HFI = *HST->getFrameLowering();
   1282   MachineFrameInfo &MFI = MF->getFrameInfo();
   1283   int FX = cast<FrameIndexSDNode>(N)->getIndex();
   1284   if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
   1285     return false;
   1286   R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
   1287   return true;
   1288 }
   1289 
   1290 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
   1291   return SelectGlobalAddress(N, R, false, 0);
   1292 }
   1293 
   1294 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
   1295   return SelectGlobalAddress(N, R, true, 0);
   1296 }
   1297 
   1298 inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) {
   1299   return SelectAnyImmediate(N, R, 0);
   1300 }
   1301 
   1302 inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) {
   1303   return SelectAnyImmediate(N, R, 0);
   1304 }
   1305 inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) {
   1306   return SelectAnyImmediate(N, R, 1);
   1307 }
   1308 inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) {
   1309   return SelectAnyImmediate(N, R, 2);
   1310 }
   1311 inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) {
   1312   return SelectAnyImmediate(N, R, 3);
   1313 }
   1314 
   1315 inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) {
   1316   EVT T = N.getValueType();
   1317   if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N))
   1318     return false;
   1319   R = N;
   1320   return true;
   1321 }
   1322 
   1323 bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R,
   1324                                              uint32_t LogAlign) {
   1325   auto IsAligned = [LogAlign] (uint64_t V) -> bool {
   1326     return alignTo(V, (uint64_t)1 << LogAlign) == V;
   1327   };
   1328 
   1329   switch (N.getOpcode()) {
   1330   case ISD::Constant: {
   1331     if (N.getValueType() != MVT::i32)
   1332       return false;
   1333     int32_t V = cast<const ConstantSDNode>(N)->getZExtValue();
   1334     if (!IsAligned(V))
   1335       return false;
   1336     R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType());
   1337     return true;
   1338   }
   1339   case HexagonISD::JT:
   1340   case HexagonISD::CP:
   1341     // These are assumed to always be aligned at least 8-byte boundary.
   1342     if (LogAlign > 3)
   1343       return false;
   1344     R = N.getOperand(0);
   1345     return true;
   1346   case ISD::ExternalSymbol:
   1347     // Symbols may be aligned at any boundary.
   1348     if (LogAlign > 0)
   1349       return false;
   1350     R = N;
   1351     return true;
   1352   case ISD::BlockAddress:
   1353     // Block address is always aligned at least 4-byte boundary.
   1354     if (LogAlign > 2 || !IsAligned(cast<BlockAddressSDNode>(N)->getOffset()))
   1355       return false;
   1356     R = N;
   1357     return true;
   1358   }
   1359 
   1360   if (SelectGlobalAddress(N, R, false, LogAlign) ||
   1361       SelectGlobalAddress(N, R, true, LogAlign))
   1362     return true;
   1363 
   1364   return false;
   1365 }
   1366 
   1367 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
   1368                                               bool UseGP, uint32_t LogAlign) {
   1369   auto IsAligned = [LogAlign] (uint64_t V) -> bool {
   1370     return alignTo(V, (uint64_t)1 << LogAlign) == V;
   1371   };
   1372 
   1373   switch (N.getOpcode()) {
   1374   case ISD::ADD: {
   1375     SDValue N0 = N.getOperand(0);
   1376     SDValue N1 = N.getOperand(1);
   1377     unsigned GAOpc = N0.getOpcode();
   1378     if (UseGP && GAOpc != HexagonISD::CONST32_GP)
   1379       return false;
   1380     if (!UseGP && GAOpc != HexagonISD::CONST32)
   1381       return false;
   1382     if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
   1383       SDValue Addr = N0.getOperand(0);
   1384       // For the purpose of alignment, sextvalue and zextvalue are the same.
   1385       if (!IsAligned(Const->getZExtValue()))
   1386         return false;
   1387       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
   1388         if (GA->getOpcode() == ISD::TargetGlobalAddress) {
   1389           uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
   1390           R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
   1391                                              N.getValueType(), NewOff);
   1392           return true;
   1393         }
   1394       }
   1395     }
   1396     break;
   1397   }
   1398   case HexagonISD::CP:
   1399   case HexagonISD::JT:
   1400   case HexagonISD::CONST32:
   1401     // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
   1402     // want in the instruction.
   1403     if (!UseGP)
   1404       R = N.getOperand(0);
   1405     return !UseGP;
   1406   case HexagonISD::CONST32_GP:
   1407     if (UseGP)
   1408       R = N.getOperand(0);
   1409     return UseGP;
   1410   default:
   1411     return false;
   1412   }
   1413 
   1414   return false;
   1415 }
   1416 
   1417 bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) {
   1418   // This (complex pattern) function is meant to detect a sign-extension
   1419   // i32->i64 on a per-operand basis. This would allow writing single
   1420   // patterns that would cover a number of combinations of different ways
   1421   // a sign-extensions could be written. For example:
   1422   //   (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y)
   1423   // could match either one of these:
   1424   //   (mul (sext x) (sext_inreg y))
   1425   //   (mul (sext-load *p) (sext_inreg y))
   1426   //   (mul (sext_inreg x) (sext y))
   1427   // etc.
   1428   //
   1429   // The returned value will have type i64 and its low word will
   1430   // contain the value being extended. The high bits are not specified.
   1431   // The returned type is i64 because the original type of N was i64,
   1432   // but the users of this function should only use the low-word of the
   1433   // result, e.g.
   1434   //  (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y))
   1435 
   1436   if (N.getValueType() != MVT::i64)
   1437     return false;
   1438   unsigned Opc = N.getOpcode();
   1439   switch (Opc) {
   1440     case ISD::SIGN_EXTEND:
   1441     case ISD::SIGN_EXTEND_INREG: {
   1442       // sext_inreg has the source type as a separate operand.
   1443       EVT T = Opc == ISD::SIGN_EXTEND
   1444                 ? N.getOperand(0).getValueType()
   1445                 : cast<VTSDNode>(N.getOperand(1))->getVT();
   1446       unsigned SW = T.getSizeInBits();
   1447       if (SW == 32)
   1448         R = N.getOperand(0);
   1449       else if (SW < 32)
   1450         R = N;
   1451       else
   1452         return false;
   1453       break;
   1454     }
   1455     case ISD::LOAD: {
   1456       LoadSDNode *L = cast<LoadSDNode>(N);
   1457       if (L->getExtensionType() != ISD::SEXTLOAD)
   1458         return false;
   1459       // All extending loads extend to i32, so even if the value in
   1460       // memory is shorter than 32 bits, it will be i32 after the load.
   1461       if (L->getMemoryVT().getSizeInBits() > 32)
   1462         return false;
   1463       R = N;
   1464       break;
   1465     }
   1466     case ISD::SRA: {
   1467       auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1));
   1468       if (!S || S->getZExtValue() != 32)
   1469         return false;
   1470       R = N;
   1471       break;
   1472     }
   1473     default:
   1474       return false;
   1475   }
   1476   EVT RT = R.getValueType();
   1477   if (RT == MVT::i64)
   1478     return true;
   1479   assert(RT == MVT::i32);
   1480   // This is only to produce a value of type i64. Do not rely on the
   1481   // high bits produced by this.
   1482   const SDLoc &dl(N);
   1483   SDValue Ops[] = {
   1484     CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
   1485     R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
   1486     R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
   1487   };
   1488   SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
   1489                                      MVT::i64, Ops);
   1490   R = SDValue(T, 0);
   1491   return true;
   1492 }
   1493 
   1494 bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits,
   1495       SDValue &Src) {
   1496   unsigned Opc = Val.getOpcode();
   1497   switch (Opc) {
   1498   case ISD::SIGN_EXTEND:
   1499   case ISD::ZERO_EXTEND:
   1500   case ISD::ANY_EXTEND: {
   1501     const SDValue &Op0 = Val.getOperand(0);
   1502     EVT T = Op0.getValueType();
   1503     if (T.isInteger() && T.getSizeInBits() == NumBits) {
   1504       Src = Op0;
   1505       return true;
   1506     }
   1507     break;
   1508   }
   1509   case ISD::SIGN_EXTEND_INREG:
   1510   case ISD::AssertSext:
   1511   case ISD::AssertZext:
   1512     if (Val.getOperand(0).getValueType().isInteger()) {
   1513       VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
   1514       if (T->getVT().getSizeInBits() == NumBits) {
   1515         Src = Val.getOperand(0);
   1516         return true;
   1517       }
   1518     }
   1519     break;
   1520   case ISD::AND: {
   1521     // Check if this is an AND with NumBits of lower bits set to 1.
   1522     uint64_t Mask = (1 << NumBits) - 1;
   1523     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
   1524       if (C->getZExtValue() == Mask) {
   1525         Src = Val.getOperand(1);
   1526         return true;
   1527       }
   1528     }
   1529     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
   1530       if (C->getZExtValue() == Mask) {
   1531         Src = Val.getOperand(0);
   1532         return true;
   1533       }
   1534     }
   1535     break;
   1536   }
   1537   case ISD::OR:
   1538   case ISD::XOR: {
   1539     // OR/XOR with the lower NumBits bits set to 0.
   1540     uint64_t Mask = (1 << NumBits) - 1;
   1541     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
   1542       if ((C->getZExtValue() & Mask) == 0) {
   1543         Src = Val.getOperand(1);
   1544         return true;
   1545       }
   1546     }
   1547     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
   1548       if ((C->getZExtValue() & Mask) == 0) {
   1549         Src = Val.getOperand(0);
   1550         return true;
   1551       }
   1552     }
   1553     break;
   1554   }
   1555   default:
   1556     break;
   1557   }
   1558   return false;
   1559 }
   1560 
   1561 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const {
   1562   return N->getAlignment() >= N->getMemoryVT().getStoreSize();
   1563 }
   1564 
   1565 bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const {
   1566   unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF);
   1567   switch (N->getMemoryVT().getStoreSize()) {
   1568     case 1:
   1569       return StackSize <= 56;   // 1*2^6 - 8
   1570     case 2:
   1571       return StackSize <= 120;  // 2*2^6 - 8
   1572     case 4:
   1573       return StackSize <= 248;  // 4*2^6 - 8
   1574     default:
   1575       return false;
   1576   }
   1577 }
   1578 
   1579 // Return true when the given node fits in a positive half word.
   1580 bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const {
   1581   if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) {
   1582     int64_t V = CN->getSExtValue();
   1583     return V > 0 && isInt<16>(V);
   1584   }
   1585   if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
   1586     const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1));
   1587     return VN->getVT().getSizeInBits() <= 16;
   1588   }
   1589   return false;
   1590 }
   1591 
   1592 bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const {
   1593   return !CheckSingleUse || N->hasOneUse();
   1594 }
   1595 
   1596 ////////////////////////////////////////////////////////////////////////////////
   1597 // Rebalancing of address calculation trees
   1598 
   1599 static bool isOpcodeHandled(const SDNode *N) {
   1600   switch (N->getOpcode()) {
   1601     case ISD::ADD:
   1602     case ISD::MUL:
   1603       return true;
   1604     case ISD::SHL:
   1605       // We only handle constant shifts because these can be easily flattened
   1606       // into multiplications by 2^Op1.
   1607       return isa<ConstantSDNode>(N->getOperand(1).getNode());
   1608     default:
   1609       return false;
   1610   }
   1611 }
   1612 
   1613 /// Return the weight of an SDNode
   1614 int HexagonDAGToDAGISel::getWeight(SDNode *N) {
   1615   if (!isOpcodeHandled(N))
   1616     return 1;
   1617   assert(RootWeights.count(N) && "Cannot get weight of unseen root!");
   1618   assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!");
   1619   assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!");
   1620   return RootWeights[N];
   1621 }
   1622 
   1623 int HexagonDAGToDAGISel::getHeight(SDNode *N) {
   1624   if (!isOpcodeHandled(N))
   1625     return 0;
   1626   assert(RootWeights.count(N) && RootWeights[N] >= 0 &&
   1627       "Cannot query height of unvisited/RAUW'd node!");
   1628   return RootHeights[N];
   1629 }
   1630 
   1631 namespace {
   1632 struct WeightedLeaf {
   1633   SDValue Value;
   1634   int Weight;
   1635   int InsertionOrder;
   1636 
   1637   WeightedLeaf() : Value(SDValue()) { }
   1638 
   1639   WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) :
   1640     Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) {
   1641     assert(Weight >= 0 && "Weight must be >= 0");
   1642   }
   1643 
   1644   static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) {
   1645     assert(A.Value.getNode() && B.Value.getNode());
   1646     return A.Weight == B.Weight ?
   1647             (A.InsertionOrder > B.InsertionOrder) :
   1648             (A.Weight > B.Weight);
   1649   }
   1650 };
   1651 
   1652 /// A specialized priority queue for WeigthedLeaves. It automatically folds
   1653 /// constants and allows removal of non-top elements while maintaining the
   1654 /// priority order.
   1655 class LeafPrioQueue {
   1656   SmallVector<WeightedLeaf, 8> Q;
   1657   bool HaveConst;
   1658   WeightedLeaf ConstElt;
   1659   unsigned Opcode;
   1660 
   1661 public:
   1662   bool empty() {
   1663     return (!HaveConst && Q.empty());
   1664   }
   1665 
   1666   size_t size() {
   1667     return Q.size() + HaveConst;
   1668   }
   1669 
   1670   bool hasConst() {
   1671     return HaveConst;
   1672   }
   1673 
   1674   const WeightedLeaf &top() {
   1675     if (HaveConst)
   1676       return ConstElt;
   1677     return Q.front();
   1678   }
   1679 
   1680   WeightedLeaf pop() {
   1681     if (HaveConst) {
   1682       HaveConst = false;
   1683       return ConstElt;
   1684     }
   1685     std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
   1686     return Q.pop_back_val();
   1687   }
   1688 
   1689   void push(WeightedLeaf L, bool SeparateConst=true) {
   1690     if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) {
   1691       if (Opcode == ISD::MUL &&
   1692           cast<ConstantSDNode>(L.Value)->getSExtValue() == 1)
   1693         return;
   1694       if (Opcode == ISD::ADD &&
   1695           cast<ConstantSDNode>(L.Value)->getSExtValue() == 0)
   1696         return;
   1697 
   1698       HaveConst = true;
   1699       ConstElt = L;
   1700     } else {
   1701       Q.push_back(L);
   1702       std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
   1703     }
   1704   }
   1705 
   1706   /// Push L to the bottom of the queue regardless of its weight. If L is
   1707   /// constant, it will not be folded with other constants in the queue.
   1708   void pushToBottom(WeightedLeaf L) {
   1709     L.Weight = 1000;
   1710     push(L, false);
   1711   }
   1712 
   1713   /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of
   1714   /// lowest weight and remove it from the queue.
   1715   WeightedLeaf findSHL(uint64_t MaxAmount);
   1716 
   1717   WeightedLeaf findMULbyConst();
   1718 
   1719   LeafPrioQueue(unsigned Opcode) :
   1720     HaveConst(false), Opcode(Opcode) { }
   1721 };
   1722 } // end anonymous namespace
   1723 
   1724 WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) {
   1725   int ResultPos;
   1726   WeightedLeaf Result;
   1727 
   1728   for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
   1729     const WeightedLeaf &L = Q[Pos];
   1730     const SDValue &Val = L.Value;
   1731     if (Val.getOpcode() != ISD::SHL ||
   1732         !isa<ConstantSDNode>(Val.getOperand(1)) ||
   1733         Val.getConstantOperandVal(1) > MaxAmount)
   1734       continue;
   1735     if (!Result.Value.getNode() || Result.Weight > L.Weight ||
   1736         (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
   1737     {
   1738       Result = L;
   1739       ResultPos = Pos;
   1740     }
   1741   }
   1742 
   1743   if (Result.Value.getNode()) {
   1744     Q.erase(&Q[ResultPos]);
   1745     std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
   1746   }
   1747 
   1748   return Result;
   1749 }
   1750 
   1751 WeightedLeaf LeafPrioQueue::findMULbyConst() {
   1752   int ResultPos;
   1753   WeightedLeaf Result;
   1754 
   1755   for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
   1756     const WeightedLeaf &L = Q[Pos];
   1757     const SDValue &Val = L.Value;
   1758     if (Val.getOpcode() != ISD::MUL ||
   1759         !isa<ConstantSDNode>(Val.getOperand(1)) ||
   1760         Val.getConstantOperandVal(1) > 127)
   1761       continue;
   1762     if (!Result.Value.getNode() || Result.Weight > L.Weight ||
   1763         (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
   1764     {
   1765       Result = L;
   1766       ResultPos = Pos;
   1767     }
   1768   }
   1769 
   1770   if (Result.Value.getNode()) {
   1771     Q.erase(&Q[ResultPos]);
   1772     std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
   1773   }
   1774 
   1775   return Result;
   1776 }
   1777 
   1778 SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) {
   1779   uint64_t MulFactor = 1ull << N->getConstantOperandVal(1);
   1780   return CurDAG->getConstant(MulFactor, SDLoc(N),
   1781                              N->getOperand(1).getValueType());
   1782 }
   1783 
   1784 /// @returns the value x for which 2^x is a factor of Val
   1785 static unsigned getPowerOf2Factor(SDValue Val) {
   1786   if (Val.getOpcode() == ISD::MUL) {
   1787     unsigned MaxFactor = 0;
   1788     for (int i = 0; i < 2; ++i) {
   1789       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i));
   1790       if (!C)
   1791         continue;
   1792       const APInt &CInt = C->getAPIntValue();
   1793       if (CInt.getBoolValue())
   1794         MaxFactor = CInt.countTrailingZeros();
   1795     }
   1796     return MaxFactor;
   1797   }
   1798   if (Val.getOpcode() == ISD::SHL) {
   1799     if (!isa<ConstantSDNode>(Val.getOperand(1).getNode()))
   1800       return 0;
   1801     return (unsigned) Val.getConstantOperandVal(1);
   1802   }
   1803 
   1804   return 0;
   1805 }
   1806 
   1807 /// @returns true if V>>Amount will eliminate V's operation on its child
   1808 static bool willShiftRightEliminate(SDValue V, unsigned Amount) {
   1809   if (V.getOpcode() == ISD::MUL) {
   1810     SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
   1811     for (int i = 0; i < 2; ++i)
   1812       if (isa<ConstantSDNode>(Ops[i].getNode()) &&
   1813           V.getConstantOperandVal(i) % (1ULL << Amount) == 0) {
   1814         uint64_t NewConst = V.getConstantOperandVal(i) >> Amount;
   1815         return (NewConst == 1);
   1816       }
   1817   } else if (V.getOpcode() == ISD::SHL) {
   1818     return (Amount == V.getConstantOperandVal(1));
   1819   }
   1820 
   1821   return false;
   1822 }
   1823 
   1824 SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) {
   1825   SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
   1826   if (V.getOpcode() == ISD::MUL) {
   1827     for (int i=0; i < 2; ++i) {
   1828       if (isa<ConstantSDNode>(Ops[i].getNode()) &&
   1829           V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) {
   1830         uint64_t NewConst = V.getConstantOperandVal(i) >> Power;
   1831         if (NewConst == 1)
   1832           return Ops[!i];
   1833         Ops[i] = CurDAG->getConstant(NewConst,
   1834                                      SDLoc(V), V.getValueType());
   1835         break;
   1836       }
   1837     }
   1838   } else if (V.getOpcode() == ISD::SHL) {
   1839     uint64_t ShiftAmount = V.getConstantOperandVal(1);
   1840     if (ShiftAmount == Power)
   1841       return Ops[0];
   1842     Ops[1] = CurDAG->getConstant(ShiftAmount - Power,
   1843                                  SDLoc(V), V.getValueType());
   1844   }
   1845 
   1846   return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops);
   1847 }
   1848 
   1849 static bool isTargetConstant(const SDValue &V) {
   1850   return V.getOpcode() == HexagonISD::CONST32 ||
   1851          V.getOpcode() == HexagonISD::CONST32_GP;
   1852 }
   1853 
   1854 unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) {
   1855   if (GAUsesInFunction.count(V))
   1856     return GAUsesInFunction[V];
   1857 
   1858   unsigned Result = 0;
   1859   const Function &CurF = CurDAG->getMachineFunction().getFunction();
   1860   for (const User *U : V->users()) {
   1861     if (isa<Instruction>(U) &&
   1862         cast<Instruction>(U)->getParent()->getParent() == &CurF)
   1863       ++Result;
   1864   }
   1865 
   1866   GAUsesInFunction[V] = Result;
   1867 
   1868   return Result;
   1869 }
   1870 
   1871 /// Note - After calling this, N may be dead. It may have been replaced by a
   1872 /// new node, so always use the returned value in place of N.
   1873 ///
   1874 /// @returns The SDValue taking the place of N (which could be N if it is
   1875 /// unchanged)
   1876 SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) {
   1877   assert(RootWeights.count(N) && "Cannot balance non-root node.");
   1878   assert(RootWeights[N] != -2 && "This node was RAUW'd!");
   1879   assert(!TopLevel || N->getOpcode() == ISD::ADD);
   1880 
   1881   // Return early if this node was already visited
   1882   if (RootWeights[N] != -1)
   1883     return SDValue(N, 0);
   1884 
   1885   assert(isOpcodeHandled(N));
   1886 
   1887   SDValue Op0 = N->getOperand(0);
   1888   SDValue Op1 = N->getOperand(1);
   1889 
   1890   // Return early if the operands will remain unchanged or are all roots
   1891   if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) &&
   1892       (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) {
   1893     SDNode *Op0N = Op0.getNode();
   1894     int Weight;
   1895     if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) {
   1896       Weight = getWeight(balanceSubTree(Op0N).getNode());
   1897       // Weight = calculateWeight(Op0N);
   1898     } else
   1899       Weight = getWeight(Op0N);
   1900 
   1901     SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd
   1902     if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) {
   1903       Weight += getWeight(balanceSubTree(Op1N).getNode());
   1904       // Weight += calculateWeight(Op1N);
   1905     } else
   1906       Weight += getWeight(Op1N);
   1907 
   1908     RootWeights[N] = Weight;
   1909     RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()),
   1910                               getHeight(N->getOperand(1).getNode())) + 1;
   1911 
   1912     LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight
   1913                       << " Height=" << RootHeights[N] << "): ");
   1914     LLVM_DEBUG(N->dump(CurDAG));
   1915 
   1916     return SDValue(N, 0);
   1917   }
   1918 
   1919   LLVM_DEBUG(dbgs() << "** Balancing root node: ");
   1920   LLVM_DEBUG(N->dump(CurDAG));
   1921 
   1922   unsigned NOpcode = N->getOpcode();
   1923 
   1924   LeafPrioQueue Leaves(NOpcode);
   1925   SmallVector<SDValue, 4> Worklist;
   1926   Worklist.push_back(SDValue(N, 0));
   1927 
   1928   // SHL nodes will be converted to MUL nodes
   1929   if (NOpcode == ISD::SHL)
   1930     NOpcode = ISD::MUL;
   1931 
   1932   bool CanFactorize = false;
   1933   WeightedLeaf Mul1, Mul2;
   1934   unsigned MaxPowerOf2 = 0;
   1935   WeightedLeaf GA;
   1936 
   1937   // Do not try to factor out a shift if there is already a shift at the tip of
   1938   // the tree.
   1939   bool HaveTopLevelShift = false;
   1940   if (TopLevel &&
   1941       ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL &&
   1942                         Op0.getConstantOperandVal(1) < 4) ||
   1943        (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL &&
   1944                         Op1.getConstantOperandVal(1) < 4)))
   1945     HaveTopLevelShift = true;
   1946 
   1947   // Flatten the subtree into an ordered list of leaves; at the same time
   1948   // determine whether the tree is already balanced.
   1949   int InsertionOrder = 0;
   1950   SmallDenseMap<SDValue, int> NodeHeights;
   1951   bool Imbalanced = false;
   1952   int CurrentWeight = 0;
   1953   while (!Worklist.empty()) {
   1954     SDValue Child = Worklist.pop_back_val();
   1955 
   1956     if (Child.getNode() != N && RootWeights.count(Child.getNode())) {
   1957       // CASE 1: Child is a root note
   1958 
   1959       int Weight = RootWeights[Child.getNode()];
   1960       if (Weight == -1) {
   1961         Child = balanceSubTree(Child.getNode());
   1962         // calculateWeight(Child.getNode());
   1963         Weight = getWeight(Child.getNode());
   1964       } else if (Weight == -2) {
   1965         // Whoops, this node was RAUWd by one of the balanceSubTree calls we
   1966         // made. Our worklist isn't up to date anymore.
   1967         // Restart the whole process.
   1968         LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
   1969         return balanceSubTree(N, TopLevel);
   1970       }
   1971 
   1972       NodeHeights[Child] = 1;
   1973       CurrentWeight += Weight;
   1974 
   1975       unsigned PowerOf2;
   1976       if (TopLevel && !CanFactorize && !HaveTopLevelShift &&
   1977           (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) &&
   1978           Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) {
   1979         // Try to identify two factorizable MUL/SHL children greedily. Leave
   1980         // them out of the priority queue for now so we can deal with them
   1981         // after.
   1982         if (!Mul1.Value.getNode()) {
   1983           Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++);
   1984           MaxPowerOf2 = PowerOf2;
   1985         } else {
   1986           Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++);
   1987           MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2);
   1988 
   1989           // Our addressing modes can only shift by a maximum of 3
   1990           if (MaxPowerOf2 > 3)
   1991             MaxPowerOf2 = 3;
   1992 
   1993           CanFactorize = true;
   1994         }
   1995       } else
   1996         Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
   1997     } else if (!isOpcodeHandled(Child.getNode())) {
   1998       // CASE 2: Child is an unhandled kind of node (e.g. constant)
   1999       int Weight = getWeight(Child.getNode());
   2000 
   2001       NodeHeights[Child] = getHeight(Child.getNode());
   2002       CurrentWeight += Weight;
   2003 
   2004       if (isTargetConstant(Child) && !GA.Value.getNode())
   2005         GA = WeightedLeaf(Child, Weight, InsertionOrder++);
   2006       else
   2007         Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
   2008     } else {
   2009       // CASE 3: Child is a subtree of same opcode
   2010       // Visit children first, then flatten.
   2011       unsigned ChildOpcode = Child.getOpcode();
   2012       assert(ChildOpcode == NOpcode ||
   2013              (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL));
   2014 
   2015       // Convert SHL to MUL
   2016       SDValue Op1;
   2017       if (ChildOpcode == ISD::SHL)
   2018         Op1 = getMultiplierForSHL(Child.getNode());
   2019       else
   2020         Op1 = Child->getOperand(1);
   2021 
   2022       if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) {
   2023         assert(!NodeHeights.count(Child) && "Parent visited before children?");
   2024         // Visit children first, then re-visit this node
   2025         Worklist.push_back(Child);
   2026         Worklist.push_back(Op1);
   2027         Worklist.push_back(Child->getOperand(0));
   2028       } else {
   2029         // Back at this node after visiting the children
   2030         if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1)
   2031           Imbalanced = true;
   2032 
   2033         NodeHeights[Child] = std::max(NodeHeights[Op1],
   2034                                       NodeHeights[Child->getOperand(0)]) + 1;
   2035       }
   2036     }
   2037   }
   2038 
   2039   LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)]
   2040                     << " weight=" << CurrentWeight
   2041                     << " imbalanced=" << Imbalanced << "\n");
   2042 
   2043   // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y)
   2044   //  This factors out a shift in order to match memw(a<<Y+b).
   2045   if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) ||
   2046                        willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) {
   2047     LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n");
   2048     int Weight = Mul1.Weight + Mul2.Weight;
   2049     int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1;
   2050     SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2);
   2051     SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2);
   2052     SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(),
   2053                                   Mul1Factored, Mul2Factored);
   2054     SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N),
   2055                                         Mul1.Value.getValueType());
   2056     SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(),
   2057                                   Sum, Const);
   2058     NodeHeights[New] = Height;
   2059     Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder));
   2060   } else if (Mul1.Value.getNode()) {
   2061     // We failed to factorize two MULs, so now the Muls are left outside the
   2062     // queue... add them back.
   2063     Leaves.push(Mul1);
   2064     if (Mul2.Value.getNode())
   2065       Leaves.push(Mul2);
   2066     CanFactorize = false;
   2067   }
   2068 
   2069   // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere
   2070   // and the root node itself is not used more than twice. This reduces the
   2071   // amount of additional constant extenders introduced by this optimization.
   2072   bool CombinedGA = false;
   2073   if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() &&
   2074       GA.Value.hasOneUse() && N->use_size() < 3) {
   2075     GlobalAddressSDNode *GANode =
   2076       cast<GlobalAddressSDNode>(GA.Value.getOperand(0));
   2077     ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value);
   2078 
   2079     if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() &&
   2080         getTargetLowering()->isOffsetFoldingLegal(GANode)) {
   2081       LLVM_DEBUG(dbgs() << "--> Combining GA and offset ("
   2082                         << Offset->getSExtValue() << "): ");
   2083       LLVM_DEBUG(GANode->dump(CurDAG));
   2084 
   2085       SDValue NewTGA =
   2086         CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value),
   2087             GANode->getValueType(0),
   2088             GANode->getOffset() + (uint64_t)Offset->getSExtValue());
   2089       GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value),
   2090           GA.Value.getValueType(), NewTGA);
   2091       GA.Weight += Leaves.top().Weight;
   2092 
   2093       NodeHeights[GA.Value] = getHeight(GA.Value.getNode());
   2094       CombinedGA = true;
   2095 
   2096       Leaves.pop(); // Remove the offset constant from the queue
   2097     }
   2098   }
   2099 
   2100   if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) ||
   2101       (RebalanceOnlyImbalancedTrees && !Imbalanced)) {
   2102     RootWeights[N] = CurrentWeight;
   2103     RootHeights[N] = NodeHeights[SDValue(N, 0)];
   2104 
   2105     return SDValue(N, 0);
   2106   }
   2107 
   2108   // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5))
   2109   if (NOpcode == ISD::ADD && GA.Value.getNode()) {
   2110     WeightedLeaf SHL = Leaves.findSHL(31);
   2111     if (SHL.Value.getNode()) {
   2112       int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1;
   2113       GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value),
   2114                                  GA.Value.getValueType(),
   2115                                  GA.Value, SHL.Value);
   2116       GA.Weight = SHL.Weight; // Specifically ignore the GA weight here
   2117       NodeHeights[GA.Value] = Height;
   2118     }
   2119   }
   2120 
   2121   if (GA.Value.getNode())
   2122     Leaves.push(GA);
   2123 
   2124   // If this is the top level and we haven't factored out a shift, we should try
   2125   // to move a constant to the bottom to match addressing modes like memw(rX+C)
   2126   if (TopLevel && !CanFactorize && Leaves.hasConst()) {
   2127     LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree.");
   2128     Leaves.pushToBottom(Leaves.pop());
   2129   }
   2130 
   2131   const DataLayout &DL = CurDAG->getDataLayout();
   2132   const TargetLowering &TLI = *getTargetLowering();
   2133 
   2134   // Rebuild the tree using Huffman's algorithm
   2135   while (Leaves.size() > 1) {
   2136     WeightedLeaf L0 = Leaves.pop();
   2137 
   2138     // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)),
   2139     // otherwise just get the next leaf
   2140     WeightedLeaf L1 = Leaves.findMULbyConst();
   2141     if (!L1.Value.getNode())
   2142       L1 = Leaves.pop();
   2143 
   2144     assert(L0.Weight <= L1.Weight && "Priority queue is broken!");
   2145 
   2146     SDValue V0 = L0.Value;
   2147     int V0Weight = L0.Weight;
   2148     SDValue V1 = L1.Value;
   2149     int V1Weight = L1.Weight;
   2150 
   2151     // Make sure that none of these nodes have been RAUW'd
   2152     if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) ||
   2153         (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) {
   2154       LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
   2155       return balanceSubTree(N, TopLevel);
   2156     }
   2157 
   2158     ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0);
   2159     ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1);
   2160     EVT VT = N->getValueType(0);
   2161     SDValue NewNode;
   2162 
   2163     if (V0C && !V1C) {
   2164       std::swap(V0, V1);
   2165       std::swap(V0C, V1C);
   2166     }
   2167 
   2168     // Calculate height of this node
   2169     assert(NodeHeights.count(V0) && NodeHeights.count(V1) &&
   2170            "Children must have been visited before re-combining them!");
   2171     int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1;
   2172 
   2173     // Rebuild this node (and restore SHL from MUL if needed)
   2174     if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2())
   2175       NewNode = CurDAG->getNode(
   2176           ISD::SHL, SDLoc(V0), VT, V0,
   2177           CurDAG->getConstant(
   2178               V1C->getAPIntValue().logBase2(), SDLoc(N),
   2179               TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
   2180     else
   2181       NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1);
   2182 
   2183     NodeHeights[NewNode] = Height;
   2184 
   2185     int Weight = V0Weight + V1Weight;
   2186     Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder));
   2187 
   2188     LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight
   2189                       << ",Height=" << Height << "):\n");
   2190     LLVM_DEBUG(NewNode.dump());
   2191   }
   2192 
   2193   assert(Leaves.size() == 1);
   2194   SDValue NewRoot = Leaves.top().Value;
   2195 
   2196   assert(NodeHeights.count(NewRoot));
   2197   int Height = NodeHeights[NewRoot];
   2198 
   2199   // Restore SHL if we earlier converted it to a MUL
   2200   if (NewRoot.getOpcode() == ISD::MUL) {
   2201     ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1));
   2202     if (V1C && V1C->getAPIntValue().isPowerOf2()) {
   2203       EVT VT = NewRoot.getValueType();
   2204       SDValue V0 = NewRoot.getOperand(0);
   2205       NewRoot = CurDAG->getNode(
   2206           ISD::SHL, SDLoc(NewRoot), VT, V0,
   2207           CurDAG->getConstant(
   2208               V1C->getAPIntValue().logBase2(), SDLoc(NewRoot),
   2209               TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
   2210     }
   2211   }
   2212 
   2213   if (N != NewRoot.getNode()) {
   2214     LLVM_DEBUG(dbgs() << "--> Root is now: ");
   2215     LLVM_DEBUG(NewRoot.dump());
   2216 
   2217     // Replace all uses of old root by new root
   2218     CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode());
   2219     // Mark that we have RAUW'd N
   2220     RootWeights[N] = -2;
   2221   } else {
   2222     LLVM_DEBUG(dbgs() << "--> Root unchanged.\n");
   2223   }
   2224 
   2225   RootWeights[NewRoot.getNode()] = Leaves.top().Weight;
   2226   RootHeights[NewRoot.getNode()] = Height;
   2227 
   2228   return NewRoot;
   2229 }
   2230 
   2231 void HexagonDAGToDAGISel::rebalanceAddressTrees() {
   2232   for (auto I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E;) {
   2233     SDNode *N = &*I++;
   2234     if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE)
   2235       continue;
   2236 
   2237     SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr();
   2238     if (BasePtr.getOpcode() != ISD::ADD)
   2239       continue;
   2240 
   2241     // We've already processed this node
   2242     if (RootWeights.count(BasePtr.getNode()))
   2243       continue;
   2244 
   2245     LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: ");
   2246     LLVM_DEBUG(N->dump(CurDAG));
   2247 
   2248     // FindRoots
   2249     SmallVector<SDNode *, 4> Worklist;
   2250 
   2251     Worklist.push_back(BasePtr.getOperand(0).getNode());
   2252     Worklist.push_back(BasePtr.getOperand(1).getNode());
   2253 
   2254     while (!Worklist.empty()) {
   2255       SDNode *N = Worklist.pop_back_val();
   2256       unsigned Opcode = N->getOpcode();
   2257 
   2258       if (!isOpcodeHandled(N))
   2259         continue;
   2260 
   2261       Worklist.push_back(N->getOperand(0).getNode());
   2262       Worklist.push_back(N->getOperand(1).getNode());
   2263 
   2264       // Not a root if it has only one use and same opcode as its parent
   2265       if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode())
   2266         continue;
   2267 
   2268       // This root node has already been processed
   2269       if (RootWeights.count(N))
   2270         continue;
   2271 
   2272       RootWeights[N] = -1;
   2273     }
   2274 
   2275     // Balance node itself
   2276     RootWeights[BasePtr.getNode()] = -1;
   2277     SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true);
   2278 
   2279     if (N->getOpcode() == ISD::LOAD)
   2280       N = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
   2281             NewBasePtr, N->getOperand(2));
   2282     else
   2283       N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1),
   2284             NewBasePtr, N->getOperand(3));
   2285 
   2286     LLVM_DEBUG(dbgs() << "--> Final node: ");
   2287     LLVM_DEBUG(N->dump(CurDAG));
   2288   }
   2289 
   2290   CurDAG->RemoveDeadNodes();
   2291   GAUsesInFunction.clear();
   2292   RootHeights.clear();
   2293   RootWeights.clear();
   2294 }
   2295