Home | History | Annotate | Download | only in enc
      1 // Copyright 2012 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // Author: Jyrki Alakuijala (jyrki (at) google.com)
     11 //
     12 #ifdef HAVE_CONFIG_H
     13 #include "src/webp/config.h"
     14 #endif
     15 
     16 #include <math.h>
     17 
     18 #include "src/enc/backward_references_enc.h"
     19 #include "src/enc/histogram_enc.h"
     20 #include "src/dsp/lossless.h"
     21 #include "src/dsp/lossless_common.h"
     22 #include "src/utils/utils.h"
     23 
     24 #define MAX_COST 1.e38
     25 
     26 // Number of partitions for the three dominant (literal, red and blue) symbol
     27 // costs.
     28 #define NUM_PARTITIONS 4
     29 // The size of the bin-hash corresponding to the three dominant costs.
     30 #define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS)
     31 // Maximum number of histograms allowed in greedy combining algorithm.
     32 #define MAX_HISTO_GREEDY 100
     33 
     34 static void HistogramClear(VP8LHistogram* const p) {
     35   uint32_t* const literal = p->literal_;
     36   const int cache_bits = p->palette_code_bits_;
     37   const int histo_size = VP8LGetHistogramSize(cache_bits);
     38   memset(p, 0, histo_size);
     39   p->palette_code_bits_ = cache_bits;
     40   p->literal_ = literal;
     41 }
     42 
     43 // Swap two histogram pointers.
     44 static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) {
     45   VP8LHistogram* const tmp = *A;
     46   *A = *B;
     47   *B = tmp;
     48 }
     49 
     50 static void HistogramCopy(const VP8LHistogram* const src,
     51                           VP8LHistogram* const dst) {
     52   uint32_t* const dst_literal = dst->literal_;
     53   const int dst_cache_bits = dst->palette_code_bits_;
     54   const int literal_size = VP8LHistogramNumCodes(dst_cache_bits);
     55   const int histo_size = VP8LGetHistogramSize(dst_cache_bits);
     56   assert(src->palette_code_bits_ == dst_cache_bits);
     57   memcpy(dst, src, histo_size);
     58   dst->literal_ = dst_literal;
     59   memcpy(dst->literal_, src->literal_, literal_size * sizeof(*dst->literal_));
     60 }
     61 
     62 int VP8LGetHistogramSize(int cache_bits) {
     63   const int literal_size = VP8LHistogramNumCodes(cache_bits);
     64   const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size;
     65   assert(total_size <= (size_t)0x7fffffff);
     66   return (int)total_size;
     67 }
     68 
     69 void VP8LFreeHistogram(VP8LHistogram* const histo) {
     70   WebPSafeFree(histo);
     71 }
     72 
     73 void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) {
     74   WebPSafeFree(histo);
     75 }
     76 
     77 void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs,
     78                             VP8LHistogram* const histo) {
     79   VP8LRefsCursor c = VP8LRefsCursorInit(refs);
     80   while (VP8LRefsCursorOk(&c)) {
     81     VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos, NULL, 0);
     82     VP8LRefsCursorNext(&c);
     83   }
     84 }
     85 
     86 void VP8LHistogramCreate(VP8LHistogram* const p,
     87                          const VP8LBackwardRefs* const refs,
     88                          int palette_code_bits) {
     89   if (palette_code_bits >= 0) {
     90     p->palette_code_bits_ = palette_code_bits;
     91   }
     92   HistogramClear(p);
     93   VP8LHistogramStoreRefs(refs, p);
     94 }
     95 
     96 void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits,
     97                        int init_arrays) {
     98   p->palette_code_bits_ = palette_code_bits;
     99   if (init_arrays) {
    100     HistogramClear(p);
    101   } else {
    102     p->trivial_symbol_ = 0;
    103     p->bit_cost_ = 0.;
    104     p->literal_cost_ = 0.;
    105     p->red_cost_ = 0.;
    106     p->blue_cost_ = 0.;
    107     memset(p->is_used_, 0, sizeof(p->is_used_));
    108   }
    109 }
    110 
    111 VP8LHistogram* VP8LAllocateHistogram(int cache_bits) {
    112   VP8LHistogram* histo = NULL;
    113   const int total_size = VP8LGetHistogramSize(cache_bits);
    114   uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
    115   if (memory == NULL) return NULL;
    116   histo = (VP8LHistogram*)memory;
    117   // literal_ won't necessary be aligned.
    118   histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
    119   VP8LHistogramInit(histo, cache_bits, /*init_arrays=*/ 0);
    120   return histo;
    121 }
    122 
    123 // Resets the pointers of the histograms to point to the bit buffer in the set.
    124 static void HistogramSetResetPointers(VP8LHistogramSet* const set,
    125                                       int cache_bits) {
    126   int i;
    127   const int histo_size = VP8LGetHistogramSize(cache_bits);
    128   uint8_t* memory = (uint8_t*) (set->histograms);
    129   memory += set->max_size * sizeof(*set->histograms);
    130   for (i = 0; i < set->max_size; ++i) {
    131     memory = (uint8_t*) WEBP_ALIGN(memory);
    132     set->histograms[i] = (VP8LHistogram*) memory;
    133     // literal_ won't necessary be aligned.
    134     set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
    135     memory += histo_size;
    136   }
    137 }
    138 
    139 // Returns the total size of the VP8LHistogramSet.
    140 static size_t HistogramSetTotalSize(int size, int cache_bits) {
    141   const int histo_size = VP8LGetHistogramSize(cache_bits);
    142   return (sizeof(VP8LHistogramSet) + size * (sizeof(VP8LHistogram*) +
    143           histo_size + WEBP_ALIGN_CST));
    144 }
    145 
    146 VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
    147   int i;
    148   VP8LHistogramSet* set;
    149   const size_t total_size = HistogramSetTotalSize(size, cache_bits);
    150   uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
    151   if (memory == NULL) return NULL;
    152 
    153   set = (VP8LHistogramSet*)memory;
    154   memory += sizeof(*set);
    155   set->histograms = (VP8LHistogram**)memory;
    156   set->max_size = size;
    157   set->size = size;
    158   HistogramSetResetPointers(set, cache_bits);
    159   for (i = 0; i < size; ++i) {
    160     VP8LHistogramInit(set->histograms[i], cache_bits, /*init_arrays=*/ 0);
    161   }
    162   return set;
    163 }
    164 
    165 void VP8LHistogramSetClear(VP8LHistogramSet* const set) {
    166   int i;
    167   const int cache_bits = set->histograms[0]->palette_code_bits_;
    168   const int size = set->max_size;
    169   const size_t total_size = HistogramSetTotalSize(size, cache_bits);
    170   uint8_t* memory = (uint8_t*)set;
    171 
    172   memset(memory, 0, total_size);
    173   memory += sizeof(*set);
    174   set->histograms = (VP8LHistogram**)memory;
    175   set->max_size = size;
    176   set->size = size;
    177   HistogramSetResetPointers(set, cache_bits);
    178   for (i = 0; i < size; ++i) {
    179     set->histograms[i]->palette_code_bits_ = cache_bits;
    180   }
    181 }
    182 
    183 // Removes the histogram 'i' from 'set' by setting it to NULL.
    184 static void HistogramSetRemoveHistogram(VP8LHistogramSet* const set, int i,
    185                                         int* const num_used) {
    186   assert(set->histograms[i] != NULL);
    187   set->histograms[i] = NULL;
    188   --*num_used;
    189   // If we remove the last valid one, shrink until the next valid one.
    190   if (i == set->size - 1) {
    191     while (set->size >= 1 && set->histograms[set->size - 1] == NULL) {
    192       --set->size;
    193     }
    194   }
    195 }
    196 
    197 // -----------------------------------------------------------------------------
    198 
    199 void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo,
    200                                      const PixOrCopy* const v,
    201                                      int (*const distance_modifier)(int, int),
    202                                      int distance_modifier_arg0) {
    203   if (PixOrCopyIsLiteral(v)) {
    204     ++histo->alpha_[PixOrCopyLiteral(v, 3)];
    205     ++histo->red_[PixOrCopyLiteral(v, 2)];
    206     ++histo->literal_[PixOrCopyLiteral(v, 1)];
    207     ++histo->blue_[PixOrCopyLiteral(v, 0)];
    208   } else if (PixOrCopyIsCacheIdx(v)) {
    209     const int literal_ix =
    210         NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v);
    211     ++histo->literal_[literal_ix];
    212   } else {
    213     int code, extra_bits;
    214     VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
    215     ++histo->literal_[NUM_LITERAL_CODES + code];
    216     if (distance_modifier == NULL) {
    217       VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
    218     } else {
    219       VP8LPrefixEncodeBits(
    220           distance_modifier(distance_modifier_arg0, PixOrCopyDistance(v)),
    221           &code, &extra_bits);
    222     }
    223     ++histo->distance_[code];
    224   }
    225 }
    226 
    227 // -----------------------------------------------------------------------------
    228 // Entropy-related functions.
    229 
    230 static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) {
    231   double mix;
    232   if (entropy->nonzeros < 5) {
    233     if (entropy->nonzeros <= 1) {
    234       return 0;
    235     }
    236     // Two symbols, they will be 0 and 1 in a Huffman code.
    237     // Let's mix in a bit of entropy to favor good clustering when
    238     // distributions of these are combined.
    239     if (entropy->nonzeros == 2) {
    240       return 0.99 * entropy->sum + 0.01 * entropy->entropy;
    241     }
    242     // No matter what the entropy says, we cannot be better than min_limit
    243     // with Huffman coding. I am mixing a bit of entropy into the
    244     // min_limit since it produces much better (~0.5 %) compression results
    245     // perhaps because of better entropy clustering.
    246     if (entropy->nonzeros == 3) {
    247       mix = 0.95;
    248     } else {
    249       mix = 0.7;  // nonzeros == 4.
    250     }
    251   } else {
    252     mix = 0.627;
    253   }
    254 
    255   {
    256     double min_limit = 2 * entropy->sum - entropy->max_val;
    257     min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy;
    258     return (entropy->entropy < min_limit) ? min_limit : entropy->entropy;
    259   }
    260 }
    261 
    262 double VP8LBitsEntropy(const uint32_t* const array, int n) {
    263   VP8LBitEntropy entropy;
    264   VP8LBitsEntropyUnrefined(array, n, &entropy);
    265 
    266   return BitsEntropyRefine(&entropy);
    267 }
    268 
    269 static double InitialHuffmanCost(void) {
    270   // Small bias because Huffman code length is typically not stored in
    271   // full length.
    272   static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
    273   static const double kSmallBias = 9.1;
    274   return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
    275 }
    276 
    277 // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
    278 static double FinalHuffmanCost(const VP8LStreaks* const stats) {
    279   // The constants in this function are experimental and got rounded from
    280   // their original values in 1/8 when switched to 1/1024.
    281   double retval = InitialHuffmanCost();
    282   // Second coefficient: Many zeros in the histogram are covered efficiently
    283   // by a run-length encode. Originally 2/8.
    284   retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1];
    285   // Second coefficient: Constant values are encoded less efficiently, but still
    286   // RLE'ed. Originally 6/8.
    287   retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1];
    288   // 0s are usually encoded more efficiently than non-0s.
    289   // Originally 15/8.
    290   retval += 1.796875 * stats->streaks[0][0];
    291   // Originally 26/8.
    292   retval += 3.28125 * stats->streaks[1][0];
    293   return retval;
    294 }
    295 
    296 // Get the symbol entropy for the distribution 'population'.
    297 // Set 'trivial_sym', if there's only one symbol present in the distribution.
    298 static double PopulationCost(const uint32_t* const population, int length,
    299                              uint32_t* const trivial_sym,
    300                              uint8_t* const is_used) {
    301   VP8LBitEntropy bit_entropy;
    302   VP8LStreaks stats;
    303   VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats);
    304   if (trivial_sym != NULL) {
    305     *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code
    306                                                : VP8L_NON_TRIVIAL_SYM;
    307   }
    308   // The histogram is used if there is at least one non-zero streak.
    309   *is_used = (stats.streaks[1][0] != 0 || stats.streaks[1][1] != 0);
    310 
    311   return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
    312 }
    313 
    314 // trivial_at_end is 1 if the two histograms only have one element that is
    315 // non-zero: both the zero-th one, or both the last one.
    316 static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X,
    317                                              const uint32_t* const Y,
    318                                              int length, int is_X_used,
    319                                              int is_Y_used,
    320                                              int trivial_at_end) {
    321   VP8LStreaks stats;
    322   if (trivial_at_end) {
    323     // This configuration is due to palettization that transforms an indexed
    324     // pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap.
    325     // BitsEntropyRefine is 0 for histograms with only one non-zero value.
    326     // Only FinalHuffmanCost needs to be evaluated.
    327     memset(&stats, 0, sizeof(stats));
    328     // Deal with the non-zero value at index 0 or length-1.
    329     stats.streaks[1][0] = 1;
    330     // Deal with the following/previous zero streak.
    331     stats.counts[0] = 1;
    332     stats.streaks[0][1] = length - 1;
    333     return FinalHuffmanCost(&stats);
    334   } else {
    335     VP8LBitEntropy bit_entropy;
    336     if (is_X_used) {
    337       if (is_Y_used) {
    338         VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats);
    339       } else {
    340         VP8LGetEntropyUnrefined(X, length, &bit_entropy, &stats);
    341       }
    342     } else {
    343       if (is_Y_used) {
    344         VP8LGetEntropyUnrefined(Y, length, &bit_entropy, &stats);
    345       } else {
    346         memset(&stats, 0, sizeof(stats));
    347         stats.counts[0] = 1;
    348         stats.streaks[0][length > 3] = length;
    349         VP8LBitEntropyInit(&bit_entropy);
    350       }
    351     }
    352 
    353     return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
    354   }
    355 }
    356 
    357 // Estimates the Entropy + Huffman + other block overhead size cost.
    358 double VP8LHistogramEstimateBits(VP8LHistogram* const p) {
    359   return
    360       PopulationCost(p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_),
    361                      NULL, &p->is_used_[0])
    362       + PopulationCost(p->red_, NUM_LITERAL_CODES, NULL, &p->is_used_[1])
    363       + PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL, &p->is_used_[2])
    364       + PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL, &p->is_used_[3])
    365       + PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL, &p->is_used_[4])
    366       + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
    367       + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
    368 }
    369 
    370 // -----------------------------------------------------------------------------
    371 // Various histogram combine/cost-eval functions
    372 
    373 static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
    374                                        const VP8LHistogram* const b,
    375                                        double cost_threshold,
    376                                        double* cost) {
    377   const int palette_code_bits = a->palette_code_bits_;
    378   int trivial_at_end = 0;
    379   assert(a->palette_code_bits_ == b->palette_code_bits_);
    380   *cost += GetCombinedEntropy(a->literal_, b->literal_,
    381                               VP8LHistogramNumCodes(palette_code_bits),
    382                               a->is_used_[0], b->is_used_[0], 0);
    383   *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
    384                                  b->literal_ + NUM_LITERAL_CODES,
    385                                  NUM_LENGTH_CODES);
    386   if (*cost > cost_threshold) return 0;
    387 
    388   if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM &&
    389       a->trivial_symbol_ == b->trivial_symbol_) {
    390     // A, R and B are all 0 or 0xff.
    391     const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff;
    392     const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff;
    393     const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff;
    394     if ((color_a == 0 || color_a == 0xff) &&
    395         (color_r == 0 || color_r == 0xff) &&
    396         (color_b == 0 || color_b == 0xff)) {
    397       trivial_at_end = 1;
    398     }
    399   }
    400 
    401   *cost +=
    402       GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES, a->is_used_[1],
    403                          b->is_used_[1], trivial_at_end);
    404   if (*cost > cost_threshold) return 0;
    405 
    406   *cost +=
    407       GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES, a->is_used_[2],
    408                          b->is_used_[2], trivial_at_end);
    409   if (*cost > cost_threshold) return 0;
    410 
    411   *cost +=
    412       GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES,
    413                          a->is_used_[3], b->is_used_[3], trivial_at_end);
    414   if (*cost > cost_threshold) return 0;
    415 
    416   *cost +=
    417       GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES,
    418                          a->is_used_[4], b->is_used_[4], 0);
    419   *cost +=
    420       VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES);
    421   if (*cost > cost_threshold) return 0;
    422 
    423   return 1;
    424 }
    425 
    426 static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a,
    427                                      const VP8LHistogram* const b,
    428                                      VP8LHistogram* const out) {
    429   VP8LHistogramAdd(a, b, out);
    430   out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_)
    431                        ? a->trivial_symbol_
    432                        : VP8L_NON_TRIVIAL_SYM;
    433 }
    434 
    435 // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
    436 // to the threshold value 'cost_threshold'. The score returned is
    437 //  Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
    438 // Since the previous score passed is 'cost_threshold', we only need to compare
    439 // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
    440 // early.
    441 static double HistogramAddEval(const VP8LHistogram* const a,
    442                                const VP8LHistogram* const b,
    443                                VP8LHistogram* const out,
    444                                double cost_threshold) {
    445   double cost = 0;
    446   const double sum_cost = a->bit_cost_ + b->bit_cost_;
    447   cost_threshold += sum_cost;
    448 
    449   if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) {
    450     HistogramAdd(a, b, out);
    451     out->bit_cost_ = cost;
    452     out->palette_code_bits_ = a->palette_code_bits_;
    453   }
    454 
    455   return cost - sum_cost;
    456 }
    457 
    458 // Same as HistogramAddEval(), except that the resulting histogram
    459 // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
    460 // the term C(b) which is constant over all the evaluations.
    461 static double HistogramAddThresh(const VP8LHistogram* const a,
    462                                  const VP8LHistogram* const b,
    463                                  double cost_threshold) {
    464   double cost;
    465   assert(a != NULL && b != NULL);
    466   cost = -a->bit_cost_;
    467   GetCombinedHistogramEntropy(a, b, cost_threshold, &cost);
    468   return cost;
    469 }
    470 
    471 // -----------------------------------------------------------------------------
    472 
    473 // The structure to keep track of cost range for the three dominant entropy
    474 // symbols.
    475 // TODO(skal): Evaluate if float can be used here instead of double for
    476 // representing the entropy costs.
    477 typedef struct {
    478   double literal_max_;
    479   double literal_min_;
    480   double red_max_;
    481   double red_min_;
    482   double blue_max_;
    483   double blue_min_;
    484 } DominantCostRange;
    485 
    486 static void DominantCostRangeInit(DominantCostRange* const c) {
    487   c->literal_max_ = 0.;
    488   c->literal_min_ = MAX_COST;
    489   c->red_max_ = 0.;
    490   c->red_min_ = MAX_COST;
    491   c->blue_max_ = 0.;
    492   c->blue_min_ = MAX_COST;
    493 }
    494 
    495 static void UpdateDominantCostRange(
    496     const VP8LHistogram* const h, DominantCostRange* const c) {
    497   if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_;
    498   if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_;
    499   if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_;
    500   if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_;
    501   if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_;
    502   if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_;
    503 }
    504 
    505 static void UpdateHistogramCost(VP8LHistogram* const h) {
    506   uint32_t alpha_sym, red_sym, blue_sym;
    507   const double alpha_cost =
    508       PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym,
    509                      &h->is_used_[3]);
    510   const double distance_cost =
    511       PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL, &h->is_used_[4]) +
    512       VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES);
    513   const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
    514   h->literal_cost_ =
    515       PopulationCost(h->literal_, num_codes, NULL, &h->is_used_[0]) +
    516           VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES);
    517   h->red_cost_ =
    518       PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym, &h->is_used_[1]);
    519   h->blue_cost_ =
    520       PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym, &h->is_used_[2]);
    521   h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
    522                  alpha_cost + distance_cost;
    523   if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) {
    524     h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM;
    525   } else {
    526     h->trivial_symbol_ =
    527         ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0);
    528   }
    529 }
    530 
    531 static int GetBinIdForEntropy(double min, double max, double val) {
    532   const double range = max - min;
    533   if (range > 0.) {
    534     const double delta = val - min;
    535     return (int)((NUM_PARTITIONS - 1e-6) * delta / range);
    536   } else {
    537     return 0;
    538   }
    539 }
    540 
    541 static int GetHistoBinIndex(const VP8LHistogram* const h,
    542                             const DominantCostRange* const c, int low_effort) {
    543   int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_,
    544                                   h->literal_cost_);
    545   assert(bin_id < NUM_PARTITIONS);
    546   if (!low_effort) {
    547     bin_id = bin_id * NUM_PARTITIONS
    548            + GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_);
    549     bin_id = bin_id * NUM_PARTITIONS
    550            + GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_);
    551     assert(bin_id < BIN_SIZE);
    552   }
    553   return bin_id;
    554 }
    555 
    556 // Construct the histograms from backward references.
    557 static void HistogramBuild(
    558     int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs,
    559     VP8LHistogramSet* const image_histo) {
    560   int x = 0, y = 0;
    561   const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
    562   VP8LHistogram** const histograms = image_histo->histograms;
    563   VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs);
    564   assert(histo_bits > 0);
    565   VP8LHistogramSetClear(image_histo);
    566   while (VP8LRefsCursorOk(&c)) {
    567     const PixOrCopy* const v = c.cur_pos;
    568     const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
    569     VP8LHistogramAddSinglePixOrCopy(histograms[ix], v, NULL, 0);
    570     x += PixOrCopyLength(v);
    571     while (x >= xsize) {
    572       x -= xsize;
    573       ++y;
    574     }
    575     VP8LRefsCursorNext(&c);
    576   }
    577 }
    578 
    579 // Copies the histograms and computes its bit_cost.
    580 static const uint16_t kInvalidHistogramSymbol = (uint16_t)(-1);
    581 static void HistogramCopyAndAnalyze(VP8LHistogramSet* const orig_histo,
    582                                     VP8LHistogramSet* const image_histo,
    583                                     int* const num_used,
    584                                     uint16_t* const histogram_symbols) {
    585   int i, cluster_id;
    586   int num_used_orig = *num_used;
    587   VP8LHistogram** const orig_histograms = orig_histo->histograms;
    588   VP8LHistogram** const histograms = image_histo->histograms;
    589   assert(image_histo->max_size == orig_histo->max_size);
    590   for (cluster_id = 0, i = 0; i < orig_histo->max_size; ++i) {
    591     VP8LHistogram* const histo = orig_histograms[i];
    592     UpdateHistogramCost(histo);
    593 
    594     // Skip the histogram if it is completely empty, which can happen for tiles
    595     // with no information (when they are skipped because of LZ77).
    596     if (!histo->is_used_[0] && !histo->is_used_[1] && !histo->is_used_[2]
    597         && !histo->is_used_[3] && !histo->is_used_[4]) {
    598       // The first histogram is always used. If an histogram is empty, we set
    599       // its id to be the same as the previous one: this will improve
    600       // compressibility for later LZ77.
    601       assert(i > 0);
    602       HistogramSetRemoveHistogram(image_histo, i, num_used);
    603       HistogramSetRemoveHistogram(orig_histo, i, &num_used_orig);
    604       histogram_symbols[i] = kInvalidHistogramSymbol;
    605     } else {
    606       // Copy histograms from orig_histo[] to image_histo[].
    607       HistogramCopy(histo, histograms[i]);
    608       histogram_symbols[i] = cluster_id++;
    609       assert(cluster_id <= image_histo->max_size);
    610     }
    611   }
    612 }
    613 
    614 // Partition histograms to different entropy bins for three dominant (literal,
    615 // red and blue) symbol costs and compute the histogram aggregate bit_cost.
    616 static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo,
    617                                        uint16_t* const bin_map,
    618                                        int low_effort) {
    619   int i;
    620   VP8LHistogram** const histograms = image_histo->histograms;
    621   const int histo_size = image_histo->size;
    622   DominantCostRange cost_range;
    623   DominantCostRangeInit(&cost_range);
    624 
    625   // Analyze the dominant (literal, red and blue) entropy costs.
    626   for (i = 0; i < histo_size; ++i) {
    627     if (histograms[i] == NULL) continue;
    628     UpdateDominantCostRange(histograms[i], &cost_range);
    629   }
    630 
    631   // bin-hash histograms on three of the dominant (literal, red and blue)
    632   // symbol costs and store the resulting bin_id for each histogram.
    633   for (i = 0; i < histo_size; ++i) {
    634     // bin_map[i] is not set to a special value as its use will later be guarded
    635     // by another (histograms[i] == NULL).
    636     if (histograms[i] == NULL) continue;
    637     bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort);
    638   }
    639 }
    640 
    641 // Merges some histograms with same bin_id together if it's advantageous.
    642 // Sets the remaining histograms to NULL.
    643 static void HistogramCombineEntropyBin(VP8LHistogramSet* const image_histo,
    644                                        int *num_used,
    645                                        const uint16_t* const clusters,
    646                                        uint16_t* const cluster_mappings,
    647                                        VP8LHistogram* cur_combo,
    648                                        const uint16_t* const bin_map,
    649                                        int num_bins,
    650                                        double combine_cost_factor,
    651                                        int low_effort) {
    652   VP8LHistogram** const histograms = image_histo->histograms;
    653   int idx;
    654   struct {
    655     int16_t first;    // position of the histogram that accumulates all
    656                       // histograms with the same bin_id
    657     uint16_t num_combine_failures;   // number of combine failures per bin_id
    658   } bin_info[BIN_SIZE];
    659 
    660   assert(num_bins <= BIN_SIZE);
    661   for (idx = 0; idx < num_bins; ++idx) {
    662     bin_info[idx].first = -1;
    663     bin_info[idx].num_combine_failures = 0;
    664   }
    665 
    666   // By default, a cluster matches itself.
    667   for (idx = 0; idx < *num_used; ++idx) cluster_mappings[idx] = idx;
    668   for (idx = 0; idx < image_histo->size; ++idx) {
    669     int bin_id, first;
    670     if (histograms[idx] == NULL) continue;
    671     bin_id = bin_map[idx];
    672     first = bin_info[bin_id].first;
    673     if (first == -1) {
    674       bin_info[bin_id].first = idx;
    675     } else if (low_effort) {
    676       HistogramAdd(histograms[idx], histograms[first], histograms[first]);
    677       HistogramSetRemoveHistogram(image_histo, idx, num_used);
    678       cluster_mappings[clusters[idx]] = clusters[first];
    679     } else {
    680       // try to merge #idx into #first (both share the same bin_id)
    681       const double bit_cost = histograms[idx]->bit_cost_;
    682       const double bit_cost_thresh = -bit_cost * combine_cost_factor;
    683       const double curr_cost_diff =
    684           HistogramAddEval(histograms[first], histograms[idx],
    685                            cur_combo, bit_cost_thresh);
    686       if (curr_cost_diff < bit_cost_thresh) {
    687         // Try to merge two histograms only if the combo is a trivial one or
    688         // the two candidate histograms are already non-trivial.
    689         // For some images, 'try_combine' turns out to be false for a lot of
    690         // histogram pairs. In that case, we fallback to combining
    691         // histograms as usual to avoid increasing the header size.
    692         const int try_combine =
    693             (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) ||
    694             ((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) &&
    695              (histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM));
    696         const int max_combine_failures = 32;
    697         if (try_combine ||
    698             bin_info[bin_id].num_combine_failures >= max_combine_failures) {
    699           // move the (better) merged histogram to its final slot
    700           HistogramSwap(&cur_combo, &histograms[first]);
    701           HistogramSetRemoveHistogram(image_histo, idx, num_used);
    702           cluster_mappings[clusters[idx]] = clusters[first];
    703         } else {
    704           ++bin_info[bin_id].num_combine_failures;
    705         }
    706       }
    707     }
    708   }
    709   if (low_effort) {
    710     // for low_effort case, update the final cost when everything is merged
    711     for (idx = 0; idx < image_histo->size; ++idx) {
    712       if (histograms[idx] == NULL) continue;
    713       UpdateHistogramCost(histograms[idx]);
    714     }
    715   }
    716 }
    717 
    718 // Implement a Lehmer random number generator with a multiplicative constant of
    719 // 48271 and a modulo constant of 2^31 - 1.
    720 static uint32_t MyRand(uint32_t* const seed) {
    721   *seed = (uint32_t)(((uint64_t)(*seed) * 48271u) % 2147483647u);
    722   assert(*seed > 0);
    723   return *seed;
    724 }
    725 
    726 // -----------------------------------------------------------------------------
    727 // Histogram pairs priority queue
    728 
    729 // Pair of histograms. Negative idx1 value means that pair is out-of-date.
    730 typedef struct {
    731   int idx1;
    732   int idx2;
    733   double cost_diff;
    734   double cost_combo;
    735 } HistogramPair;
    736 
    737 typedef struct {
    738   HistogramPair* queue;
    739   int size;
    740   int max_size;
    741 } HistoQueue;
    742 
    743 static int HistoQueueInit(HistoQueue* const histo_queue, const int max_size) {
    744   histo_queue->size = 0;
    745   histo_queue->max_size = max_size;
    746   // We allocate max_size + 1 because the last element at index "size" is
    747   // used as temporary data (and it could be up to max_size).
    748   histo_queue->queue = (HistogramPair*)WebPSafeMalloc(
    749       histo_queue->max_size + 1, sizeof(*histo_queue->queue));
    750   return histo_queue->queue != NULL;
    751 }
    752 
    753 static void HistoQueueClear(HistoQueue* const histo_queue) {
    754   assert(histo_queue != NULL);
    755   WebPSafeFree(histo_queue->queue);
    756   histo_queue->size = 0;
    757   histo_queue->max_size = 0;
    758 }
    759 
    760 // Pop a specific pair in the queue by replacing it with the last one
    761 // and shrinking the queue.
    762 static void HistoQueuePopPair(HistoQueue* const histo_queue,
    763                               HistogramPair* const pair) {
    764   assert(pair >= histo_queue->queue &&
    765          pair < (histo_queue->queue + histo_queue->size));
    766   assert(histo_queue->size > 0);
    767   *pair = histo_queue->queue[histo_queue->size - 1];
    768   --histo_queue->size;
    769 }
    770 
    771 // Check whether a pair in the queue should be updated as head or not.
    772 static void HistoQueueUpdateHead(HistoQueue* const histo_queue,
    773                                  HistogramPair* const pair) {
    774   assert(pair->cost_diff < 0.);
    775   assert(pair >= histo_queue->queue &&
    776          pair < (histo_queue->queue + histo_queue->size));
    777   assert(histo_queue->size > 0);
    778   if (pair->cost_diff < histo_queue->queue[0].cost_diff) {
    779     // Replace the best pair.
    780     const HistogramPair tmp = histo_queue->queue[0];
    781     histo_queue->queue[0] = *pair;
    782     *pair = tmp;
    783   }
    784 }
    785 
    786 // Update the cost diff and combo of a pair of histograms. This needs to be
    787 // called when the the histograms have been merged with a third one.
    788 static void HistoQueueUpdatePair(const VP8LHistogram* const h1,
    789                                  const VP8LHistogram* const h2,
    790                                  double threshold,
    791                                  HistogramPair* const pair) {
    792   const double sum_cost = h1->bit_cost_ + h2->bit_cost_;
    793   pair->cost_combo = 0.;
    794   GetCombinedHistogramEntropy(h1, h2, sum_cost + threshold, &pair->cost_combo);
    795   pair->cost_diff = pair->cost_combo - sum_cost;
    796 }
    797 
    798 // Create a pair from indices "idx1" and "idx2" provided its cost
    799 // is inferior to "threshold", a negative entropy.
    800 // It returns the cost of the pair, or 0. if it superior to threshold.
    801 static double HistoQueuePush(HistoQueue* const histo_queue,
    802                              VP8LHistogram** const histograms, int idx1,
    803                              int idx2, double threshold) {
    804   const VP8LHistogram* h1;
    805   const VP8LHistogram* h2;
    806   HistogramPair pair;
    807 
    808   // Stop here if the queue is full.
    809   if (histo_queue->size == histo_queue->max_size) return 0.;
    810   assert(threshold <= 0.);
    811   if (idx1 > idx2) {
    812     const int tmp = idx2;
    813     idx2 = idx1;
    814     idx1 = tmp;
    815   }
    816   pair.idx1 = idx1;
    817   pair.idx2 = idx2;
    818   h1 = histograms[idx1];
    819   h2 = histograms[idx2];
    820 
    821   HistoQueueUpdatePair(h1, h2, threshold, &pair);
    822 
    823   // Do not even consider the pair if it does not improve the entropy.
    824   if (pair.cost_diff >= threshold) return 0.;
    825 
    826   histo_queue->queue[histo_queue->size++] = pair;
    827   HistoQueueUpdateHead(histo_queue, &histo_queue->queue[histo_queue->size - 1]);
    828 
    829   return pair.cost_diff;
    830 }
    831 
    832 // -----------------------------------------------------------------------------
    833 
    834 // Combines histograms by continuously choosing the one with the highest cost
    835 // reduction.
    836 static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo,
    837                                   int* const num_used) {
    838   int ok = 0;
    839   const int image_histo_size = image_histo->size;
    840   int i, j;
    841   VP8LHistogram** const histograms = image_histo->histograms;
    842   // Priority queue of histogram pairs.
    843   HistoQueue histo_queue;
    844 
    845   // image_histo_size^2 for the queue size is safe. If you look at
    846   // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes
    847   // data to the queue, you insert at most:
    848   // - image_histo_size*(image_histo_size-1)/2 (the first two for loops)
    849   // - image_histo_size - 1 in the last for loop at the first iteration of
    850   //   the while loop, image_histo_size - 2 at the second iteration ...
    851   //   therefore image_histo_size*(image_histo_size-1)/2 overall too
    852   if (!HistoQueueInit(&histo_queue, image_histo_size * image_histo_size)) {
    853     goto End;
    854   }
    855 
    856   for (i = 0; i < image_histo_size; ++i) {
    857     if (image_histo->histograms[i] == NULL) continue;
    858     for (j = i + 1; j < image_histo_size; ++j) {
    859       // Initialize queue.
    860       if (image_histo->histograms[j] == NULL) continue;
    861       HistoQueuePush(&histo_queue, histograms, i, j, 0.);
    862     }
    863   }
    864 
    865   while (histo_queue.size > 0) {
    866     const int idx1 = histo_queue.queue[0].idx1;
    867     const int idx2 = histo_queue.queue[0].idx2;
    868     HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]);
    869     histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
    870 
    871     // Remove merged histogram.
    872     HistogramSetRemoveHistogram(image_histo, idx2, num_used);
    873 
    874     // Remove pairs intersecting the just combined best pair.
    875     for (i = 0; i < histo_queue.size;) {
    876       HistogramPair* const p = histo_queue.queue + i;
    877       if (p->idx1 == idx1 || p->idx2 == idx1 ||
    878           p->idx1 == idx2 || p->idx2 == idx2) {
    879         HistoQueuePopPair(&histo_queue, p);
    880       } else {
    881         HistoQueueUpdateHead(&histo_queue, p);
    882         ++i;
    883       }
    884     }
    885 
    886     // Push new pairs formed with combined histogram to the queue.
    887     for (i = 0; i < image_histo->size; ++i) {
    888       if (i == idx1 || image_histo->histograms[i] == NULL) continue;
    889       HistoQueuePush(&histo_queue, image_histo->histograms, idx1, i, 0.);
    890     }
    891   }
    892 
    893   ok = 1;
    894 
    895  End:
    896   HistoQueueClear(&histo_queue);
    897   return ok;
    898 }
    899 
    900 // Perform histogram aggregation using a stochastic approach.
    901 // 'do_greedy' is set to 1 if a greedy approach needs to be performed
    902 // afterwards, 0 otherwise.
    903 static int PairComparison(const void* idx1, const void* idx2) {
    904   // To be used with bsearch: <0 when *idx1<*idx2, >0 if >, 0 when ==.
    905   return (*(int*) idx1 - *(int*) idx2);
    906 }
    907 static int HistogramCombineStochastic(VP8LHistogramSet* const image_histo,
    908                                       int* const num_used, int min_cluster_size,
    909                                       int* const do_greedy) {
    910   int j, iter;
    911   uint32_t seed = 1;
    912   int tries_with_no_success = 0;
    913   const int outer_iters = *num_used;
    914   const int num_tries_no_success = outer_iters / 2;
    915   VP8LHistogram** const histograms = image_histo->histograms;
    916   // Priority queue of histogram pairs. Its size of 'kHistoQueueSize'
    917   // impacts the quality of the compression and the speed: the smaller the
    918   // faster but the worse for the compression.
    919   HistoQueue histo_queue;
    920   const int kHistoQueueSize = 9;
    921   int ok = 0;
    922   // mapping from an index in image_histo with no NULL histogram to the full
    923   // blown image_histo.
    924   int* mappings;
    925 
    926   if (*num_used < min_cluster_size) {
    927     *do_greedy = 1;
    928     return 1;
    929   }
    930 
    931   mappings = (int*) WebPSafeMalloc(*num_used, sizeof(*mappings));
    932   if (mappings == NULL) return 0;
    933   if (!HistoQueueInit(&histo_queue, kHistoQueueSize)) goto End;
    934   // Fill the initial mapping.
    935   for (j = 0, iter = 0; iter < image_histo->size; ++iter) {
    936     if (histograms[iter] == NULL) continue;
    937     mappings[j++] = iter;
    938   }
    939   assert(j == *num_used);
    940 
    941   // Collapse similar histograms in 'image_histo'.
    942   for (iter = 0;
    943        iter < outer_iters && *num_used >= min_cluster_size &&
    944            ++tries_with_no_success < num_tries_no_success;
    945        ++iter) {
    946     int* mapping_index;
    947     double best_cost =
    948         (histo_queue.size == 0) ? 0. : histo_queue.queue[0].cost_diff;
    949     int best_idx1 = -1, best_idx2 = 1;
    950     const uint32_t rand_range = (*num_used - 1) * (*num_used);
    951     // (*num_used) / 2 was chosen empirically. Less means faster but worse
    952     // compression.
    953     const int num_tries = (*num_used) / 2;
    954 
    955     // Pick random samples.
    956     for (j = 0; *num_used >= 2 && j < num_tries; ++j) {
    957       double curr_cost;
    958       // Choose two different histograms at random and try to combine them.
    959       const uint32_t tmp = MyRand(&seed) % rand_range;
    960       uint32_t idx1 = tmp / (*num_used - 1);
    961       uint32_t idx2 = tmp % (*num_used - 1);
    962       if (idx2 >= idx1) ++idx2;
    963       idx1 = mappings[idx1];
    964       idx2 = mappings[idx2];
    965 
    966       // Calculate cost reduction on combination.
    967       curr_cost =
    968           HistoQueuePush(&histo_queue, histograms, idx1, idx2, best_cost);
    969       if (curr_cost < 0) {  // found a better pair?
    970         best_cost = curr_cost;
    971         // Empty the queue if we reached full capacity.
    972         if (histo_queue.size == histo_queue.max_size) break;
    973       }
    974     }
    975     if (histo_queue.size == 0) continue;
    976 
    977     // Get the best histograms.
    978     best_idx1 = histo_queue.queue[0].idx1;
    979     best_idx2 = histo_queue.queue[0].idx2;
    980     assert(best_idx1 < best_idx2);
    981     // Pop best_idx2 from mappings.
    982     mapping_index = (int*) bsearch(&best_idx2, mappings, *num_used,
    983                                    sizeof(best_idx2), &PairComparison);
    984     assert(mapping_index != NULL);
    985     memmove(mapping_index, mapping_index + 1, sizeof(*mapping_index) *
    986         ((*num_used) - (mapping_index - mappings) - 1));
    987     // Merge the histograms and remove best_idx2 from the queue.
    988     HistogramAdd(histograms[best_idx2], histograms[best_idx1],
    989                  histograms[best_idx1]);
    990     histograms[best_idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
    991     HistogramSetRemoveHistogram(image_histo, best_idx2, num_used);
    992     // Parse the queue and update each pair that deals with best_idx1,
    993     // best_idx2 or image_histo_size.
    994     for (j = 0; j < histo_queue.size;) {
    995       HistogramPair* const p = histo_queue.queue + j;
    996       const int is_idx1_best = p->idx1 == best_idx1 || p->idx1 == best_idx2;
    997       const int is_idx2_best = p->idx2 == best_idx1 || p->idx2 == best_idx2;
    998       int do_eval = 0;
    999       // The front pair could have been duplicated by a random pick so
   1000       // check for it all the time nevertheless.
   1001       if (is_idx1_best && is_idx2_best) {
   1002         HistoQueuePopPair(&histo_queue, p);
   1003         continue;
   1004       }
   1005       // Any pair containing one of the two best indices should only refer to
   1006       // best_idx1. Its cost should also be updated.
   1007       if (is_idx1_best) {
   1008         p->idx1 = best_idx1;
   1009         do_eval = 1;
   1010       } else if (is_idx2_best) {
   1011         p->idx2 = best_idx1;
   1012         do_eval = 1;
   1013       }
   1014       // Make sure the index order is respected.
   1015       if (p->idx1 > p->idx2) {
   1016         const int tmp = p->idx2;
   1017         p->idx2 = p->idx1;
   1018         p->idx1 = tmp;
   1019       }
   1020       if (do_eval) {
   1021         // Re-evaluate the cost of an updated pair.
   1022         HistoQueueUpdatePair(histograms[p->idx1], histograms[p->idx2], 0., p);
   1023         if (p->cost_diff >= 0.) {
   1024           HistoQueuePopPair(&histo_queue, p);
   1025           continue;
   1026         }
   1027       }
   1028       HistoQueueUpdateHead(&histo_queue, p);
   1029       ++j;
   1030     }
   1031     tries_with_no_success = 0;
   1032   }
   1033   *do_greedy = (*num_used <= min_cluster_size);
   1034   ok = 1;
   1035 
   1036 End:
   1037   HistoQueueClear(&histo_queue);
   1038   WebPSafeFree(mappings);
   1039   return ok;
   1040 }
   1041 
   1042 // -----------------------------------------------------------------------------
   1043 // Histogram refinement
   1044 
   1045 // Find the best 'out' histogram for each of the 'in' histograms.
   1046 // At call-time, 'out' contains the histograms of the clusters.
   1047 // Note: we assume that out[]->bit_cost_ is already up-to-date.
   1048 static void HistogramRemap(const VP8LHistogramSet* const in,
   1049                            VP8LHistogramSet* const out,
   1050                            uint16_t* const symbols) {
   1051   int i;
   1052   VP8LHistogram** const in_histo = in->histograms;
   1053   VP8LHistogram** const out_histo = out->histograms;
   1054   const int in_size = out->max_size;
   1055   const int out_size = out->size;
   1056   if (out_size > 1) {
   1057     for (i = 0; i < in_size; ++i) {
   1058       int best_out = 0;
   1059       double best_bits = MAX_COST;
   1060       int k;
   1061       if (in_histo[i] == NULL) {
   1062         // Arbitrarily set to the previous value if unused to help future LZ77.
   1063         symbols[i] = symbols[i - 1];
   1064         continue;
   1065       }
   1066       for (k = 0; k < out_size; ++k) {
   1067         double cur_bits;
   1068         cur_bits = HistogramAddThresh(out_histo[k], in_histo[i], best_bits);
   1069         if (k == 0 || cur_bits < best_bits) {
   1070           best_bits = cur_bits;
   1071           best_out = k;
   1072         }
   1073       }
   1074       symbols[i] = best_out;
   1075     }
   1076   } else {
   1077     assert(out_size == 1);
   1078     for (i = 0; i < in_size; ++i) {
   1079       symbols[i] = 0;
   1080     }
   1081   }
   1082 
   1083   // Recompute each out based on raw and symbols.
   1084   VP8LHistogramSetClear(out);
   1085   out->size = out_size;
   1086 
   1087   for (i = 0; i < in_size; ++i) {
   1088     int idx;
   1089     if (in_histo[i] == NULL) continue;
   1090     idx = symbols[i];
   1091     HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]);
   1092   }
   1093 }
   1094 
   1095 static double GetCombineCostFactor(int histo_size, int quality) {
   1096   double combine_cost_factor = 0.16;
   1097   if (quality < 90) {
   1098     if (histo_size > 256) combine_cost_factor /= 2.;
   1099     if (histo_size > 512) combine_cost_factor /= 2.;
   1100     if (histo_size > 1024) combine_cost_factor /= 2.;
   1101     if (quality <= 50) combine_cost_factor /= 2.;
   1102   }
   1103   return combine_cost_factor;
   1104 }
   1105 
   1106 // Given a HistogramSet 'set', the mapping of clusters 'cluster_mapping' and the
   1107 // current assignment of the cells in 'symbols', merge the clusters and
   1108 // assign the smallest possible clusters values.
   1109 static void OptimizeHistogramSymbols(const VP8LHistogramSet* const set,
   1110                                      uint16_t* const cluster_mappings,
   1111                                      int num_clusters,
   1112                                      uint16_t* const cluster_mappings_tmp,
   1113                                      uint16_t* const symbols) {
   1114   int i, cluster_max;
   1115   int do_continue = 1;
   1116   // First, assign the lowest cluster to each pixel.
   1117   while (do_continue) {
   1118     do_continue = 0;
   1119     for (i = 0; i < num_clusters; ++i) {
   1120       int k;
   1121       k = cluster_mappings[i];
   1122       while (k != cluster_mappings[k]) {
   1123         cluster_mappings[k] = cluster_mappings[cluster_mappings[k]];
   1124         k = cluster_mappings[k];
   1125       }
   1126       if (k != cluster_mappings[i]) {
   1127         do_continue = 1;
   1128         cluster_mappings[i] = k;
   1129       }
   1130     }
   1131   }
   1132   // Create a mapping from a cluster id to its minimal version.
   1133   cluster_max = 0;
   1134   memset(cluster_mappings_tmp, 0,
   1135          set->max_size * sizeof(*cluster_mappings_tmp));
   1136   assert(cluster_mappings[0] == 0);
   1137   // Re-map the ids.
   1138   for (i = 0; i < set->max_size; ++i) {
   1139     int cluster;
   1140     if (symbols[i] == kInvalidHistogramSymbol) continue;
   1141     cluster = cluster_mappings[symbols[i]];
   1142     assert(symbols[i] < num_clusters);
   1143     if (cluster > 0 && cluster_mappings_tmp[cluster] == 0) {
   1144       ++cluster_max;
   1145       cluster_mappings_tmp[cluster] = cluster_max;
   1146     }
   1147     symbols[i] = cluster_mappings_tmp[cluster];
   1148   }
   1149 
   1150   // Make sure all cluster values are used.
   1151   cluster_max = 0;
   1152   for (i = 0; i < set->max_size; ++i) {
   1153     if (symbols[i] == kInvalidHistogramSymbol) continue;
   1154     if (symbols[i] <= cluster_max) continue;
   1155     ++cluster_max;
   1156     assert(symbols[i] == cluster_max);
   1157   }
   1158 }
   1159 
   1160 static void RemoveEmptyHistograms(VP8LHistogramSet* const image_histo) {
   1161   uint32_t size;
   1162   int i;
   1163   for (i = 0, size = 0; i < image_histo->size; ++i) {
   1164     if (image_histo->histograms[i] == NULL) continue;
   1165     image_histo->histograms[size++] = image_histo->histograms[i];
   1166   }
   1167   image_histo->size = size;
   1168 }
   1169 
   1170 int VP8LGetHistoImageSymbols(int xsize, int ysize,
   1171                              const VP8LBackwardRefs* const refs,
   1172                              int quality, int low_effort,
   1173                              int histo_bits, int cache_bits,
   1174                              VP8LHistogramSet* const image_histo,
   1175                              VP8LHistogram* const tmp_histo,
   1176                              uint16_t* const histogram_symbols) {
   1177   int ok = 0;
   1178   const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
   1179   const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
   1180   const int image_histo_raw_size = histo_xsize * histo_ysize;
   1181   VP8LHistogramSet* const orig_histo =
   1182       VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
   1183   // Don't attempt linear bin-partition heuristic for
   1184   // histograms of small sizes (as bin_map will be very sparse) and
   1185   // maximum quality q==100 (to preserve the compression gains at that level).
   1186   const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE;
   1187   int entropy_combine;
   1188   uint16_t* const map_tmp =
   1189       WebPSafeMalloc(2 * image_histo_raw_size, sizeof(map_tmp));
   1190   uint16_t* const cluster_mappings = map_tmp + image_histo_raw_size;
   1191   int num_used = image_histo_raw_size;
   1192   if (orig_histo == NULL || map_tmp == NULL) goto Error;
   1193 
   1194   // Construct the histograms from backward references.
   1195   HistogramBuild(xsize, histo_bits, refs, orig_histo);
   1196   // Copies the histograms and computes its bit_cost.
   1197   // histogram_symbols is optimized
   1198   HistogramCopyAndAnalyze(orig_histo, image_histo, &num_used,
   1199                           histogram_symbols);
   1200 
   1201   entropy_combine =
   1202       (num_used > entropy_combine_num_bins * 2) && (quality < 100);
   1203 
   1204   if (entropy_combine) {
   1205     uint16_t* const bin_map = map_tmp;
   1206     const double combine_cost_factor =
   1207         GetCombineCostFactor(image_histo_raw_size, quality);
   1208     const uint32_t num_clusters = num_used;
   1209 
   1210     HistogramAnalyzeEntropyBin(image_histo, bin_map, low_effort);
   1211     // Collapse histograms with similar entropy.
   1212     HistogramCombineEntropyBin(image_histo, &num_used, histogram_symbols,
   1213                                cluster_mappings, tmp_histo, bin_map,
   1214                                entropy_combine_num_bins, combine_cost_factor,
   1215                                low_effort);
   1216     OptimizeHistogramSymbols(image_histo, cluster_mappings, num_clusters,
   1217                              map_tmp, histogram_symbols);
   1218   }
   1219 
   1220   // Don't combine the histograms using stochastic and greedy heuristics for
   1221   // low-effort compression mode.
   1222   if (!low_effort || !entropy_combine) {
   1223     const float x = quality / 100.f;
   1224     // cubic ramp between 1 and MAX_HISTO_GREEDY:
   1225     const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1));
   1226     int do_greedy;
   1227     if (!HistogramCombineStochastic(image_histo, &num_used, threshold_size,
   1228                                     &do_greedy)) {
   1229       goto Error;
   1230     }
   1231     if (do_greedy) {
   1232       RemoveEmptyHistograms(image_histo);
   1233       if (!HistogramCombineGreedy(image_histo, &num_used)) {
   1234         goto Error;
   1235       }
   1236     }
   1237   }
   1238 
   1239   // Find the optimal map from original histograms to the final ones.
   1240   RemoveEmptyHistograms(image_histo);
   1241   HistogramRemap(orig_histo, image_histo, histogram_symbols);
   1242 
   1243   ok = 1;
   1244 
   1245  Error:
   1246   VP8LFreeHistogramSet(orig_histo);
   1247   WebPSafeFree(map_tmp);
   1248   return ok;
   1249 }
   1250