1 // Protocol Buffers - Google's data interchange format 2 // Copyright 2008 Google Inc. All rights reserved. 3 // https://developers.google.com/protocol-buffers/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are 7 // met: 8 // 9 // * Redistributions of source code must retain the above copyright 10 // notice, this list of conditions and the following disclaimer. 11 // * Redistributions in binary form must reproduce the above 12 // copyright notice, this list of conditions and the following disclaimer 13 // in the documentation and/or other materials provided with the 14 // distribution. 15 // * Neither the name of Google Inc. nor the names of its 16 // contributors may be used to endorse or promote products derived from 17 // this software without specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // Author: kenton (at) google.com (Kenton Varda) 32 // Based on original Protocol Buffers design by 33 // Sanjay Ghemawat, Jeff Dean, and others. 34 // 35 // This file contains the CodedInputStream and CodedOutputStream classes, 36 // which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively, 37 // and allow you to read or write individual pieces of data in various 38 // formats. In particular, these implement the varint encoding for 39 // integers, a simple variable-length encoding in which smaller numbers 40 // take fewer bytes. 41 // 42 // Typically these classes will only be used internally by the protocol 43 // buffer library in order to encode and decode protocol buffers. Clients 44 // of the library only need to know about this class if they wish to write 45 // custom message parsing or serialization procedures. 46 // 47 // CodedOutputStream example: 48 // // Write some data to "myfile". First we write a 4-byte "magic number" 49 // // to identify the file type, then write a length-delimited string. The 50 // // string is composed of a varint giving the length followed by the raw 51 // // bytes. 52 // int fd = open("myfile", O_CREAT | O_WRONLY); 53 // ZeroCopyOutputStream* raw_output = new FileOutputStream(fd); 54 // CodedOutputStream* coded_output = new CodedOutputStream(raw_output); 55 // 56 // int magic_number = 1234; 57 // char text[] = "Hello world!"; 58 // coded_output->WriteLittleEndian32(magic_number); 59 // coded_output->WriteVarint32(strlen(text)); 60 // coded_output->WriteRaw(text, strlen(text)); 61 // 62 // delete coded_output; 63 // delete raw_output; 64 // close(fd); 65 // 66 // CodedInputStream example: 67 // // Read a file created by the above code. 68 // int fd = open("myfile", O_RDONLY); 69 // ZeroCopyInputStream* raw_input = new FileInputStream(fd); 70 // CodedInputStream coded_input = new CodedInputStream(raw_input); 71 // 72 // coded_input->ReadLittleEndian32(&magic_number); 73 // if (magic_number != 1234) { 74 // cerr << "File not in expected format." << endl; 75 // return; 76 // } 77 // 78 // uint32 size; 79 // coded_input->ReadVarint32(&size); 80 // 81 // char* text = new char[size + 1]; 82 // coded_input->ReadRaw(buffer, size); 83 // text[size] = '\0'; 84 // 85 // delete coded_input; 86 // delete raw_input; 87 // close(fd); 88 // 89 // cout << "Text is: " << text << endl; 90 // delete [] text; 91 // 92 // For those who are interested, varint encoding is defined as follows: 93 // 94 // The encoding operates on unsigned integers of up to 64 bits in length. 95 // Each byte of the encoded value has the format: 96 // * bits 0-6: Seven bits of the number being encoded. 97 // * bit 7: Zero if this is the last byte in the encoding (in which 98 // case all remaining bits of the number are zero) or 1 if 99 // more bytes follow. 100 // The first byte contains the least-significant 7 bits of the number, the 101 // second byte (if present) contains the next-least-significant 7 bits, 102 // and so on. So, the binary number 1011000101011 would be encoded in two 103 // bytes as "10101011 00101100". 104 // 105 // In theory, varint could be used to encode integers of any length. 106 // However, for practicality we set a limit at 64 bits. The maximum encoded 107 // length of a number is thus 10 bytes. 108 109 #ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__ 110 #define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__ 111 112 #include <assert.h> 113 #include <string> 114 #include <utility> 115 #ifdef _MSC_VER 116 // Assuming windows is always little-endian. 117 #if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) 118 #define PROTOBUF_LITTLE_ENDIAN 1 119 #endif 120 #if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER) 121 // If MSVC has "/RTCc" set, it will complain about truncating casts at 122 // runtime. This file contains some intentional truncating casts. 123 #pragma runtime_checks("c", off) 124 #endif 125 #else 126 #include <sys/param.h> // __BYTE_ORDER 127 #if ((defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)) || \ 128 (defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN)) && \ 129 !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST) 130 #define PROTOBUF_LITTLE_ENDIAN 1 131 #endif 132 #endif 133 #include <google/protobuf/stubs/common.h> 134 135 namespace google { 136 137 namespace protobuf { 138 139 class DescriptorPool; 140 class MessageFactory; 141 142 namespace io { 143 144 // Defined in this file. 145 class CodedInputStream; 146 class CodedOutputStream; 147 148 // Defined in other files. 149 class ZeroCopyInputStream; // zero_copy_stream.h 150 class ZeroCopyOutputStream; // zero_copy_stream.h 151 152 // Class which reads and decodes binary data which is composed of varint- 153 // encoded integers and fixed-width pieces. Wraps a ZeroCopyInputStream. 154 // Most users will not need to deal with CodedInputStream. 155 // 156 // Most methods of CodedInputStream that return a bool return false if an 157 // underlying I/O error occurs or if the data is malformed. Once such a 158 // failure occurs, the CodedInputStream is broken and is no longer useful. 159 class LIBPROTOBUF_EXPORT CodedInputStream { 160 public: 161 // Create a CodedInputStream that reads from the given ZeroCopyInputStream. 162 explicit CodedInputStream(ZeroCopyInputStream* input); 163 164 // Create a CodedInputStream that reads from the given flat array. This is 165 // faster than using an ArrayInputStream. PushLimit(size) is implied by 166 // this constructor. 167 explicit CodedInputStream(const uint8* buffer, int size); 168 169 // Destroy the CodedInputStream and position the underlying 170 // ZeroCopyInputStream at the first unread byte. If an error occurred while 171 // reading (causing a method to return false), then the exact position of 172 // the input stream may be anywhere between the last value that was read 173 // successfully and the stream's byte limit. 174 ~CodedInputStream(); 175 176 // Return true if this CodedInputStream reads from a flat array instead of 177 // a ZeroCopyInputStream. 178 inline bool IsFlat() const; 179 180 // Skips a number of bytes. Returns false if an underlying read error 181 // occurs. 182 bool Skip(int count); 183 184 // Sets *data to point directly at the unread part of the CodedInputStream's 185 // underlying buffer, and *size to the size of that buffer, but does not 186 // advance the stream's current position. This will always either produce 187 // a non-empty buffer or return false. If the caller consumes any of 188 // this data, it should then call Skip() to skip over the consumed bytes. 189 // This may be useful for implementing external fast parsing routines for 190 // types of data not covered by the CodedInputStream interface. 191 bool GetDirectBufferPointer(const void** data, int* size); 192 193 // Like GetDirectBufferPointer, but this method is inlined, and does not 194 // attempt to Refresh() if the buffer is currently empty. 195 GOOGLE_ATTRIBUTE_ALWAYS_INLINE void GetDirectBufferPointerInline(const void** data, 196 int* size); 197 198 // Read raw bytes, copying them into the given buffer. 199 bool ReadRaw(void* buffer, int size); 200 201 // Like the above, with inlined optimizations. This should only be used 202 // by the protobuf implementation. 203 GOOGLE_ATTRIBUTE_ALWAYS_INLINE bool InternalReadRawInline(void* buffer, int size); 204 205 // Like ReadRaw, but reads into a string. 206 // 207 // Implementation Note: ReadString() grows the string gradually as it 208 // reads in the data, rather than allocating the entire requested size 209 // upfront. This prevents denial-of-service attacks in which a client 210 // could claim that a string is going to be MAX_INT bytes long in order to 211 // crash the server because it can't allocate this much space at once. 212 bool ReadString(string* buffer, int size); 213 // Like the above, with inlined optimizations. This should only be used 214 // by the protobuf implementation. 215 GOOGLE_ATTRIBUTE_ALWAYS_INLINE bool InternalReadStringInline(string* buffer, 216 int size); 217 218 219 // Read a 32-bit little-endian integer. 220 bool ReadLittleEndian32(uint32* value); 221 // Read a 64-bit little-endian integer. 222 bool ReadLittleEndian64(uint64* value); 223 224 // These methods read from an externally provided buffer. The caller is 225 // responsible for ensuring that the buffer has sufficient space. 226 // Read a 32-bit little-endian integer. 227 static const uint8* ReadLittleEndian32FromArray(const uint8* buffer, 228 uint32* value); 229 // Read a 64-bit little-endian integer. 230 static const uint8* ReadLittleEndian64FromArray(const uint8* buffer, 231 uint64* value); 232 233 // Read an unsigned integer with Varint encoding, truncating to 32 bits. 234 // Reading a 32-bit value is equivalent to reading a 64-bit one and casting 235 // it to uint32, but may be more efficient. 236 bool ReadVarint32(uint32* value); 237 // Read an unsigned integer with Varint encoding. 238 bool ReadVarint64(uint64* value); 239 240 // Read a tag. This calls ReadVarint32() and returns the result, or returns 241 // zero (which is not a valid tag) if ReadVarint32() fails. Also, it updates 242 // the last tag value, which can be checked with LastTagWas(). 243 // Always inline because this is only called in one place per parse loop 244 // but it is called for every iteration of said loop, so it should be fast. 245 // GCC doesn't want to inline this by default. 246 GOOGLE_ATTRIBUTE_ALWAYS_INLINE uint32 ReadTag(); 247 248 // This usually a faster alternative to ReadTag() when cutoff is a manifest 249 // constant. It does particularly well for cutoff >= 127. The first part 250 // of the return value is the tag that was read, though it can also be 0 in 251 // the cases where ReadTag() would return 0. If the second part is true 252 // then the tag is known to be in [0, cutoff]. If not, the tag either is 253 // above cutoff or is 0. (There's intentional wiggle room when tag is 0, 254 // because that can arise in several ways, and for best performance we want 255 // to avoid an extra "is tag == 0?" check here.) 256 GOOGLE_ATTRIBUTE_ALWAYS_INLINE std::pair<uint32, bool> ReadTagWithCutoff( 257 uint32 cutoff); 258 259 // Usually returns true if calling ReadVarint32() now would produce the given 260 // value. Will always return false if ReadVarint32() would not return the 261 // given value. If ExpectTag() returns true, it also advances past 262 // the varint. For best performance, use a compile-time constant as the 263 // parameter. 264 // Always inline because this collapses to a small number of instructions 265 // when given a constant parameter, but GCC doesn't want to inline by default. 266 GOOGLE_ATTRIBUTE_ALWAYS_INLINE bool ExpectTag(uint32 expected); 267 268 // Like above, except this reads from the specified buffer. The caller is 269 // responsible for ensuring that the buffer is large enough to read a varint 270 // of the expected size. For best performance, use a compile-time constant as 271 // the expected tag parameter. 272 // 273 // Returns a pointer beyond the expected tag if it was found, or NULL if it 274 // was not. 275 GOOGLE_ATTRIBUTE_ALWAYS_INLINE static const uint8* ExpectTagFromArray( 276 const uint8* buffer, 277 uint32 expected); 278 279 // Usually returns true if no more bytes can be read. Always returns false 280 // if more bytes can be read. If ExpectAtEnd() returns true, a subsequent 281 // call to LastTagWas() will act as if ReadTag() had been called and returned 282 // zero, and ConsumedEntireMessage() will return true. 283 bool ExpectAtEnd(); 284 285 // If the last call to ReadTag() or ReadTagWithCutoff() returned the 286 // given value, returns true. Otherwise, returns false; 287 // 288 // This is needed because parsers for some types of embedded messages 289 // (with field type TYPE_GROUP) don't actually know that they've reached the 290 // end of a message until they see an ENDGROUP tag, which was actually part 291 // of the enclosing message. The enclosing message would like to check that 292 // tag to make sure it had the right number, so it calls LastTagWas() on 293 // return from the embedded parser to check. 294 bool LastTagWas(uint32 expected); 295 296 // When parsing message (but NOT a group), this method must be called 297 // immediately after MergeFromCodedStream() returns (if it returns true) 298 // to further verify that the message ended in a legitimate way. For 299 // example, this verifies that parsing did not end on an end-group tag. 300 // It also checks for some cases where, due to optimizations, 301 // MergeFromCodedStream() can incorrectly return true. 302 bool ConsumedEntireMessage(); 303 304 // Limits ---------------------------------------------------------- 305 // Limits are used when parsing length-delimited embedded messages. 306 // After the message's length is read, PushLimit() is used to prevent 307 // the CodedInputStream from reading beyond that length. Once the 308 // embedded message has been parsed, PopLimit() is called to undo the 309 // limit. 310 311 // Opaque type used with PushLimit() and PopLimit(). Do not modify 312 // values of this type yourself. The only reason that this isn't a 313 // struct with private internals is for efficiency. 314 typedef int Limit; 315 316 // Places a limit on the number of bytes that the stream may read, 317 // starting from the current position. Once the stream hits this limit, 318 // it will act like the end of the input has been reached until PopLimit() 319 // is called. 320 // 321 // As the names imply, the stream conceptually has a stack of limits. The 322 // shortest limit on the stack is always enforced, even if it is not the 323 // top limit. 324 // 325 // The value returned by PushLimit() is opaque to the caller, and must 326 // be passed unchanged to the corresponding call to PopLimit(). 327 Limit PushLimit(int byte_limit); 328 329 // Pops the last limit pushed by PushLimit(). The input must be the value 330 // returned by that call to PushLimit(). 331 void PopLimit(Limit limit); 332 333 // Returns the number of bytes left until the nearest limit on the 334 // stack is hit, or -1 if no limits are in place. 335 int BytesUntilLimit() const; 336 337 // Returns current position relative to the beginning of the input stream. 338 int CurrentPosition() const; 339 340 // Total Bytes Limit ----------------------------------------------- 341 // To prevent malicious users from sending excessively large messages 342 // and causing integer overflows or memory exhaustion, CodedInputStream 343 // imposes a hard limit on the total number of bytes it will read. 344 345 // Sets the maximum number of bytes that this CodedInputStream will read 346 // before refusing to continue. To prevent integer overflows in the 347 // protocol buffers implementation, as well as to prevent servers from 348 // allocating enormous amounts of memory to hold parsed messages, the 349 // maximum message length should be limited to the shortest length that 350 // will not harm usability. The theoretical shortest message that could 351 // cause integer overflows is 512MB. The default limit is 64MB. Apps 352 // should set shorter limits if possible. If warning_threshold is not -1, 353 // a warning will be printed to stderr after warning_threshold bytes are 354 // read. For backwards compatibility all negative values get squashed to -1, 355 // as other negative values might have special internal meanings. 356 // An error will always be printed to stderr if the limit is reached. 357 // 358 // This is unrelated to PushLimit()/PopLimit(). 359 // 360 // Hint: If you are reading this because your program is printing a 361 // warning about dangerously large protocol messages, you may be 362 // confused about what to do next. The best option is to change your 363 // design such that excessively large messages are not necessary. 364 // For example, try to design file formats to consist of many small 365 // messages rather than a single large one. If this is infeasible, 366 // you will need to increase the limit. Chances are, though, that 367 // your code never constructs a CodedInputStream on which the limit 368 // can be set. You probably parse messages by calling things like 369 // Message::ParseFromString(). In this case, you will need to change 370 // your code to instead construct some sort of ZeroCopyInputStream 371 // (e.g. an ArrayInputStream), construct a CodedInputStream around 372 // that, then call Message::ParseFromCodedStream() instead. Then 373 // you can adjust the limit. Yes, it's more work, but you're doing 374 // something unusual. 375 void SetTotalBytesLimit(int total_bytes_limit, int warning_threshold); 376 377 // The Total Bytes Limit minus the Current Position, or -1 if there 378 // is no Total Bytes Limit. 379 int BytesUntilTotalBytesLimit() const; 380 381 // Recursion Limit ------------------------------------------------- 382 // To prevent corrupt or malicious messages from causing stack overflows, 383 // we must keep track of the depth of recursion when parsing embedded 384 // messages and groups. CodedInputStream keeps track of this because it 385 // is the only object that is passed down the stack during parsing. 386 387 // Sets the maximum recursion depth. The default is 100. 388 void SetRecursionLimit(int limit); 389 390 391 // Increments the current recursion depth. Returns true if the depth is 392 // under the limit, false if it has gone over. 393 bool IncrementRecursionDepth(); 394 395 // Decrements the recursion depth if possible. 396 void DecrementRecursionDepth(); 397 398 // Decrements the recursion depth blindly. This is faster than 399 // DecrementRecursionDepth(). It should be used only if all previous 400 // increments to recursion depth were successful. 401 void UnsafeDecrementRecursionDepth(); 402 403 // Shorthand for make_pair(PushLimit(byte_limit), --recursion_budget_). 404 // Using this can reduce code size and complexity in some cases. The caller 405 // is expected to check that the second part of the result is non-negative (to 406 // bail out if the depth of recursion is too high) and, if all is well, to 407 // later pass the first part of the result to PopLimit() or similar. 408 std::pair<CodedInputStream::Limit, int> IncrementRecursionDepthAndPushLimit( 409 int byte_limit); 410 411 // Shorthand for PushLimit(ReadVarint32(&length) ? length : 0). 412 Limit ReadLengthAndPushLimit(); 413 414 // Helper that is equivalent to: { 415 // bool result = ConsumedEntireMessage(); 416 // PopLimit(limit); 417 // UnsafeDecrementRecursionDepth(); 418 // return result; } 419 // Using this can reduce code size and complexity in some cases. 420 // Do not use unless the current recursion depth is greater than zero. 421 bool DecrementRecursionDepthAndPopLimit(Limit limit); 422 423 // Helper that is equivalent to: { 424 // bool result = ConsumedEntireMessage(); 425 // PopLimit(limit); 426 // return result; } 427 // Using this can reduce code size and complexity in some cases. 428 bool CheckEntireMessageConsumedAndPopLimit(Limit limit); 429 430 // Extension Registry ---------------------------------------------- 431 // ADVANCED USAGE: 99.9% of people can ignore this section. 432 // 433 // By default, when parsing extensions, the parser looks for extension 434 // definitions in the pool which owns the outer message's Descriptor. 435 // However, you may call SetExtensionRegistry() to provide an alternative 436 // pool instead. This makes it possible, for example, to parse a message 437 // using a generated class, but represent some extensions using 438 // DynamicMessage. 439 440 // Set the pool used to look up extensions. Most users do not need to call 441 // this as the correct pool will be chosen automatically. 442 // 443 // WARNING: It is very easy to misuse this. Carefully read the requirements 444 // below. Do not use this unless you are sure you need it. Almost no one 445 // does. 446 // 447 // Let's say you are parsing a message into message object m, and you want 448 // to take advantage of SetExtensionRegistry(). You must follow these 449 // requirements: 450 // 451 // The given DescriptorPool must contain m->GetDescriptor(). It is not 452 // sufficient for it to simply contain a descriptor that has the same name 453 // and content -- it must be the *exact object*. In other words: 454 // assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) == 455 // m->GetDescriptor()); 456 // There are two ways to satisfy this requirement: 457 // 1) Use m->GetDescriptor()->pool() as the pool. This is generally useless 458 // because this is the pool that would be used anyway if you didn't call 459 // SetExtensionRegistry() at all. 460 // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an 461 // "underlay". Read the documentation for DescriptorPool for more 462 // information about underlays. 463 // 464 // You must also provide a MessageFactory. This factory will be used to 465 // construct Message objects representing extensions. The factory's 466 // GetPrototype() MUST return non-NULL for any Descriptor which can be found 467 // through the provided pool. 468 // 469 // If the provided factory might return instances of protocol-compiler- 470 // generated (i.e. compiled-in) types, or if the outer message object m is 471 // a generated type, then the given factory MUST have this property: If 472 // GetPrototype() is given a Descriptor which resides in 473 // DescriptorPool::generated_pool(), the factory MUST return the same 474 // prototype which MessageFactory::generated_factory() would return. That 475 // is, given a descriptor for a generated type, the factory must return an 476 // instance of the generated class (NOT DynamicMessage). However, when 477 // given a descriptor for a type that is NOT in generated_pool, the factory 478 // is free to return any implementation. 479 // 480 // The reason for this requirement is that generated sub-objects may be 481 // accessed via the standard (non-reflection) extension accessor methods, 482 // and these methods will down-cast the object to the generated class type. 483 // If the object is not actually of that type, the results would be undefined. 484 // On the other hand, if an extension is not compiled in, then there is no 485 // way the code could end up accessing it via the standard accessors -- the 486 // only way to access the extension is via reflection. When using reflection, 487 // DynamicMessage and generated messages are indistinguishable, so it's fine 488 // if these objects are represented using DynamicMessage. 489 // 490 // Using DynamicMessageFactory on which you have called 491 // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the 492 // above requirement. 493 // 494 // If either pool or factory is NULL, both must be NULL. 495 // 496 // Note that this feature is ignored when parsing "lite" messages as they do 497 // not have descriptors. 498 void SetExtensionRegistry(const DescriptorPool* pool, 499 MessageFactory* factory); 500 501 // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool 502 // has been provided. 503 const DescriptorPool* GetExtensionPool(); 504 505 // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no 506 // factory has been provided. 507 MessageFactory* GetExtensionFactory(); 508 509 private: 510 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream); 511 512 const uint8* buffer_; 513 const uint8* buffer_end_; // pointer to the end of the buffer. 514 ZeroCopyInputStream* input_; 515 int total_bytes_read_; // total bytes read from input_, including 516 // the current buffer 517 518 // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here 519 // so that we can BackUp() on destruction. 520 int overflow_bytes_; 521 522 // LastTagWas() stuff. 523 uint32 last_tag_; // result of last ReadTag() or ReadTagWithCutoff(). 524 525 // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly 526 // at EOF, or by ExpectAtEnd() when it returns true. This happens when we 527 // reach the end of a message and attempt to read another tag. 528 bool legitimate_message_end_; 529 530 // See EnableAliasing(). 531 bool aliasing_enabled_; 532 533 // Limits 534 Limit current_limit_; // if position = -1, no limit is applied 535 536 // For simplicity, if the current buffer crosses a limit (either a normal 537 // limit created by PushLimit() or the total bytes limit), buffer_size_ 538 // only tracks the number of bytes before that limit. This field 539 // contains the number of bytes after it. Note that this implies that if 540 // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've 541 // hit a limit. However, if both are zero, it doesn't necessarily mean 542 // we aren't at a limit -- the buffer may have ended exactly at the limit. 543 int buffer_size_after_limit_; 544 545 // Maximum number of bytes to read, period. This is unrelated to 546 // current_limit_. Set using SetTotalBytesLimit(). 547 int total_bytes_limit_; 548 549 // If positive/0: Limit for bytes read after which a warning due to size 550 // should be logged. 551 // If -1: Printing of warning disabled. Can be set by client. 552 // If -2: Internal: Limit has been reached, print full size when destructing. 553 int total_bytes_warning_threshold_; 554 555 // Current recursion budget, controlled by IncrementRecursionDepth() and 556 // similar. Starts at recursion_limit_ and goes down: if this reaches 557 // -1 we are over budget. 558 int recursion_budget_; 559 // Recursion depth limit, set by SetRecursionLimit(). 560 int recursion_limit_; 561 562 // See SetExtensionRegistry(). 563 const DescriptorPool* extension_pool_; 564 MessageFactory* extension_factory_; 565 566 // Private member functions. 567 568 // Advance the buffer by a given number of bytes. 569 void Advance(int amount); 570 571 // Back up input_ to the current buffer position. 572 void BackUpInputToCurrentPosition(); 573 574 // Recomputes the value of buffer_size_after_limit_. Must be called after 575 // current_limit_ or total_bytes_limit_ changes. 576 void RecomputeBufferLimits(); 577 578 // Writes an error message saying that we hit total_bytes_limit_. 579 void PrintTotalBytesLimitError(); 580 581 // Called when the buffer runs out to request more data. Implies an 582 // Advance(BufferSize()). 583 bool Refresh(); 584 585 // When parsing varints, we optimize for the common case of small values, and 586 // then optimize for the case when the varint fits within the current buffer 587 // piece. The Fallback method is used when we can't use the one-byte 588 // optimization. The Slow method is yet another fallback when the buffer is 589 // not large enough. Making the slow path out-of-line speeds up the common 590 // case by 10-15%. The slow path is fairly uncommon: it only triggers when a 591 // message crosses multiple buffers. Note: ReadVarint32Fallback() and 592 // ReadVarint64Fallback() are called frequently and generally not inlined, so 593 // they have been optimized to avoid "out" parameters. The former returns -1 594 // if it fails and the uint32 it read otherwise. The latter has a bool 595 // indicating success or failure as part of its return type. 596 int64 ReadVarint32Fallback(uint32 first_byte_or_zero); 597 std::pair<uint64, bool> ReadVarint64Fallback(); 598 bool ReadVarint32Slow(uint32* value); 599 bool ReadVarint64Slow(uint64* value); 600 bool ReadLittleEndian32Fallback(uint32* value); 601 bool ReadLittleEndian64Fallback(uint64* value); 602 // Fallback/slow methods for reading tags. These do not update last_tag_, 603 // but will set legitimate_message_end_ if we are at the end of the input 604 // stream. 605 uint32 ReadTagFallback(uint32 first_byte_or_zero); 606 uint32 ReadTagSlow(); 607 bool ReadStringFallback(string* buffer, int size); 608 609 // Return the size of the buffer. 610 int BufferSize() const; 611 612 static const int kDefaultTotalBytesLimit = 64 << 20; // 64MB 613 614 static const int kDefaultTotalBytesWarningThreshold = 32 << 20; // 32MB 615 616 static int default_recursion_limit_; // 100 by default. 617 }; 618 619 // Class which encodes and writes binary data which is composed of varint- 620 // encoded integers and fixed-width pieces. Wraps a ZeroCopyOutputStream. 621 // Most users will not need to deal with CodedOutputStream. 622 // 623 // Most methods of CodedOutputStream which return a bool return false if an 624 // underlying I/O error occurs. Once such a failure occurs, the 625 // CodedOutputStream is broken and is no longer useful. The Write* methods do 626 // not return the stream status, but will invalidate the stream if an error 627 // occurs. The client can probe HadError() to determine the status. 628 // 629 // Note that every method of CodedOutputStream which writes some data has 630 // a corresponding static "ToArray" version. These versions write directly 631 // to the provided buffer, returning a pointer past the last written byte. 632 // They require that the buffer has sufficient capacity for the encoded data. 633 // This allows an optimization where we check if an output stream has enough 634 // space for an entire message before we start writing and, if there is, we 635 // call only the ToArray methods to avoid doing bound checks for each 636 // individual value. 637 // i.e., in the example above: 638 // 639 // CodedOutputStream coded_output = new CodedOutputStream(raw_output); 640 // int magic_number = 1234; 641 // char text[] = "Hello world!"; 642 // 643 // int coded_size = sizeof(magic_number) + 644 // CodedOutputStream::VarintSize32(strlen(text)) + 645 // strlen(text); 646 // 647 // uint8* buffer = 648 // coded_output->GetDirectBufferForNBytesAndAdvance(coded_size); 649 // if (buffer != NULL) { 650 // // The output stream has enough space in the buffer: write directly to 651 // // the array. 652 // buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number, 653 // buffer); 654 // buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer); 655 // buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer); 656 // } else { 657 // // Make bound-checked writes, which will ask the underlying stream for 658 // // more space as needed. 659 // coded_output->WriteLittleEndian32(magic_number); 660 // coded_output->WriteVarint32(strlen(text)); 661 // coded_output->WriteRaw(text, strlen(text)); 662 // } 663 // 664 // delete coded_output; 665 class LIBPROTOBUF_EXPORT CodedOutputStream { 666 public: 667 // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream. 668 explicit CodedOutputStream(ZeroCopyOutputStream* output); 669 CodedOutputStream(ZeroCopyOutputStream* output, bool do_eager_refresh); 670 671 // Destroy the CodedOutputStream and position the underlying 672 // ZeroCopyOutputStream immediately after the last byte written. 673 ~CodedOutputStream(); 674 675 // Trims any unused space in the underlying buffer so that its size matches 676 // the number of bytes written by this stream. The underlying buffer will 677 // automatically be trimmed when this stream is destroyed; this call is only 678 // necessary if the underlying buffer is accessed *before* the stream is 679 // destroyed. 680 void Trim(); 681 682 // Skips a number of bytes, leaving the bytes unmodified in the underlying 683 // buffer. Returns false if an underlying write error occurs. This is 684 // mainly useful with GetDirectBufferPointer(). 685 bool Skip(int count); 686 687 // Sets *data to point directly at the unwritten part of the 688 // CodedOutputStream's underlying buffer, and *size to the size of that 689 // buffer, but does not advance the stream's current position. This will 690 // always either produce a non-empty buffer or return false. If the caller 691 // writes any data to this buffer, it should then call Skip() to skip over 692 // the consumed bytes. This may be useful for implementing external fast 693 // serialization routines for types of data not covered by the 694 // CodedOutputStream interface. 695 bool GetDirectBufferPointer(void** data, int* size); 696 697 // If there are at least "size" bytes available in the current buffer, 698 // returns a pointer directly into the buffer and advances over these bytes. 699 // The caller may then write directly into this buffer (e.g. using the 700 // *ToArray static methods) rather than go through CodedOutputStream. If 701 // there are not enough bytes available, returns NULL. The return pointer is 702 // invalidated as soon as any other non-const method of CodedOutputStream 703 // is called. 704 inline uint8* GetDirectBufferForNBytesAndAdvance(int size); 705 706 // Write raw bytes, copying them from the given buffer. 707 void WriteRaw(const void* buffer, int size); 708 // Like WriteRaw() but will try to write aliased data if aliasing is 709 // turned on. 710 void WriteRawMaybeAliased(const void* data, int size); 711 // Like WriteRaw() but writing directly to the target array. 712 // This is _not_ inlined, as the compiler often optimizes memcpy into inline 713 // copy loops. Since this gets called by every field with string or bytes 714 // type, inlining may lead to a significant amount of code bloat, with only a 715 // minor performance gain. 716 static uint8* WriteRawToArray(const void* buffer, int size, uint8* target); 717 718 // Equivalent to WriteRaw(str.data(), str.size()). 719 void WriteString(const string& str); 720 // Like WriteString() but writing directly to the target array. 721 static uint8* WriteStringToArray(const string& str, uint8* target); 722 // Write the varint-encoded size of str followed by str. 723 static uint8* WriteStringWithSizeToArray(const string& str, uint8* target); 724 725 726 // Instructs the CodedOutputStream to allow the underlying 727 // ZeroCopyOutputStream to hold pointers to the original structure instead of 728 // copying, if it supports it (i.e. output->AllowsAliasing() is true). If the 729 // underlying stream does not support aliasing, then enabling it has no 730 // affect. For now, this only affects the behavior of 731 // WriteRawMaybeAliased(). 732 // 733 // NOTE: It is caller's responsibility to ensure that the chunk of memory 734 // remains live until all of the data has been consumed from the stream. 735 void EnableAliasing(bool enabled); 736 737 // Write a 32-bit little-endian integer. 738 void WriteLittleEndian32(uint32 value); 739 // Like WriteLittleEndian32() but writing directly to the target array. 740 static uint8* WriteLittleEndian32ToArray(uint32 value, uint8* target); 741 // Write a 64-bit little-endian integer. 742 void WriteLittleEndian64(uint64 value); 743 // Like WriteLittleEndian64() but writing directly to the target array. 744 static uint8* WriteLittleEndian64ToArray(uint64 value, uint8* target); 745 746 // Write an unsigned integer with Varint encoding. Writing a 32-bit value 747 // is equivalent to casting it to uint64 and writing it as a 64-bit value, 748 // but may be more efficient. 749 void WriteVarint32(uint32 value); 750 // Like WriteVarint32() but writing directly to the target array. 751 static uint8* WriteVarint32ToArray(uint32 value, uint8* target); 752 // Write an unsigned integer with Varint encoding. 753 void WriteVarint64(uint64 value); 754 // Like WriteVarint64() but writing directly to the target array. 755 static uint8* WriteVarint64ToArray(uint64 value, uint8* target); 756 757 // Equivalent to WriteVarint32() except when the value is negative, 758 // in which case it must be sign-extended to a full 10 bytes. 759 void WriteVarint32SignExtended(int32 value); 760 // Like WriteVarint32SignExtended() but writing directly to the target array. 761 static uint8* WriteVarint32SignExtendedToArray(int32 value, uint8* target); 762 763 // This is identical to WriteVarint32(), but optimized for writing tags. 764 // In particular, if the input is a compile-time constant, this method 765 // compiles down to a couple instructions. 766 // Always inline because otherwise the aformentioned optimization can't work, 767 // but GCC by default doesn't want to inline this. 768 void WriteTag(uint32 value); 769 // Like WriteTag() but writing directly to the target array. 770 GOOGLE_ATTRIBUTE_ALWAYS_INLINE static uint8* WriteTagToArray(uint32 value, 771 uint8* target); 772 773 // Returns the number of bytes needed to encode the given value as a varint. 774 static int VarintSize32(uint32 value); 775 // Returns the number of bytes needed to encode the given value as a varint. 776 static int VarintSize64(uint64 value); 777 778 // If negative, 10 bytes. Otheriwse, same as VarintSize32(). 779 static int VarintSize32SignExtended(int32 value); 780 781 // Compile-time equivalent of VarintSize32(). 782 template <uint32 Value> 783 struct StaticVarintSize32 { 784 static const int value = 785 (Value < (1 << 7)) 786 ? 1 787 : (Value < (1 << 14)) 788 ? 2 789 : (Value < (1 << 21)) 790 ? 3 791 : (Value < (1 << 28)) 792 ? 4 793 : 5; 794 }; 795 796 // Returns the total number of bytes written since this object was created. 797 inline int ByteCount() const; 798 799 // Returns true if there was an underlying I/O error since this object was 800 // created. 801 bool HadError() const { return had_error_; } 802 803 private: 804 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream); 805 806 ZeroCopyOutputStream* output_; 807 uint8* buffer_; 808 int buffer_size_; 809 int total_bytes_; // Sum of sizes of all buffers seen so far. 810 bool had_error_; // Whether an error occurred during output. 811 bool aliasing_enabled_; // See EnableAliasing(). 812 813 // Advance the buffer by a given number of bytes. 814 void Advance(int amount); 815 816 // Called when the buffer runs out to request more data. Implies an 817 // Advance(buffer_size_). 818 bool Refresh(); 819 820 // Like WriteRaw() but may avoid copying if the underlying 821 // ZeroCopyOutputStream supports it. 822 void WriteAliasedRaw(const void* buffer, int size); 823 824 // If this write might cross the end of the buffer, we compose the bytes first 825 // then use WriteRaw(). 826 void WriteVarint32SlowPath(uint32 value); 827 828 // Always-inlined versions of WriteVarint* functions so that code can be 829 // reused, while still controlling size. For instance, WriteVarint32ToArray() 830 // should not directly call this: since it is inlined itself, doing so 831 // would greatly increase the size of generated code. Instead, it should call 832 // WriteVarint32FallbackToArray. Meanwhile, WriteVarint32() is already 833 // out-of-line, so it should just invoke this directly to avoid any extra 834 // function call overhead. 835 GOOGLE_ATTRIBUTE_ALWAYS_INLINE static uint8* WriteVarint64ToArrayInline( 836 uint64 value, uint8* target); 837 838 static int VarintSize32Fallback(uint32 value); 839 }; 840 841 // inline methods ==================================================== 842 // The vast majority of varints are only one byte. These inline 843 // methods optimize for that case. 844 845 inline bool CodedInputStream::ReadVarint32(uint32* value) { 846 uint32 v = 0; 847 if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) { 848 v = *buffer_; 849 if (v < 0x80) { 850 *value = v; 851 Advance(1); 852 return true; 853 } 854 } 855 int64 result = ReadVarint32Fallback(v); 856 *value = static_cast<uint32>(result); 857 return result >= 0; 858 } 859 860 inline bool CodedInputStream::ReadVarint64(uint64* value) { 861 if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) { 862 *value = *buffer_; 863 Advance(1); 864 return true; 865 } 866 std::pair<uint64, bool> p = ReadVarint64Fallback(); 867 *value = p.first; 868 return p.second; 869 } 870 871 // static 872 inline const uint8* CodedInputStream::ReadLittleEndian32FromArray( 873 const uint8* buffer, 874 uint32* value) { 875 #if defined(PROTOBUF_LITTLE_ENDIAN) 876 memcpy(value, buffer, sizeof(*value)); 877 return buffer + sizeof(*value); 878 #else 879 *value = (static_cast<uint32>(buffer[0]) ) | 880 (static_cast<uint32>(buffer[1]) << 8) | 881 (static_cast<uint32>(buffer[2]) << 16) | 882 (static_cast<uint32>(buffer[3]) << 24); 883 return buffer + sizeof(*value); 884 #endif 885 } 886 // static 887 inline const uint8* CodedInputStream::ReadLittleEndian64FromArray( 888 const uint8* buffer, 889 uint64* value) { 890 #if defined(PROTOBUF_LITTLE_ENDIAN) 891 memcpy(value, buffer, sizeof(*value)); 892 return buffer + sizeof(*value); 893 #else 894 uint32 part0 = (static_cast<uint32>(buffer[0]) ) | 895 (static_cast<uint32>(buffer[1]) << 8) | 896 (static_cast<uint32>(buffer[2]) << 16) | 897 (static_cast<uint32>(buffer[3]) << 24); 898 uint32 part1 = (static_cast<uint32>(buffer[4]) ) | 899 (static_cast<uint32>(buffer[5]) << 8) | 900 (static_cast<uint32>(buffer[6]) << 16) | 901 (static_cast<uint32>(buffer[7]) << 24); 902 *value = static_cast<uint64>(part0) | 903 (static_cast<uint64>(part1) << 32); 904 return buffer + sizeof(*value); 905 #endif 906 } 907 908 inline bool CodedInputStream::ReadLittleEndian32(uint32* value) { 909 #if defined(PROTOBUF_LITTLE_ENDIAN) 910 if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) { 911 memcpy(value, buffer_, sizeof(*value)); 912 Advance(sizeof(*value)); 913 return true; 914 } else { 915 return ReadLittleEndian32Fallback(value); 916 } 917 #else 918 return ReadLittleEndian32Fallback(value); 919 #endif 920 } 921 922 inline bool CodedInputStream::ReadLittleEndian64(uint64* value) { 923 #if defined(PROTOBUF_LITTLE_ENDIAN) 924 if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) { 925 memcpy(value, buffer_, sizeof(*value)); 926 Advance(sizeof(*value)); 927 return true; 928 } else { 929 return ReadLittleEndian64Fallback(value); 930 } 931 #else 932 return ReadLittleEndian64Fallback(value); 933 #endif 934 } 935 936 inline uint32 CodedInputStream::ReadTag() { 937 uint32 v = 0; 938 if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) { 939 v = *buffer_; 940 if (v < 0x80) { 941 last_tag_ = v; 942 Advance(1); 943 return v; 944 } 945 } 946 last_tag_ = ReadTagFallback(v); 947 return last_tag_; 948 } 949 950 inline std::pair<uint32, bool> CodedInputStream::ReadTagWithCutoff( 951 uint32 cutoff) { 952 // In performance-sensitive code we can expect cutoff to be a compile-time 953 // constant, and things like "cutoff >= kMax1ByteVarint" to be evaluated at 954 // compile time. 955 uint32 first_byte_or_zero = 0; 956 if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) { 957 // Hot case: buffer_ non_empty, buffer_[0] in [1, 128). 958 // TODO(gpike): Is it worth rearranging this? E.g., if the number of fields 959 // is large enough then is it better to check for the two-byte case first? 960 first_byte_or_zero = buffer_[0]; 961 if (static_cast<int8>(buffer_[0]) > 0) { 962 const uint32 kMax1ByteVarint = 0x7f; 963 uint32 tag = last_tag_ = buffer_[0]; 964 Advance(1); 965 return std::make_pair(tag, cutoff >= kMax1ByteVarint || tag <= cutoff); 966 } 967 // Other hot case: cutoff >= 0x80, buffer_ has at least two bytes available, 968 // and tag is two bytes. The latter is tested by bitwise-and-not of the 969 // first byte and the second byte. 970 if (cutoff >= 0x80 && 971 GOOGLE_PREDICT_TRUE(buffer_ + 1 < buffer_end_) && 972 GOOGLE_PREDICT_TRUE((buffer_[0] & ~buffer_[1]) >= 0x80)) { 973 const uint32 kMax2ByteVarint = (0x7f << 7) + 0x7f; 974 uint32 tag = last_tag_ = (1u << 7) * buffer_[1] + (buffer_[0] - 0x80); 975 Advance(2); 976 // It might make sense to test for tag == 0 now, but it is so rare that 977 // that we don't bother. A varint-encoded 0 should be one byte unless 978 // the encoder lost its mind. The second part of the return value of 979 // this function is allowed to be either true or false if the tag is 0, 980 // so we don't have to check for tag == 0. We may need to check whether 981 // it exceeds cutoff. 982 bool at_or_below_cutoff = cutoff >= kMax2ByteVarint || tag <= cutoff; 983 return std::make_pair(tag, at_or_below_cutoff); 984 } 985 } 986 // Slow path 987 last_tag_ = ReadTagFallback(first_byte_or_zero); 988 // If last_tag_ == 0 we want to return { 0, false } so the following overflow is intended. 989 // We use __builtin_add_overflow to appease the sub-overflow UB sanitizer. 990 uint32_t last_tag_minus_one; 991 __builtin_add_overflow(last_tag_, -1, &last_tag_minus_one); 992 return std::make_pair(last_tag_, last_tag_minus_one < cutoff); 993 } 994 995 inline bool CodedInputStream::LastTagWas(uint32 expected) { 996 return last_tag_ == expected; 997 } 998 999 inline bool CodedInputStream::ConsumedEntireMessage() { 1000 return legitimate_message_end_; 1001 } 1002 1003 inline bool CodedInputStream::ExpectTag(uint32 expected) { 1004 if (expected < (1 << 7)) { 1005 if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] == expected) { 1006 Advance(1); 1007 return true; 1008 } else { 1009 return false; 1010 } 1011 } else if (expected < (1 << 14)) { 1012 if (GOOGLE_PREDICT_TRUE(BufferSize() >= 2) && 1013 buffer_[0] == static_cast<uint8>(expected | 0x80) && 1014 buffer_[1] == static_cast<uint8>(expected >> 7)) { 1015 Advance(2); 1016 return true; 1017 } else { 1018 return false; 1019 } 1020 } else { 1021 // Don't bother optimizing for larger values. 1022 return false; 1023 } 1024 } 1025 1026 inline const uint8* CodedInputStream::ExpectTagFromArray( 1027 const uint8* buffer, uint32 expected) { 1028 if (expected < (1 << 7)) { 1029 if (buffer[0] == expected) { 1030 return buffer + 1; 1031 } 1032 } else if (expected < (1 << 14)) { 1033 if (buffer[0] == static_cast<uint8>(expected | 0x80) && 1034 buffer[1] == static_cast<uint8>(expected >> 7)) { 1035 return buffer + 2; 1036 } 1037 } 1038 return NULL; 1039 } 1040 1041 inline void CodedInputStream::GetDirectBufferPointerInline(const void** data, 1042 int* size) { 1043 *data = buffer_; 1044 *size = static_cast<int>(buffer_end_ - buffer_); 1045 } 1046 1047 inline bool CodedInputStream::ExpectAtEnd() { 1048 // If we are at a limit we know no more bytes can be read. Otherwise, it's 1049 // hard to say without calling Refresh(), and we'd rather not do that. 1050 1051 if (buffer_ == buffer_end_ && 1052 ((buffer_size_after_limit_ != 0) || 1053 (total_bytes_read_ == current_limit_))) { 1054 last_tag_ = 0; // Pretend we called ReadTag()... 1055 legitimate_message_end_ = true; // ... and it hit EOF. 1056 return true; 1057 } else { 1058 return false; 1059 } 1060 } 1061 1062 inline int CodedInputStream::CurrentPosition() const { 1063 return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_); 1064 } 1065 1066 inline uint8* CodedOutputStream::GetDirectBufferForNBytesAndAdvance(int size) { 1067 if (buffer_size_ < size) { 1068 return NULL; 1069 } else { 1070 uint8* result = buffer_; 1071 Advance(size); 1072 return result; 1073 } 1074 } 1075 1076 inline uint8* CodedOutputStream::WriteVarint32ToArray(uint32 value, 1077 uint8* target) { 1078 while (value >= 0x80) { 1079 *target = static_cast<uint8>(value | 0x80); 1080 value >>= 7; 1081 ++target; 1082 } 1083 *target = static_cast<uint8>(value); 1084 return target + 1; 1085 } 1086 1087 inline void CodedOutputStream::WriteVarint32SignExtended(int32 value) { 1088 if (value < 0) { 1089 WriteVarint64(static_cast<uint64>(value)); 1090 } else { 1091 WriteVarint32(static_cast<uint32>(value)); 1092 } 1093 } 1094 1095 inline uint8* CodedOutputStream::WriteVarint32SignExtendedToArray( 1096 int32 value, uint8* target) { 1097 if (value < 0) { 1098 return WriteVarint64ToArray(static_cast<uint64>(value), target); 1099 } else { 1100 return WriteVarint32ToArray(static_cast<uint32>(value), target); 1101 } 1102 } 1103 1104 inline uint8* CodedOutputStream::WriteLittleEndian32ToArray(uint32 value, 1105 uint8* target) { 1106 #if defined(PROTOBUF_LITTLE_ENDIAN) 1107 memcpy(target, &value, sizeof(value)); 1108 #else 1109 target[0] = static_cast<uint8>(value); 1110 target[1] = static_cast<uint8>(value >> 8); 1111 target[2] = static_cast<uint8>(value >> 16); 1112 target[3] = static_cast<uint8>(value >> 24); 1113 #endif 1114 return target + sizeof(value); 1115 } 1116 1117 inline uint8* CodedOutputStream::WriteLittleEndian64ToArray(uint64 value, 1118 uint8* target) { 1119 #if defined(PROTOBUF_LITTLE_ENDIAN) 1120 memcpy(target, &value, sizeof(value)); 1121 #else 1122 uint32 part0 = static_cast<uint32>(value); 1123 uint32 part1 = static_cast<uint32>(value >> 32); 1124 1125 target[0] = static_cast<uint8>(part0); 1126 target[1] = static_cast<uint8>(part0 >> 8); 1127 target[2] = static_cast<uint8>(part0 >> 16); 1128 target[3] = static_cast<uint8>(part0 >> 24); 1129 target[4] = static_cast<uint8>(part1); 1130 target[5] = static_cast<uint8>(part1 >> 8); 1131 target[6] = static_cast<uint8>(part1 >> 16); 1132 target[7] = static_cast<uint8>(part1 >> 24); 1133 #endif 1134 return target + sizeof(value); 1135 } 1136 1137 inline void CodedOutputStream::WriteVarint32(uint32 value) { 1138 if (buffer_size_ >= 5) { 1139 // Fast path: We have enough bytes left in the buffer to guarantee that 1140 // this write won't cross the end, so we can skip the checks. 1141 uint8* target = buffer_; 1142 uint8* end = WriteVarint32ToArray(value, target); 1143 int size = static_cast<int>(end - target); 1144 Advance(size); 1145 } else { 1146 WriteVarint32SlowPath(value); 1147 } 1148 } 1149 1150 inline void CodedOutputStream::WriteTag(uint32 value) { 1151 WriteVarint32(value); 1152 } 1153 1154 inline uint8* CodedOutputStream::WriteTagToArray( 1155 uint32 value, uint8* target) { 1156 return WriteVarint32ToArray(value, target); 1157 } 1158 1159 inline int CodedOutputStream::VarintSize32(uint32 value) { 1160 if (value < (1 << 7)) { 1161 return 1; 1162 } else { 1163 return VarintSize32Fallback(value); 1164 } 1165 } 1166 1167 inline int CodedOutputStream::VarintSize32SignExtended(int32 value) { 1168 if (value < 0) { 1169 return 10; // TODO(kenton): Make this a symbolic constant. 1170 } else { 1171 return VarintSize32(static_cast<uint32>(value)); 1172 } 1173 } 1174 1175 inline void CodedOutputStream::WriteString(const string& str) { 1176 WriteRaw(str.data(), static_cast<int>(str.size())); 1177 } 1178 1179 inline void CodedOutputStream::WriteRawMaybeAliased( 1180 const void* data, int size) { 1181 if (aliasing_enabled_) { 1182 WriteAliasedRaw(data, size); 1183 } else { 1184 WriteRaw(data, size); 1185 } 1186 } 1187 1188 inline uint8* CodedOutputStream::WriteStringToArray( 1189 const string& str, uint8* target) { 1190 return WriteRawToArray(str.data(), static_cast<int>(str.size()), target); 1191 } 1192 1193 inline int CodedOutputStream::ByteCount() const { 1194 return total_bytes_ - buffer_size_; 1195 } 1196 1197 inline void CodedInputStream::Advance(int amount) { 1198 buffer_ += amount; 1199 } 1200 1201 inline void CodedOutputStream::Advance(int amount) { 1202 buffer_ += amount; 1203 buffer_size_ -= amount; 1204 } 1205 1206 inline void CodedInputStream::SetRecursionLimit(int limit) { 1207 recursion_budget_ += limit - recursion_limit_; 1208 recursion_limit_ = limit; 1209 } 1210 1211 inline bool CodedInputStream::IncrementRecursionDepth() { 1212 --recursion_budget_; 1213 return recursion_budget_ >= 0; 1214 } 1215 1216 inline void CodedInputStream::DecrementRecursionDepth() { 1217 if (recursion_budget_ < recursion_limit_) ++recursion_budget_; 1218 } 1219 1220 inline void CodedInputStream::UnsafeDecrementRecursionDepth() { 1221 assert(recursion_budget_ < recursion_limit_); 1222 ++recursion_budget_; 1223 } 1224 1225 inline void CodedInputStream::SetExtensionRegistry(const DescriptorPool* pool, 1226 MessageFactory* factory) { 1227 extension_pool_ = pool; 1228 extension_factory_ = factory; 1229 } 1230 1231 inline const DescriptorPool* CodedInputStream::GetExtensionPool() { 1232 return extension_pool_; 1233 } 1234 1235 inline MessageFactory* CodedInputStream::GetExtensionFactory() { 1236 return extension_factory_; 1237 } 1238 1239 inline int CodedInputStream::BufferSize() const { 1240 return static_cast<int>(buffer_end_ - buffer_); 1241 } 1242 1243 inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input) 1244 : buffer_(NULL), 1245 buffer_end_(NULL), 1246 input_(input), 1247 total_bytes_read_(0), 1248 overflow_bytes_(0), 1249 last_tag_(0), 1250 legitimate_message_end_(false), 1251 aliasing_enabled_(false), 1252 current_limit_(kint32max), 1253 buffer_size_after_limit_(0), 1254 total_bytes_limit_(kDefaultTotalBytesLimit), 1255 total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold), 1256 recursion_budget_(default_recursion_limit_), 1257 recursion_limit_(default_recursion_limit_), 1258 extension_pool_(NULL), 1259 extension_factory_(NULL) { 1260 // Eagerly Refresh() so buffer space is immediately available. 1261 Refresh(); 1262 } 1263 1264 inline CodedInputStream::CodedInputStream(const uint8* buffer, int size) 1265 : buffer_(buffer), 1266 buffer_end_(buffer + size), 1267 input_(NULL), 1268 total_bytes_read_(size), 1269 overflow_bytes_(0), 1270 last_tag_(0), 1271 legitimate_message_end_(false), 1272 aliasing_enabled_(false), 1273 current_limit_(size), 1274 buffer_size_after_limit_(0), 1275 total_bytes_limit_(kDefaultTotalBytesLimit), 1276 total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold), 1277 recursion_budget_(default_recursion_limit_), 1278 recursion_limit_(default_recursion_limit_), 1279 extension_pool_(NULL), 1280 extension_factory_(NULL) { 1281 // Note that setting current_limit_ == size is important to prevent some 1282 // code paths from trying to access input_ and segfaulting. 1283 } 1284 1285 inline bool CodedInputStream::IsFlat() const { 1286 return input_ == NULL; 1287 } 1288 1289 } // namespace io 1290 } // namespace protobuf 1291 1292 1293 #if _MSC_VER >= 1300 && !defined(__INTEL_COMPILER) 1294 #pragma runtime_checks("c", restore) 1295 #endif // _MSC_VER && !defined(__INTEL_COMPILER) 1296 1297 } // namespace google 1298 #endif // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__ 1299