Home | History | Annotate | Download | only in common
      1 /*
      2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
      3  *
      4  * This source code is subject to the terms of the BSD 2 Clause License and
      5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
      6  * was not distributed with this source code in the LICENSE file, you can
      7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
      8  * Media Patent License 1.0 was not distributed with this source code in the
      9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
     10  */
     11 
     12 #ifndef AOM_AV1_COMMON_MV_H_
     13 #define AOM_AV1_COMMON_MV_H_
     14 
     15 #include "av1/common/common.h"
     16 #include "av1/common/common_data.h"
     17 #include "aom_dsp/aom_filter.h"
     18 
     19 #ifdef __cplusplus
     20 extern "C" {
     21 #endif
     22 
     23 #define INVALID_MV 0x80008000
     24 
     25 typedef struct mv {
     26   int16_t row;
     27   int16_t col;
     28 } MV;
     29 
     30 static const MV kZeroMv = { 0, 0 };
     31 
     32 typedef union int_mv {
     33   uint32_t as_int;
     34   MV as_mv;
     35 } int_mv; /* facilitates faster equality tests and copies */
     36 
     37 typedef struct mv32 {
     38   int32_t row;
     39   int32_t col;
     40 } MV32;
     41 
     42 // Bits of precision used for the model
     43 #define WARPEDMODEL_PREC_BITS 16
     44 #define WARPEDMODEL_ROW3HOMO_PREC_BITS 16
     45 
     46 #define WARPEDMODEL_TRANS_CLAMP (128 << WARPEDMODEL_PREC_BITS)
     47 #define WARPEDMODEL_NONDIAGAFFINE_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 3))
     48 #define WARPEDMODEL_ROW3HOMO_CLAMP (1 << (WARPEDMODEL_PREC_BITS - 2))
     49 
     50 // Bits of subpel precision for warped interpolation
     51 #define WARPEDPIXEL_PREC_BITS 6
     52 #define WARPEDPIXEL_PREC_SHIFTS (1 << WARPEDPIXEL_PREC_BITS)
     53 
     54 #define WARP_PARAM_REDUCE_BITS 6
     55 
     56 #define WARPEDDIFF_PREC_BITS (WARPEDMODEL_PREC_BITS - WARPEDPIXEL_PREC_BITS)
     57 
     58 /* clang-format off */
     59 enum {
     60   IDENTITY = 0,      // identity transformation, 0-parameter
     61   TRANSLATION = 1,   // translational motion 2-parameter
     62   ROTZOOM = 2,       // simplified affine with rotation + zoom only, 4-parameter
     63   AFFINE = 3,        // affine, 6-parameter
     64   TRANS_TYPES,
     65 } UENUM1BYTE(TransformationType);
     66 /* clang-format on */
     67 
     68 // Number of types used for global motion (must be >= 3 and <= TRANS_TYPES)
     69 // The following can be useful:
     70 // GLOBAL_TRANS_TYPES 3 - up to rotation-zoom
     71 // GLOBAL_TRANS_TYPES 4 - up to affine
     72 // GLOBAL_TRANS_TYPES 6 - up to hor/ver trapezoids
     73 // GLOBAL_TRANS_TYPES 7 - up to full homography
     74 #define GLOBAL_TRANS_TYPES 4
     75 
     76 typedef struct {
     77   int global_warp_allowed;
     78   int local_warp_allowed;
     79 } WarpTypesAllowed;
     80 
     81 // number of parameters used by each transformation in TransformationTypes
     82 static const int trans_model_params[TRANS_TYPES] = { 0, 2, 4, 6 };
     83 
     84 // The order of values in the wmmat matrix below is best described
     85 // by the homography:
     86 //      [x'     (m2 m3 m0   [x
     87 //  z .  y'  =   m4 m5 m1 *  y
     88 //       1]      m6 m7 1)    1]
     89 typedef struct {
     90   int32_t wmmat[8];
     91   int16_t alpha, beta, gamma, delta;
     92   TransformationType wmtype;
     93   int8_t invalid;
     94 } WarpedMotionParams;
     95 
     96 /* clang-format off */
     97 static const WarpedMotionParams default_warp_params = {
     98   { 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0, 0, (1 << WARPEDMODEL_PREC_BITS), 0,
     99     0 },
    100   0, 0, 0, 0,
    101   IDENTITY,
    102   0,
    103 };
    104 /* clang-format on */
    105 
    106 // The following constants describe the various precisions
    107 // of different parameters in the global motion experiment.
    108 //
    109 // Given the general homography:
    110 //      [x'     (a  b  c   [x
    111 //  z .  y'  =   d  e  f *  y
    112 //       1]      g  h  i)    1]
    113 //
    114 // Constants using the name ALPHA here are related to parameters
    115 // a, b, d, e. Constants using the name TRANS are related
    116 // to parameters c and f.
    117 //
    118 // Anything ending in PREC_BITS is the number of bits of precision
    119 // to maintain when converting from double to integer.
    120 //
    121 // The ABS parameters are used to create an upper and lower bound
    122 // for each parameter. In other words, after a parameter is integerized
    123 // it is clamped between -(1 << ABS_XXX_BITS) and (1 << ABS_XXX_BITS).
    124 //
    125 // XXX_PREC_DIFF and XXX_DECODE_FACTOR
    126 // are computed once here to prevent repetitive
    127 // computation on the decoder side. These are
    128 // to allow the global motion parameters to be encoded in a lower
    129 // precision than the warped model precision. This means that they
    130 // need to be changed to warped precision when they are decoded.
    131 //
    132 // XX_MIN, XX_MAX are also computed to avoid repeated computation
    133 
    134 #define SUBEXPFIN_K 3
    135 #define GM_TRANS_PREC_BITS 6
    136 #define GM_ABS_TRANS_BITS 12
    137 #define GM_ABS_TRANS_ONLY_BITS (GM_ABS_TRANS_BITS - GM_TRANS_PREC_BITS + 3)
    138 #define GM_TRANS_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_TRANS_PREC_BITS)
    139 #define GM_TRANS_ONLY_PREC_DIFF (WARPEDMODEL_PREC_BITS - 3)
    140 #define GM_TRANS_DECODE_FACTOR (1 << GM_TRANS_PREC_DIFF)
    141 #define GM_TRANS_ONLY_DECODE_FACTOR (1 << GM_TRANS_ONLY_PREC_DIFF)
    142 
    143 #define GM_ALPHA_PREC_BITS 15
    144 #define GM_ABS_ALPHA_BITS 12
    145 #define GM_ALPHA_PREC_DIFF (WARPEDMODEL_PREC_BITS - GM_ALPHA_PREC_BITS)
    146 #define GM_ALPHA_DECODE_FACTOR (1 << GM_ALPHA_PREC_DIFF)
    147 
    148 #define GM_ROW3HOMO_PREC_BITS 16
    149 #define GM_ABS_ROW3HOMO_BITS 11
    150 #define GM_ROW3HOMO_PREC_DIFF \
    151   (WARPEDMODEL_ROW3HOMO_PREC_BITS - GM_ROW3HOMO_PREC_BITS)
    152 #define GM_ROW3HOMO_DECODE_FACTOR (1 << GM_ROW3HOMO_PREC_DIFF)
    153 
    154 #define GM_TRANS_MAX (1 << GM_ABS_TRANS_BITS)
    155 #define GM_ALPHA_MAX (1 << GM_ABS_ALPHA_BITS)
    156 #define GM_ROW3HOMO_MAX (1 << GM_ABS_ROW3HOMO_BITS)
    157 
    158 #define GM_TRANS_MIN -GM_TRANS_MAX
    159 #define GM_ALPHA_MIN -GM_ALPHA_MAX
    160 #define GM_ROW3HOMO_MIN -GM_ROW3HOMO_MAX
    161 
    162 static INLINE int block_center_x(int mi_col, BLOCK_SIZE bs) {
    163   const int bw = block_size_wide[bs];
    164   return mi_col * MI_SIZE + bw / 2 - 1;
    165 }
    166 
    167 static INLINE int block_center_y(int mi_row, BLOCK_SIZE bs) {
    168   const int bh = block_size_high[bs];
    169   return mi_row * MI_SIZE + bh / 2 - 1;
    170 }
    171 
    172 static INLINE int convert_to_trans_prec(int allow_hp, int coor) {
    173   if (allow_hp)
    174     return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 3);
    175   else
    176     return ROUND_POWER_OF_TWO_SIGNED(coor, WARPEDMODEL_PREC_BITS - 2) * 2;
    177 }
    178 static INLINE void integer_mv_precision(MV *mv) {
    179   int mod = (mv->row % 8);
    180   if (mod != 0) {
    181     mv->row -= mod;
    182     if (abs(mod) > 4) {
    183       if (mod > 0) {
    184         mv->row += 8;
    185       } else {
    186         mv->row -= 8;
    187       }
    188     }
    189   }
    190 
    191   mod = (mv->col % 8);
    192   if (mod != 0) {
    193     mv->col -= mod;
    194     if (abs(mod) > 4) {
    195       if (mod > 0) {
    196         mv->col += 8;
    197       } else {
    198         mv->col -= 8;
    199       }
    200     }
    201   }
    202 }
    203 // Convert a global motion vector into a motion vector at the centre of the
    204 // given block.
    205 //
    206 // The resulting motion vector will have three fractional bits of precision. If
    207 // allow_hp is zero, the bottom bit will always be zero. If CONFIG_AMVR and
    208 // is_integer is true, the bottom three bits will be zero (so the motion vector
    209 // represents an integer)
    210 static INLINE int_mv gm_get_motion_vector(const WarpedMotionParams *gm,
    211                                           int allow_hp, BLOCK_SIZE bsize,
    212                                           int mi_col, int mi_row,
    213                                           int is_integer) {
    214   int_mv res;
    215 
    216   if (gm->wmtype == IDENTITY) {
    217     res.as_int = 0;
    218     return res;
    219   }
    220 
    221   const int32_t *mat = gm->wmmat;
    222   int x, y, tx, ty;
    223 
    224   if (gm->wmtype == TRANSLATION) {
    225     // All global motion vectors are stored with WARPEDMODEL_PREC_BITS (16)
    226     // bits of fractional precision. The offset for a translation is stored in
    227     // entries 0 and 1. For translations, all but the top three (two if
    228     // cm->allow_high_precision_mv is false) fractional bits are always zero.
    229     //
    230     // After the right shifts, there are 3 fractional bits of precision. If
    231     // allow_hp is false, the bottom bit is always zero (so we don't need a
    232     // call to convert_to_trans_prec here)
    233     res.as_mv.row = gm->wmmat[0] >> GM_TRANS_ONLY_PREC_DIFF;
    234     res.as_mv.col = gm->wmmat[1] >> GM_TRANS_ONLY_PREC_DIFF;
    235     assert(IMPLIES(1 & (res.as_mv.row | res.as_mv.col), allow_hp));
    236     if (is_integer) {
    237       integer_mv_precision(&res.as_mv);
    238     }
    239     return res;
    240   }
    241 
    242   x = block_center_x(mi_col, bsize);
    243   y = block_center_y(mi_row, bsize);
    244 
    245   if (gm->wmtype == ROTZOOM) {
    246     assert(gm->wmmat[5] == gm->wmmat[2]);
    247     assert(gm->wmmat[4] == -gm->wmmat[3]);
    248   }
    249 
    250   const int xc =
    251       (mat[2] - (1 << WARPEDMODEL_PREC_BITS)) * x + mat[3] * y + mat[0];
    252   const int yc =
    253       mat[4] * x + (mat[5] - (1 << WARPEDMODEL_PREC_BITS)) * y + mat[1];
    254   tx = convert_to_trans_prec(allow_hp, xc);
    255   ty = convert_to_trans_prec(allow_hp, yc);
    256 
    257   res.as_mv.row = ty;
    258   res.as_mv.col = tx;
    259 
    260   if (is_integer) {
    261     integer_mv_precision(&res.as_mv);
    262   }
    263   return res;
    264 }
    265 
    266 static INLINE TransformationType get_wmtype(const WarpedMotionParams *gm) {
    267   if (gm->wmmat[5] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[4] &&
    268       gm->wmmat[2] == (1 << WARPEDMODEL_PREC_BITS) && !gm->wmmat[3]) {
    269     return ((!gm->wmmat[1] && !gm->wmmat[0]) ? IDENTITY : TRANSLATION);
    270   }
    271   if (gm->wmmat[2] == gm->wmmat[5] && gm->wmmat[3] == -gm->wmmat[4])
    272     return ROTZOOM;
    273   else
    274     return AFFINE;
    275 }
    276 
    277 typedef struct candidate_mv {
    278   int_mv this_mv;
    279   int_mv comp_mv;
    280   int weight;
    281 } CANDIDATE_MV;
    282 
    283 static INLINE int is_zero_mv(const MV *mv) {
    284   return *((const uint32_t *)mv) == 0;
    285 }
    286 
    287 static INLINE int is_equal_mv(const MV *a, const MV *b) {
    288   return *((const uint32_t *)a) == *((const uint32_t *)b);
    289 }
    290 
    291 static INLINE void clamp_mv(MV *mv, int min_col, int max_col, int min_row,
    292                             int max_row) {
    293   mv->col = clamp(mv->col, min_col, max_col);
    294   mv->row = clamp(mv->row, min_row, max_row);
    295 }
    296 
    297 #ifdef __cplusplus
    298 }  // extern "C"
    299 #endif
    300 
    301 #endif  // AOM_AV1_COMMON_MV_H_
    302