1 /* 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 /* 12 * Contains the API functions for the AEC. 13 */ 14 #include "webrtc/modules/audio_processing/aec/echo_cancellation.h" 15 16 #include <math.h> 17 #ifdef WEBRTC_AEC_DEBUG_DUMP 18 #include <stdio.h> 19 #endif 20 #include <stdlib.h> 21 #include <string.h> 22 23 #include "webrtc/common_audio/ring_buffer.h" 24 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" 25 #include "webrtc/modules/audio_processing/aec/aec_core.h" 26 #include "webrtc/modules/audio_processing/aec/aec_resampler.h" 27 #include "webrtc/modules/audio_processing/aec/echo_cancellation_internal.h" 28 #include "webrtc/typedefs.h" 29 30 // Measured delays [ms] 31 // Device Chrome GTP 32 // MacBook Air 10 33 // MacBook Retina 10 100 34 // MacPro 30? 35 // 36 // Win7 Desktop 70 80? 37 // Win7 T430s 110 38 // Win8 T420s 70 39 // 40 // Daisy 50 41 // Pixel (w/ preproc?) 240 42 // Pixel (w/o preproc?) 110 110 43 44 // The extended filter mode gives us the flexibility to ignore the system's 45 // reported delays. We do this for platforms which we believe provide results 46 // which are incompatible with the AEC's expectations. Based on measurements 47 // (some provided above) we set a conservative (i.e. lower than measured) 48 // fixed delay. 49 // 50 // WEBRTC_UNTRUSTED_DELAY will only have an impact when |extended_filter_mode| 51 // is enabled. See the note along with |DelayCorrection| in 52 // echo_cancellation_impl.h for more details on the mode. 53 // 54 // Justification: 55 // Chromium/Mac: Here, the true latency is so low (~10-20 ms), that it plays 56 // havoc with the AEC's buffering. To avoid this, we set a fixed delay of 20 ms 57 // and then compensate by rewinding by 10 ms (in wideband) through 58 // kDelayDiffOffsetSamples. This trick does not seem to work for larger rewind 59 // values, but fortunately this is sufficient. 60 // 61 // Chromium/Linux(ChromeOS): The values we get on this platform don't correspond 62 // well to reality. The variance doesn't match the AEC's buffer changes, and the 63 // bulk values tend to be too low. However, the range across different hardware 64 // appears to be too large to choose a single value. 65 // 66 // GTP/Linux(ChromeOS): TBD, but for the moment we will trust the values. 67 #if defined(WEBRTC_CHROMIUM_BUILD) && defined(WEBRTC_MAC) 68 #define WEBRTC_UNTRUSTED_DELAY 69 #endif 70 71 #if defined(WEBRTC_UNTRUSTED_DELAY) && defined(WEBRTC_MAC) 72 static const int kDelayDiffOffsetSamples = -160; 73 #else 74 // Not enabled for now. 75 static const int kDelayDiffOffsetSamples = 0; 76 #endif 77 78 #if defined(WEBRTC_MAC) 79 static const int kFixedDelayMs = 20; 80 #else 81 static const int kFixedDelayMs = 50; 82 #endif 83 #if !defined(WEBRTC_UNTRUSTED_DELAY) 84 static const int kMinTrustedDelayMs = 20; 85 #endif 86 static const int kMaxTrustedDelayMs = 500; 87 88 // Maximum length of resampled signal. Must be an integer multiple of frames 89 // (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN 90 // The factor of 2 handles wb, and the + 1 is as a safety margin 91 // TODO(bjornv): Replace with kResamplerBufferSize 92 #define MAX_RESAMP_LEN (5 * FRAME_LEN) 93 94 static const int kMaxBufSizeStart = 62; // In partitions 95 static const int sampMsNb = 8; // samples per ms in nb 96 static const int initCheck = 42; 97 98 #ifdef WEBRTC_AEC_DEBUG_DUMP 99 int webrtc_aec_instance_count = 0; 100 #endif 101 102 // Estimates delay to set the position of the far-end buffer read pointer 103 // (controlled by knownDelay) 104 static void EstBufDelayNormal(Aec* aecInst); 105 static void EstBufDelayExtended(Aec* aecInst); 106 static int ProcessNormal(Aec* self, 107 const float* const* near, 108 size_t num_bands, 109 float* const* out, 110 size_t num_samples, 111 int16_t reported_delay_ms, 112 int32_t skew); 113 static void ProcessExtended(Aec* self, 114 const float* const* near, 115 size_t num_bands, 116 float* const* out, 117 size_t num_samples, 118 int16_t reported_delay_ms, 119 int32_t skew); 120 121 void* WebRtcAec_Create() { 122 Aec* aecpc = malloc(sizeof(Aec)); 123 124 if (!aecpc) { 125 return NULL; 126 } 127 128 aecpc->aec = WebRtcAec_CreateAec(); 129 if (!aecpc->aec) { 130 WebRtcAec_Free(aecpc); 131 return NULL; 132 } 133 aecpc->resampler = WebRtcAec_CreateResampler(); 134 if (!aecpc->resampler) { 135 WebRtcAec_Free(aecpc); 136 return NULL; 137 } 138 // Create far-end pre-buffer. The buffer size has to be large enough for 139 // largest possible drift compensation (kResamplerBufferSize) + "almost" an 140 // FFT buffer (PART_LEN2 - 1). 141 aecpc->far_pre_buf = 142 WebRtc_CreateBuffer(PART_LEN2 + kResamplerBufferSize, sizeof(float)); 143 if (!aecpc->far_pre_buf) { 144 WebRtcAec_Free(aecpc); 145 return NULL; 146 } 147 148 aecpc->initFlag = 0; 149 150 #ifdef WEBRTC_AEC_DEBUG_DUMP 151 { 152 char filename[64]; 153 sprintf(filename, "aec_buf%d.dat", webrtc_aec_instance_count); 154 aecpc->bufFile = fopen(filename, "wb"); 155 sprintf(filename, "aec_skew%d.dat", webrtc_aec_instance_count); 156 aecpc->skewFile = fopen(filename, "wb"); 157 sprintf(filename, "aec_delay%d.dat", webrtc_aec_instance_count); 158 aecpc->delayFile = fopen(filename, "wb"); 159 webrtc_aec_instance_count++; 160 } 161 #endif 162 163 return aecpc; 164 } 165 166 void WebRtcAec_Free(void* aecInst) { 167 Aec* aecpc = aecInst; 168 169 if (aecpc == NULL) { 170 return; 171 } 172 173 WebRtc_FreeBuffer(aecpc->far_pre_buf); 174 175 #ifdef WEBRTC_AEC_DEBUG_DUMP 176 fclose(aecpc->bufFile); 177 fclose(aecpc->skewFile); 178 fclose(aecpc->delayFile); 179 #endif 180 181 WebRtcAec_FreeAec(aecpc->aec); 182 WebRtcAec_FreeResampler(aecpc->resampler); 183 free(aecpc); 184 } 185 186 int32_t WebRtcAec_Init(void* aecInst, int32_t sampFreq, int32_t scSampFreq) { 187 Aec* aecpc = aecInst; 188 AecConfig aecConfig; 189 190 if (sampFreq != 8000 && 191 sampFreq != 16000 && 192 sampFreq != 32000 && 193 sampFreq != 48000) { 194 return AEC_BAD_PARAMETER_ERROR; 195 } 196 aecpc->sampFreq = sampFreq; 197 198 if (scSampFreq < 1 || scSampFreq > 96000) { 199 return AEC_BAD_PARAMETER_ERROR; 200 } 201 aecpc->scSampFreq = scSampFreq; 202 203 // Initialize echo canceller core 204 if (WebRtcAec_InitAec(aecpc->aec, aecpc->sampFreq) == -1) { 205 return AEC_UNSPECIFIED_ERROR; 206 } 207 208 if (WebRtcAec_InitResampler(aecpc->resampler, aecpc->scSampFreq) == -1) { 209 return AEC_UNSPECIFIED_ERROR; 210 } 211 212 WebRtc_InitBuffer(aecpc->far_pre_buf); 213 WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); // Start overlap. 214 215 aecpc->initFlag = initCheck; // indicates that initialization has been done 216 217 if (aecpc->sampFreq == 32000 || aecpc->sampFreq == 48000) { 218 aecpc->splitSampFreq = 16000; 219 } else { 220 aecpc->splitSampFreq = sampFreq; 221 } 222 223 aecpc->delayCtr = 0; 224 aecpc->sampFactor = (aecpc->scSampFreq * 1.0f) / aecpc->splitSampFreq; 225 // Sampling frequency multiplier (SWB is processed as 160 frame size). 226 aecpc->rate_factor = aecpc->splitSampFreq / 8000; 227 228 aecpc->sum = 0; 229 aecpc->counter = 0; 230 aecpc->checkBuffSize = 1; 231 aecpc->firstVal = 0; 232 233 // We skip the startup_phase completely (setting to 0) if DA-AEC is enabled, 234 // but not extended_filter mode. 235 aecpc->startup_phase = WebRtcAec_extended_filter_enabled(aecpc->aec) || 236 !WebRtcAec_delay_agnostic_enabled(aecpc->aec); 237 aecpc->bufSizeStart = 0; 238 aecpc->checkBufSizeCtr = 0; 239 aecpc->msInSndCardBuf = 0; 240 aecpc->filtDelay = -1; // -1 indicates an initialized state. 241 aecpc->timeForDelayChange = 0; 242 aecpc->knownDelay = 0; 243 aecpc->lastDelayDiff = 0; 244 245 aecpc->skewFrCtr = 0; 246 aecpc->resample = kAecFalse; 247 aecpc->highSkewCtr = 0; 248 aecpc->skew = 0; 249 250 aecpc->farend_started = 0; 251 252 // Default settings. 253 aecConfig.nlpMode = kAecNlpModerate; 254 aecConfig.skewMode = kAecFalse; 255 aecConfig.metricsMode = kAecFalse; 256 aecConfig.delay_logging = kAecFalse; 257 258 if (WebRtcAec_set_config(aecpc, aecConfig) == -1) { 259 return AEC_UNSPECIFIED_ERROR; 260 } 261 262 return 0; 263 } 264 265 // Returns any error that is caused when buffering the 266 // far-end signal. 267 int32_t WebRtcAec_GetBufferFarendError(void* aecInst, 268 const float* farend, 269 size_t nrOfSamples) { 270 Aec* aecpc = aecInst; 271 272 if (!farend) 273 return AEC_NULL_POINTER_ERROR; 274 275 if (aecpc->initFlag != initCheck) 276 return AEC_UNINITIALIZED_ERROR; 277 278 // number of samples == 160 for SWB input 279 if (nrOfSamples != 80 && nrOfSamples != 160) 280 return AEC_BAD_PARAMETER_ERROR; 281 282 return 0; 283 } 284 285 // only buffer L band for farend 286 int32_t WebRtcAec_BufferFarend(void* aecInst, 287 const float* farend, 288 size_t nrOfSamples) { 289 Aec* aecpc = aecInst; 290 size_t newNrOfSamples = nrOfSamples; 291 float new_farend[MAX_RESAMP_LEN]; 292 const float* farend_ptr = farend; 293 294 // Get any error caused by buffering the farend signal. 295 int32_t error_code = WebRtcAec_GetBufferFarendError(aecInst, farend, 296 nrOfSamples); 297 298 if (error_code != 0) 299 return error_code; 300 301 302 if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) { 303 // Resample and get a new number of samples 304 WebRtcAec_ResampleLinear(aecpc->resampler, 305 farend, 306 nrOfSamples, 307 aecpc->skew, 308 new_farend, 309 &newNrOfSamples); 310 farend_ptr = new_farend; 311 } 312 313 aecpc->farend_started = 1; 314 WebRtcAec_SetSystemDelay( 315 aecpc->aec, WebRtcAec_system_delay(aecpc->aec) + (int)newNrOfSamples); 316 317 // Write the time-domain data to |far_pre_buf|. 318 WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_ptr, newNrOfSamples); 319 320 // TODO(minyue): reduce to |PART_LEN| samples for each buffering, when 321 // WebRtcAec_BufferFarendPartition() is changed to take |PART_LEN| samples. 322 while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) { 323 // We have enough data to pass to the FFT, hence read PART_LEN2 samples. 324 { 325 float* ptmp = NULL; 326 float tmp[PART_LEN2]; 327 WebRtc_ReadBuffer(aecpc->far_pre_buf, (void**)&ptmp, tmp, PART_LEN2); 328 WebRtcAec_BufferFarendPartition(aecpc->aec, ptmp); 329 } 330 331 // Rewind |far_pre_buf| PART_LEN samples for overlap before continuing. 332 WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); 333 } 334 335 return 0; 336 } 337 338 int32_t WebRtcAec_Process(void* aecInst, 339 const float* const* nearend, 340 size_t num_bands, 341 float* const* out, 342 size_t nrOfSamples, 343 int16_t msInSndCardBuf, 344 int32_t skew) { 345 Aec* aecpc = aecInst; 346 int32_t retVal = 0; 347 348 if (out == NULL) { 349 return AEC_NULL_POINTER_ERROR; 350 } 351 352 if (aecpc->initFlag != initCheck) { 353 return AEC_UNINITIALIZED_ERROR; 354 } 355 356 // number of samples == 160 for SWB input 357 if (nrOfSamples != 80 && nrOfSamples != 160) { 358 return AEC_BAD_PARAMETER_ERROR; 359 } 360 361 if (msInSndCardBuf < 0) { 362 msInSndCardBuf = 0; 363 retVal = AEC_BAD_PARAMETER_WARNING; 364 } else if (msInSndCardBuf > kMaxTrustedDelayMs) { 365 // The clamping is now done in ProcessExtended/Normal(). 366 retVal = AEC_BAD_PARAMETER_WARNING; 367 } 368 369 // This returns the value of aec->extended_filter_enabled. 370 if (WebRtcAec_extended_filter_enabled(aecpc->aec)) { 371 ProcessExtended(aecpc, 372 nearend, 373 num_bands, 374 out, 375 nrOfSamples, 376 msInSndCardBuf, 377 skew); 378 } else { 379 retVal = ProcessNormal(aecpc, 380 nearend, 381 num_bands, 382 out, 383 nrOfSamples, 384 msInSndCardBuf, 385 skew); 386 } 387 388 #ifdef WEBRTC_AEC_DEBUG_DUMP 389 { 390 int16_t far_buf_size_ms = (int16_t)(WebRtcAec_system_delay(aecpc->aec) / 391 (sampMsNb * aecpc->rate_factor)); 392 (void)fwrite(&far_buf_size_ms, 2, 1, aecpc->bufFile); 393 (void)fwrite( 394 &aecpc->knownDelay, sizeof(aecpc->knownDelay), 1, aecpc->delayFile); 395 } 396 #endif 397 398 return retVal; 399 } 400 401 int WebRtcAec_set_config(void* handle, AecConfig config) { 402 Aec* self = (Aec*)handle; 403 if (self->initFlag != initCheck) { 404 return AEC_UNINITIALIZED_ERROR; 405 } 406 407 if (config.skewMode != kAecFalse && config.skewMode != kAecTrue) { 408 return AEC_BAD_PARAMETER_ERROR; 409 } 410 self->skewMode = config.skewMode; 411 412 if (config.nlpMode != kAecNlpConservative && 413 config.nlpMode != kAecNlpModerate && 414 config.nlpMode != kAecNlpAggressive) { 415 return AEC_BAD_PARAMETER_ERROR; 416 } 417 418 if (config.metricsMode != kAecFalse && config.metricsMode != kAecTrue) { 419 return AEC_BAD_PARAMETER_ERROR; 420 } 421 422 if (config.delay_logging != kAecFalse && config.delay_logging != kAecTrue) { 423 return AEC_BAD_PARAMETER_ERROR; 424 } 425 426 WebRtcAec_SetConfigCore( 427 self->aec, config.nlpMode, config.metricsMode, config.delay_logging); 428 return 0; 429 } 430 431 int WebRtcAec_get_echo_status(void* handle, int* status) { 432 Aec* self = (Aec*)handle; 433 if (status == NULL) { 434 return AEC_NULL_POINTER_ERROR; 435 } 436 if (self->initFlag != initCheck) { 437 return AEC_UNINITIALIZED_ERROR; 438 } 439 440 *status = WebRtcAec_echo_state(self->aec); 441 442 return 0; 443 } 444 445 int WebRtcAec_GetMetrics(void* handle, AecMetrics* metrics) { 446 const float kUpWeight = 0.7f; 447 float dtmp; 448 int stmp; 449 Aec* self = (Aec*)handle; 450 Stats erl; 451 Stats erle; 452 Stats a_nlp; 453 454 if (handle == NULL) { 455 return -1; 456 } 457 if (metrics == NULL) { 458 return AEC_NULL_POINTER_ERROR; 459 } 460 if (self->initFlag != initCheck) { 461 return AEC_UNINITIALIZED_ERROR; 462 } 463 464 WebRtcAec_GetEchoStats(self->aec, &erl, &erle, &a_nlp); 465 466 // ERL 467 metrics->erl.instant = (int)erl.instant; 468 469 if ((erl.himean > kOffsetLevel) && (erl.average > kOffsetLevel)) { 470 // Use a mix between regular average and upper part average. 471 dtmp = kUpWeight * erl.himean + (1 - kUpWeight) * erl.average; 472 metrics->erl.average = (int)dtmp; 473 } else { 474 metrics->erl.average = kOffsetLevel; 475 } 476 477 metrics->erl.max = (int)erl.max; 478 479 if (erl.min < (kOffsetLevel * (-1))) { 480 metrics->erl.min = (int)erl.min; 481 } else { 482 metrics->erl.min = kOffsetLevel; 483 } 484 485 // ERLE 486 metrics->erle.instant = (int)erle.instant; 487 488 if ((erle.himean > kOffsetLevel) && (erle.average > kOffsetLevel)) { 489 // Use a mix between regular average and upper part average. 490 dtmp = kUpWeight * erle.himean + (1 - kUpWeight) * erle.average; 491 metrics->erle.average = (int)dtmp; 492 } else { 493 metrics->erle.average = kOffsetLevel; 494 } 495 496 metrics->erle.max = (int)erle.max; 497 498 if (erle.min < (kOffsetLevel * (-1))) { 499 metrics->erle.min = (int)erle.min; 500 } else { 501 metrics->erle.min = kOffsetLevel; 502 } 503 504 // RERL 505 if ((metrics->erl.average > kOffsetLevel) && 506 (metrics->erle.average > kOffsetLevel)) { 507 stmp = metrics->erl.average + metrics->erle.average; 508 } else { 509 stmp = kOffsetLevel; 510 } 511 metrics->rerl.average = stmp; 512 513 // No other statistics needed, but returned for completeness. 514 metrics->rerl.instant = stmp; 515 metrics->rerl.max = stmp; 516 metrics->rerl.min = stmp; 517 518 // A_NLP 519 metrics->aNlp.instant = (int)a_nlp.instant; 520 521 if ((a_nlp.himean > kOffsetLevel) && (a_nlp.average > kOffsetLevel)) { 522 // Use a mix between regular average and upper part average. 523 dtmp = kUpWeight * a_nlp.himean + (1 - kUpWeight) * a_nlp.average; 524 metrics->aNlp.average = (int)dtmp; 525 } else { 526 metrics->aNlp.average = kOffsetLevel; 527 } 528 529 metrics->aNlp.max = (int)a_nlp.max; 530 531 if (a_nlp.min < (kOffsetLevel * (-1))) { 532 metrics->aNlp.min = (int)a_nlp.min; 533 } else { 534 metrics->aNlp.min = kOffsetLevel; 535 } 536 537 return 0; 538 } 539 540 int WebRtcAec_GetDelayMetrics(void* handle, 541 int* median, 542 int* std, 543 float* fraction_poor_delays) { 544 Aec* self = handle; 545 if (median == NULL) { 546 return AEC_NULL_POINTER_ERROR; 547 } 548 if (std == NULL) { 549 return AEC_NULL_POINTER_ERROR; 550 } 551 if (self->initFlag != initCheck) { 552 return AEC_UNINITIALIZED_ERROR; 553 } 554 if (WebRtcAec_GetDelayMetricsCore(self->aec, median, std, 555 fraction_poor_delays) == 556 -1) { 557 // Logging disabled. 558 return AEC_UNSUPPORTED_FUNCTION_ERROR; 559 } 560 561 return 0; 562 } 563 564 565 AecCore* WebRtcAec_aec_core(void* handle) { 566 if (!handle) { 567 return NULL; 568 } 569 return ((Aec*)handle)->aec; 570 } 571 572 static int ProcessNormal(Aec* aecpc, 573 const float* const* nearend, 574 size_t num_bands, 575 float* const* out, 576 size_t nrOfSamples, 577 int16_t msInSndCardBuf, 578 int32_t skew) { 579 int retVal = 0; 580 size_t i; 581 size_t nBlocks10ms; 582 // Limit resampling to doubling/halving of signal 583 const float minSkewEst = -0.5f; 584 const float maxSkewEst = 1.0f; 585 586 msInSndCardBuf = 587 msInSndCardBuf > kMaxTrustedDelayMs ? kMaxTrustedDelayMs : msInSndCardBuf; 588 // TODO(andrew): we need to investigate if this +10 is really wanted. 589 msInSndCardBuf += 10; 590 aecpc->msInSndCardBuf = msInSndCardBuf; 591 592 if (aecpc->skewMode == kAecTrue) { 593 if (aecpc->skewFrCtr < 25) { 594 aecpc->skewFrCtr++; 595 } else { 596 retVal = WebRtcAec_GetSkew(aecpc->resampler, skew, &aecpc->skew); 597 if (retVal == -1) { 598 aecpc->skew = 0; 599 retVal = AEC_BAD_PARAMETER_WARNING; 600 } 601 602 aecpc->skew /= aecpc->sampFactor * nrOfSamples; 603 604 if (aecpc->skew < 1.0e-3 && aecpc->skew > -1.0e-3) { 605 aecpc->resample = kAecFalse; 606 } else { 607 aecpc->resample = kAecTrue; 608 } 609 610 if (aecpc->skew < minSkewEst) { 611 aecpc->skew = minSkewEst; 612 } else if (aecpc->skew > maxSkewEst) { 613 aecpc->skew = maxSkewEst; 614 } 615 616 #ifdef WEBRTC_AEC_DEBUG_DUMP 617 (void)fwrite(&aecpc->skew, sizeof(aecpc->skew), 1, aecpc->skewFile); 618 #endif 619 } 620 } 621 622 nBlocks10ms = nrOfSamples / (FRAME_LEN * aecpc->rate_factor); 623 624 if (aecpc->startup_phase) { 625 for (i = 0; i < num_bands; ++i) { 626 // Only needed if they don't already point to the same place. 627 if (nearend[i] != out[i]) { 628 memcpy(out[i], nearend[i], sizeof(nearend[i][0]) * nrOfSamples); 629 } 630 } 631 632 // The AEC is in the start up mode 633 // AEC is disabled until the system delay is OK 634 635 // Mechanism to ensure that the system delay is reasonably stable. 636 if (aecpc->checkBuffSize) { 637 aecpc->checkBufSizeCtr++; 638 // Before we fill up the far-end buffer we require the system delay 639 // to be stable (+/-8 ms) compared to the first value. This 640 // comparison is made during the following 6 consecutive 10 ms 641 // blocks. If it seems to be stable then we start to fill up the 642 // far-end buffer. 643 if (aecpc->counter == 0) { 644 aecpc->firstVal = aecpc->msInSndCardBuf; 645 aecpc->sum = 0; 646 } 647 648 if (abs(aecpc->firstVal - aecpc->msInSndCardBuf) < 649 WEBRTC_SPL_MAX(0.2 * aecpc->msInSndCardBuf, sampMsNb)) { 650 aecpc->sum += aecpc->msInSndCardBuf; 651 aecpc->counter++; 652 } else { 653 aecpc->counter = 0; 654 } 655 656 if (aecpc->counter * nBlocks10ms >= 6) { 657 // The far-end buffer size is determined in partitions of 658 // PART_LEN samples. Use 75% of the average value of the system 659 // delay as buffer size to start with. 660 aecpc->bufSizeStart = 661 WEBRTC_SPL_MIN((3 * aecpc->sum * aecpc->rate_factor * 8) / 662 (4 * aecpc->counter * PART_LEN), 663 kMaxBufSizeStart); 664 // Buffer size has now been determined. 665 aecpc->checkBuffSize = 0; 666 } 667 668 if (aecpc->checkBufSizeCtr * nBlocks10ms > 50) { 669 // For really bad systems, don't disable the echo canceller for 670 // more than 0.5 sec. 671 aecpc->bufSizeStart = WEBRTC_SPL_MIN( 672 (aecpc->msInSndCardBuf * aecpc->rate_factor * 3) / 40, 673 kMaxBufSizeStart); 674 aecpc->checkBuffSize = 0; 675 } 676 } 677 678 // If |checkBuffSize| changed in the if-statement above. 679 if (!aecpc->checkBuffSize) { 680 // The system delay is now reasonably stable (or has been unstable 681 // for too long). When the far-end buffer is filled with 682 // approximately the same amount of data as reported by the system 683 // we end the startup phase. 684 int overhead_elements = 685 WebRtcAec_system_delay(aecpc->aec) / PART_LEN - aecpc->bufSizeStart; 686 if (overhead_elements == 0) { 687 // Enable the AEC 688 aecpc->startup_phase = 0; 689 } else if (overhead_elements > 0) { 690 // TODO(bjornv): Do we need a check on how much we actually 691 // moved the read pointer? It should always be possible to move 692 // the pointer |overhead_elements| since we have only added data 693 // to the buffer and no delay compensation nor AEC processing 694 // has been done. 695 WebRtcAec_MoveFarReadPtr(aecpc->aec, overhead_elements); 696 697 // Enable the AEC 698 aecpc->startup_phase = 0; 699 } 700 } 701 } else { 702 // AEC is enabled. 703 EstBufDelayNormal(aecpc); 704 705 // Call the AEC. 706 // TODO(bjornv): Re-structure such that we don't have to pass 707 // |aecpc->knownDelay| as input. Change name to something like 708 // |system_buffer_diff|. 709 WebRtcAec_ProcessFrames(aecpc->aec, 710 nearend, 711 num_bands, 712 nrOfSamples, 713 aecpc->knownDelay, 714 out); 715 } 716 717 return retVal; 718 } 719 720 static void ProcessExtended(Aec* self, 721 const float* const* near, 722 size_t num_bands, 723 float* const* out, 724 size_t num_samples, 725 int16_t reported_delay_ms, 726 int32_t skew) { 727 size_t i; 728 const int delay_diff_offset = kDelayDiffOffsetSamples; 729 #if defined(WEBRTC_UNTRUSTED_DELAY) 730 reported_delay_ms = kFixedDelayMs; 731 #else 732 // This is the usual mode where we trust the reported system delay values. 733 // Due to the longer filter, we no longer add 10 ms to the reported delay 734 // to reduce chance of non-causality. Instead we apply a minimum here to avoid 735 // issues with the read pointer jumping around needlessly. 736 reported_delay_ms = reported_delay_ms < kMinTrustedDelayMs 737 ? kMinTrustedDelayMs 738 : reported_delay_ms; 739 // If the reported delay appears to be bogus, we attempt to recover by using 740 // the measured fixed delay values. We use >= here because higher layers 741 // may already clamp to this maximum value, and we would otherwise not 742 // detect it here. 743 reported_delay_ms = reported_delay_ms >= kMaxTrustedDelayMs 744 ? kFixedDelayMs 745 : reported_delay_ms; 746 #endif 747 self->msInSndCardBuf = reported_delay_ms; 748 749 if (!self->farend_started) { 750 for (i = 0; i < num_bands; ++i) { 751 // Only needed if they don't already point to the same place. 752 if (near[i] != out[i]) { 753 memcpy(out[i], near[i], sizeof(near[i][0]) * num_samples); 754 } 755 } 756 return; 757 } 758 if (self->startup_phase) { 759 // In the extended mode, there isn't a startup "phase", just a special 760 // action on the first frame. In the trusted delay case, we'll take the 761 // current reported delay, unless it's less then our conservative 762 // measurement. 763 int startup_size_ms = 764 reported_delay_ms < kFixedDelayMs ? kFixedDelayMs : reported_delay_ms; 765 #if defined(WEBRTC_ANDROID) 766 int target_delay = startup_size_ms * self->rate_factor * 8; 767 #else 768 // To avoid putting the AEC in a non-causal state we're being slightly 769 // conservative and scale by 2. On Android we use a fixed delay and 770 // therefore there is no need to scale the target_delay. 771 int target_delay = startup_size_ms * self->rate_factor * 8 / 2; 772 #endif 773 int overhead_elements = 774 (WebRtcAec_system_delay(self->aec) - target_delay) / PART_LEN; 775 WebRtcAec_MoveFarReadPtr(self->aec, overhead_elements); 776 self->startup_phase = 0; 777 } 778 779 EstBufDelayExtended(self); 780 781 { 782 // |delay_diff_offset| gives us the option to manually rewind the delay on 783 // very low delay platforms which can't be expressed purely through 784 // |reported_delay_ms|. 785 const int adjusted_known_delay = 786 WEBRTC_SPL_MAX(0, self->knownDelay + delay_diff_offset); 787 788 WebRtcAec_ProcessFrames(self->aec, 789 near, 790 num_bands, 791 num_samples, 792 adjusted_known_delay, 793 out); 794 } 795 } 796 797 static void EstBufDelayNormal(Aec* aecpc) { 798 int nSampSndCard = aecpc->msInSndCardBuf * sampMsNb * aecpc->rate_factor; 799 int current_delay = nSampSndCard - WebRtcAec_system_delay(aecpc->aec); 800 int delay_difference = 0; 801 802 // Before we proceed with the delay estimate filtering we: 803 // 1) Compensate for the frame that will be read. 804 // 2) Compensate for drift resampling. 805 // 3) Compensate for non-causality if needed, since the estimated delay can't 806 // be negative. 807 808 // 1) Compensating for the frame(s) that will be read/processed. 809 current_delay += FRAME_LEN * aecpc->rate_factor; 810 811 // 2) Account for resampling frame delay. 812 if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) { 813 current_delay -= kResamplingDelay; 814 } 815 816 // 3) Compensate for non-causality, if needed, by flushing one block. 817 if (current_delay < PART_LEN) { 818 current_delay += WebRtcAec_MoveFarReadPtr(aecpc->aec, 1) * PART_LEN; 819 } 820 821 // We use -1 to signal an initialized state in the "extended" implementation; 822 // compensate for that. 823 aecpc->filtDelay = aecpc->filtDelay < 0 ? 0 : aecpc->filtDelay; 824 aecpc->filtDelay = 825 WEBRTC_SPL_MAX(0, (short)(0.8 * aecpc->filtDelay + 0.2 * current_delay)); 826 827 delay_difference = aecpc->filtDelay - aecpc->knownDelay; 828 if (delay_difference > 224) { 829 if (aecpc->lastDelayDiff < 96) { 830 aecpc->timeForDelayChange = 0; 831 } else { 832 aecpc->timeForDelayChange++; 833 } 834 } else if (delay_difference < 96 && aecpc->knownDelay > 0) { 835 if (aecpc->lastDelayDiff > 224) { 836 aecpc->timeForDelayChange = 0; 837 } else { 838 aecpc->timeForDelayChange++; 839 } 840 } else { 841 aecpc->timeForDelayChange = 0; 842 } 843 aecpc->lastDelayDiff = delay_difference; 844 845 if (aecpc->timeForDelayChange > 25) { 846 aecpc->knownDelay = WEBRTC_SPL_MAX((int)aecpc->filtDelay - 160, 0); 847 } 848 } 849 850 static void EstBufDelayExtended(Aec* self) { 851 int reported_delay = self->msInSndCardBuf * sampMsNb * self->rate_factor; 852 int current_delay = reported_delay - WebRtcAec_system_delay(self->aec); 853 int delay_difference = 0; 854 855 // Before we proceed with the delay estimate filtering we: 856 // 1) Compensate for the frame that will be read. 857 // 2) Compensate for drift resampling. 858 // 3) Compensate for non-causality if needed, since the estimated delay can't 859 // be negative. 860 861 // 1) Compensating for the frame(s) that will be read/processed. 862 current_delay += FRAME_LEN * self->rate_factor; 863 864 // 2) Account for resampling frame delay. 865 if (self->skewMode == kAecTrue && self->resample == kAecTrue) { 866 current_delay -= kResamplingDelay; 867 } 868 869 // 3) Compensate for non-causality, if needed, by flushing two blocks. 870 if (current_delay < PART_LEN) { 871 current_delay += WebRtcAec_MoveFarReadPtr(self->aec, 2) * PART_LEN; 872 } 873 874 if (self->filtDelay == -1) { 875 self->filtDelay = WEBRTC_SPL_MAX(0, 0.5 * current_delay); 876 } else { 877 self->filtDelay = WEBRTC_SPL_MAX( 878 0, (short)(0.95 * self->filtDelay + 0.05 * current_delay)); 879 } 880 881 delay_difference = self->filtDelay - self->knownDelay; 882 if (delay_difference > 384) { 883 if (self->lastDelayDiff < 128) { 884 self->timeForDelayChange = 0; 885 } else { 886 self->timeForDelayChange++; 887 } 888 } else if (delay_difference < 128 && self->knownDelay > 0) { 889 if (self->lastDelayDiff > 384) { 890 self->timeForDelayChange = 0; 891 } else { 892 self->timeForDelayChange++; 893 } 894 } else { 895 self->timeForDelayChange = 0; 896 } 897 self->lastDelayDiff = delay_difference; 898 899 if (self->timeForDelayChange > 25) { 900 self->knownDelay = WEBRTC_SPL_MAX((int)self->filtDelay - 256, 0); 901 } 902 } 903