1 // Copyright 2014 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // SSE2 variant of methods for lossless decoder 11 // 12 // Author: Skal (pascal.massimino (at) gmail.com) 13 14 #include "src/dsp/dsp.h" 15 16 #if defined(WEBP_USE_SSE2) 17 18 #include "src/dsp/common_sse2.h" 19 #include "src/dsp/lossless.h" 20 #include "src/dsp/lossless_common.h" 21 #include <assert.h> 22 #include <emmintrin.h> 23 24 //------------------------------------------------------------------------------ 25 // Predictor Transform 26 27 static WEBP_INLINE uint32_t ClampedAddSubtractFull_SSE2(uint32_t c0, 28 uint32_t c1, 29 uint32_t c2) { 30 const __m128i zero = _mm_setzero_si128(); 31 const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero); 32 const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero); 33 const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero); 34 const __m128i V1 = _mm_add_epi16(C0, C1); 35 const __m128i V2 = _mm_sub_epi16(V1, C2); 36 const __m128i b = _mm_packus_epi16(V2, V2); 37 const uint32_t output = _mm_cvtsi128_si32(b); 38 return output; 39 } 40 41 static WEBP_INLINE uint32_t ClampedAddSubtractHalf_SSE2(uint32_t c0, 42 uint32_t c1, 43 uint32_t c2) { 44 const __m128i zero = _mm_setzero_si128(); 45 const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero); 46 const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero); 47 const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero); 48 const __m128i avg = _mm_add_epi16(C1, C0); 49 const __m128i A0 = _mm_srli_epi16(avg, 1); 50 const __m128i A1 = _mm_sub_epi16(A0, B0); 51 const __m128i BgtA = _mm_cmpgt_epi16(B0, A0); 52 const __m128i A2 = _mm_sub_epi16(A1, BgtA); 53 const __m128i A3 = _mm_srai_epi16(A2, 1); 54 const __m128i A4 = _mm_add_epi16(A0, A3); 55 const __m128i A5 = _mm_packus_epi16(A4, A4); 56 const uint32_t output = _mm_cvtsi128_si32(A5); 57 return output; 58 } 59 60 static WEBP_INLINE uint32_t Select_SSE2(uint32_t a, uint32_t b, uint32_t c) { 61 int pa_minus_pb; 62 const __m128i zero = _mm_setzero_si128(); 63 const __m128i A0 = _mm_cvtsi32_si128(a); 64 const __m128i B0 = _mm_cvtsi32_si128(b); 65 const __m128i C0 = _mm_cvtsi32_si128(c); 66 const __m128i AC0 = _mm_subs_epu8(A0, C0); 67 const __m128i CA0 = _mm_subs_epu8(C0, A0); 68 const __m128i BC0 = _mm_subs_epu8(B0, C0); 69 const __m128i CB0 = _mm_subs_epu8(C0, B0); 70 const __m128i AC = _mm_or_si128(AC0, CA0); 71 const __m128i BC = _mm_or_si128(BC0, CB0); 72 const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c| 73 const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c| 74 const __m128i diff = _mm_sub_epi16(pb, pa); 75 { 76 int16_t out[8]; 77 _mm_storeu_si128((__m128i*)out, diff); 78 pa_minus_pb = out[0] + out[1] + out[2] + out[3]; 79 } 80 return (pa_minus_pb <= 0) ? a : b; 81 } 82 83 static WEBP_INLINE void Average2_m128i(const __m128i* const a0, 84 const __m128i* const a1, 85 __m128i* const avg) { 86 // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) 87 const __m128i ones = _mm_set1_epi8(1); 88 const __m128i avg1 = _mm_avg_epu8(*a0, *a1); 89 const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones); 90 *avg = _mm_sub_epi8(avg1, one); 91 } 92 93 static WEBP_INLINE void Average2_uint32_SSE2(const uint32_t a0, 94 const uint32_t a1, 95 __m128i* const avg) { 96 // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) 97 const __m128i ones = _mm_set1_epi8(1); 98 const __m128i A0 = _mm_cvtsi32_si128(a0); 99 const __m128i A1 = _mm_cvtsi32_si128(a1); 100 const __m128i avg1 = _mm_avg_epu8(A0, A1); 101 const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones); 102 *avg = _mm_sub_epi8(avg1, one); 103 } 104 105 static WEBP_INLINE __m128i Average2_uint32_16_SSE2(uint32_t a0, uint32_t a1) { 106 const __m128i zero = _mm_setzero_si128(); 107 const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a0), zero); 108 const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero); 109 const __m128i sum = _mm_add_epi16(A1, A0); 110 return _mm_srli_epi16(sum, 1); 111 } 112 113 static WEBP_INLINE uint32_t Average2_SSE2(uint32_t a0, uint32_t a1) { 114 __m128i output; 115 Average2_uint32_SSE2(a0, a1, &output); 116 return _mm_cvtsi128_si32(output); 117 } 118 119 static WEBP_INLINE uint32_t Average3_SSE2(uint32_t a0, uint32_t a1, 120 uint32_t a2) { 121 const __m128i zero = _mm_setzero_si128(); 122 const __m128i avg1 = Average2_uint32_16_SSE2(a0, a2); 123 const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(a1), zero); 124 const __m128i sum = _mm_add_epi16(avg1, A1); 125 const __m128i avg2 = _mm_srli_epi16(sum, 1); 126 const __m128i A2 = _mm_packus_epi16(avg2, avg2); 127 const uint32_t output = _mm_cvtsi128_si32(A2); 128 return output; 129 } 130 131 static WEBP_INLINE uint32_t Average4_SSE2(uint32_t a0, uint32_t a1, 132 uint32_t a2, uint32_t a3) { 133 const __m128i avg1 = Average2_uint32_16_SSE2(a0, a1); 134 const __m128i avg2 = Average2_uint32_16_SSE2(a2, a3); 135 const __m128i sum = _mm_add_epi16(avg2, avg1); 136 const __m128i avg3 = _mm_srli_epi16(sum, 1); 137 const __m128i A0 = _mm_packus_epi16(avg3, avg3); 138 const uint32_t output = _mm_cvtsi128_si32(A0); 139 return output; 140 } 141 142 static uint32_t Predictor5_SSE2(uint32_t left, const uint32_t* const top) { 143 const uint32_t pred = Average3_SSE2(left, top[0], top[1]); 144 return pred; 145 } 146 static uint32_t Predictor6_SSE2(uint32_t left, const uint32_t* const top) { 147 const uint32_t pred = Average2_SSE2(left, top[-1]); 148 return pred; 149 } 150 static uint32_t Predictor7_SSE2(uint32_t left, const uint32_t* const top) { 151 const uint32_t pred = Average2_SSE2(left, top[0]); 152 return pred; 153 } 154 static uint32_t Predictor8_SSE2(uint32_t left, const uint32_t* const top) { 155 const uint32_t pred = Average2_SSE2(top[-1], top[0]); 156 (void)left; 157 return pred; 158 } 159 static uint32_t Predictor9_SSE2(uint32_t left, const uint32_t* const top) { 160 const uint32_t pred = Average2_SSE2(top[0], top[1]); 161 (void)left; 162 return pred; 163 } 164 static uint32_t Predictor10_SSE2(uint32_t left, const uint32_t* const top) { 165 const uint32_t pred = Average4_SSE2(left, top[-1], top[0], top[1]); 166 return pred; 167 } 168 static uint32_t Predictor11_SSE2(uint32_t left, const uint32_t* const top) { 169 const uint32_t pred = Select_SSE2(top[0], left, top[-1]); 170 return pred; 171 } 172 static uint32_t Predictor12_SSE2(uint32_t left, const uint32_t* const top) { 173 const uint32_t pred = ClampedAddSubtractFull_SSE2(left, top[0], top[-1]); 174 return pred; 175 } 176 static uint32_t Predictor13_SSE2(uint32_t left, const uint32_t* const top) { 177 const uint32_t pred = ClampedAddSubtractHalf_SSE2(left, top[0], top[-1]); 178 return pred; 179 } 180 181 // Batch versions of those functions. 182 183 // Predictor0: ARGB_BLACK. 184 static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper, 185 int num_pixels, uint32_t* out) { 186 int i; 187 const __m128i black = _mm_set1_epi32(ARGB_BLACK); 188 for (i = 0; i + 4 <= num_pixels; i += 4) { 189 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); 190 const __m128i res = _mm_add_epi8(src, black); 191 _mm_storeu_si128((__m128i*)&out[i], res); 192 } 193 if (i != num_pixels) { 194 VP8LPredictorsAdd_C[0](in + i, upper + i, num_pixels - i, out + i); 195 } 196 } 197 198 // Predictor1: left. 199 static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper, 200 int num_pixels, uint32_t* out) { 201 int i; 202 __m128i prev = _mm_set1_epi32(out[-1]); 203 for (i = 0; i + 4 <= num_pixels; i += 4) { 204 // a | b | c | d 205 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); 206 // 0 | a | b | c 207 const __m128i shift0 = _mm_slli_si128(src, 4); 208 // a | a + b | b + c | c + d 209 const __m128i sum0 = _mm_add_epi8(src, shift0); 210 // 0 | 0 | a | a + b 211 const __m128i shift1 = _mm_slli_si128(sum0, 8); 212 // a | a + b | a + b + c | a + b + c + d 213 const __m128i sum1 = _mm_add_epi8(sum0, shift1); 214 const __m128i res = _mm_add_epi8(sum1, prev); 215 _mm_storeu_si128((__m128i*)&out[i], res); 216 // replicate prev output on the four lanes 217 prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6)); 218 } 219 if (i != num_pixels) { 220 VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i); 221 } 222 } 223 224 // Macro that adds 32-bit integers from IN using mod 256 arithmetic 225 // per 8 bit channel. 226 #define GENERATE_PREDICTOR_1(X, IN) \ 227 static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ 228 int num_pixels, uint32_t* out) { \ 229 int i; \ 230 for (i = 0; i + 4 <= num_pixels; i += 4) { \ 231 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ 232 const __m128i other = _mm_loadu_si128((const __m128i*)&(IN)); \ 233 const __m128i res = _mm_add_epi8(src, other); \ 234 _mm_storeu_si128((__m128i*)&out[i], res); \ 235 } \ 236 if (i != num_pixels) { \ 237 VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ 238 } \ 239 } 240 241 // Predictor2: Top. 242 GENERATE_PREDICTOR_1(2, upper[i]) 243 // Predictor3: Top-right. 244 GENERATE_PREDICTOR_1(3, upper[i + 1]) 245 // Predictor4: Top-left. 246 GENERATE_PREDICTOR_1(4, upper[i - 1]) 247 #undef GENERATE_PREDICTOR_1 248 249 // Due to averages with integers, values cannot be accumulated in parallel for 250 // predictors 5 to 7. 251 GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2) 252 GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2) 253 GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2) 254 255 #define GENERATE_PREDICTOR_2(X, IN) \ 256 static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ 257 int num_pixels, uint32_t* out) { \ 258 int i; \ 259 for (i = 0; i + 4 <= num_pixels; i += 4) { \ 260 const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN)); \ 261 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); \ 262 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ 263 __m128i avg, res; \ 264 Average2_m128i(&T, &Tother, &avg); \ 265 res = _mm_add_epi8(avg, src); \ 266 _mm_storeu_si128((__m128i*)&out[i], res); \ 267 } \ 268 if (i != num_pixels) { \ 269 VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ 270 } \ 271 } 272 // Predictor8: average TL T. 273 GENERATE_PREDICTOR_2(8, upper[i - 1]) 274 // Predictor9: average T TR. 275 GENERATE_PREDICTOR_2(9, upper[i + 1]) 276 #undef GENERATE_PREDICTOR_2 277 278 // Predictor10: average of (average of (L,TL), average of (T, TR)). 279 #define DO_PRED10(OUT) do { \ 280 __m128i avgLTL, avg; \ 281 Average2_m128i(&L, &TL, &avgLTL); \ 282 Average2_m128i(&avgTTR, &avgLTL, &avg); \ 283 L = _mm_add_epi8(avg, src); \ 284 out[i + (OUT)] = _mm_cvtsi128_si32(L); \ 285 } while (0) 286 287 #define DO_PRED10_SHIFT do { \ 288 /* Rotate the pre-computed values for the next iteration.*/ \ 289 avgTTR = _mm_srli_si128(avgTTR, 4); \ 290 TL = _mm_srli_si128(TL, 4); \ 291 src = _mm_srli_si128(src, 4); \ 292 } while (0) 293 294 static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper, 295 int num_pixels, uint32_t* out) { 296 int i; 297 __m128i L = _mm_cvtsi32_si128(out[-1]); 298 for (i = 0; i + 4 <= num_pixels; i += 4) { 299 __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); 300 __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); 301 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); 302 const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); 303 __m128i avgTTR; 304 Average2_m128i(&T, &TR, &avgTTR); 305 DO_PRED10(0); 306 DO_PRED10_SHIFT; 307 DO_PRED10(1); 308 DO_PRED10_SHIFT; 309 DO_PRED10(2); 310 DO_PRED10_SHIFT; 311 DO_PRED10(3); 312 } 313 if (i != num_pixels) { 314 VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i); 315 } 316 } 317 #undef DO_PRED10 318 #undef DO_PRED10_SHIFT 319 320 // Predictor11: select. 321 #define DO_PRED11(OUT) do { \ 322 const __m128i L_lo = _mm_unpacklo_epi32(L, T); \ 323 const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); \ 324 const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/ \ 325 const __m128i mask = _mm_cmpgt_epi32(pb, pa); \ 326 const __m128i A = _mm_and_si128(mask, L); \ 327 const __m128i B = _mm_andnot_si128(mask, T); \ 328 const __m128i pred = _mm_or_si128(A, B); /* pred = (pa > b)? L : T*/ \ 329 L = _mm_add_epi8(src, pred); \ 330 out[i + (OUT)] = _mm_cvtsi128_si32(L); \ 331 } while (0) 332 333 #define DO_PRED11_SHIFT do { \ 334 /* Shift the pre-computed value for the next iteration.*/ \ 335 T = _mm_srli_si128(T, 4); \ 336 TL = _mm_srli_si128(TL, 4); \ 337 src = _mm_srli_si128(src, 4); \ 338 pa = _mm_srli_si128(pa, 4); \ 339 } while (0) 340 341 static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper, 342 int num_pixels, uint32_t* out) { 343 int i; 344 __m128i pa; 345 __m128i L = _mm_cvtsi32_si128(out[-1]); 346 for (i = 0; i + 4 <= num_pixels; i += 4) { 347 __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); 348 __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); 349 __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); 350 { 351 // We can unpack with any value on the upper 32 bits, provided it's the 352 // same on both operands (so that their sum of abs diff is zero). Here we 353 // use T. 354 const __m128i T_lo = _mm_unpacklo_epi32(T, T); 355 const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); 356 const __m128i T_hi = _mm_unpackhi_epi32(T, T); 357 const __m128i TL_hi = _mm_unpackhi_epi32(TL, T); 358 const __m128i s_lo = _mm_sad_epu8(T_lo, TL_lo); 359 const __m128i s_hi = _mm_sad_epu8(T_hi, TL_hi); 360 pa = _mm_packs_epi32(s_lo, s_hi); // pa = sum |T-TL| 361 } 362 DO_PRED11(0); 363 DO_PRED11_SHIFT; 364 DO_PRED11(1); 365 DO_PRED11_SHIFT; 366 DO_PRED11(2); 367 DO_PRED11_SHIFT; 368 DO_PRED11(3); 369 } 370 if (i != num_pixels) { 371 VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i); 372 } 373 } 374 #undef DO_PRED11 375 #undef DO_PRED11_SHIFT 376 377 // Predictor12: ClampedAddSubtractFull. 378 #define DO_PRED12(DIFF, LANE, OUT) do { \ 379 const __m128i all = _mm_add_epi16(L, (DIFF)); \ 380 const __m128i alls = _mm_packus_epi16(all, all); \ 381 const __m128i res = _mm_add_epi8(src, alls); \ 382 out[i + (OUT)] = _mm_cvtsi128_si32(res); \ 383 L = _mm_unpacklo_epi8(res, zero); \ 384 } while (0) 385 386 #define DO_PRED12_SHIFT(DIFF, LANE) do { \ 387 /* Shift the pre-computed value for the next iteration.*/ \ 388 if ((LANE) == 0) (DIFF) = _mm_srli_si128((DIFF), 8); \ 389 src = _mm_srli_si128(src, 4); \ 390 } while (0) 391 392 static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper, 393 int num_pixels, uint32_t* out) { 394 int i; 395 const __m128i zero = _mm_setzero_si128(); 396 const __m128i L8 = _mm_cvtsi32_si128(out[-1]); 397 __m128i L = _mm_unpacklo_epi8(L8, zero); 398 for (i = 0; i + 4 <= num_pixels; i += 4) { 399 // Load 4 pixels at a time. 400 __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); 401 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); 402 const __m128i T_lo = _mm_unpacklo_epi8(T, zero); 403 const __m128i T_hi = _mm_unpackhi_epi8(T, zero); 404 const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); 405 const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); 406 const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero); 407 __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo); 408 __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi); 409 DO_PRED12(diff_lo, 0, 0); 410 DO_PRED12_SHIFT(diff_lo, 0); 411 DO_PRED12(diff_lo, 1, 1); 412 DO_PRED12_SHIFT(diff_lo, 1); 413 DO_PRED12(diff_hi, 0, 2); 414 DO_PRED12_SHIFT(diff_hi, 0); 415 DO_PRED12(diff_hi, 1, 3); 416 } 417 if (i != num_pixels) { 418 VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i); 419 } 420 } 421 #undef DO_PRED12 422 #undef DO_PRED12_SHIFT 423 424 // Due to averages with integers, values cannot be accumulated in parallel for 425 // predictors 13. 426 GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2) 427 428 //------------------------------------------------------------------------------ 429 // Subtract-Green Transform 430 431 static void AddGreenToBlueAndRed_SSE2(const uint32_t* const src, int num_pixels, 432 uint32_t* dst) { 433 int i; 434 for (i = 0; i + 4 <= num_pixels; i += 4) { 435 const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb 436 const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g 437 const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); 438 const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g 439 const __m128i out = _mm_add_epi8(in, C); 440 _mm_storeu_si128((__m128i*)&dst[i], out); 441 } 442 // fallthrough and finish off with plain-C 443 if (i != num_pixels) { 444 VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i); 445 } 446 } 447 448 //------------------------------------------------------------------------------ 449 // Color Transform 450 451 static void TransformColorInverse_SSE2(const VP8LMultipliers* const m, 452 const uint32_t* const src, 453 int num_pixels, uint32_t* dst) { 454 // sign-extended multiplying constants, pre-shifted by 5. 455 #define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend 456 #define MK_CST_16(HI, LO) \ 457 _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff))) 458 const __m128i mults_rb = MK_CST_16(CST(green_to_red_), CST(green_to_blue_)); 459 const __m128i mults_b2 = MK_CST_16(CST(red_to_blue_), 0); 460 #undef MK_CST_16 461 #undef CST 462 const __m128i mask_ag = _mm_set1_epi32(0xff00ff00); // alpha-green masks 463 int i; 464 for (i = 0; i + 4 <= num_pixels; i += 4) { 465 const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb 466 const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0 467 const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); 468 const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0 469 const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1 470 const __m128i E = _mm_add_epi8(in, D); // x r' x b' 471 const __m128i F = _mm_slli_epi16(E, 8); // r' 0 b' 0 472 const __m128i G = _mm_mulhi_epi16(F, mults_b2); // x db2 0 0 473 const __m128i H = _mm_srli_epi32(G, 8); // 0 x db2 0 474 const __m128i I = _mm_add_epi8(H, F); // r' x b'' 0 475 const __m128i J = _mm_srli_epi16(I, 8); // 0 r' 0 b'' 476 const __m128i out = _mm_or_si128(J, A); 477 _mm_storeu_si128((__m128i*)&dst[i], out); 478 } 479 // Fall-back to C-version for left-overs. 480 if (i != num_pixels) { 481 VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i); 482 } 483 } 484 485 //------------------------------------------------------------------------------ 486 // Color-space conversion functions 487 488 static void ConvertBGRAToRGB_SSE2(const uint32_t* src, int num_pixels, 489 uint8_t* dst) { 490 const __m128i* in = (const __m128i*)src; 491 __m128i* out = (__m128i*)dst; 492 493 while (num_pixels >= 32) { 494 // Load the BGRA buffers. 495 __m128i in0 = _mm_loadu_si128(in + 0); 496 __m128i in1 = _mm_loadu_si128(in + 1); 497 __m128i in2 = _mm_loadu_si128(in + 2); 498 __m128i in3 = _mm_loadu_si128(in + 3); 499 __m128i in4 = _mm_loadu_si128(in + 4); 500 __m128i in5 = _mm_loadu_si128(in + 5); 501 __m128i in6 = _mm_loadu_si128(in + 6); 502 __m128i in7 = _mm_loadu_si128(in + 7); 503 VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3); 504 VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7); 505 // At this points, in1/in5 contains red only, in2/in6 green only ... 506 // Pack the colors in 24b RGB. 507 VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7); 508 _mm_storeu_si128(out + 0, in1); 509 _mm_storeu_si128(out + 1, in5); 510 _mm_storeu_si128(out + 2, in2); 511 _mm_storeu_si128(out + 3, in6); 512 _mm_storeu_si128(out + 4, in3); 513 _mm_storeu_si128(out + 5, in7); 514 in += 8; 515 out += 6; 516 num_pixels -= 32; 517 } 518 // left-overs 519 if (num_pixels > 0) { 520 VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out); 521 } 522 } 523 524 static void ConvertBGRAToRGBA_SSE2(const uint32_t* src, 525 int num_pixels, uint8_t* dst) { 526 const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ffu); 527 const __m128i* in = (const __m128i*)src; 528 __m128i* out = (__m128i*)dst; 529 while (num_pixels >= 8) { 530 const __m128i A1 = _mm_loadu_si128(in++); 531 const __m128i A2 = _mm_loadu_si128(in++); 532 const __m128i B1 = _mm_and_si128(A1, red_blue_mask); // R 0 B 0 533 const __m128i B2 = _mm_and_si128(A2, red_blue_mask); // R 0 B 0 534 const __m128i C1 = _mm_andnot_si128(red_blue_mask, A1); // 0 G 0 A 535 const __m128i C2 = _mm_andnot_si128(red_blue_mask, A2); // 0 G 0 A 536 const __m128i D1 = _mm_shufflelo_epi16(B1, _MM_SHUFFLE(2, 3, 0, 1)); 537 const __m128i D2 = _mm_shufflelo_epi16(B2, _MM_SHUFFLE(2, 3, 0, 1)); 538 const __m128i E1 = _mm_shufflehi_epi16(D1, _MM_SHUFFLE(2, 3, 0, 1)); 539 const __m128i E2 = _mm_shufflehi_epi16(D2, _MM_SHUFFLE(2, 3, 0, 1)); 540 const __m128i F1 = _mm_or_si128(E1, C1); 541 const __m128i F2 = _mm_or_si128(E2, C2); 542 _mm_storeu_si128(out++, F1); 543 _mm_storeu_si128(out++, F2); 544 num_pixels -= 8; 545 } 546 // left-overs 547 if (num_pixels > 0) { 548 VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out); 549 } 550 } 551 552 static void ConvertBGRAToRGBA4444_SSE2(const uint32_t* src, 553 int num_pixels, uint8_t* dst) { 554 const __m128i mask_0x0f = _mm_set1_epi8(0x0f); 555 const __m128i mask_0xf0 = _mm_set1_epi8(0xf0); 556 const __m128i* in = (const __m128i*)src; 557 __m128i* out = (__m128i*)dst; 558 while (num_pixels >= 8) { 559 const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 560 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 561 const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... 562 const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... 563 const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... 564 const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... 565 const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 566 const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 567 const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 568 const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 569 const __m128i ga1 = _mm_srli_epi16(ga0, 4); // g0-|g1-|...|a6-|a7- 570 const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0); // -r0|-r1|...|-b6|-a7 571 const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f); // g0-|g1-|...|a6-|a7- 572 const __m128i rgba0 = _mm_or_si128(ga2, rb1); // rg0..rg7 | ba0..ba7 573 const __m128i rgba1 = _mm_srli_si128(rgba0, 8); // ba0..ba7 | 0 574 #if (WEBP_SWAP_16BIT_CSP == 1) 575 const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0); // barg0...barg7 576 #else 577 const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1); // rgba0...rgba7 578 #endif 579 _mm_storeu_si128(out++, rgba); 580 num_pixels -= 8; 581 } 582 // left-overs 583 if (num_pixels > 0) { 584 VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out); 585 } 586 } 587 588 static void ConvertBGRAToRGB565_SSE2(const uint32_t* src, 589 int num_pixels, uint8_t* dst) { 590 const __m128i mask_0xe0 = _mm_set1_epi8(0xe0); 591 const __m128i mask_0xf8 = _mm_set1_epi8(0xf8); 592 const __m128i mask_0x07 = _mm_set1_epi8(0x07); 593 const __m128i* in = (const __m128i*)src; 594 __m128i* out = (__m128i*)dst; 595 while (num_pixels >= 8) { 596 const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 597 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 598 const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... 599 const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... 600 const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... 601 const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... 602 const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 603 const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 604 const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 605 const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 606 const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8); // -r0..-r7|-b0..-b7 607 const __m128i g_lo1 = _mm_srli_epi16(ga0, 5); 608 const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07); // g0-...g7-|xx (3b) 609 const __m128i g_hi1 = _mm_slli_epi16(ga0, 3); 610 const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0); // -g0...-g7|xx (3b) 611 const __m128i b0 = _mm_srli_si128(rb1, 8); // -b0...-b7|0 612 const __m128i rg1 = _mm_or_si128(rb1, g_lo2); // gr0...gr7|xx 613 const __m128i b1 = _mm_srli_epi16(b0, 3); 614 const __m128i gb1 = _mm_or_si128(b1, g_hi2); // bg0...bg7|xx 615 #if (WEBP_SWAP_16BIT_CSP == 1) 616 const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1); // rggb0...rggb7 617 #else 618 const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1); // bgrb0...bgrb7 619 #endif 620 _mm_storeu_si128(out++, rgba); 621 num_pixels -= 8; 622 } 623 // left-overs 624 if (num_pixels > 0) { 625 VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out); 626 } 627 } 628 629 static void ConvertBGRAToBGR_SSE2(const uint32_t* src, 630 int num_pixels, uint8_t* dst) { 631 const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff); 632 const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0); 633 const __m128i* in = (const __m128i*)src; 634 const uint8_t* const end = dst + num_pixels * 3; 635 // the last storel_epi64 below writes 8 bytes starting at offset 18 636 while (dst + 26 <= end) { 637 const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 638 const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 639 const __m128i a0l = _mm_and_si128(bgra0, mask_l); // bgr0|0|bgr0|0 640 const __m128i a4l = _mm_and_si128(bgra4, mask_l); // bgr0|0|bgr0|0 641 const __m128i a0h = _mm_and_si128(bgra0, mask_h); // 0|bgr0|0|bgr0 642 const __m128i a4h = _mm_and_si128(bgra4, mask_h); // 0|bgr0|0|bgr0 643 const __m128i b0h = _mm_srli_epi64(a0h, 8); // 000b|gr00|000b|gr00 644 const __m128i b4h = _mm_srli_epi64(a4h, 8); // 000b|gr00|000b|gr00 645 const __m128i c0 = _mm_or_si128(a0l, b0h); // rgbrgb00|rgbrgb00 646 const __m128i c4 = _mm_or_si128(a4l, b4h); // rgbrgb00|rgbrgb00 647 const __m128i c2 = _mm_srli_si128(c0, 8); 648 const __m128i c6 = _mm_srli_si128(c4, 8); 649 _mm_storel_epi64((__m128i*)(dst + 0), c0); 650 _mm_storel_epi64((__m128i*)(dst + 6), c2); 651 _mm_storel_epi64((__m128i*)(dst + 12), c4); 652 _mm_storel_epi64((__m128i*)(dst + 18), c6); 653 dst += 24; 654 num_pixels -= 8; 655 } 656 // left-overs 657 if (num_pixels > 0) { 658 VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst); 659 } 660 } 661 662 //------------------------------------------------------------------------------ 663 // Entry point 664 665 extern void VP8LDspInitSSE2(void); 666 667 WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) { 668 VP8LPredictors[5] = Predictor5_SSE2; 669 VP8LPredictors[6] = Predictor6_SSE2; 670 VP8LPredictors[7] = Predictor7_SSE2; 671 VP8LPredictors[8] = Predictor8_SSE2; 672 VP8LPredictors[9] = Predictor9_SSE2; 673 VP8LPredictors[10] = Predictor10_SSE2; 674 VP8LPredictors[11] = Predictor11_SSE2; 675 VP8LPredictors[12] = Predictor12_SSE2; 676 VP8LPredictors[13] = Predictor13_SSE2; 677 678 VP8LPredictorsAdd[0] = PredictorAdd0_SSE2; 679 VP8LPredictorsAdd[1] = PredictorAdd1_SSE2; 680 VP8LPredictorsAdd[2] = PredictorAdd2_SSE2; 681 VP8LPredictorsAdd[3] = PredictorAdd3_SSE2; 682 VP8LPredictorsAdd[4] = PredictorAdd4_SSE2; 683 VP8LPredictorsAdd[5] = PredictorAdd5_SSE2; 684 VP8LPredictorsAdd[6] = PredictorAdd6_SSE2; 685 VP8LPredictorsAdd[7] = PredictorAdd7_SSE2; 686 VP8LPredictorsAdd[8] = PredictorAdd8_SSE2; 687 VP8LPredictorsAdd[9] = PredictorAdd9_SSE2; 688 VP8LPredictorsAdd[10] = PredictorAdd10_SSE2; 689 VP8LPredictorsAdd[11] = PredictorAdd11_SSE2; 690 VP8LPredictorsAdd[12] = PredictorAdd12_SSE2; 691 VP8LPredictorsAdd[13] = PredictorAdd13_SSE2; 692 693 VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_SSE2; 694 VP8LTransformColorInverse = TransformColorInverse_SSE2; 695 696 VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE2; 697 VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_SSE2; 698 VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2; 699 VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2; 700 VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2; 701 } 702 703 #else // !WEBP_USE_SSE2 704 705 WEBP_DSP_INIT_STUB(VP8LDspInitSSE2) 706 707 #endif // WEBP_USE_SSE2 708